BitcodeReader.cpp revision 3728a0253492cafc02893fc89890ed3452754970
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/MDNode.h"
21#include "llvm/Module.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  delete Buffer;
32  Buffer = 0;
33  std::vector<PATypeHolder>().swap(TypeList);
34  ValueList.clear();
35
36  std::vector<AttrListPtr>().swap(MAttributes);
37  std::vector<BasicBlock*>().swap(FunctionBBs);
38  std::vector<Function*>().swap(FunctionsWithBodies);
39  DeferredFunctionInfo.clear();
40}
41
42//===----------------------------------------------------------------------===//
43//  Helper functions to implement forward reference resolution, etc.
44//===----------------------------------------------------------------------===//
45
46/// ConvertToString - Convert a string from a record into an std::string, return
47/// true on failure.
48template<typename StrTy>
49static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
50                            StrTy &Result) {
51  if (Idx > Record.size())
52    return true;
53
54  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
55    Result += (char)Record[i];
56  return false;
57}
58
59static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
60  switch (Val) {
61  default: // Map unknown/new linkages to external
62  case 0: return GlobalValue::ExternalLinkage;
63  case 1: return GlobalValue::WeakAnyLinkage;
64  case 2: return GlobalValue::AppendingLinkage;
65  case 3: return GlobalValue::InternalLinkage;
66  case 4: return GlobalValue::LinkOnceAnyLinkage;
67  case 5: return GlobalValue::DLLImportLinkage;
68  case 6: return GlobalValue::DLLExportLinkage;
69  case 7: return GlobalValue::ExternalWeakLinkage;
70  case 8: return GlobalValue::CommonLinkage;
71  case 9: return GlobalValue::PrivateLinkage;
72  case 10: return GlobalValue::WeakODRLinkage;
73  case 11: return GlobalValue::LinkOnceODRLinkage;
74  case 12: return GlobalValue::AvailableExternallyLinkage;
75  }
76}
77
78static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
79  switch (Val) {
80  default: // Map unknown visibilities to default.
81  case 0: return GlobalValue::DefaultVisibility;
82  case 1: return GlobalValue::HiddenVisibility;
83  case 2: return GlobalValue::ProtectedVisibility;
84  }
85}
86
87static int GetDecodedCastOpcode(unsigned Val) {
88  switch (Val) {
89  default: return -1;
90  case bitc::CAST_TRUNC   : return Instruction::Trunc;
91  case bitc::CAST_ZEXT    : return Instruction::ZExt;
92  case bitc::CAST_SEXT    : return Instruction::SExt;
93  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
94  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
95  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
96  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
97  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
98  case bitc::CAST_FPEXT   : return Instruction::FPExt;
99  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
100  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
101  case bitc::CAST_BITCAST : return Instruction::BitCast;
102  }
103}
104static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
105  switch (Val) {
106  default: return -1;
107  case bitc::BINOP_ADD:  return Instruction::Add;
108  case bitc::BINOP_SUB:  return Instruction::Sub;
109  case bitc::BINOP_MUL:  return Instruction::Mul;
110  case bitc::BINOP_UDIV: return Instruction::UDiv;
111  case bitc::BINOP_SDIV:
112    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
113  case bitc::BINOP_UREM: return Instruction::URem;
114  case bitc::BINOP_SREM:
115    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
116  case bitc::BINOP_SHL:  return Instruction::Shl;
117  case bitc::BINOP_LSHR: return Instruction::LShr;
118  case bitc::BINOP_ASHR: return Instruction::AShr;
119  case bitc::BINOP_AND:  return Instruction::And;
120  case bitc::BINOP_OR:   return Instruction::Or;
121  case bitc::BINOP_XOR:  return Instruction::Xor;
122  }
123}
124
125namespace llvm {
126namespace {
127  /// @brief A class for maintaining the slot number definition
128  /// as a placeholder for the actual definition for forward constants defs.
129  class ConstantPlaceHolder : public ConstantExpr {
130    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
131    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
132  public:
133    // allocate space for exactly one operand
134    void *operator new(size_t s) {
135      return User::operator new(s, 1);
136    }
137    explicit ConstantPlaceHolder(const Type *Ty)
138      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
139      Op<0>() = UndefValue::get(Type::Int32Ty);
140    }
141
142    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
143    static inline bool classof(const ConstantPlaceHolder *) { return true; }
144    static bool classof(const Value *V) {
145      return isa<ConstantExpr>(V) &&
146             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
147    }
148
149
150    /// Provide fast operand accessors
151    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
152  };
153}
154
155// FIXME: can we inherit this from ConstantExpr?
156template <>
157struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
158};
159}
160
161
162void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
163  if (Idx == size()) {
164    push_back(V);
165    return;
166  }
167
168  if (Idx >= size())
169    resize(Idx+1);
170
171  WeakVH &OldV = ValuePtrs[Idx];
172  if (OldV == 0) {
173    OldV = V;
174    return;
175  }
176
177  // Handle constants and non-constants (e.g. instrs) differently for
178  // efficiency.
179  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
180    ResolveConstants.push_back(std::make_pair(PHC, Idx));
181    OldV = V;
182  } else {
183    // If there was a forward reference to this value, replace it.
184    Value *PrevVal = OldV;
185    OldV->replaceAllUsesWith(V);
186    delete PrevVal;
187  }
188}
189
190
191Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
192                                                    const Type *Ty) {
193  if (Idx >= size())
194    resize(Idx + 1);
195
196  if (Value *V = ValuePtrs[Idx]) {
197    assert(Ty == V->getType() && "Type mismatch in constant table!");
198    return cast<Constant>(V);
199  }
200
201  // Create and return a placeholder, which will later be RAUW'd.
202  Constant *C = new ConstantPlaceHolder(Ty);
203  ValuePtrs[Idx] = C;
204  return C;
205}
206
207Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
208  if (Idx >= size())
209    resize(Idx + 1);
210
211  if (Value *V = ValuePtrs[Idx]) {
212    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
213    return V;
214  }
215
216  // No type specified, must be invalid reference.
217  if (Ty == 0) return 0;
218
219  // Create and return a placeholder, which will later be RAUW'd.
220  Value *V = new Argument(Ty);
221  ValuePtrs[Idx] = V;
222  return V;
223}
224
225/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
226/// resolves any forward references.  The idea behind this is that we sometimes
227/// get constants (such as large arrays) which reference *many* forward ref
228/// constants.  Replacing each of these causes a lot of thrashing when
229/// building/reuniquing the constant.  Instead of doing this, we look at all the
230/// uses and rewrite all the place holders at once for any constant that uses
231/// a placeholder.
232void BitcodeReaderValueList::ResolveConstantForwardRefs() {
233  // Sort the values by-pointer so that they are efficient to look up with a
234  // binary search.
235  std::sort(ResolveConstants.begin(), ResolveConstants.end());
236
237  SmallVector<Constant*, 64> NewOps;
238
239  while (!ResolveConstants.empty()) {
240    Value *RealVal = operator[](ResolveConstants.back().second);
241    Constant *Placeholder = ResolveConstants.back().first;
242    ResolveConstants.pop_back();
243
244    // Loop over all users of the placeholder, updating them to reference the
245    // new value.  If they reference more than one placeholder, update them all
246    // at once.
247    while (!Placeholder->use_empty()) {
248      Value::use_iterator UI = Placeholder->use_begin();
249
250      // If the using object isn't uniqued, just update the operands.  This
251      // handles instructions and initializers for global variables.
252      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
253        UI.getUse().set(RealVal);
254        continue;
255      }
256
257      // Otherwise, we have a constant that uses the placeholder.  Replace that
258      // constant with a new constant that has *all* placeholder uses updated.
259      Constant *UserC = cast<Constant>(*UI);
260      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
261           I != E; ++I) {
262        Value *NewOp;
263        if (!isa<ConstantPlaceHolder>(*I)) {
264          // Not a placeholder reference.
265          NewOp = *I;
266        } else if (*I == Placeholder) {
267          // Common case is that it just references this one placeholder.
268          NewOp = RealVal;
269        } else {
270          // Otherwise, look up the placeholder in ResolveConstants.
271          ResolveConstantsTy::iterator It =
272            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
273                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
274                                                            0));
275          assert(It != ResolveConstants.end() && It->first == *I);
276          NewOp = operator[](It->second);
277        }
278
279        NewOps.push_back(cast<Constant>(NewOp));
280      }
281
282      // Make the new constant.
283      Constant *NewC;
284      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
285        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
286      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
287        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
288                                   UserCS->getType()->isPacked());
289      } else if (isa<ConstantVector>(UserC)) {
290        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
291      } else {
292        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
293        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
294                                                          NewOps.size());
295      }
296
297      UserC->replaceAllUsesWith(NewC);
298      UserC->destroyConstant();
299      NewOps.clear();
300    }
301
302    // Update all ValueHandles, they should be the only users at this point.
303    Placeholder->replaceAllUsesWith(RealVal);
304    delete Placeholder;
305  }
306}
307
308
309const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
310  // If the TypeID is in range, return it.
311  if (ID < TypeList.size())
312    return TypeList[ID].get();
313  if (!isTypeTable) return 0;
314
315  // The type table allows forward references.  Push as many Opaque types as
316  // needed to get up to ID.
317  while (TypeList.size() <= ID)
318    TypeList.push_back(OpaqueType::get());
319  return TypeList.back().get();
320}
321
322//===----------------------------------------------------------------------===//
323//  Functions for parsing blocks from the bitcode file
324//===----------------------------------------------------------------------===//
325
326bool BitcodeReader::ParseAttributeBlock() {
327  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
328    return Error("Malformed block record");
329
330  if (!MAttributes.empty())
331    return Error("Multiple PARAMATTR blocks found!");
332
333  SmallVector<uint64_t, 64> Record;
334
335  SmallVector<AttributeWithIndex, 8> Attrs;
336
337  // Read all the records.
338  while (1) {
339    unsigned Code = Stream.ReadCode();
340    if (Code == bitc::END_BLOCK) {
341      if (Stream.ReadBlockEnd())
342        return Error("Error at end of PARAMATTR block");
343      return false;
344    }
345
346    if (Code == bitc::ENTER_SUBBLOCK) {
347      // No known subblocks, always skip them.
348      Stream.ReadSubBlockID();
349      if (Stream.SkipBlock())
350        return Error("Malformed block record");
351      continue;
352    }
353
354    if (Code == bitc::DEFINE_ABBREV) {
355      Stream.ReadAbbrevRecord();
356      continue;
357    }
358
359    // Read a record.
360    Record.clear();
361    switch (Stream.ReadRecord(Code, Record)) {
362    default:  // Default behavior: ignore.
363      break;
364    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
365      if (Record.size() & 1)
366        return Error("Invalid ENTRY record");
367
368      // FIXME : Remove this autoupgrade code in LLVM 3.0.
369      // If Function attributes are using index 0 then transfer them
370      // to index ~0. Index 0 is used for return value attributes but used to be
371      // used for function attributes.
372      Attributes RetAttribute = Attribute::None;
373      Attributes FnAttribute = Attribute::None;
374      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
375        // FIXME: remove in LLVM 3.0
376        // The alignment is stored as a 16-bit raw value from bits 31--16.
377        // We shift the bits above 31 down by 11 bits.
378
379        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
380        if (Alignment && !isPowerOf2_32(Alignment))
381          return Error("Alignment is not a power of two.");
382
383        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
384        if (Alignment)
385          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
386        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
387        Record[i+1] = ReconstitutedAttr;
388
389        if (Record[i] == 0)
390          RetAttribute = Record[i+1];
391        else if (Record[i] == ~0U)
392          FnAttribute = Record[i+1];
393      }
394
395      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
396                              Attribute::ReadOnly|Attribute::ReadNone);
397
398      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
399          (RetAttribute & OldRetAttrs) != 0) {
400        if (FnAttribute == Attribute::None) { // add a slot so they get added.
401          Record.push_back(~0U);
402          Record.push_back(0);
403        }
404
405        FnAttribute  |= RetAttribute & OldRetAttrs;
406        RetAttribute &= ~OldRetAttrs;
407      }
408
409      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
410        if (Record[i] == 0) {
411          if (RetAttribute != Attribute::None)
412            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
413        } else if (Record[i] == ~0U) {
414          if (FnAttribute != Attribute::None)
415            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
416        } else if (Record[i+1] != Attribute::None)
417          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
418      }
419
420      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
421      Attrs.clear();
422      break;
423    }
424    }
425  }
426}
427
428
429bool BitcodeReader::ParseTypeTable() {
430  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
431    return Error("Malformed block record");
432
433  if (!TypeList.empty())
434    return Error("Multiple TYPE_BLOCKs found!");
435
436  SmallVector<uint64_t, 64> Record;
437  unsigned NumRecords = 0;
438
439  // Read all the records for this type table.
440  while (1) {
441    unsigned Code = Stream.ReadCode();
442    if (Code == bitc::END_BLOCK) {
443      if (NumRecords != TypeList.size())
444        return Error("Invalid type forward reference in TYPE_BLOCK");
445      if (Stream.ReadBlockEnd())
446        return Error("Error at end of type table block");
447      return false;
448    }
449
450    if (Code == bitc::ENTER_SUBBLOCK) {
451      // No known subblocks, always skip them.
452      Stream.ReadSubBlockID();
453      if (Stream.SkipBlock())
454        return Error("Malformed block record");
455      continue;
456    }
457
458    if (Code == bitc::DEFINE_ABBREV) {
459      Stream.ReadAbbrevRecord();
460      continue;
461    }
462
463    // Read a record.
464    Record.clear();
465    const Type *ResultTy = 0;
466    switch (Stream.ReadRecord(Code, Record)) {
467    default:  // Default behavior: unknown type.
468      ResultTy = 0;
469      break;
470    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
471      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
472      // type list.  This allows us to reserve space.
473      if (Record.size() < 1)
474        return Error("Invalid TYPE_CODE_NUMENTRY record");
475      TypeList.reserve(Record[0]);
476      continue;
477    case bitc::TYPE_CODE_VOID:      // VOID
478      ResultTy = Type::VoidTy;
479      break;
480    case bitc::TYPE_CODE_FLOAT:     // FLOAT
481      ResultTy = Type::FloatTy;
482      break;
483    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
484      ResultTy = Type::DoubleTy;
485      break;
486    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
487      ResultTy = Type::X86_FP80Ty;
488      break;
489    case bitc::TYPE_CODE_FP128:     // FP128
490      ResultTy = Type::FP128Ty;
491      break;
492    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
493      ResultTy = Type::PPC_FP128Ty;
494      break;
495    case bitc::TYPE_CODE_LABEL:     // LABEL
496      ResultTy = Type::LabelTy;
497      break;
498    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
499      ResultTy = 0;
500      break;
501    case bitc::TYPE_CODE_METADATA:  // METADATA
502      ResultTy = Type::MetadataTy;
503      break;
504    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
505      if (Record.size() < 1)
506        return Error("Invalid Integer type record");
507
508      ResultTy = IntegerType::get(Record[0]);
509      break;
510    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
511                                    //          [pointee type, address space]
512      if (Record.size() < 1)
513        return Error("Invalid POINTER type record");
514      unsigned AddressSpace = 0;
515      if (Record.size() == 2)
516        AddressSpace = Record[1];
517      ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
518      break;
519    }
520    case bitc::TYPE_CODE_FUNCTION: {
521      // FIXME: attrid is dead, remove it in LLVM 3.0
522      // FUNCTION: [vararg, attrid, retty, paramty x N]
523      if (Record.size() < 3)
524        return Error("Invalid FUNCTION type record");
525      std::vector<const Type*> ArgTys;
526      for (unsigned i = 3, e = Record.size(); i != e; ++i)
527        ArgTys.push_back(getTypeByID(Record[i], true));
528
529      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
530                                   Record[0]);
531      break;
532    }
533    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
534      if (Record.size() < 1)
535        return Error("Invalid STRUCT type record");
536      std::vector<const Type*> EltTys;
537      for (unsigned i = 1, e = Record.size(); i != e; ++i)
538        EltTys.push_back(getTypeByID(Record[i], true));
539      ResultTy = StructType::get(EltTys, Record[0]);
540      break;
541    }
542    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
543      if (Record.size() < 2)
544        return Error("Invalid ARRAY type record");
545      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
546      break;
547    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
548      if (Record.size() < 2)
549        return Error("Invalid VECTOR type record");
550      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
551      break;
552    }
553
554    if (NumRecords == TypeList.size()) {
555      // If this is a new type slot, just append it.
556      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
557      ++NumRecords;
558    } else if (ResultTy == 0) {
559      // Otherwise, this was forward referenced, so an opaque type was created,
560      // but the result type is actually just an opaque.  Leave the one we
561      // created previously.
562      ++NumRecords;
563    } else {
564      // Otherwise, this was forward referenced, so an opaque type was created.
565      // Resolve the opaque type to the real type now.
566      assert(NumRecords < TypeList.size() && "Typelist imbalance");
567      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
568
569      // Don't directly push the new type on the Tab. Instead we want to replace
570      // the opaque type we previously inserted with the new concrete value. The
571      // refinement from the abstract (opaque) type to the new type causes all
572      // uses of the abstract type to use the concrete type (NewTy). This will
573      // also cause the opaque type to be deleted.
574      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
575
576      // This should have replaced the old opaque type with the new type in the
577      // value table... or with a preexisting type that was already in the
578      // system.  Let's just make sure it did.
579      assert(TypeList[NumRecords-1].get() != OldTy &&
580             "refineAbstractType didn't work!");
581    }
582  }
583}
584
585
586bool BitcodeReader::ParseTypeSymbolTable() {
587  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
588    return Error("Malformed block record");
589
590  SmallVector<uint64_t, 64> Record;
591
592  // Read all the records for this type table.
593  std::string TypeName;
594  while (1) {
595    unsigned Code = Stream.ReadCode();
596    if (Code == bitc::END_BLOCK) {
597      if (Stream.ReadBlockEnd())
598        return Error("Error at end of type symbol table block");
599      return false;
600    }
601
602    if (Code == bitc::ENTER_SUBBLOCK) {
603      // No known subblocks, always skip them.
604      Stream.ReadSubBlockID();
605      if (Stream.SkipBlock())
606        return Error("Malformed block record");
607      continue;
608    }
609
610    if (Code == bitc::DEFINE_ABBREV) {
611      Stream.ReadAbbrevRecord();
612      continue;
613    }
614
615    // Read a record.
616    Record.clear();
617    switch (Stream.ReadRecord(Code, Record)) {
618    default:  // Default behavior: unknown type.
619      break;
620    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
621      if (ConvertToString(Record, 1, TypeName))
622        return Error("Invalid TST_ENTRY record");
623      unsigned TypeID = Record[0];
624      if (TypeID >= TypeList.size())
625        return Error("Invalid Type ID in TST_ENTRY record");
626
627      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
628      TypeName.clear();
629      break;
630    }
631  }
632}
633
634bool BitcodeReader::ParseValueSymbolTable() {
635  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
636    return Error("Malformed block record");
637
638  SmallVector<uint64_t, 64> Record;
639
640  // Read all the records for this value table.
641  SmallString<128> ValueName;
642  while (1) {
643    unsigned Code = Stream.ReadCode();
644    if (Code == bitc::END_BLOCK) {
645      if (Stream.ReadBlockEnd())
646        return Error("Error at end of value symbol table block");
647      return false;
648    }
649    if (Code == bitc::ENTER_SUBBLOCK) {
650      // No known subblocks, always skip them.
651      Stream.ReadSubBlockID();
652      if (Stream.SkipBlock())
653        return Error("Malformed block record");
654      continue;
655    }
656
657    if (Code == bitc::DEFINE_ABBREV) {
658      Stream.ReadAbbrevRecord();
659      continue;
660    }
661
662    // Read a record.
663    Record.clear();
664    switch (Stream.ReadRecord(Code, Record)) {
665    default:  // Default behavior: unknown type.
666      break;
667    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
668      if (ConvertToString(Record, 1, ValueName))
669        return Error("Invalid VST_ENTRY record");
670      unsigned ValueID = Record[0];
671      if (ValueID >= ValueList.size())
672        return Error("Invalid Value ID in VST_ENTRY record");
673      Value *V = ValueList[ValueID];
674
675      V->setName(&ValueName[0], ValueName.size());
676      ValueName.clear();
677      break;
678    }
679    case bitc::VST_CODE_BBENTRY: {
680      if (ConvertToString(Record, 1, ValueName))
681        return Error("Invalid VST_BBENTRY record");
682      BasicBlock *BB = getBasicBlock(Record[0]);
683      if (BB == 0)
684        return Error("Invalid BB ID in VST_BBENTRY record");
685
686      BB->setName(&ValueName[0], ValueName.size());
687      ValueName.clear();
688      break;
689    }
690    }
691  }
692}
693
694/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
695/// the LSB for dense VBR encoding.
696static uint64_t DecodeSignRotatedValue(uint64_t V) {
697  if ((V & 1) == 0)
698    return V >> 1;
699  if (V != 1)
700    return -(V >> 1);
701  // There is no such thing as -0 with integers.  "-0" really means MININT.
702  return 1ULL << 63;
703}
704
705/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
706/// values and aliases that we can.
707bool BitcodeReader::ResolveGlobalAndAliasInits() {
708  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
709  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
710
711  GlobalInitWorklist.swap(GlobalInits);
712  AliasInitWorklist.swap(AliasInits);
713
714  while (!GlobalInitWorklist.empty()) {
715    unsigned ValID = GlobalInitWorklist.back().second;
716    if (ValID >= ValueList.size()) {
717      // Not ready to resolve this yet, it requires something later in the file.
718      GlobalInits.push_back(GlobalInitWorklist.back());
719    } else {
720      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
721        GlobalInitWorklist.back().first->setInitializer(C);
722      else
723        return Error("Global variable initializer is not a constant!");
724    }
725    GlobalInitWorklist.pop_back();
726  }
727
728  while (!AliasInitWorklist.empty()) {
729    unsigned ValID = AliasInitWorklist.back().second;
730    if (ValID >= ValueList.size()) {
731      AliasInits.push_back(AliasInitWorklist.back());
732    } else {
733      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
734        AliasInitWorklist.back().first->setAliasee(C);
735      else
736        return Error("Alias initializer is not a constant!");
737    }
738    AliasInitWorklist.pop_back();
739  }
740  return false;
741}
742
743
744bool BitcodeReader::ParseConstants() {
745  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
746    return Error("Malformed block record");
747
748  SmallVector<uint64_t, 64> Record;
749
750  // Read all the records for this value table.
751  const Type *CurTy = Type::Int32Ty;
752  unsigned NextCstNo = ValueList.size();
753  while (1) {
754    unsigned Code = Stream.ReadCode();
755    if (Code == bitc::END_BLOCK)
756      break;
757
758    if (Code == bitc::ENTER_SUBBLOCK) {
759      // No known subblocks, always skip them.
760      Stream.ReadSubBlockID();
761      if (Stream.SkipBlock())
762        return Error("Malformed block record");
763      continue;
764    }
765
766    if (Code == bitc::DEFINE_ABBREV) {
767      Stream.ReadAbbrevRecord();
768      continue;
769    }
770
771    // Read a record.
772    Record.clear();
773    Value *V = 0;
774    switch (Stream.ReadRecord(Code, Record)) {
775    default:  // Default behavior: unknown constant
776    case bitc::CST_CODE_UNDEF:     // UNDEF
777      V = UndefValue::get(CurTy);
778      break;
779    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
780      if (Record.empty())
781        return Error("Malformed CST_SETTYPE record");
782      if (Record[0] >= TypeList.size())
783        return Error("Invalid Type ID in CST_SETTYPE record");
784      CurTy = TypeList[Record[0]];
785      continue;  // Skip the ValueList manipulation.
786    case bitc::CST_CODE_NULL:      // NULL
787      V = Constant::getNullValue(CurTy);
788      break;
789    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
790      if (!isa<IntegerType>(CurTy) || Record.empty())
791        return Error("Invalid CST_INTEGER record");
792      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
793      break;
794    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
795      if (!isa<IntegerType>(CurTy) || Record.empty())
796        return Error("Invalid WIDE_INTEGER record");
797
798      unsigned NumWords = Record.size();
799      SmallVector<uint64_t, 8> Words;
800      Words.resize(NumWords);
801      for (unsigned i = 0; i != NumWords; ++i)
802        Words[i] = DecodeSignRotatedValue(Record[i]);
803      V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
804                                 NumWords, &Words[0]));
805      break;
806    }
807    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
808      if (Record.empty())
809        return Error("Invalid FLOAT record");
810      if (CurTy == Type::FloatTy)
811        V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
812      else if (CurTy == Type::DoubleTy)
813        V = ConstantFP::get(APFloat(APInt(64, Record[0])));
814      else if (CurTy == Type::X86_FP80Ty) {
815        // Bits are not stored the same way as a normal i80 APInt, compensate.
816        uint64_t Rearrange[2];
817        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
818        Rearrange[1] = Record[0] >> 48;
819        V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
820      } else if (CurTy == Type::FP128Ty)
821        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
822      else if (CurTy == Type::PPC_FP128Ty)
823        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
824      else
825        V = UndefValue::get(CurTy);
826      break;
827    }
828
829    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
830      if (Record.empty())
831        return Error("Invalid CST_AGGREGATE record");
832
833      unsigned Size = Record.size();
834      std::vector<Constant*> Elts;
835
836      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
837        for (unsigned i = 0; i != Size; ++i)
838          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
839                                                     STy->getElementType(i)));
840        V = ConstantStruct::get(STy, Elts);
841      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
842        const Type *EltTy = ATy->getElementType();
843        for (unsigned i = 0; i != Size; ++i)
844          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
845        V = ConstantArray::get(ATy, Elts);
846      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
847        const Type *EltTy = VTy->getElementType();
848        for (unsigned i = 0; i != Size; ++i)
849          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
850        V = ConstantVector::get(Elts);
851      } else {
852        V = UndefValue::get(CurTy);
853      }
854      break;
855    }
856    case bitc::CST_CODE_STRING: { // STRING: [values]
857      if (Record.empty())
858        return Error("Invalid CST_AGGREGATE record");
859
860      const ArrayType *ATy = cast<ArrayType>(CurTy);
861      const Type *EltTy = ATy->getElementType();
862
863      unsigned Size = Record.size();
864      std::vector<Constant*> Elts;
865      for (unsigned i = 0; i != Size; ++i)
866        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
867      V = ConstantArray::get(ATy, Elts);
868      break;
869    }
870    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
871      if (Record.empty())
872        return Error("Invalid CST_AGGREGATE record");
873
874      const ArrayType *ATy = cast<ArrayType>(CurTy);
875      const Type *EltTy = ATy->getElementType();
876
877      unsigned Size = Record.size();
878      std::vector<Constant*> Elts;
879      for (unsigned i = 0; i != Size; ++i)
880        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
881      Elts.push_back(Constant::getNullValue(EltTy));
882      V = ConstantArray::get(ATy, Elts);
883      break;
884    }
885    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
886      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
887      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
888      if (Opc < 0) {
889        V = UndefValue::get(CurTy);  // Unknown binop.
890      } else {
891        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
892        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
893        V = ConstantExpr::get(Opc, LHS, RHS);
894      }
895      break;
896    }
897    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
898      if (Record.size() < 3) return Error("Invalid CE_CAST record");
899      int Opc = GetDecodedCastOpcode(Record[0]);
900      if (Opc < 0) {
901        V = UndefValue::get(CurTy);  // Unknown cast.
902      } else {
903        const Type *OpTy = getTypeByID(Record[1]);
904        if (!OpTy) return Error("Invalid CE_CAST record");
905        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
906        V = ConstantExpr::getCast(Opc, Op, CurTy);
907      }
908      break;
909    }
910    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
911      if (Record.size() & 1) return Error("Invalid CE_GEP record");
912      SmallVector<Constant*, 16> Elts;
913      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
914        const Type *ElTy = getTypeByID(Record[i]);
915        if (!ElTy) return Error("Invalid CE_GEP record");
916        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
917      }
918      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
919      break;
920    }
921    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
922      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
923      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
924                                                              Type::Int1Ty),
925                                  ValueList.getConstantFwdRef(Record[1],CurTy),
926                                  ValueList.getConstantFwdRef(Record[2],CurTy));
927      break;
928    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
929      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
930      const VectorType *OpTy =
931        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
932      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
933      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
934      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
935      V = ConstantExpr::getExtractElement(Op0, Op1);
936      break;
937    }
938    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
939      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
940      if (Record.size() < 3 || OpTy == 0)
941        return Error("Invalid CE_INSERTELT record");
942      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
943      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
944                                                  OpTy->getElementType());
945      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
946      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
947      break;
948    }
949    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
950      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
951      if (Record.size() < 3 || OpTy == 0)
952        return Error("Invalid CE_SHUFFLEVEC record");
953      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
954      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
955      const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
956      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
957      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
958      break;
959    }
960    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
961      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
962      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
963      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
964        return Error("Invalid CE_SHUFVEC_EX record");
965      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
966      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
967      const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
968      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
969      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
970      break;
971    }
972    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
973      if (Record.size() < 4) return Error("Invalid CE_CMP record");
974      const Type *OpTy = getTypeByID(Record[0]);
975      if (OpTy == 0) return Error("Invalid CE_CMP record");
976      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
977      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
978
979      if (OpTy->isFloatingPoint())
980        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
981      else if (!isa<VectorType>(OpTy))
982        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
983      else if (OpTy->isFPOrFPVector())
984        V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
985      else
986        V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
987      break;
988    }
989    case bitc::CST_CODE_INLINEASM: {
990      if (Record.size() < 2) return Error("Invalid INLINEASM record");
991      std::string AsmStr, ConstrStr;
992      bool HasSideEffects = Record[0];
993      unsigned AsmStrSize = Record[1];
994      if (2+AsmStrSize >= Record.size())
995        return Error("Invalid INLINEASM record");
996      unsigned ConstStrSize = Record[2+AsmStrSize];
997      if (3+AsmStrSize+ConstStrSize > Record.size())
998        return Error("Invalid INLINEASM record");
999
1000      for (unsigned i = 0; i != AsmStrSize; ++i)
1001        AsmStr += (char)Record[2+i];
1002      for (unsigned i = 0; i != ConstStrSize; ++i)
1003        ConstrStr += (char)Record[3+AsmStrSize+i];
1004      const PointerType *PTy = cast<PointerType>(CurTy);
1005      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1006                         AsmStr, ConstrStr, HasSideEffects);
1007      break;
1008    }
1009    case bitc::CST_CODE_MDSTRING: {
1010      if (Record.size() < 2) return Error("Invalid MDSTRING record");
1011      unsigned MDStringLength = Record.size();
1012      SmallString<8> String;
1013      String.resize(MDStringLength);
1014      for (unsigned i = 0; i != MDStringLength; ++i)
1015        String[i] = Record[i];
1016      V = MDString::get(String.c_str(), String.c_str() + MDStringLength);
1017      break;
1018    }
1019    case bitc::CST_CODE_MDNODE: {
1020      if (Record.empty() || Record.size() % 2 == 1)
1021        return Error("Invalid CST_MDNODE record");
1022
1023      unsigned Size = Record.size();
1024      SmallVector<Value*, 8> Elts;
1025      for (unsigned i = 0; i != Size; i += 2) {
1026        const Type *Ty = getTypeByID(Record[i], false);
1027        if (Ty != Type::VoidTy)
1028          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1029        else
1030          Elts.push_back(NULL);
1031      }
1032      V = MDNode::get(&Elts[0], Elts.size());
1033      break;
1034    }
1035    }
1036
1037    ValueList.AssignValue(V, NextCstNo);
1038    ++NextCstNo;
1039  }
1040
1041  if (NextCstNo != ValueList.size())
1042    return Error("Invalid constant reference!");
1043
1044  if (Stream.ReadBlockEnd())
1045    return Error("Error at end of constants block");
1046
1047  // Once all the constants have been read, go through and resolve forward
1048  // references.
1049  ValueList.ResolveConstantForwardRefs();
1050  return false;
1051}
1052
1053/// RememberAndSkipFunctionBody - When we see the block for a function body,
1054/// remember where it is and then skip it.  This lets us lazily deserialize the
1055/// functions.
1056bool BitcodeReader::RememberAndSkipFunctionBody() {
1057  // Get the function we are talking about.
1058  if (FunctionsWithBodies.empty())
1059    return Error("Insufficient function protos");
1060
1061  Function *Fn = FunctionsWithBodies.back();
1062  FunctionsWithBodies.pop_back();
1063
1064  // Save the current stream state.
1065  uint64_t CurBit = Stream.GetCurrentBitNo();
1066  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1067
1068  // Set the functions linkage to GhostLinkage so we know it is lazily
1069  // deserialized.
1070  Fn->setLinkage(GlobalValue::GhostLinkage);
1071
1072  // Skip over the function block for now.
1073  if (Stream.SkipBlock())
1074    return Error("Malformed block record");
1075  return false;
1076}
1077
1078bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1079  // Reject multiple MODULE_BLOCK's in a single bitstream.
1080  if (TheModule)
1081    return Error("Multiple MODULE_BLOCKs in same stream");
1082
1083  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1084    return Error("Malformed block record");
1085
1086  // Otherwise, create the module.
1087  TheModule = new Module(ModuleID);
1088
1089  SmallVector<uint64_t, 64> Record;
1090  std::vector<std::string> SectionTable;
1091  std::vector<std::string> GCTable;
1092
1093  // Read all the records for this module.
1094  while (!Stream.AtEndOfStream()) {
1095    unsigned Code = Stream.ReadCode();
1096    if (Code == bitc::END_BLOCK) {
1097      if (Stream.ReadBlockEnd())
1098        return Error("Error at end of module block");
1099
1100      // Patch the initializers for globals and aliases up.
1101      ResolveGlobalAndAliasInits();
1102      if (!GlobalInits.empty() || !AliasInits.empty())
1103        return Error("Malformed global initializer set");
1104      if (!FunctionsWithBodies.empty())
1105        return Error("Too few function bodies found");
1106
1107      // Look for intrinsic functions which need to be upgraded at some point
1108      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1109           FI != FE; ++FI) {
1110        Function* NewFn;
1111        if (UpgradeIntrinsicFunction(FI, NewFn))
1112          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1113      }
1114
1115      // Force deallocation of memory for these vectors to favor the client that
1116      // want lazy deserialization.
1117      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1118      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1119      std::vector<Function*>().swap(FunctionsWithBodies);
1120      return false;
1121    }
1122
1123    if (Code == bitc::ENTER_SUBBLOCK) {
1124      switch (Stream.ReadSubBlockID()) {
1125      default:  // Skip unknown content.
1126        if (Stream.SkipBlock())
1127          return Error("Malformed block record");
1128        break;
1129      case bitc::BLOCKINFO_BLOCK_ID:
1130        if (Stream.ReadBlockInfoBlock())
1131          return Error("Malformed BlockInfoBlock");
1132        break;
1133      case bitc::PARAMATTR_BLOCK_ID:
1134        if (ParseAttributeBlock())
1135          return true;
1136        break;
1137      case bitc::TYPE_BLOCK_ID:
1138        if (ParseTypeTable())
1139          return true;
1140        break;
1141      case bitc::TYPE_SYMTAB_BLOCK_ID:
1142        if (ParseTypeSymbolTable())
1143          return true;
1144        break;
1145      case bitc::VALUE_SYMTAB_BLOCK_ID:
1146        if (ParseValueSymbolTable())
1147          return true;
1148        break;
1149      case bitc::CONSTANTS_BLOCK_ID:
1150        if (ParseConstants() || ResolveGlobalAndAliasInits())
1151          return true;
1152        break;
1153      case bitc::FUNCTION_BLOCK_ID:
1154        // If this is the first function body we've seen, reverse the
1155        // FunctionsWithBodies list.
1156        if (!HasReversedFunctionsWithBodies) {
1157          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1158          HasReversedFunctionsWithBodies = true;
1159        }
1160
1161        if (RememberAndSkipFunctionBody())
1162          return true;
1163        break;
1164      }
1165      continue;
1166    }
1167
1168    if (Code == bitc::DEFINE_ABBREV) {
1169      Stream.ReadAbbrevRecord();
1170      continue;
1171    }
1172
1173    // Read a record.
1174    switch (Stream.ReadRecord(Code, Record)) {
1175    default: break;  // Default behavior, ignore unknown content.
1176    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1177      if (Record.size() < 1)
1178        return Error("Malformed MODULE_CODE_VERSION");
1179      // Only version #0 is supported so far.
1180      if (Record[0] != 0)
1181        return Error("Unknown bitstream version!");
1182      break;
1183    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1184      std::string S;
1185      if (ConvertToString(Record, 0, S))
1186        return Error("Invalid MODULE_CODE_TRIPLE record");
1187      TheModule->setTargetTriple(S);
1188      break;
1189    }
1190    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1191      std::string S;
1192      if (ConvertToString(Record, 0, S))
1193        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1194      TheModule->setDataLayout(S);
1195      break;
1196    }
1197    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1198      std::string S;
1199      if (ConvertToString(Record, 0, S))
1200        return Error("Invalid MODULE_CODE_ASM record");
1201      TheModule->setModuleInlineAsm(S);
1202      break;
1203    }
1204    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1205      std::string S;
1206      if (ConvertToString(Record, 0, S))
1207        return Error("Invalid MODULE_CODE_DEPLIB record");
1208      TheModule->addLibrary(S);
1209      break;
1210    }
1211    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1212      std::string S;
1213      if (ConvertToString(Record, 0, S))
1214        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1215      SectionTable.push_back(S);
1216      break;
1217    }
1218    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1219      std::string S;
1220      if (ConvertToString(Record, 0, S))
1221        return Error("Invalid MODULE_CODE_GCNAME record");
1222      GCTable.push_back(S);
1223      break;
1224    }
1225    // GLOBALVAR: [pointer type, isconst, initid,
1226    //             linkage, alignment, section, visibility, threadlocal]
1227    case bitc::MODULE_CODE_GLOBALVAR: {
1228      if (Record.size() < 6)
1229        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1230      const Type *Ty = getTypeByID(Record[0]);
1231      if (!isa<PointerType>(Ty))
1232        return Error("Global not a pointer type!");
1233      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1234      Ty = cast<PointerType>(Ty)->getElementType();
1235
1236      bool isConstant = Record[1];
1237      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1238      unsigned Alignment = (1 << Record[4]) >> 1;
1239      std::string Section;
1240      if (Record[5]) {
1241        if (Record[5]-1 >= SectionTable.size())
1242          return Error("Invalid section ID");
1243        Section = SectionTable[Record[5]-1];
1244      }
1245      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1246      if (Record.size() > 6)
1247        Visibility = GetDecodedVisibility(Record[6]);
1248      bool isThreadLocal = false;
1249      if (Record.size() > 7)
1250        isThreadLocal = Record[7];
1251
1252      GlobalVariable *NewGV =
1253        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1254                           isThreadLocal, AddressSpace);
1255      NewGV->setAlignment(Alignment);
1256      if (!Section.empty())
1257        NewGV->setSection(Section);
1258      NewGV->setVisibility(Visibility);
1259      NewGV->setThreadLocal(isThreadLocal);
1260
1261      ValueList.push_back(NewGV);
1262
1263      // Remember which value to use for the global initializer.
1264      if (unsigned InitID = Record[2])
1265        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1266      break;
1267    }
1268    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1269    //             alignment, section, visibility, gc]
1270    case bitc::MODULE_CODE_FUNCTION: {
1271      if (Record.size() < 8)
1272        return Error("Invalid MODULE_CODE_FUNCTION record");
1273      const Type *Ty = getTypeByID(Record[0]);
1274      if (!isa<PointerType>(Ty))
1275        return Error("Function not a pointer type!");
1276      const FunctionType *FTy =
1277        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1278      if (!FTy)
1279        return Error("Function not a pointer to function type!");
1280
1281      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1282                                        "", TheModule);
1283
1284      Func->setCallingConv(Record[1]);
1285      bool isProto = Record[2];
1286      Func->setLinkage(GetDecodedLinkage(Record[3]));
1287      Func->setAttributes(getAttributes(Record[4]));
1288
1289      Func->setAlignment((1 << Record[5]) >> 1);
1290      if (Record[6]) {
1291        if (Record[6]-1 >= SectionTable.size())
1292          return Error("Invalid section ID");
1293        Func->setSection(SectionTable[Record[6]-1]);
1294      }
1295      Func->setVisibility(GetDecodedVisibility(Record[7]));
1296      if (Record.size() > 8 && Record[8]) {
1297        if (Record[8]-1 > GCTable.size())
1298          return Error("Invalid GC ID");
1299        Func->setGC(GCTable[Record[8]-1].c_str());
1300      }
1301      ValueList.push_back(Func);
1302
1303      // If this is a function with a body, remember the prototype we are
1304      // creating now, so that we can match up the body with them later.
1305      if (!isProto)
1306        FunctionsWithBodies.push_back(Func);
1307      break;
1308    }
1309    // ALIAS: [alias type, aliasee val#, linkage]
1310    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1311    case bitc::MODULE_CODE_ALIAS: {
1312      if (Record.size() < 3)
1313        return Error("Invalid MODULE_ALIAS record");
1314      const Type *Ty = getTypeByID(Record[0]);
1315      if (!isa<PointerType>(Ty))
1316        return Error("Function not a pointer type!");
1317
1318      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1319                                           "", 0, TheModule);
1320      // Old bitcode files didn't have visibility field.
1321      if (Record.size() > 3)
1322        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1323      ValueList.push_back(NewGA);
1324      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1325      break;
1326    }
1327    /// MODULE_CODE_PURGEVALS: [numvals]
1328    case bitc::MODULE_CODE_PURGEVALS:
1329      // Trim down the value list to the specified size.
1330      if (Record.size() < 1 || Record[0] > ValueList.size())
1331        return Error("Invalid MODULE_PURGEVALS record");
1332      ValueList.shrinkTo(Record[0]);
1333      break;
1334    }
1335    Record.clear();
1336  }
1337
1338  return Error("Premature end of bitstream");
1339}
1340
1341bool BitcodeReader::ParseBitcode() {
1342  TheModule = 0;
1343
1344  if (Buffer->getBufferSize() & 3)
1345    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1346
1347  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1348  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1349
1350  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1351  // The magic number is 0x0B17C0DE stored in little endian.
1352  if (isBitcodeWrapper(BufPtr, BufEnd))
1353    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1354      return Error("Invalid bitcode wrapper header");
1355
1356  StreamFile.init(BufPtr, BufEnd);
1357  Stream.init(StreamFile);
1358
1359  // Sniff for the signature.
1360  if (Stream.Read(8) != 'B' ||
1361      Stream.Read(8) != 'C' ||
1362      Stream.Read(4) != 0x0 ||
1363      Stream.Read(4) != 0xC ||
1364      Stream.Read(4) != 0xE ||
1365      Stream.Read(4) != 0xD)
1366    return Error("Invalid bitcode signature");
1367
1368  // We expect a number of well-defined blocks, though we don't necessarily
1369  // need to understand them all.
1370  while (!Stream.AtEndOfStream()) {
1371    unsigned Code = Stream.ReadCode();
1372
1373    if (Code != bitc::ENTER_SUBBLOCK)
1374      return Error("Invalid record at top-level");
1375
1376    unsigned BlockID = Stream.ReadSubBlockID();
1377
1378    // We only know the MODULE subblock ID.
1379    switch (BlockID) {
1380    case bitc::BLOCKINFO_BLOCK_ID:
1381      if (Stream.ReadBlockInfoBlock())
1382        return Error("Malformed BlockInfoBlock");
1383      break;
1384    case bitc::MODULE_BLOCK_ID:
1385      if (ParseModule(Buffer->getBufferIdentifier()))
1386        return true;
1387      break;
1388    default:
1389      if (Stream.SkipBlock())
1390        return Error("Malformed block record");
1391      break;
1392    }
1393  }
1394
1395  return false;
1396}
1397
1398
1399/// ParseFunctionBody - Lazily parse the specified function body block.
1400bool BitcodeReader::ParseFunctionBody(Function *F) {
1401  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1402    return Error("Malformed block record");
1403
1404  unsigned ModuleValueListSize = ValueList.size();
1405
1406  // Add all the function arguments to the value table.
1407  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1408    ValueList.push_back(I);
1409
1410  unsigned NextValueNo = ValueList.size();
1411  BasicBlock *CurBB = 0;
1412  unsigned CurBBNo = 0;
1413
1414  // Read all the records.
1415  SmallVector<uint64_t, 64> Record;
1416  while (1) {
1417    unsigned Code = Stream.ReadCode();
1418    if (Code == bitc::END_BLOCK) {
1419      if (Stream.ReadBlockEnd())
1420        return Error("Error at end of function block");
1421      break;
1422    }
1423
1424    if (Code == bitc::ENTER_SUBBLOCK) {
1425      switch (Stream.ReadSubBlockID()) {
1426      default:  // Skip unknown content.
1427        if (Stream.SkipBlock())
1428          return Error("Malformed block record");
1429        break;
1430      case bitc::CONSTANTS_BLOCK_ID:
1431        if (ParseConstants()) return true;
1432        NextValueNo = ValueList.size();
1433        break;
1434      case bitc::VALUE_SYMTAB_BLOCK_ID:
1435        if (ParseValueSymbolTable()) return true;
1436        break;
1437      }
1438      continue;
1439    }
1440
1441    if (Code == bitc::DEFINE_ABBREV) {
1442      Stream.ReadAbbrevRecord();
1443      continue;
1444    }
1445
1446    // Read a record.
1447    Record.clear();
1448    Instruction *I = 0;
1449    switch (Stream.ReadRecord(Code, Record)) {
1450    default: // Default behavior: reject
1451      return Error("Unknown instruction");
1452    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1453      if (Record.size() < 1 || Record[0] == 0)
1454        return Error("Invalid DECLAREBLOCKS record");
1455      // Create all the basic blocks for the function.
1456      FunctionBBs.resize(Record[0]);
1457      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1458        FunctionBBs[i] = BasicBlock::Create("", F);
1459      CurBB = FunctionBBs[0];
1460      continue;
1461
1462    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1463      unsigned OpNum = 0;
1464      Value *LHS, *RHS;
1465      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1466          getValue(Record, OpNum, LHS->getType(), RHS) ||
1467          OpNum+1 != Record.size())
1468        return Error("Invalid BINOP record");
1469
1470      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1471      if (Opc == -1) return Error("Invalid BINOP record");
1472      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1473      break;
1474    }
1475    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1476      unsigned OpNum = 0;
1477      Value *Op;
1478      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1479          OpNum+2 != Record.size())
1480        return Error("Invalid CAST record");
1481
1482      const Type *ResTy = getTypeByID(Record[OpNum]);
1483      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1484      if (Opc == -1 || ResTy == 0)
1485        return Error("Invalid CAST record");
1486      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1487      break;
1488    }
1489    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1490      unsigned OpNum = 0;
1491      Value *BasePtr;
1492      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1493        return Error("Invalid GEP record");
1494
1495      SmallVector<Value*, 16> GEPIdx;
1496      while (OpNum != Record.size()) {
1497        Value *Op;
1498        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1499          return Error("Invalid GEP record");
1500        GEPIdx.push_back(Op);
1501      }
1502
1503      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1504      break;
1505    }
1506
1507    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1508                                       // EXTRACTVAL: [opty, opval, n x indices]
1509      unsigned OpNum = 0;
1510      Value *Agg;
1511      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1512        return Error("Invalid EXTRACTVAL record");
1513
1514      SmallVector<unsigned, 4> EXTRACTVALIdx;
1515      for (unsigned RecSize = Record.size();
1516           OpNum != RecSize; ++OpNum) {
1517        uint64_t Index = Record[OpNum];
1518        if ((unsigned)Index != Index)
1519          return Error("Invalid EXTRACTVAL index");
1520        EXTRACTVALIdx.push_back((unsigned)Index);
1521      }
1522
1523      I = ExtractValueInst::Create(Agg,
1524                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1525      break;
1526    }
1527
1528    case bitc::FUNC_CODE_INST_INSERTVAL: {
1529                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1530      unsigned OpNum = 0;
1531      Value *Agg;
1532      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1533        return Error("Invalid INSERTVAL record");
1534      Value *Val;
1535      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1536        return Error("Invalid INSERTVAL record");
1537
1538      SmallVector<unsigned, 4> INSERTVALIdx;
1539      for (unsigned RecSize = Record.size();
1540           OpNum != RecSize; ++OpNum) {
1541        uint64_t Index = Record[OpNum];
1542        if ((unsigned)Index != Index)
1543          return Error("Invalid INSERTVAL index");
1544        INSERTVALIdx.push_back((unsigned)Index);
1545      }
1546
1547      I = InsertValueInst::Create(Agg, Val,
1548                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1549      break;
1550    }
1551
1552    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1553      // obsolete form of select
1554      // handles select i1 ... in old bitcode
1555      unsigned OpNum = 0;
1556      Value *TrueVal, *FalseVal, *Cond;
1557      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1558          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1559          getValue(Record, OpNum, Type::Int1Ty, Cond))
1560        return Error("Invalid SELECT record");
1561
1562      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1563      break;
1564    }
1565
1566    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1567      // new form of select
1568      // handles select i1 or select [N x i1]
1569      unsigned OpNum = 0;
1570      Value *TrueVal, *FalseVal, *Cond;
1571      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1572          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1573          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1574        return Error("Invalid SELECT record");
1575
1576      // select condition can be either i1 or [N x i1]
1577      if (const VectorType* vector_type =
1578          dyn_cast<const VectorType>(Cond->getType())) {
1579        // expect <n x i1>
1580        if (vector_type->getElementType() != Type::Int1Ty)
1581          return Error("Invalid SELECT condition type");
1582      } else {
1583        // expect i1
1584        if (Cond->getType() != Type::Int1Ty)
1585          return Error("Invalid SELECT condition type");
1586      }
1587
1588      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1589      break;
1590    }
1591
1592    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1593      unsigned OpNum = 0;
1594      Value *Vec, *Idx;
1595      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1596          getValue(Record, OpNum, Type::Int32Ty, Idx))
1597        return Error("Invalid EXTRACTELT record");
1598      I = new ExtractElementInst(Vec, Idx);
1599      break;
1600    }
1601
1602    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1603      unsigned OpNum = 0;
1604      Value *Vec, *Elt, *Idx;
1605      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1606          getValue(Record, OpNum,
1607                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1608          getValue(Record, OpNum, Type::Int32Ty, Idx))
1609        return Error("Invalid INSERTELT record");
1610      I = InsertElementInst::Create(Vec, Elt, Idx);
1611      break;
1612    }
1613
1614    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1615      unsigned OpNum = 0;
1616      Value *Vec1, *Vec2, *Mask;
1617      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1618          getValue(Record, OpNum, Vec1->getType(), Vec2))
1619        return Error("Invalid SHUFFLEVEC record");
1620
1621      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1622        return Error("Invalid SHUFFLEVEC record");
1623      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1624      break;
1625    }
1626
1627    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1628      // VFCmp/VICmp
1629      // or old form of ICmp/FCmp returning bool
1630      unsigned OpNum = 0;
1631      Value *LHS, *RHS;
1632      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1633          getValue(Record, OpNum, LHS->getType(), RHS) ||
1634          OpNum+1 != Record.size())
1635        return Error("Invalid CMP record");
1636
1637      if (LHS->getType()->isFloatingPoint())
1638        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1639      else if (!isa<VectorType>(LHS->getType()))
1640        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1641      else if (LHS->getType()->isFPOrFPVector())
1642        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1643      else
1644        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1645      break;
1646    }
1647    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1648      // Fcmp/ICmp returning bool or vector of bool
1649      unsigned OpNum = 0;
1650      Value *LHS, *RHS;
1651      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1652          getValue(Record, OpNum, LHS->getType(), RHS) ||
1653          OpNum+1 != Record.size())
1654        return Error("Invalid CMP2 record");
1655
1656      if (LHS->getType()->isFPOrFPVector())
1657        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1658      else
1659        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1660      break;
1661    }
1662    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1663      if (Record.size() != 2)
1664        return Error("Invalid GETRESULT record");
1665      unsigned OpNum = 0;
1666      Value *Op;
1667      getValueTypePair(Record, OpNum, NextValueNo, Op);
1668      unsigned Index = Record[1];
1669      I = ExtractValueInst::Create(Op, Index);
1670      break;
1671    }
1672
1673    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1674      {
1675        unsigned Size = Record.size();
1676        if (Size == 0) {
1677          I = ReturnInst::Create();
1678          break;
1679        }
1680
1681        unsigned OpNum = 0;
1682        SmallVector<Value *,4> Vs;
1683        do {
1684          Value *Op = NULL;
1685          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1686            return Error("Invalid RET record");
1687          Vs.push_back(Op);
1688        } while(OpNum != Record.size());
1689
1690        const Type *ReturnType = F->getReturnType();
1691        if (Vs.size() > 1 ||
1692            (isa<StructType>(ReturnType) &&
1693             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1694          Value *RV = UndefValue::get(ReturnType);
1695          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1696            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1697            CurBB->getInstList().push_back(I);
1698            ValueList.AssignValue(I, NextValueNo++);
1699            RV = I;
1700          }
1701          I = ReturnInst::Create(RV);
1702          break;
1703        }
1704
1705        I = ReturnInst::Create(Vs[0]);
1706        break;
1707      }
1708    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1709      if (Record.size() != 1 && Record.size() != 3)
1710        return Error("Invalid BR record");
1711      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1712      if (TrueDest == 0)
1713        return Error("Invalid BR record");
1714
1715      if (Record.size() == 1)
1716        I = BranchInst::Create(TrueDest);
1717      else {
1718        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1719        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1720        if (FalseDest == 0 || Cond == 0)
1721          return Error("Invalid BR record");
1722        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1723      }
1724      break;
1725    }
1726    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1727      if (Record.size() < 3 || (Record.size() & 1) == 0)
1728        return Error("Invalid SWITCH record");
1729      const Type *OpTy = getTypeByID(Record[0]);
1730      Value *Cond = getFnValueByID(Record[1], OpTy);
1731      BasicBlock *Default = getBasicBlock(Record[2]);
1732      if (OpTy == 0 || Cond == 0 || Default == 0)
1733        return Error("Invalid SWITCH record");
1734      unsigned NumCases = (Record.size()-3)/2;
1735      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1736      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1737        ConstantInt *CaseVal =
1738          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1739        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1740        if (CaseVal == 0 || DestBB == 0) {
1741          delete SI;
1742          return Error("Invalid SWITCH record!");
1743        }
1744        SI->addCase(CaseVal, DestBB);
1745      }
1746      I = SI;
1747      break;
1748    }
1749
1750    case bitc::FUNC_CODE_INST_INVOKE: {
1751      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1752      if (Record.size() < 4) return Error("Invalid INVOKE record");
1753      AttrListPtr PAL = getAttributes(Record[0]);
1754      unsigned CCInfo = Record[1];
1755      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1756      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1757
1758      unsigned OpNum = 4;
1759      Value *Callee;
1760      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1761        return Error("Invalid INVOKE record");
1762
1763      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1764      const FunctionType *FTy = !CalleeTy ? 0 :
1765        dyn_cast<FunctionType>(CalleeTy->getElementType());
1766
1767      // Check that the right number of fixed parameters are here.
1768      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1769          Record.size() < OpNum+FTy->getNumParams())
1770        return Error("Invalid INVOKE record");
1771
1772      SmallVector<Value*, 16> Ops;
1773      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1774        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1775        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1776      }
1777
1778      if (!FTy->isVarArg()) {
1779        if (Record.size() != OpNum)
1780          return Error("Invalid INVOKE record");
1781      } else {
1782        // Read type/value pairs for varargs params.
1783        while (OpNum != Record.size()) {
1784          Value *Op;
1785          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1786            return Error("Invalid INVOKE record");
1787          Ops.push_back(Op);
1788        }
1789      }
1790
1791      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1792                             Ops.begin(), Ops.end());
1793      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1794      cast<InvokeInst>(I)->setAttributes(PAL);
1795      break;
1796    }
1797    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1798      I = new UnwindInst();
1799      break;
1800    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1801      I = new UnreachableInst();
1802      break;
1803    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1804      if (Record.size() < 1 || ((Record.size()-1)&1))
1805        return Error("Invalid PHI record");
1806      const Type *Ty = getTypeByID(Record[0]);
1807      if (!Ty) return Error("Invalid PHI record");
1808
1809      PHINode *PN = PHINode::Create(Ty);
1810      PN->reserveOperandSpace((Record.size()-1)/2);
1811
1812      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1813        Value *V = getFnValueByID(Record[1+i], Ty);
1814        BasicBlock *BB = getBasicBlock(Record[2+i]);
1815        if (!V || !BB) return Error("Invalid PHI record");
1816        PN->addIncoming(V, BB);
1817      }
1818      I = PN;
1819      break;
1820    }
1821
1822    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1823      if (Record.size() < 3)
1824        return Error("Invalid MALLOC record");
1825      const PointerType *Ty =
1826        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1827      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1828      unsigned Align = Record[2];
1829      if (!Ty || !Size) return Error("Invalid MALLOC record");
1830      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1831      break;
1832    }
1833    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1834      unsigned OpNum = 0;
1835      Value *Op;
1836      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1837          OpNum != Record.size())
1838        return Error("Invalid FREE record");
1839      I = new FreeInst(Op);
1840      break;
1841    }
1842    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1843      if (Record.size() < 3)
1844        return Error("Invalid ALLOCA record");
1845      const PointerType *Ty =
1846        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1847      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1848      unsigned Align = Record[2];
1849      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1850      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1851      break;
1852    }
1853    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1854      unsigned OpNum = 0;
1855      Value *Op;
1856      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1857          OpNum+2 != Record.size())
1858        return Error("Invalid LOAD record");
1859
1860      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1861      break;
1862    }
1863    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1864      unsigned OpNum = 0;
1865      Value *Val, *Ptr;
1866      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1867          getValue(Record, OpNum,
1868                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1869          OpNum+2 != Record.size())
1870        return Error("Invalid STORE record");
1871
1872      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1873      break;
1874    }
1875    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1876      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1877      unsigned OpNum = 0;
1878      Value *Val, *Ptr;
1879      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1880          getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1881          OpNum+2 != Record.size())
1882        return Error("Invalid STORE record");
1883
1884      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1885      break;
1886    }
1887    case bitc::FUNC_CODE_INST_CALL: {
1888      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1889      if (Record.size() < 3)
1890        return Error("Invalid CALL record");
1891
1892      AttrListPtr PAL = getAttributes(Record[0]);
1893      unsigned CCInfo = Record[1];
1894
1895      unsigned OpNum = 2;
1896      Value *Callee;
1897      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1898        return Error("Invalid CALL record");
1899
1900      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1901      const FunctionType *FTy = 0;
1902      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1903      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1904        return Error("Invalid CALL record");
1905
1906      SmallVector<Value*, 16> Args;
1907      // Read the fixed params.
1908      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1909        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1910          Args.push_back(getBasicBlock(Record[OpNum]));
1911        else
1912          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1913        if (Args.back() == 0) return Error("Invalid CALL record");
1914      }
1915
1916      // Read type/value pairs for varargs params.
1917      if (!FTy->isVarArg()) {
1918        if (OpNum != Record.size())
1919          return Error("Invalid CALL record");
1920      } else {
1921        while (OpNum != Record.size()) {
1922          Value *Op;
1923          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1924            return Error("Invalid CALL record");
1925          Args.push_back(Op);
1926        }
1927      }
1928
1929      I = CallInst::Create(Callee, Args.begin(), Args.end());
1930      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1931      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1932      cast<CallInst>(I)->setAttributes(PAL);
1933      break;
1934    }
1935    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1936      if (Record.size() < 3)
1937        return Error("Invalid VAARG record");
1938      const Type *OpTy = getTypeByID(Record[0]);
1939      Value *Op = getFnValueByID(Record[1], OpTy);
1940      const Type *ResTy = getTypeByID(Record[2]);
1941      if (!OpTy || !Op || !ResTy)
1942        return Error("Invalid VAARG record");
1943      I = new VAArgInst(Op, ResTy);
1944      break;
1945    }
1946    }
1947
1948    // Add instruction to end of current BB.  If there is no current BB, reject
1949    // this file.
1950    if (CurBB == 0) {
1951      delete I;
1952      return Error("Invalid instruction with no BB");
1953    }
1954    CurBB->getInstList().push_back(I);
1955
1956    // If this was a terminator instruction, move to the next block.
1957    if (isa<TerminatorInst>(I)) {
1958      ++CurBBNo;
1959      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1960    }
1961
1962    // Non-void values get registered in the value table for future use.
1963    if (I && I->getType() != Type::VoidTy)
1964      ValueList.AssignValue(I, NextValueNo++);
1965  }
1966
1967  // Check the function list for unresolved values.
1968  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1969    if (A->getParent() == 0) {
1970      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1971      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1972        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1973          A->replaceAllUsesWith(UndefValue::get(A->getType()));
1974          delete A;
1975        }
1976      }
1977      return Error("Never resolved value found in function!");
1978    }
1979  }
1980
1981  // Trim the value list down to the size it was before we parsed this function.
1982  ValueList.shrinkTo(ModuleValueListSize);
1983  std::vector<BasicBlock*>().swap(FunctionBBs);
1984
1985  return false;
1986}
1987
1988//===----------------------------------------------------------------------===//
1989// ModuleProvider implementation
1990//===----------------------------------------------------------------------===//
1991
1992
1993bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1994  // If it already is material, ignore the request.
1995  if (!F->hasNotBeenReadFromBitcode()) return false;
1996
1997  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1998    DeferredFunctionInfo.find(F);
1999  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2000
2001  // Move the bit stream to the saved position of the deferred function body and
2002  // restore the real linkage type for the function.
2003  Stream.JumpToBit(DFII->second.first);
2004  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2005
2006  if (ParseFunctionBody(F)) {
2007    if (ErrInfo) *ErrInfo = ErrorString;
2008    return true;
2009  }
2010
2011  // Upgrade any old intrinsic calls in the function.
2012  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2013       E = UpgradedIntrinsics.end(); I != E; ++I) {
2014    if (I->first != I->second) {
2015      for (Value::use_iterator UI = I->first->use_begin(),
2016           UE = I->first->use_end(); UI != UE; ) {
2017        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2018          UpgradeIntrinsicCall(CI, I->second);
2019      }
2020    }
2021  }
2022
2023  return false;
2024}
2025
2026void BitcodeReader::dematerializeFunction(Function *F) {
2027  // If this function isn't materialized, or if it is a proto, this is a noop.
2028  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2029    return;
2030
2031  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2032
2033  // Just forget the function body, we can remat it later.
2034  F->deleteBody();
2035  F->setLinkage(GlobalValue::GhostLinkage);
2036}
2037
2038
2039Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2040  for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2041       DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2042       ++I) {
2043    Function *F = I->first;
2044    if (F->hasNotBeenReadFromBitcode() &&
2045        materializeFunction(F, ErrInfo))
2046      return 0;
2047  }
2048
2049  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2050  // delete the old functions to clean up. We can't do this unless the entire
2051  // module is materialized because there could always be another function body
2052  // with calls to the old function.
2053  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2054       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2055    if (I->first != I->second) {
2056      for (Value::use_iterator UI = I->first->use_begin(),
2057           UE = I->first->use_end(); UI != UE; ) {
2058        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2059          UpgradeIntrinsicCall(CI, I->second);
2060      }
2061      if (!I->first->use_empty())
2062        I->first->replaceAllUsesWith(I->second);
2063      I->first->eraseFromParent();
2064    }
2065  }
2066  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2067
2068  return TheModule;
2069}
2070
2071
2072/// This method is provided by the parent ModuleProvde class and overriden
2073/// here. It simply releases the module from its provided and frees up our
2074/// state.
2075/// @brief Release our hold on the generated module
2076Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2077  // Since we're losing control of this Module, we must hand it back complete
2078  Module *M = ModuleProvider::releaseModule(ErrInfo);
2079  FreeState();
2080  return M;
2081}
2082
2083
2084//===----------------------------------------------------------------------===//
2085// External interface
2086//===----------------------------------------------------------------------===//
2087
2088/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2089///
2090ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2091                                               std::string *ErrMsg) {
2092  BitcodeReader *R = new BitcodeReader(Buffer);
2093  if (R->ParseBitcode()) {
2094    if (ErrMsg)
2095      *ErrMsg = R->getErrorString();
2096
2097    // Don't let the BitcodeReader dtor delete 'Buffer'.
2098    R->releaseMemoryBuffer();
2099    delete R;
2100    return 0;
2101  }
2102  return R;
2103}
2104
2105/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2106/// If an error occurs, return null and fill in *ErrMsg if non-null.
2107Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2108  BitcodeReader *R;
2109  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2110  if (!R) return 0;
2111
2112  // Read in the entire module.
2113  Module *M = R->materializeModule(ErrMsg);
2114
2115  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2116  // there was an error.
2117  R->releaseMemoryBuffer();
2118
2119  // If there was no error, tell ModuleProvider not to delete it when its dtor
2120  // is run.
2121  if (M)
2122    M = R->releaseModule(ErrMsg);
2123
2124  delete R;
2125  return M;
2126}
2127