BitcodeReader.cpp revision 405b6503b3568cfb4da9d1347e3f5640583429c9
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Bitcode/ReaderWriter.h"
11#include "BitcodeReader.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/AutoUpgrade.h"
15#include "llvm/Bitcode/LLVMBitCodes.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/DerivedTypes.h"
18#include "llvm/IR/InlineAsm.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/IR/Module.h"
21#include "llvm/IR/OperandTraits.h"
22#include "llvm/IR/Operator.h"
23#include "llvm/Support/DataStream.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29enum {
30  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
31};
32
33void BitcodeReader::materializeForwardReferencedFunctions() {
34  while (!BlockAddrFwdRefs.empty()) {
35    Function *F = BlockAddrFwdRefs.begin()->first;
36    F->Materialize();
37  }
38}
39
40void BitcodeReader::FreeState() {
41  if (BufferOwned)
42    delete Buffer;
43  Buffer = 0;
44  std::vector<Type*>().swap(TypeList);
45  ValueList.clear();
46  MDValueList.clear();
47
48  std::vector<AttributeSet>().swap(MAttributes);
49  std::vector<BasicBlock*>().swap(FunctionBBs);
50  std::vector<Function*>().swap(FunctionsWithBodies);
51  DeferredFunctionInfo.clear();
52  MDKindMap.clear();
53
54  assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
55}
56
57//===----------------------------------------------------------------------===//
58//  Helper functions to implement forward reference resolution, etc.
59//===----------------------------------------------------------------------===//
60
61/// ConvertToString - Convert a string from a record into an std::string, return
62/// true on failure.
63template<typename StrTy>
64static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
65                            StrTy &Result) {
66  if (Idx > Record.size())
67    return true;
68
69  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
70    Result += (char)Record[i];
71  return false;
72}
73
74static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
75  switch (Val) {
76  default: // Map unknown/new linkages to external
77  case 0:  return GlobalValue::ExternalLinkage;
78  case 1:  return GlobalValue::WeakAnyLinkage;
79  case 2:  return GlobalValue::AppendingLinkage;
80  case 3:  return GlobalValue::InternalLinkage;
81  case 4:  return GlobalValue::LinkOnceAnyLinkage;
82  case 5:  return GlobalValue::DLLImportLinkage;
83  case 6:  return GlobalValue::DLLExportLinkage;
84  case 7:  return GlobalValue::ExternalWeakLinkage;
85  case 8:  return GlobalValue::CommonLinkage;
86  case 9:  return GlobalValue::PrivateLinkage;
87  case 10: return GlobalValue::WeakODRLinkage;
88  case 11: return GlobalValue::LinkOnceODRLinkage;
89  case 12: return GlobalValue::AvailableExternallyLinkage;
90  case 13: return GlobalValue::LinkerPrivateLinkage;
91  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
92  case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
93  }
94}
95
96static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97  switch (Val) {
98  default: // Map unknown visibilities to default.
99  case 0: return GlobalValue::DefaultVisibility;
100  case 1: return GlobalValue::HiddenVisibility;
101  case 2: return GlobalValue::ProtectedVisibility;
102  }
103}
104
105static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
106  switch (Val) {
107    case 0: return GlobalVariable::NotThreadLocal;
108    default: // Map unknown non-zero value to general dynamic.
109    case 1: return GlobalVariable::GeneralDynamicTLSModel;
110    case 2: return GlobalVariable::LocalDynamicTLSModel;
111    case 3: return GlobalVariable::InitialExecTLSModel;
112    case 4: return GlobalVariable::LocalExecTLSModel;
113  }
114}
115
116static int GetDecodedCastOpcode(unsigned Val) {
117  switch (Val) {
118  default: return -1;
119  case bitc::CAST_TRUNC   : return Instruction::Trunc;
120  case bitc::CAST_ZEXT    : return Instruction::ZExt;
121  case bitc::CAST_SEXT    : return Instruction::SExt;
122  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
123  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
124  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
125  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
126  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
127  case bitc::CAST_FPEXT   : return Instruction::FPExt;
128  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
129  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
130  case bitc::CAST_BITCAST : return Instruction::BitCast;
131  }
132}
133static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
134  switch (Val) {
135  default: return -1;
136  case bitc::BINOP_ADD:
137    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
138  case bitc::BINOP_SUB:
139    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
140  case bitc::BINOP_MUL:
141    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
142  case bitc::BINOP_UDIV: return Instruction::UDiv;
143  case bitc::BINOP_SDIV:
144    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
145  case bitc::BINOP_UREM: return Instruction::URem;
146  case bitc::BINOP_SREM:
147    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
148  case bitc::BINOP_SHL:  return Instruction::Shl;
149  case bitc::BINOP_LSHR: return Instruction::LShr;
150  case bitc::BINOP_ASHR: return Instruction::AShr;
151  case bitc::BINOP_AND:  return Instruction::And;
152  case bitc::BINOP_OR:   return Instruction::Or;
153  case bitc::BINOP_XOR:  return Instruction::Xor;
154  }
155}
156
157static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
158  switch (Val) {
159  default: return AtomicRMWInst::BAD_BINOP;
160  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
161  case bitc::RMW_ADD: return AtomicRMWInst::Add;
162  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
163  case bitc::RMW_AND: return AtomicRMWInst::And;
164  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
165  case bitc::RMW_OR: return AtomicRMWInst::Or;
166  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
167  case bitc::RMW_MAX: return AtomicRMWInst::Max;
168  case bitc::RMW_MIN: return AtomicRMWInst::Min;
169  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
170  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
171  }
172}
173
174static AtomicOrdering GetDecodedOrdering(unsigned Val) {
175  switch (Val) {
176  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
177  case bitc::ORDERING_UNORDERED: return Unordered;
178  case bitc::ORDERING_MONOTONIC: return Monotonic;
179  case bitc::ORDERING_ACQUIRE: return Acquire;
180  case bitc::ORDERING_RELEASE: return Release;
181  case bitc::ORDERING_ACQREL: return AcquireRelease;
182  default: // Map unknown orderings to sequentially-consistent.
183  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
184  }
185}
186
187static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
188  switch (Val) {
189  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
190  default: // Map unknown scopes to cross-thread.
191  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
192  }
193}
194
195namespace llvm {
196namespace {
197  /// @brief A class for maintaining the slot number definition
198  /// as a placeholder for the actual definition for forward constants defs.
199  class ConstantPlaceHolder : public ConstantExpr {
200    void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
201  public:
202    // allocate space for exactly one operand
203    void *operator new(size_t s) {
204      return User::operator new(s, 1);
205    }
206    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
207      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
208      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
209    }
210
211    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
212    static bool classof(const Value *V) {
213      return isa<ConstantExpr>(V) &&
214             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
215    }
216
217
218    /// Provide fast operand accessors
219    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
220  };
221}
222
223// FIXME: can we inherit this from ConstantExpr?
224template <>
225struct OperandTraits<ConstantPlaceHolder> :
226  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
227};
228}
229
230
231void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
232  if (Idx == size()) {
233    push_back(V);
234    return;
235  }
236
237  if (Idx >= size())
238    resize(Idx+1);
239
240  WeakVH &OldV = ValuePtrs[Idx];
241  if (OldV == 0) {
242    OldV = V;
243    return;
244  }
245
246  // Handle constants and non-constants (e.g. instrs) differently for
247  // efficiency.
248  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
249    ResolveConstants.push_back(std::make_pair(PHC, Idx));
250    OldV = V;
251  } else {
252    // If there was a forward reference to this value, replace it.
253    Value *PrevVal = OldV;
254    OldV->replaceAllUsesWith(V);
255    delete PrevVal;
256  }
257}
258
259
260Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
261                                                    Type *Ty) {
262  if (Idx >= size())
263    resize(Idx + 1);
264
265  if (Value *V = ValuePtrs[Idx]) {
266    assert(Ty == V->getType() && "Type mismatch in constant table!");
267    return cast<Constant>(V);
268  }
269
270  // Create and return a placeholder, which will later be RAUW'd.
271  Constant *C = new ConstantPlaceHolder(Ty, Context);
272  ValuePtrs[Idx] = C;
273  return C;
274}
275
276Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
277  if (Idx >= size())
278    resize(Idx + 1);
279
280  if (Value *V = ValuePtrs[Idx]) {
281    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
282    return V;
283  }
284
285  // No type specified, must be invalid reference.
286  if (Ty == 0) return 0;
287
288  // Create and return a placeholder, which will later be RAUW'd.
289  Value *V = new Argument(Ty);
290  ValuePtrs[Idx] = V;
291  return V;
292}
293
294/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
295/// resolves any forward references.  The idea behind this is that we sometimes
296/// get constants (such as large arrays) which reference *many* forward ref
297/// constants.  Replacing each of these causes a lot of thrashing when
298/// building/reuniquing the constant.  Instead of doing this, we look at all the
299/// uses and rewrite all the place holders at once for any constant that uses
300/// a placeholder.
301void BitcodeReaderValueList::ResolveConstantForwardRefs() {
302  // Sort the values by-pointer so that they are efficient to look up with a
303  // binary search.
304  std::sort(ResolveConstants.begin(), ResolveConstants.end());
305
306  SmallVector<Constant*, 64> NewOps;
307
308  while (!ResolveConstants.empty()) {
309    Value *RealVal = operator[](ResolveConstants.back().second);
310    Constant *Placeholder = ResolveConstants.back().first;
311    ResolveConstants.pop_back();
312
313    // Loop over all users of the placeholder, updating them to reference the
314    // new value.  If they reference more than one placeholder, update them all
315    // at once.
316    while (!Placeholder->use_empty()) {
317      Value::use_iterator UI = Placeholder->use_begin();
318      User *U = *UI;
319
320      // If the using object isn't uniqued, just update the operands.  This
321      // handles instructions and initializers for global variables.
322      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
323        UI.getUse().set(RealVal);
324        continue;
325      }
326
327      // Otherwise, we have a constant that uses the placeholder.  Replace that
328      // constant with a new constant that has *all* placeholder uses updated.
329      Constant *UserC = cast<Constant>(U);
330      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
331           I != E; ++I) {
332        Value *NewOp;
333        if (!isa<ConstantPlaceHolder>(*I)) {
334          // Not a placeholder reference.
335          NewOp = *I;
336        } else if (*I == Placeholder) {
337          // Common case is that it just references this one placeholder.
338          NewOp = RealVal;
339        } else {
340          // Otherwise, look up the placeholder in ResolveConstants.
341          ResolveConstantsTy::iterator It =
342            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
343                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
344                                                            0));
345          assert(It != ResolveConstants.end() && It->first == *I);
346          NewOp = operator[](It->second);
347        }
348
349        NewOps.push_back(cast<Constant>(NewOp));
350      }
351
352      // Make the new constant.
353      Constant *NewC;
354      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
355        NewC = ConstantArray::get(UserCA->getType(), NewOps);
356      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
357        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
358      } else if (isa<ConstantVector>(UserC)) {
359        NewC = ConstantVector::get(NewOps);
360      } else {
361        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
362        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
363      }
364
365      UserC->replaceAllUsesWith(NewC);
366      UserC->destroyConstant();
367      NewOps.clear();
368    }
369
370    // Update all ValueHandles, they should be the only users at this point.
371    Placeholder->replaceAllUsesWith(RealVal);
372    delete Placeholder;
373  }
374}
375
376void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
377  if (Idx == size()) {
378    push_back(V);
379    return;
380  }
381
382  if (Idx >= size())
383    resize(Idx+1);
384
385  WeakVH &OldV = MDValuePtrs[Idx];
386  if (OldV == 0) {
387    OldV = V;
388    return;
389  }
390
391  // If there was a forward reference to this value, replace it.
392  MDNode *PrevVal = cast<MDNode>(OldV);
393  OldV->replaceAllUsesWith(V);
394  MDNode::deleteTemporary(PrevVal);
395  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
396  // value for Idx.
397  MDValuePtrs[Idx] = V;
398}
399
400Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
401  if (Idx >= size())
402    resize(Idx + 1);
403
404  if (Value *V = MDValuePtrs[Idx]) {
405    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
406    return V;
407  }
408
409  // Create and return a placeholder, which will later be RAUW'd.
410  Value *V = MDNode::getTemporary(Context, None);
411  MDValuePtrs[Idx] = V;
412  return V;
413}
414
415Type *BitcodeReader::getTypeByID(unsigned ID) {
416  // The type table size is always specified correctly.
417  if (ID >= TypeList.size())
418    return 0;
419
420  if (Type *Ty = TypeList[ID])
421    return Ty;
422
423  // If we have a forward reference, the only possible case is when it is to a
424  // named struct.  Just create a placeholder for now.
425  return TypeList[ID] = StructType::create(Context);
426}
427
428
429//===----------------------------------------------------------------------===//
430//  Functions for parsing blocks from the bitcode file
431//===----------------------------------------------------------------------===//
432
433
434/// \brief This fills an AttrBuilder object with the LLVM attributes that have
435/// been decoded from the given integer. This function must stay in sync with
436/// 'encodeLLVMAttributesForBitcode'.
437static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
438                                           uint64_t EncodedAttrs) {
439  // FIXME: Remove in 4.0.
440
441  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
442  // the bits above 31 down by 11 bits.
443  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
444  assert((!Alignment || isPowerOf2_32(Alignment)) &&
445         "Alignment must be a power of two.");
446
447  if (Alignment)
448    B.addAlignmentAttr(Alignment);
449  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
450                (EncodedAttrs & 0xffff));
451}
452
453bool BitcodeReader::ParseAttributeBlock() {
454  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
455    return Error("Malformed block record");
456
457  if (!MAttributes.empty())
458    return Error("Multiple PARAMATTR blocks found!");
459
460  SmallVector<uint64_t, 64> Record;
461
462  SmallVector<AttributeSet, 8> Attrs;
463
464  // Read all the records.
465  while (1) {
466    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
467
468    switch (Entry.Kind) {
469    case BitstreamEntry::SubBlock: // Handled for us already.
470    case BitstreamEntry::Error:
471      return Error("Error at end of PARAMATTR block");
472    case BitstreamEntry::EndBlock:
473      return false;
474    case BitstreamEntry::Record:
475      // The interesting case.
476      break;
477    }
478
479    // Read a record.
480    Record.clear();
481    switch (Stream.readRecord(Entry.ID, Record)) {
482    default:  // Default behavior: ignore.
483      break;
484    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
485      // FIXME: Remove in 4.0.
486      if (Record.size() & 1)
487        return Error("Invalid ENTRY record");
488
489      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
490        AttrBuilder B;
491        decodeLLVMAttributesForBitcode(B, Record[i+1]);
492        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
493      }
494
495      MAttributes.push_back(AttributeSet::get(Context, Attrs));
496      Attrs.clear();
497      break;
498    }
499    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
500      for (unsigned i = 0, e = Record.size(); i != e; ++i)
501        Attrs.push_back(MAttributeGroups[Record[i]]);
502
503      MAttributes.push_back(AttributeSet::get(Context, Attrs));
504      Attrs.clear();
505      break;
506    }
507    }
508  }
509}
510
511bool BitcodeReader::ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
512  switch (Code) {
513  case bitc::ATTR_KIND_ALIGNMENT:
514    *Kind = Attribute::Alignment;
515    return false;
516  case bitc::ATTR_KIND_ALWAYS_INLINE:
517    *Kind = Attribute::AlwaysInline;
518    return false;
519  case bitc::ATTR_KIND_BUILTIN:
520    *Kind = Attribute::Builtin;
521    return false;
522  case bitc::ATTR_KIND_BY_VAL:
523    *Kind = Attribute::ByVal;
524    return false;
525  case bitc::ATTR_KIND_COLD:
526    *Kind = Attribute::Cold;
527    return false;
528  case bitc::ATTR_KIND_INLINE_HINT:
529    *Kind = Attribute::InlineHint;
530    return false;
531  case bitc::ATTR_KIND_IN_REG:
532    *Kind = Attribute::InReg;
533    return false;
534  case bitc::ATTR_KIND_MIN_SIZE:
535    *Kind = Attribute::MinSize;
536    return false;
537  case bitc::ATTR_KIND_NAKED:
538    *Kind = Attribute::Naked;
539    return false;
540  case bitc::ATTR_KIND_NEST:
541    *Kind = Attribute::Nest;
542    return false;
543  case bitc::ATTR_KIND_NO_ALIAS:
544    *Kind = Attribute::NoAlias;
545    return false;
546  case bitc::ATTR_KIND_NO_BUILTIN:
547    *Kind = Attribute::NoBuiltin;
548    return false;
549  case bitc::ATTR_KIND_NO_CAPTURE:
550    *Kind = Attribute::NoCapture;
551    return false;
552  case bitc::ATTR_KIND_NO_DUPLICATE:
553    *Kind = Attribute::NoDuplicate;
554    return false;
555  case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
556    *Kind = Attribute::NoImplicitFloat;
557    return false;
558  case bitc::ATTR_KIND_NO_INLINE:
559    *Kind = Attribute::NoInline;
560    return false;
561  case bitc::ATTR_KIND_NON_LAZY_BIND:
562    *Kind = Attribute::NonLazyBind;
563    return false;
564  case bitc::ATTR_KIND_NO_RED_ZONE:
565    *Kind = Attribute::NoRedZone;
566    return false;
567  case bitc::ATTR_KIND_NO_RETURN:
568    *Kind = Attribute::NoReturn;
569    return false;
570  case bitc::ATTR_KIND_NO_UNWIND:
571    *Kind = Attribute::NoUnwind;
572    return false;
573  case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
574    *Kind = Attribute::OptimizeForSize;
575    return false;
576  case bitc::ATTR_KIND_OPTIMIZE_NONE:
577    *Kind = Attribute::OptimizeNone;
578    return false;
579  case bitc::ATTR_KIND_READ_NONE:
580    *Kind = Attribute::ReadNone;
581    return false;
582  case bitc::ATTR_KIND_READ_ONLY:
583    *Kind = Attribute::ReadOnly;
584    return false;
585  case bitc::ATTR_KIND_RETURNED:
586    *Kind = Attribute::Returned;
587    return false;
588  case bitc::ATTR_KIND_RETURNS_TWICE:
589    *Kind = Attribute::ReturnsTwice;
590    return false;
591  case bitc::ATTR_KIND_S_EXT:
592    *Kind = Attribute::SExt;
593    return false;
594  case bitc::ATTR_KIND_STACK_ALIGNMENT:
595    *Kind = Attribute::StackAlignment;
596    return false;
597  case bitc::ATTR_KIND_STACK_PROTECT:
598    *Kind = Attribute::StackProtect;
599    return false;
600  case bitc::ATTR_KIND_STACK_PROTECT_REQ:
601    *Kind = Attribute::StackProtectReq;
602    return false;
603  case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
604    *Kind = Attribute::StackProtectStrong;
605    return false;
606  case bitc::ATTR_KIND_STRUCT_RET:
607    *Kind = Attribute::StructRet;
608    return false;
609  case bitc::ATTR_KIND_SANITIZE_ADDRESS:
610    *Kind = Attribute::SanitizeAddress;
611    return false;
612  case bitc::ATTR_KIND_SANITIZE_THREAD:
613    *Kind = Attribute::SanitizeThread;
614    return false;
615  case bitc::ATTR_KIND_SANITIZE_MEMORY:
616    *Kind = Attribute::SanitizeMemory;
617    return false;
618  case bitc::ATTR_KIND_UW_TABLE:
619    *Kind = Attribute::UWTable;
620    return false;
621  case bitc::ATTR_KIND_Z_EXT:
622    *Kind = Attribute::ZExt;
623    return false;
624  default:
625    std::string Buf;
626    raw_string_ostream fmt(Buf);
627    fmt << "Unknown attribute kind (" << Code << ")";
628    fmt.flush();
629    return Error(Buf.c_str());
630  }
631}
632
633bool BitcodeReader::ParseAttributeGroupBlock() {
634  if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
635    return Error("Malformed block record");
636
637  if (!MAttributeGroups.empty())
638    return Error("Multiple PARAMATTR_GROUP blocks found!");
639
640  SmallVector<uint64_t, 64> Record;
641
642  // Read all the records.
643  while (1) {
644    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
645
646    switch (Entry.Kind) {
647    case BitstreamEntry::SubBlock: // Handled for us already.
648    case BitstreamEntry::Error:
649      return Error("Error at end of PARAMATTR_GROUP block");
650    case BitstreamEntry::EndBlock:
651      return false;
652    case BitstreamEntry::Record:
653      // The interesting case.
654      break;
655    }
656
657    // Read a record.
658    Record.clear();
659    switch (Stream.readRecord(Entry.ID, Record)) {
660    default:  // Default behavior: ignore.
661      break;
662    case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
663      if (Record.size() < 3)
664        return Error("Invalid ENTRY record");
665
666      uint64_t GrpID = Record[0];
667      uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
668
669      AttrBuilder B;
670      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
671        if (Record[i] == 0) {        // Enum attribute
672          Attribute::AttrKind Kind;
673          if (ParseAttrKind(Record[++i], &Kind))
674            return true;
675
676          B.addAttribute(Kind);
677        } else if (Record[i] == 1) { // Align attribute
678          Attribute::AttrKind Kind;
679          if (ParseAttrKind(Record[++i], &Kind))
680            return true;
681          if (Kind == Attribute::Alignment)
682            B.addAlignmentAttr(Record[++i]);
683          else
684            B.addStackAlignmentAttr(Record[++i]);
685        } else {                     // String attribute
686          assert((Record[i] == 3 || Record[i] == 4) &&
687                 "Invalid attribute group entry");
688          bool HasValue = (Record[i++] == 4);
689          SmallString<64> KindStr;
690          SmallString<64> ValStr;
691
692          while (Record[i] != 0 && i != e)
693            KindStr += Record[i++];
694          assert(Record[i] == 0 && "Kind string not null terminated");
695
696          if (HasValue) {
697            // Has a value associated with it.
698            ++i; // Skip the '0' that terminates the "kind" string.
699            while (Record[i] != 0 && i != e)
700              ValStr += Record[i++];
701            assert(Record[i] == 0 && "Value string not null terminated");
702          }
703
704          B.addAttribute(KindStr.str(), ValStr.str());
705        }
706      }
707
708      MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
709      break;
710    }
711    }
712  }
713}
714
715bool BitcodeReader::ParseTypeTable() {
716  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
717    return Error("Malformed block record");
718
719  return ParseTypeTableBody();
720}
721
722bool BitcodeReader::ParseTypeTableBody() {
723  if (!TypeList.empty())
724    return Error("Multiple TYPE_BLOCKs found!");
725
726  SmallVector<uint64_t, 64> Record;
727  unsigned NumRecords = 0;
728
729  SmallString<64> TypeName;
730
731  // Read all the records for this type table.
732  while (1) {
733    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
734
735    switch (Entry.Kind) {
736    case BitstreamEntry::SubBlock: // Handled for us already.
737    case BitstreamEntry::Error:
738      Error("Error in the type table block");
739      return true;
740    case BitstreamEntry::EndBlock:
741      if (NumRecords != TypeList.size())
742        return Error("Invalid type forward reference in TYPE_BLOCK");
743      return false;
744    case BitstreamEntry::Record:
745      // The interesting case.
746      break;
747    }
748
749    // Read a record.
750    Record.clear();
751    Type *ResultTy = 0;
752    switch (Stream.readRecord(Entry.ID, Record)) {
753    default: return Error("unknown type in type table");
754    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
755      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
756      // type list.  This allows us to reserve space.
757      if (Record.size() < 1)
758        return Error("Invalid TYPE_CODE_NUMENTRY record");
759      TypeList.resize(Record[0]);
760      continue;
761    case bitc::TYPE_CODE_VOID:      // VOID
762      ResultTy = Type::getVoidTy(Context);
763      break;
764    case bitc::TYPE_CODE_HALF:     // HALF
765      ResultTy = Type::getHalfTy(Context);
766      break;
767    case bitc::TYPE_CODE_FLOAT:     // FLOAT
768      ResultTy = Type::getFloatTy(Context);
769      break;
770    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
771      ResultTy = Type::getDoubleTy(Context);
772      break;
773    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
774      ResultTy = Type::getX86_FP80Ty(Context);
775      break;
776    case bitc::TYPE_CODE_FP128:     // FP128
777      ResultTy = Type::getFP128Ty(Context);
778      break;
779    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
780      ResultTy = Type::getPPC_FP128Ty(Context);
781      break;
782    case bitc::TYPE_CODE_LABEL:     // LABEL
783      ResultTy = Type::getLabelTy(Context);
784      break;
785    case bitc::TYPE_CODE_METADATA:  // METADATA
786      ResultTy = Type::getMetadataTy(Context);
787      break;
788    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
789      ResultTy = Type::getX86_MMXTy(Context);
790      break;
791    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
792      if (Record.size() < 1)
793        return Error("Invalid Integer type record");
794
795      ResultTy = IntegerType::get(Context, Record[0]);
796      break;
797    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
798                                    //          [pointee type, address space]
799      if (Record.size() < 1)
800        return Error("Invalid POINTER type record");
801      unsigned AddressSpace = 0;
802      if (Record.size() == 2)
803        AddressSpace = Record[1];
804      ResultTy = getTypeByID(Record[0]);
805      if (ResultTy == 0) return Error("invalid element type in pointer type");
806      ResultTy = PointerType::get(ResultTy, AddressSpace);
807      break;
808    }
809    case bitc::TYPE_CODE_FUNCTION_OLD: {
810      // FIXME: attrid is dead, remove it in LLVM 4.0
811      // FUNCTION: [vararg, attrid, retty, paramty x N]
812      if (Record.size() < 3)
813        return Error("Invalid FUNCTION type record");
814      SmallVector<Type*, 8> ArgTys;
815      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
816        if (Type *T = getTypeByID(Record[i]))
817          ArgTys.push_back(T);
818        else
819          break;
820      }
821
822      ResultTy = getTypeByID(Record[2]);
823      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
824        return Error("invalid type in function type");
825
826      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
827      break;
828    }
829    case bitc::TYPE_CODE_FUNCTION: {
830      // FUNCTION: [vararg, retty, paramty x N]
831      if (Record.size() < 2)
832        return Error("Invalid FUNCTION type record");
833      SmallVector<Type*, 8> ArgTys;
834      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
835        if (Type *T = getTypeByID(Record[i]))
836          ArgTys.push_back(T);
837        else
838          break;
839      }
840
841      ResultTy = getTypeByID(Record[1]);
842      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
843        return Error("invalid type in function type");
844
845      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
846      break;
847    }
848    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
849      if (Record.size() < 1)
850        return Error("Invalid STRUCT type record");
851      SmallVector<Type*, 8> EltTys;
852      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
853        if (Type *T = getTypeByID(Record[i]))
854          EltTys.push_back(T);
855        else
856          break;
857      }
858      if (EltTys.size() != Record.size()-1)
859        return Error("invalid type in struct type");
860      ResultTy = StructType::get(Context, EltTys, Record[0]);
861      break;
862    }
863    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
864      if (ConvertToString(Record, 0, TypeName))
865        return Error("Invalid STRUCT_NAME record");
866      continue;
867
868    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
869      if (Record.size() < 1)
870        return Error("Invalid STRUCT type record");
871
872      if (NumRecords >= TypeList.size())
873        return Error("invalid TYPE table");
874
875      // Check to see if this was forward referenced, if so fill in the temp.
876      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
877      if (Res) {
878        Res->setName(TypeName);
879        TypeList[NumRecords] = 0;
880      } else  // Otherwise, create a new struct.
881        Res = StructType::create(Context, TypeName);
882      TypeName.clear();
883
884      SmallVector<Type*, 8> EltTys;
885      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
886        if (Type *T = getTypeByID(Record[i]))
887          EltTys.push_back(T);
888        else
889          break;
890      }
891      if (EltTys.size() != Record.size()-1)
892        return Error("invalid STRUCT type record");
893      Res->setBody(EltTys, Record[0]);
894      ResultTy = Res;
895      break;
896    }
897    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
898      if (Record.size() != 1)
899        return Error("Invalid OPAQUE type record");
900
901      if (NumRecords >= TypeList.size())
902        return Error("invalid TYPE table");
903
904      // Check to see if this was forward referenced, if so fill in the temp.
905      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
906      if (Res) {
907        Res->setName(TypeName);
908        TypeList[NumRecords] = 0;
909      } else  // Otherwise, create a new struct with no body.
910        Res = StructType::create(Context, TypeName);
911      TypeName.clear();
912      ResultTy = Res;
913      break;
914    }
915    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
916      if (Record.size() < 2)
917        return Error("Invalid ARRAY type record");
918      if ((ResultTy = getTypeByID(Record[1])))
919        ResultTy = ArrayType::get(ResultTy, Record[0]);
920      else
921        return Error("Invalid ARRAY type element");
922      break;
923    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
924      if (Record.size() < 2)
925        return Error("Invalid VECTOR type record");
926      if ((ResultTy = getTypeByID(Record[1])))
927        ResultTy = VectorType::get(ResultTy, Record[0]);
928      else
929        return Error("Invalid ARRAY type element");
930      break;
931    }
932
933    if (NumRecords >= TypeList.size())
934      return Error("invalid TYPE table");
935    assert(ResultTy && "Didn't read a type?");
936    assert(TypeList[NumRecords] == 0 && "Already read type?");
937    TypeList[NumRecords++] = ResultTy;
938  }
939}
940
941bool BitcodeReader::ParseValueSymbolTable() {
942  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
943    return Error("Malformed block record");
944
945  SmallVector<uint64_t, 64> Record;
946
947  // Read all the records for this value table.
948  SmallString<128> ValueName;
949  while (1) {
950    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
951
952    switch (Entry.Kind) {
953    case BitstreamEntry::SubBlock: // Handled for us already.
954    case BitstreamEntry::Error:
955      return Error("malformed value symbol table block");
956    case BitstreamEntry::EndBlock:
957      return false;
958    case BitstreamEntry::Record:
959      // The interesting case.
960      break;
961    }
962
963    // Read a record.
964    Record.clear();
965    switch (Stream.readRecord(Entry.ID, Record)) {
966    default:  // Default behavior: unknown type.
967      break;
968    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
969      if (ConvertToString(Record, 1, ValueName))
970        return Error("Invalid VST_ENTRY record");
971      unsigned ValueID = Record[0];
972      if (ValueID >= ValueList.size())
973        return Error("Invalid Value ID in VST_ENTRY record");
974      Value *V = ValueList[ValueID];
975
976      V->setName(StringRef(ValueName.data(), ValueName.size()));
977      ValueName.clear();
978      break;
979    }
980    case bitc::VST_CODE_BBENTRY: {
981      if (ConvertToString(Record, 1, ValueName))
982        return Error("Invalid VST_BBENTRY record");
983      BasicBlock *BB = getBasicBlock(Record[0]);
984      if (BB == 0)
985        return Error("Invalid BB ID in VST_BBENTRY record");
986
987      BB->setName(StringRef(ValueName.data(), ValueName.size()));
988      ValueName.clear();
989      break;
990    }
991    }
992  }
993}
994
995bool BitcodeReader::ParseMetadata() {
996  unsigned NextMDValueNo = MDValueList.size();
997
998  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
999    return Error("Malformed block record");
1000
1001  SmallVector<uint64_t, 64> Record;
1002
1003  // Read all the records.
1004  while (1) {
1005    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1006
1007    switch (Entry.Kind) {
1008    case BitstreamEntry::SubBlock: // Handled for us already.
1009    case BitstreamEntry::Error:
1010      Error("malformed metadata block");
1011      return true;
1012    case BitstreamEntry::EndBlock:
1013      return false;
1014    case BitstreamEntry::Record:
1015      // The interesting case.
1016      break;
1017    }
1018
1019    bool IsFunctionLocal = false;
1020    // Read a record.
1021    Record.clear();
1022    unsigned Code = Stream.readRecord(Entry.ID, Record);
1023    switch (Code) {
1024    default:  // Default behavior: ignore.
1025      break;
1026    case bitc::METADATA_NAME: {
1027      // Read name of the named metadata.
1028      SmallString<8> Name(Record.begin(), Record.end());
1029      Record.clear();
1030      Code = Stream.ReadCode();
1031
1032      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1033      unsigned NextBitCode = Stream.readRecord(Code, Record);
1034      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1035
1036      // Read named metadata elements.
1037      unsigned Size = Record.size();
1038      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1039      for (unsigned i = 0; i != Size; ++i) {
1040        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1041        if (MD == 0)
1042          return Error("Malformed metadata record");
1043        NMD->addOperand(MD);
1044      }
1045      break;
1046    }
1047    case bitc::METADATA_FN_NODE:
1048      IsFunctionLocal = true;
1049      // fall-through
1050    case bitc::METADATA_NODE: {
1051      if (Record.size() % 2 == 1)
1052        return Error("Invalid METADATA_NODE record");
1053
1054      unsigned Size = Record.size();
1055      SmallVector<Value*, 8> Elts;
1056      for (unsigned i = 0; i != Size; i += 2) {
1057        Type *Ty = getTypeByID(Record[i]);
1058        if (!Ty) return Error("Invalid METADATA_NODE record");
1059        if (Ty->isMetadataTy())
1060          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1061        else if (!Ty->isVoidTy())
1062          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1063        else
1064          Elts.push_back(NULL);
1065      }
1066      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1067      IsFunctionLocal = false;
1068      MDValueList.AssignValue(V, NextMDValueNo++);
1069      break;
1070    }
1071    case bitc::METADATA_STRING: {
1072      SmallString<8> String(Record.begin(), Record.end());
1073      Value *V = MDString::get(Context, String);
1074      MDValueList.AssignValue(V, NextMDValueNo++);
1075      break;
1076    }
1077    case bitc::METADATA_KIND: {
1078      if (Record.size() < 2)
1079        return Error("Invalid METADATA_KIND record");
1080
1081      unsigned Kind = Record[0];
1082      SmallString<8> Name(Record.begin()+1, Record.end());
1083
1084      unsigned NewKind = TheModule->getMDKindID(Name.str());
1085      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1086        return Error("Conflicting METADATA_KIND records");
1087      break;
1088    }
1089    }
1090  }
1091}
1092
1093/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1094/// the LSB for dense VBR encoding.
1095uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1096  if ((V & 1) == 0)
1097    return V >> 1;
1098  if (V != 1)
1099    return -(V >> 1);
1100  // There is no such thing as -0 with integers.  "-0" really means MININT.
1101  return 1ULL << 63;
1102}
1103
1104/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1105/// values and aliases that we can.
1106bool BitcodeReader::ResolveGlobalAndAliasInits() {
1107  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1108  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1109
1110  GlobalInitWorklist.swap(GlobalInits);
1111  AliasInitWorklist.swap(AliasInits);
1112
1113  while (!GlobalInitWorklist.empty()) {
1114    unsigned ValID = GlobalInitWorklist.back().second;
1115    if (ValID >= ValueList.size()) {
1116      // Not ready to resolve this yet, it requires something later in the file.
1117      GlobalInits.push_back(GlobalInitWorklist.back());
1118    } else {
1119      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1120        GlobalInitWorklist.back().first->setInitializer(C);
1121      else
1122        return Error("Global variable initializer is not a constant!");
1123    }
1124    GlobalInitWorklist.pop_back();
1125  }
1126
1127  while (!AliasInitWorklist.empty()) {
1128    unsigned ValID = AliasInitWorklist.back().second;
1129    if (ValID >= ValueList.size()) {
1130      AliasInits.push_back(AliasInitWorklist.back());
1131    } else {
1132      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1133        AliasInitWorklist.back().first->setAliasee(C);
1134      else
1135        return Error("Alias initializer is not a constant!");
1136    }
1137    AliasInitWorklist.pop_back();
1138  }
1139  return false;
1140}
1141
1142static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1143  SmallVector<uint64_t, 8> Words(Vals.size());
1144  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1145                 BitcodeReader::decodeSignRotatedValue);
1146
1147  return APInt(TypeBits, Words);
1148}
1149
1150bool BitcodeReader::ParseConstants() {
1151  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1152    return Error("Malformed block record");
1153
1154  SmallVector<uint64_t, 64> Record;
1155
1156  // Read all the records for this value table.
1157  Type *CurTy = Type::getInt32Ty(Context);
1158  unsigned NextCstNo = ValueList.size();
1159  while (1) {
1160    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1161
1162    switch (Entry.Kind) {
1163    case BitstreamEntry::SubBlock: // Handled for us already.
1164    case BitstreamEntry::Error:
1165      return Error("malformed block record in AST file");
1166    case BitstreamEntry::EndBlock:
1167      if (NextCstNo != ValueList.size())
1168        return Error("Invalid constant reference!");
1169
1170      // Once all the constants have been read, go through and resolve forward
1171      // references.
1172      ValueList.ResolveConstantForwardRefs();
1173      return false;
1174    case BitstreamEntry::Record:
1175      // The interesting case.
1176      break;
1177    }
1178
1179    // Read a record.
1180    Record.clear();
1181    Value *V = 0;
1182    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1183    switch (BitCode) {
1184    default:  // Default behavior: unknown constant
1185    case bitc::CST_CODE_UNDEF:     // UNDEF
1186      V = UndefValue::get(CurTy);
1187      break;
1188    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1189      if (Record.empty())
1190        return Error("Malformed CST_SETTYPE record");
1191      if (Record[0] >= TypeList.size())
1192        return Error("Invalid Type ID in CST_SETTYPE record");
1193      CurTy = TypeList[Record[0]];
1194      continue;  // Skip the ValueList manipulation.
1195    case bitc::CST_CODE_NULL:      // NULL
1196      V = Constant::getNullValue(CurTy);
1197      break;
1198    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1199      if (!CurTy->isIntegerTy() || Record.empty())
1200        return Error("Invalid CST_INTEGER record");
1201      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1202      break;
1203    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1204      if (!CurTy->isIntegerTy() || Record.empty())
1205        return Error("Invalid WIDE_INTEGER record");
1206
1207      APInt VInt = ReadWideAPInt(Record,
1208                                 cast<IntegerType>(CurTy)->getBitWidth());
1209      V = ConstantInt::get(Context, VInt);
1210
1211      break;
1212    }
1213    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1214      if (Record.empty())
1215        return Error("Invalid FLOAT record");
1216      if (CurTy->isHalfTy())
1217        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1218                                             APInt(16, (uint16_t)Record[0])));
1219      else if (CurTy->isFloatTy())
1220        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1221                                             APInt(32, (uint32_t)Record[0])));
1222      else if (CurTy->isDoubleTy())
1223        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1224                                             APInt(64, Record[0])));
1225      else if (CurTy->isX86_FP80Ty()) {
1226        // Bits are not stored the same way as a normal i80 APInt, compensate.
1227        uint64_t Rearrange[2];
1228        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1229        Rearrange[1] = Record[0] >> 48;
1230        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1231                                             APInt(80, Rearrange)));
1232      } else if (CurTy->isFP128Ty())
1233        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1234                                             APInt(128, Record)));
1235      else if (CurTy->isPPC_FP128Ty())
1236        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1237                                             APInt(128, Record)));
1238      else
1239        V = UndefValue::get(CurTy);
1240      break;
1241    }
1242
1243    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1244      if (Record.empty())
1245        return Error("Invalid CST_AGGREGATE record");
1246
1247      unsigned Size = Record.size();
1248      SmallVector<Constant*, 16> Elts;
1249
1250      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1251        for (unsigned i = 0; i != Size; ++i)
1252          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1253                                                     STy->getElementType(i)));
1254        V = ConstantStruct::get(STy, Elts);
1255      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1256        Type *EltTy = ATy->getElementType();
1257        for (unsigned i = 0; i != Size; ++i)
1258          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1259        V = ConstantArray::get(ATy, Elts);
1260      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1261        Type *EltTy = VTy->getElementType();
1262        for (unsigned i = 0; i != Size; ++i)
1263          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1264        V = ConstantVector::get(Elts);
1265      } else {
1266        V = UndefValue::get(CurTy);
1267      }
1268      break;
1269    }
1270    case bitc::CST_CODE_STRING:    // STRING: [values]
1271    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1272      if (Record.empty())
1273        return Error("Invalid CST_STRING record");
1274
1275      SmallString<16> Elts(Record.begin(), Record.end());
1276      V = ConstantDataArray::getString(Context, Elts,
1277                                       BitCode == bitc::CST_CODE_CSTRING);
1278      break;
1279    }
1280    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1281      if (Record.empty())
1282        return Error("Invalid CST_DATA record");
1283
1284      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1285      unsigned Size = Record.size();
1286
1287      if (EltTy->isIntegerTy(8)) {
1288        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1289        if (isa<VectorType>(CurTy))
1290          V = ConstantDataVector::get(Context, Elts);
1291        else
1292          V = ConstantDataArray::get(Context, Elts);
1293      } else if (EltTy->isIntegerTy(16)) {
1294        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1295        if (isa<VectorType>(CurTy))
1296          V = ConstantDataVector::get(Context, Elts);
1297        else
1298          V = ConstantDataArray::get(Context, Elts);
1299      } else if (EltTy->isIntegerTy(32)) {
1300        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1301        if (isa<VectorType>(CurTy))
1302          V = ConstantDataVector::get(Context, Elts);
1303        else
1304          V = ConstantDataArray::get(Context, Elts);
1305      } else if (EltTy->isIntegerTy(64)) {
1306        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1307        if (isa<VectorType>(CurTy))
1308          V = ConstantDataVector::get(Context, Elts);
1309        else
1310          V = ConstantDataArray::get(Context, Elts);
1311      } else if (EltTy->isFloatTy()) {
1312        SmallVector<float, 16> Elts(Size);
1313        std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1314        if (isa<VectorType>(CurTy))
1315          V = ConstantDataVector::get(Context, Elts);
1316        else
1317          V = ConstantDataArray::get(Context, Elts);
1318      } else if (EltTy->isDoubleTy()) {
1319        SmallVector<double, 16> Elts(Size);
1320        std::transform(Record.begin(), Record.end(), Elts.begin(),
1321                       BitsToDouble);
1322        if (isa<VectorType>(CurTy))
1323          V = ConstantDataVector::get(Context, Elts);
1324        else
1325          V = ConstantDataArray::get(Context, Elts);
1326      } else {
1327        return Error("Unknown element type in CE_DATA");
1328      }
1329      break;
1330    }
1331
1332    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1333      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1334      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1335      if (Opc < 0) {
1336        V = UndefValue::get(CurTy);  // Unknown binop.
1337      } else {
1338        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1339        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1340        unsigned Flags = 0;
1341        if (Record.size() >= 4) {
1342          if (Opc == Instruction::Add ||
1343              Opc == Instruction::Sub ||
1344              Opc == Instruction::Mul ||
1345              Opc == Instruction::Shl) {
1346            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1347              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1348            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1349              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1350          } else if (Opc == Instruction::SDiv ||
1351                     Opc == Instruction::UDiv ||
1352                     Opc == Instruction::LShr ||
1353                     Opc == Instruction::AShr) {
1354            if (Record[3] & (1 << bitc::PEO_EXACT))
1355              Flags |= SDivOperator::IsExact;
1356          }
1357        }
1358        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1359      }
1360      break;
1361    }
1362    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1363      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1364      int Opc = GetDecodedCastOpcode(Record[0]);
1365      if (Opc < 0) {
1366        V = UndefValue::get(CurTy);  // Unknown cast.
1367      } else {
1368        Type *OpTy = getTypeByID(Record[1]);
1369        if (!OpTy) return Error("Invalid CE_CAST record");
1370        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1371        V = ConstantExpr::getCast(Opc, Op, CurTy);
1372      }
1373      break;
1374    }
1375    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1376    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1377      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1378      SmallVector<Constant*, 16> Elts;
1379      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1380        Type *ElTy = getTypeByID(Record[i]);
1381        if (!ElTy) return Error("Invalid CE_GEP record");
1382        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1383      }
1384      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1385      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1386                                         BitCode ==
1387                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1388      break;
1389    }
1390    case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1391      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1392
1393      Type *SelectorTy = Type::getInt1Ty(Context);
1394
1395      // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1396      // vector. Otherwise, it must be a single bit.
1397      if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1398        SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1399                                     VTy->getNumElements());
1400
1401      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1402                                                              SelectorTy),
1403                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1404                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1405      break;
1406    }
1407    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1408      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1409      VectorType *OpTy =
1410        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1411      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1412      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1413      Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1414                                                  Type::getInt32Ty(Context));
1415      V = ConstantExpr::getExtractElement(Op0, Op1);
1416      break;
1417    }
1418    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1419      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1420      if (Record.size() < 3 || OpTy == 0)
1421        return Error("Invalid CE_INSERTELT record");
1422      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1423      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1424                                                  OpTy->getElementType());
1425      Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1426                                                  Type::getInt32Ty(Context));
1427      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1428      break;
1429    }
1430    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1431      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1432      if (Record.size() < 3 || OpTy == 0)
1433        return Error("Invalid CE_SHUFFLEVEC record");
1434      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1435      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1436      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1437                                                 OpTy->getNumElements());
1438      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1439      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1440      break;
1441    }
1442    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1443      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1444      VectorType *OpTy =
1445        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1446      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1447        return Error("Invalid CE_SHUFVEC_EX record");
1448      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1449      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1450      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1451                                                 RTy->getNumElements());
1452      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1453      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1454      break;
1455    }
1456    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1457      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1458      Type *OpTy = getTypeByID(Record[0]);
1459      if (OpTy == 0) return Error("Invalid CE_CMP record");
1460      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1461      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1462
1463      if (OpTy->isFPOrFPVectorTy())
1464        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1465      else
1466        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1467      break;
1468    }
1469    // This maintains backward compatibility, pre-asm dialect keywords.
1470    // FIXME: Remove with the 4.0 release.
1471    case bitc::CST_CODE_INLINEASM_OLD: {
1472      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1473      std::string AsmStr, ConstrStr;
1474      bool HasSideEffects = Record[0] & 1;
1475      bool IsAlignStack = Record[0] >> 1;
1476      unsigned AsmStrSize = Record[1];
1477      if (2+AsmStrSize >= Record.size())
1478        return Error("Invalid INLINEASM record");
1479      unsigned ConstStrSize = Record[2+AsmStrSize];
1480      if (3+AsmStrSize+ConstStrSize > Record.size())
1481        return Error("Invalid INLINEASM record");
1482
1483      for (unsigned i = 0; i != AsmStrSize; ++i)
1484        AsmStr += (char)Record[2+i];
1485      for (unsigned i = 0; i != ConstStrSize; ++i)
1486        ConstrStr += (char)Record[3+AsmStrSize+i];
1487      PointerType *PTy = cast<PointerType>(CurTy);
1488      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1489                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1490      break;
1491    }
1492    // This version adds support for the asm dialect keywords (e.g.,
1493    // inteldialect).
1494    case bitc::CST_CODE_INLINEASM: {
1495      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1496      std::string AsmStr, ConstrStr;
1497      bool HasSideEffects = Record[0] & 1;
1498      bool IsAlignStack = (Record[0] >> 1) & 1;
1499      unsigned AsmDialect = Record[0] >> 2;
1500      unsigned AsmStrSize = Record[1];
1501      if (2+AsmStrSize >= Record.size())
1502        return Error("Invalid INLINEASM record");
1503      unsigned ConstStrSize = Record[2+AsmStrSize];
1504      if (3+AsmStrSize+ConstStrSize > Record.size())
1505        return Error("Invalid INLINEASM record");
1506
1507      for (unsigned i = 0; i != AsmStrSize; ++i)
1508        AsmStr += (char)Record[2+i];
1509      for (unsigned i = 0; i != ConstStrSize; ++i)
1510        ConstrStr += (char)Record[3+AsmStrSize+i];
1511      PointerType *PTy = cast<PointerType>(CurTy);
1512      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1513                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1514                         InlineAsm::AsmDialect(AsmDialect));
1515      break;
1516    }
1517    case bitc::CST_CODE_BLOCKADDRESS:{
1518      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1519      Type *FnTy = getTypeByID(Record[0]);
1520      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1521      Function *Fn =
1522        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1523      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1524
1525      // If the function is already parsed we can insert the block address right
1526      // away.
1527      if (!Fn->empty()) {
1528        Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1529        for (size_t I = 0, E = Record[2]; I != E; ++I) {
1530          if (BBI == BBE)
1531            return Error("Invalid blockaddress block #");
1532          ++BBI;
1533        }
1534        V = BlockAddress::get(Fn, BBI);
1535      } else {
1536        // Otherwise insert a placeholder and remember it so it can be inserted
1537        // when the function is parsed.
1538        GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1539                                                    Type::getInt8Ty(Context),
1540                                            false, GlobalValue::InternalLinkage,
1541                                                    0, "");
1542        BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1543        V = FwdRef;
1544      }
1545      break;
1546    }
1547    }
1548
1549    ValueList.AssignValue(V, NextCstNo);
1550    ++NextCstNo;
1551  }
1552}
1553
1554bool BitcodeReader::ParseUseLists() {
1555  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1556    return Error("Malformed block record");
1557
1558  SmallVector<uint64_t, 64> Record;
1559
1560  // Read all the records.
1561  while (1) {
1562    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1563
1564    switch (Entry.Kind) {
1565    case BitstreamEntry::SubBlock: // Handled for us already.
1566    case BitstreamEntry::Error:
1567      return Error("malformed use list block");
1568    case BitstreamEntry::EndBlock:
1569      return false;
1570    case BitstreamEntry::Record:
1571      // The interesting case.
1572      break;
1573    }
1574
1575    // Read a use list record.
1576    Record.clear();
1577    switch (Stream.readRecord(Entry.ID, Record)) {
1578    default:  // Default behavior: unknown type.
1579      break;
1580    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1581      unsigned RecordLength = Record.size();
1582      if (RecordLength < 1)
1583        return Error ("Invalid UseList reader!");
1584      UseListRecords.push_back(Record);
1585      break;
1586    }
1587    }
1588  }
1589}
1590
1591/// RememberAndSkipFunctionBody - When we see the block for a function body,
1592/// remember where it is and then skip it.  This lets us lazily deserialize the
1593/// functions.
1594bool BitcodeReader::RememberAndSkipFunctionBody() {
1595  // Get the function we are talking about.
1596  if (FunctionsWithBodies.empty())
1597    return Error("Insufficient function protos");
1598
1599  Function *Fn = FunctionsWithBodies.back();
1600  FunctionsWithBodies.pop_back();
1601
1602  // Save the current stream state.
1603  uint64_t CurBit = Stream.GetCurrentBitNo();
1604  DeferredFunctionInfo[Fn] = CurBit;
1605
1606  // Skip over the function block for now.
1607  if (Stream.SkipBlock())
1608    return Error("Malformed block record");
1609  return false;
1610}
1611
1612bool BitcodeReader::GlobalCleanup() {
1613  // Patch the initializers for globals and aliases up.
1614  ResolveGlobalAndAliasInits();
1615  if (!GlobalInits.empty() || !AliasInits.empty())
1616    return Error("Malformed global initializer set");
1617
1618  // Look for intrinsic functions which need to be upgraded at some point
1619  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1620       FI != FE; ++FI) {
1621    Function *NewFn;
1622    if (UpgradeIntrinsicFunction(FI, NewFn))
1623      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1624  }
1625
1626  // Look for global variables which need to be renamed.
1627  for (Module::global_iterator
1628         GI = TheModule->global_begin(), GE = TheModule->global_end();
1629       GI != GE; ++GI)
1630    UpgradeGlobalVariable(GI);
1631  // Force deallocation of memory for these vectors to favor the client that
1632  // want lazy deserialization.
1633  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1634  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1635  return false;
1636}
1637
1638bool BitcodeReader::ParseModule(bool Resume) {
1639  if (Resume)
1640    Stream.JumpToBit(NextUnreadBit);
1641  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1642    return Error("Malformed block record");
1643
1644  SmallVector<uint64_t, 64> Record;
1645  std::vector<std::string> SectionTable;
1646  std::vector<std::string> GCTable;
1647
1648  // Read all the records for this module.
1649  while (1) {
1650    BitstreamEntry Entry = Stream.advance();
1651
1652    switch (Entry.Kind) {
1653    case BitstreamEntry::Error:
1654      Error("malformed module block");
1655      return true;
1656    case BitstreamEntry::EndBlock:
1657      return GlobalCleanup();
1658
1659    case BitstreamEntry::SubBlock:
1660      switch (Entry.ID) {
1661      default:  // Skip unknown content.
1662        if (Stream.SkipBlock())
1663          return Error("Malformed block record");
1664        break;
1665      case bitc::BLOCKINFO_BLOCK_ID:
1666        if (Stream.ReadBlockInfoBlock())
1667          return Error("Malformed BlockInfoBlock");
1668        break;
1669      case bitc::PARAMATTR_BLOCK_ID:
1670        if (ParseAttributeBlock())
1671          return true;
1672        break;
1673      case bitc::PARAMATTR_GROUP_BLOCK_ID:
1674        if (ParseAttributeGroupBlock())
1675          return true;
1676        break;
1677      case bitc::TYPE_BLOCK_ID_NEW:
1678        if (ParseTypeTable())
1679          return true;
1680        break;
1681      case bitc::VALUE_SYMTAB_BLOCK_ID:
1682        if (ParseValueSymbolTable())
1683          return true;
1684        SeenValueSymbolTable = true;
1685        break;
1686      case bitc::CONSTANTS_BLOCK_ID:
1687        if (ParseConstants() || ResolveGlobalAndAliasInits())
1688          return true;
1689        break;
1690      case bitc::METADATA_BLOCK_ID:
1691        if (ParseMetadata())
1692          return true;
1693        break;
1694      case bitc::FUNCTION_BLOCK_ID:
1695        // If this is the first function body we've seen, reverse the
1696        // FunctionsWithBodies list.
1697        if (!SeenFirstFunctionBody) {
1698          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1699          if (GlobalCleanup())
1700            return true;
1701          SeenFirstFunctionBody = true;
1702        }
1703
1704        if (RememberAndSkipFunctionBody())
1705          return true;
1706        // For streaming bitcode, suspend parsing when we reach the function
1707        // bodies. Subsequent materialization calls will resume it when
1708        // necessary. For streaming, the function bodies must be at the end of
1709        // the bitcode. If the bitcode file is old, the symbol table will be
1710        // at the end instead and will not have been seen yet. In this case,
1711        // just finish the parse now.
1712        if (LazyStreamer && SeenValueSymbolTable) {
1713          NextUnreadBit = Stream.GetCurrentBitNo();
1714          return false;
1715        }
1716        break;
1717      case bitc::USELIST_BLOCK_ID:
1718        if (ParseUseLists())
1719          return true;
1720        break;
1721      }
1722      continue;
1723
1724    case BitstreamEntry::Record:
1725      // The interesting case.
1726      break;
1727    }
1728
1729
1730    // Read a record.
1731    switch (Stream.readRecord(Entry.ID, Record)) {
1732    default: break;  // Default behavior, ignore unknown content.
1733    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1734      if (Record.size() < 1)
1735        return Error("Malformed MODULE_CODE_VERSION");
1736      // Only version #0 and #1 are supported so far.
1737      unsigned module_version = Record[0];
1738      switch (module_version) {
1739        default: return Error("Unknown bitstream version!");
1740        case 0:
1741          UseRelativeIDs = false;
1742          break;
1743        case 1:
1744          UseRelativeIDs = true;
1745          break;
1746      }
1747      break;
1748    }
1749    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1750      std::string S;
1751      if (ConvertToString(Record, 0, S))
1752        return Error("Invalid MODULE_CODE_TRIPLE record");
1753      TheModule->setTargetTriple(S);
1754      break;
1755    }
1756    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1757      std::string S;
1758      if (ConvertToString(Record, 0, S))
1759        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1760      TheModule->setDataLayout(S);
1761      break;
1762    }
1763    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1764      std::string S;
1765      if (ConvertToString(Record, 0, S))
1766        return Error("Invalid MODULE_CODE_ASM record");
1767      TheModule->setModuleInlineAsm(S);
1768      break;
1769    }
1770    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1771      // FIXME: Remove in 4.0.
1772      std::string S;
1773      if (ConvertToString(Record, 0, S))
1774        return Error("Invalid MODULE_CODE_DEPLIB record");
1775      // Ignore value.
1776      break;
1777    }
1778    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1779      std::string S;
1780      if (ConvertToString(Record, 0, S))
1781        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1782      SectionTable.push_back(S);
1783      break;
1784    }
1785    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1786      std::string S;
1787      if (ConvertToString(Record, 0, S))
1788        return Error("Invalid MODULE_CODE_GCNAME record");
1789      GCTable.push_back(S);
1790      break;
1791    }
1792    // GLOBALVAR: [pointer type, isconst, initid,
1793    //             linkage, alignment, section, visibility, threadlocal,
1794    //             unnamed_addr]
1795    case bitc::MODULE_CODE_GLOBALVAR: {
1796      if (Record.size() < 6)
1797        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1798      Type *Ty = getTypeByID(Record[0]);
1799      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1800      if (!Ty->isPointerTy())
1801        return Error("Global not a pointer type!");
1802      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1803      Ty = cast<PointerType>(Ty)->getElementType();
1804
1805      bool isConstant = Record[1];
1806      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1807      unsigned Alignment = (1 << Record[4]) >> 1;
1808      std::string Section;
1809      if (Record[5]) {
1810        if (Record[5]-1 >= SectionTable.size())
1811          return Error("Invalid section ID");
1812        Section = SectionTable[Record[5]-1];
1813      }
1814      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1815      if (Record.size() > 6)
1816        Visibility = GetDecodedVisibility(Record[6]);
1817
1818      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1819      if (Record.size() > 7)
1820        TLM = GetDecodedThreadLocalMode(Record[7]);
1821
1822      bool UnnamedAddr = false;
1823      if (Record.size() > 8)
1824        UnnamedAddr = Record[8];
1825
1826      bool ExternallyInitialized = false;
1827      if (Record.size() > 9)
1828        ExternallyInitialized = Record[9];
1829
1830      GlobalVariable *NewGV =
1831        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1832                           TLM, AddressSpace, ExternallyInitialized);
1833      NewGV->setAlignment(Alignment);
1834      if (!Section.empty())
1835        NewGV->setSection(Section);
1836      NewGV->setVisibility(Visibility);
1837      NewGV->setUnnamedAddr(UnnamedAddr);
1838
1839      ValueList.push_back(NewGV);
1840
1841      // Remember which value to use for the global initializer.
1842      if (unsigned InitID = Record[2])
1843        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1844      break;
1845    }
1846    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1847    //             alignment, section, visibility, gc, unnamed_addr]
1848    case bitc::MODULE_CODE_FUNCTION: {
1849      if (Record.size() < 8)
1850        return Error("Invalid MODULE_CODE_FUNCTION record");
1851      Type *Ty = getTypeByID(Record[0]);
1852      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1853      if (!Ty->isPointerTy())
1854        return Error("Function not a pointer type!");
1855      FunctionType *FTy =
1856        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1857      if (!FTy)
1858        return Error("Function not a pointer to function type!");
1859
1860      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1861                                        "", TheModule);
1862
1863      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1864      bool isProto = Record[2];
1865      Func->setLinkage(GetDecodedLinkage(Record[3]));
1866      Func->setAttributes(getAttributes(Record[4]));
1867
1868      Func->setAlignment((1 << Record[5]) >> 1);
1869      if (Record[6]) {
1870        if (Record[6]-1 >= SectionTable.size())
1871          return Error("Invalid section ID");
1872        Func->setSection(SectionTable[Record[6]-1]);
1873      }
1874      Func->setVisibility(GetDecodedVisibility(Record[7]));
1875      if (Record.size() > 8 && Record[8]) {
1876        if (Record[8]-1 > GCTable.size())
1877          return Error("Invalid GC ID");
1878        Func->setGC(GCTable[Record[8]-1].c_str());
1879      }
1880      bool UnnamedAddr = false;
1881      if (Record.size() > 9)
1882        UnnamedAddr = Record[9];
1883      Func->setUnnamedAddr(UnnamedAddr);
1884      ValueList.push_back(Func);
1885
1886      // If this is a function with a body, remember the prototype we are
1887      // creating now, so that we can match up the body with them later.
1888      if (!isProto) {
1889        FunctionsWithBodies.push_back(Func);
1890        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1891      }
1892      break;
1893    }
1894    // ALIAS: [alias type, aliasee val#, linkage]
1895    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1896    case bitc::MODULE_CODE_ALIAS: {
1897      if (Record.size() < 3)
1898        return Error("Invalid MODULE_ALIAS record");
1899      Type *Ty = getTypeByID(Record[0]);
1900      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1901      if (!Ty->isPointerTy())
1902        return Error("Function not a pointer type!");
1903
1904      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1905                                           "", 0, TheModule);
1906      // Old bitcode files didn't have visibility field.
1907      if (Record.size() > 3)
1908        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1909      ValueList.push_back(NewGA);
1910      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1911      break;
1912    }
1913    /// MODULE_CODE_PURGEVALS: [numvals]
1914    case bitc::MODULE_CODE_PURGEVALS:
1915      // Trim down the value list to the specified size.
1916      if (Record.size() < 1 || Record[0] > ValueList.size())
1917        return Error("Invalid MODULE_PURGEVALS record");
1918      ValueList.shrinkTo(Record[0]);
1919      break;
1920    }
1921    Record.clear();
1922  }
1923}
1924
1925bool BitcodeReader::ParseBitcodeInto(Module *M) {
1926  TheModule = 0;
1927
1928  if (InitStream()) return true;
1929
1930  // Sniff for the signature.
1931  if (Stream.Read(8) != 'B' ||
1932      Stream.Read(8) != 'C' ||
1933      Stream.Read(4) != 0x0 ||
1934      Stream.Read(4) != 0xC ||
1935      Stream.Read(4) != 0xE ||
1936      Stream.Read(4) != 0xD)
1937    return Error("Invalid bitcode signature");
1938
1939  // We expect a number of well-defined blocks, though we don't necessarily
1940  // need to understand them all.
1941  while (1) {
1942    if (Stream.AtEndOfStream())
1943      return false;
1944
1945    BitstreamEntry Entry =
1946      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1947
1948    switch (Entry.Kind) {
1949    case BitstreamEntry::Error:
1950      Error("malformed module file");
1951      return true;
1952    case BitstreamEntry::EndBlock:
1953      return false;
1954
1955    case BitstreamEntry::SubBlock:
1956      switch (Entry.ID) {
1957      case bitc::BLOCKINFO_BLOCK_ID:
1958        if (Stream.ReadBlockInfoBlock())
1959          return Error("Malformed BlockInfoBlock");
1960        break;
1961      case bitc::MODULE_BLOCK_ID:
1962        // Reject multiple MODULE_BLOCK's in a single bitstream.
1963        if (TheModule)
1964          return Error("Multiple MODULE_BLOCKs in same stream");
1965        TheModule = M;
1966        if (ParseModule(false))
1967          return true;
1968        if (LazyStreamer) return false;
1969        break;
1970      default:
1971        if (Stream.SkipBlock())
1972          return Error("Malformed block record");
1973        break;
1974      }
1975      continue;
1976    case BitstreamEntry::Record:
1977      // There should be no records in the top-level of blocks.
1978
1979      // The ranlib in Xcode 4 will align archive members by appending newlines
1980      // to the end of them. If this file size is a multiple of 4 but not 8, we
1981      // have to read and ignore these final 4 bytes :-(
1982      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
1983          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1984          Stream.AtEndOfStream())
1985        return false;
1986
1987      return Error("Invalid record at top-level");
1988    }
1989  }
1990}
1991
1992bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1993  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1994    return Error("Malformed block record");
1995
1996  SmallVector<uint64_t, 64> Record;
1997
1998  // Read all the records for this module.
1999  while (1) {
2000    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2001
2002    switch (Entry.Kind) {
2003    case BitstreamEntry::SubBlock: // Handled for us already.
2004    case BitstreamEntry::Error:
2005      return Error("malformed module block");
2006    case BitstreamEntry::EndBlock:
2007      return false;
2008    case BitstreamEntry::Record:
2009      // The interesting case.
2010      break;
2011    }
2012
2013    // Read a record.
2014    switch (Stream.readRecord(Entry.ID, Record)) {
2015    default: break;  // Default behavior, ignore unknown content.
2016    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2017      std::string S;
2018      if (ConvertToString(Record, 0, S))
2019        return Error("Invalid MODULE_CODE_TRIPLE record");
2020      Triple = S;
2021      break;
2022    }
2023    }
2024    Record.clear();
2025  }
2026}
2027
2028bool BitcodeReader::ParseTriple(std::string &Triple) {
2029  if (InitStream()) return true;
2030
2031  // Sniff for the signature.
2032  if (Stream.Read(8) != 'B' ||
2033      Stream.Read(8) != 'C' ||
2034      Stream.Read(4) != 0x0 ||
2035      Stream.Read(4) != 0xC ||
2036      Stream.Read(4) != 0xE ||
2037      Stream.Read(4) != 0xD)
2038    return Error("Invalid bitcode signature");
2039
2040  // We expect a number of well-defined blocks, though we don't necessarily
2041  // need to understand them all.
2042  while (1) {
2043    BitstreamEntry Entry = Stream.advance();
2044
2045    switch (Entry.Kind) {
2046    case BitstreamEntry::Error:
2047      Error("malformed module file");
2048      return true;
2049    case BitstreamEntry::EndBlock:
2050      return false;
2051
2052    case BitstreamEntry::SubBlock:
2053      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2054        return ParseModuleTriple(Triple);
2055
2056      // Ignore other sub-blocks.
2057      if (Stream.SkipBlock()) {
2058        Error("malformed block record in AST file");
2059        return true;
2060      }
2061      continue;
2062
2063    case BitstreamEntry::Record:
2064      Stream.skipRecord(Entry.ID);
2065      continue;
2066    }
2067  }
2068}
2069
2070/// ParseMetadataAttachment - Parse metadata attachments.
2071bool BitcodeReader::ParseMetadataAttachment() {
2072  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2073    return Error("Malformed block record");
2074
2075  SmallVector<uint64_t, 64> Record;
2076  while (1) {
2077    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2078
2079    switch (Entry.Kind) {
2080    case BitstreamEntry::SubBlock: // Handled for us already.
2081    case BitstreamEntry::Error:
2082      return Error("malformed metadata block");
2083    case BitstreamEntry::EndBlock:
2084      return false;
2085    case BitstreamEntry::Record:
2086      // The interesting case.
2087      break;
2088    }
2089
2090    // Read a metadata attachment record.
2091    Record.clear();
2092    switch (Stream.readRecord(Entry.ID, Record)) {
2093    default:  // Default behavior: ignore.
2094      break;
2095    case bitc::METADATA_ATTACHMENT: {
2096      unsigned RecordLength = Record.size();
2097      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2098        return Error ("Invalid METADATA_ATTACHMENT reader!");
2099      Instruction *Inst = InstructionList[Record[0]];
2100      for (unsigned i = 1; i != RecordLength; i = i+2) {
2101        unsigned Kind = Record[i];
2102        DenseMap<unsigned, unsigned>::iterator I =
2103          MDKindMap.find(Kind);
2104        if (I == MDKindMap.end())
2105          return Error("Invalid metadata kind ID");
2106        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2107        Inst->setMetadata(I->second, cast<MDNode>(Node));
2108      }
2109      break;
2110    }
2111    }
2112  }
2113}
2114
2115/// ParseFunctionBody - Lazily parse the specified function body block.
2116bool BitcodeReader::ParseFunctionBody(Function *F) {
2117  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2118    return Error("Malformed block record");
2119
2120  InstructionList.clear();
2121  unsigned ModuleValueListSize = ValueList.size();
2122  unsigned ModuleMDValueListSize = MDValueList.size();
2123
2124  // Add all the function arguments to the value table.
2125  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2126    ValueList.push_back(I);
2127
2128  unsigned NextValueNo = ValueList.size();
2129  BasicBlock *CurBB = 0;
2130  unsigned CurBBNo = 0;
2131
2132  DebugLoc LastLoc;
2133
2134  // Read all the records.
2135  SmallVector<uint64_t, 64> Record;
2136  while (1) {
2137    BitstreamEntry Entry = Stream.advance();
2138
2139    switch (Entry.Kind) {
2140    case BitstreamEntry::Error:
2141      return Error("Bitcode error in function block");
2142    case BitstreamEntry::EndBlock:
2143      goto OutOfRecordLoop;
2144
2145    case BitstreamEntry::SubBlock:
2146      switch (Entry.ID) {
2147      default:  // Skip unknown content.
2148        if (Stream.SkipBlock())
2149          return Error("Malformed block record");
2150        break;
2151      case bitc::CONSTANTS_BLOCK_ID:
2152        if (ParseConstants()) return true;
2153        NextValueNo = ValueList.size();
2154        break;
2155      case bitc::VALUE_SYMTAB_BLOCK_ID:
2156        if (ParseValueSymbolTable()) return true;
2157        break;
2158      case bitc::METADATA_ATTACHMENT_ID:
2159        if (ParseMetadataAttachment()) return true;
2160        break;
2161      case bitc::METADATA_BLOCK_ID:
2162        if (ParseMetadata()) return true;
2163        break;
2164      }
2165      continue;
2166
2167    case BitstreamEntry::Record:
2168      // The interesting case.
2169      break;
2170    }
2171
2172    // Read a record.
2173    Record.clear();
2174    Instruction *I = 0;
2175    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2176    switch (BitCode) {
2177    default: // Default behavior: reject
2178      return Error("Unknown instruction");
2179    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2180      if (Record.size() < 1 || Record[0] == 0)
2181        return Error("Invalid DECLAREBLOCKS record");
2182      // Create all the basic blocks for the function.
2183      FunctionBBs.resize(Record[0]);
2184      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2185        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2186      CurBB = FunctionBBs[0];
2187      continue;
2188
2189    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2190      // This record indicates that the last instruction is at the same
2191      // location as the previous instruction with a location.
2192      I = 0;
2193
2194      // Get the last instruction emitted.
2195      if (CurBB && !CurBB->empty())
2196        I = &CurBB->back();
2197      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2198               !FunctionBBs[CurBBNo-1]->empty())
2199        I = &FunctionBBs[CurBBNo-1]->back();
2200
2201      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2202      I->setDebugLoc(LastLoc);
2203      I = 0;
2204      continue;
2205
2206    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2207      I = 0;     // Get the last instruction emitted.
2208      if (CurBB && !CurBB->empty())
2209        I = &CurBB->back();
2210      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2211               !FunctionBBs[CurBBNo-1]->empty())
2212        I = &FunctionBBs[CurBBNo-1]->back();
2213      if (I == 0 || Record.size() < 4)
2214        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2215
2216      unsigned Line = Record[0], Col = Record[1];
2217      unsigned ScopeID = Record[2], IAID = Record[3];
2218
2219      MDNode *Scope = 0, *IA = 0;
2220      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2221      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2222      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2223      I->setDebugLoc(LastLoc);
2224      I = 0;
2225      continue;
2226    }
2227
2228    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2229      unsigned OpNum = 0;
2230      Value *LHS, *RHS;
2231      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2232          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2233          OpNum+1 > Record.size())
2234        return Error("Invalid BINOP record");
2235
2236      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2237      if (Opc == -1) return Error("Invalid BINOP record");
2238      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2239      InstructionList.push_back(I);
2240      if (OpNum < Record.size()) {
2241        if (Opc == Instruction::Add ||
2242            Opc == Instruction::Sub ||
2243            Opc == Instruction::Mul ||
2244            Opc == Instruction::Shl) {
2245          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2246            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2247          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2248            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2249        } else if (Opc == Instruction::SDiv ||
2250                   Opc == Instruction::UDiv ||
2251                   Opc == Instruction::LShr ||
2252                   Opc == Instruction::AShr) {
2253          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2254            cast<BinaryOperator>(I)->setIsExact(true);
2255        } else if (isa<FPMathOperator>(I)) {
2256          FastMathFlags FMF;
2257          if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2258            FMF.setUnsafeAlgebra();
2259          if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2260            FMF.setNoNaNs();
2261          if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2262            FMF.setNoInfs();
2263          if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2264            FMF.setNoSignedZeros();
2265          if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2266            FMF.setAllowReciprocal();
2267          if (FMF.any())
2268            I->setFastMathFlags(FMF);
2269        }
2270
2271      }
2272      break;
2273    }
2274    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2275      unsigned OpNum = 0;
2276      Value *Op;
2277      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2278          OpNum+2 != Record.size())
2279        return Error("Invalid CAST record");
2280
2281      Type *ResTy = getTypeByID(Record[OpNum]);
2282      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2283      if (Opc == -1 || ResTy == 0)
2284        return Error("Invalid CAST record");
2285      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2286      InstructionList.push_back(I);
2287      break;
2288    }
2289    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2290    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2291      unsigned OpNum = 0;
2292      Value *BasePtr;
2293      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2294        return Error("Invalid GEP record");
2295
2296      SmallVector<Value*, 16> GEPIdx;
2297      while (OpNum != Record.size()) {
2298        Value *Op;
2299        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2300          return Error("Invalid GEP record");
2301        GEPIdx.push_back(Op);
2302      }
2303
2304      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2305      InstructionList.push_back(I);
2306      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2307        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2308      break;
2309    }
2310
2311    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2312                                       // EXTRACTVAL: [opty, opval, n x indices]
2313      unsigned OpNum = 0;
2314      Value *Agg;
2315      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2316        return Error("Invalid EXTRACTVAL record");
2317
2318      SmallVector<unsigned, 4> EXTRACTVALIdx;
2319      for (unsigned RecSize = Record.size();
2320           OpNum != RecSize; ++OpNum) {
2321        uint64_t Index = Record[OpNum];
2322        if ((unsigned)Index != Index)
2323          return Error("Invalid EXTRACTVAL index");
2324        EXTRACTVALIdx.push_back((unsigned)Index);
2325      }
2326
2327      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2328      InstructionList.push_back(I);
2329      break;
2330    }
2331
2332    case bitc::FUNC_CODE_INST_INSERTVAL: {
2333                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2334      unsigned OpNum = 0;
2335      Value *Agg;
2336      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2337        return Error("Invalid INSERTVAL record");
2338      Value *Val;
2339      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2340        return Error("Invalid INSERTVAL record");
2341
2342      SmallVector<unsigned, 4> INSERTVALIdx;
2343      for (unsigned RecSize = Record.size();
2344           OpNum != RecSize; ++OpNum) {
2345        uint64_t Index = Record[OpNum];
2346        if ((unsigned)Index != Index)
2347          return Error("Invalid INSERTVAL index");
2348        INSERTVALIdx.push_back((unsigned)Index);
2349      }
2350
2351      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2352      InstructionList.push_back(I);
2353      break;
2354    }
2355
2356    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2357      // obsolete form of select
2358      // handles select i1 ... in old bitcode
2359      unsigned OpNum = 0;
2360      Value *TrueVal, *FalseVal, *Cond;
2361      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2362          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2363          popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2364        return Error("Invalid SELECT record");
2365
2366      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2367      InstructionList.push_back(I);
2368      break;
2369    }
2370
2371    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2372      // new form of select
2373      // handles select i1 or select [N x i1]
2374      unsigned OpNum = 0;
2375      Value *TrueVal, *FalseVal, *Cond;
2376      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2377          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2378          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2379        return Error("Invalid SELECT record");
2380
2381      // select condition can be either i1 or [N x i1]
2382      if (VectorType* vector_type =
2383          dyn_cast<VectorType>(Cond->getType())) {
2384        // expect <n x i1>
2385        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2386          return Error("Invalid SELECT condition type");
2387      } else {
2388        // expect i1
2389        if (Cond->getType() != Type::getInt1Ty(Context))
2390          return Error("Invalid SELECT condition type");
2391      }
2392
2393      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2394      InstructionList.push_back(I);
2395      break;
2396    }
2397
2398    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2399      unsigned OpNum = 0;
2400      Value *Vec, *Idx;
2401      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2402          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2403        return Error("Invalid EXTRACTELT record");
2404      I = ExtractElementInst::Create(Vec, Idx);
2405      InstructionList.push_back(I);
2406      break;
2407    }
2408
2409    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2410      unsigned OpNum = 0;
2411      Value *Vec, *Elt, *Idx;
2412      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2413          popValue(Record, OpNum, NextValueNo,
2414                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2415          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2416        return Error("Invalid INSERTELT record");
2417      I = InsertElementInst::Create(Vec, Elt, Idx);
2418      InstructionList.push_back(I);
2419      break;
2420    }
2421
2422    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2423      unsigned OpNum = 0;
2424      Value *Vec1, *Vec2, *Mask;
2425      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2426          popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2427        return Error("Invalid SHUFFLEVEC record");
2428
2429      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2430        return Error("Invalid SHUFFLEVEC record");
2431      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2432      InstructionList.push_back(I);
2433      break;
2434    }
2435
2436    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2437      // Old form of ICmp/FCmp returning bool
2438      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2439      // both legal on vectors but had different behaviour.
2440    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2441      // FCmp/ICmp returning bool or vector of bool
2442
2443      unsigned OpNum = 0;
2444      Value *LHS, *RHS;
2445      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2446          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2447          OpNum+1 != Record.size())
2448        return Error("Invalid CMP record");
2449
2450      if (LHS->getType()->isFPOrFPVectorTy())
2451        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2452      else
2453        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2454      InstructionList.push_back(I);
2455      break;
2456    }
2457
2458    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2459      {
2460        unsigned Size = Record.size();
2461        if (Size == 0) {
2462          I = ReturnInst::Create(Context);
2463          InstructionList.push_back(I);
2464          break;
2465        }
2466
2467        unsigned OpNum = 0;
2468        Value *Op = NULL;
2469        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2470          return Error("Invalid RET record");
2471        if (OpNum != Record.size())
2472          return Error("Invalid RET record");
2473
2474        I = ReturnInst::Create(Context, Op);
2475        InstructionList.push_back(I);
2476        break;
2477      }
2478    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2479      if (Record.size() != 1 && Record.size() != 3)
2480        return Error("Invalid BR record");
2481      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2482      if (TrueDest == 0)
2483        return Error("Invalid BR record");
2484
2485      if (Record.size() == 1) {
2486        I = BranchInst::Create(TrueDest);
2487        InstructionList.push_back(I);
2488      }
2489      else {
2490        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2491        Value *Cond = getValue(Record, 2, NextValueNo,
2492                               Type::getInt1Ty(Context));
2493        if (FalseDest == 0 || Cond == 0)
2494          return Error("Invalid BR record");
2495        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2496        InstructionList.push_back(I);
2497      }
2498      break;
2499    }
2500    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2501      // Check magic
2502      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2503        // "New" SwitchInst format with case ranges. The changes to write this
2504        // format were reverted but we still recognize bitcode that uses it.
2505        // Hopefully someday we will have support for case ranges and can use
2506        // this format again.
2507
2508        Type *OpTy = getTypeByID(Record[1]);
2509        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2510
2511        Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2512        BasicBlock *Default = getBasicBlock(Record[3]);
2513        if (OpTy == 0 || Cond == 0 || Default == 0)
2514          return Error("Invalid SWITCH record");
2515
2516        unsigned NumCases = Record[4];
2517
2518        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2519        InstructionList.push_back(SI);
2520
2521        unsigned CurIdx = 5;
2522        for (unsigned i = 0; i != NumCases; ++i) {
2523          SmallVector<ConstantInt*, 1> CaseVals;
2524          unsigned NumItems = Record[CurIdx++];
2525          for (unsigned ci = 0; ci != NumItems; ++ci) {
2526            bool isSingleNumber = Record[CurIdx++];
2527
2528            APInt Low;
2529            unsigned ActiveWords = 1;
2530            if (ValueBitWidth > 64)
2531              ActiveWords = Record[CurIdx++];
2532            Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2533                                ValueBitWidth);
2534            CurIdx += ActiveWords;
2535
2536            if (!isSingleNumber) {
2537              ActiveWords = 1;
2538              if (ValueBitWidth > 64)
2539                ActiveWords = Record[CurIdx++];
2540              APInt High =
2541                  ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2542                                ValueBitWidth);
2543              CurIdx += ActiveWords;
2544
2545              // FIXME: It is not clear whether values in the range should be
2546              // compared as signed or unsigned values. The partially
2547              // implemented changes that used this format in the past used
2548              // unsigned comparisons.
2549              for ( ; Low.ule(High); ++Low)
2550                CaseVals.push_back(ConstantInt::get(Context, Low));
2551            } else
2552              CaseVals.push_back(ConstantInt::get(Context, Low));
2553          }
2554          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2555          for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
2556                 cve = CaseVals.end(); cvi != cve; ++cvi)
2557            SI->addCase(*cvi, DestBB);
2558        }
2559        I = SI;
2560        break;
2561      }
2562
2563      // Old SwitchInst format without case ranges.
2564
2565      if (Record.size() < 3 || (Record.size() & 1) == 0)
2566        return Error("Invalid SWITCH record");
2567      Type *OpTy = getTypeByID(Record[0]);
2568      Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2569      BasicBlock *Default = getBasicBlock(Record[2]);
2570      if (OpTy == 0 || Cond == 0 || Default == 0)
2571        return Error("Invalid SWITCH record");
2572      unsigned NumCases = (Record.size()-3)/2;
2573      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2574      InstructionList.push_back(SI);
2575      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2576        ConstantInt *CaseVal =
2577          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2578        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2579        if (CaseVal == 0 || DestBB == 0) {
2580          delete SI;
2581          return Error("Invalid SWITCH record!");
2582        }
2583        SI->addCase(CaseVal, DestBB);
2584      }
2585      I = SI;
2586      break;
2587    }
2588    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2589      if (Record.size() < 2)
2590        return Error("Invalid INDIRECTBR record");
2591      Type *OpTy = getTypeByID(Record[0]);
2592      Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2593      if (OpTy == 0 || Address == 0)
2594        return Error("Invalid INDIRECTBR record");
2595      unsigned NumDests = Record.size()-2;
2596      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2597      InstructionList.push_back(IBI);
2598      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2599        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2600          IBI->addDestination(DestBB);
2601        } else {
2602          delete IBI;
2603          return Error("Invalid INDIRECTBR record!");
2604        }
2605      }
2606      I = IBI;
2607      break;
2608    }
2609
2610    case bitc::FUNC_CODE_INST_INVOKE: {
2611      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2612      if (Record.size() < 4) return Error("Invalid INVOKE record");
2613      AttributeSet PAL = getAttributes(Record[0]);
2614      unsigned CCInfo = Record[1];
2615      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2616      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2617
2618      unsigned OpNum = 4;
2619      Value *Callee;
2620      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2621        return Error("Invalid INVOKE record");
2622
2623      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2624      FunctionType *FTy = !CalleeTy ? 0 :
2625        dyn_cast<FunctionType>(CalleeTy->getElementType());
2626
2627      // Check that the right number of fixed parameters are here.
2628      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2629          Record.size() < OpNum+FTy->getNumParams())
2630        return Error("Invalid INVOKE record");
2631
2632      SmallVector<Value*, 16> Ops;
2633      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2634        Ops.push_back(getValue(Record, OpNum, NextValueNo,
2635                               FTy->getParamType(i)));
2636        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2637      }
2638
2639      if (!FTy->isVarArg()) {
2640        if (Record.size() != OpNum)
2641          return Error("Invalid INVOKE record");
2642      } else {
2643        // Read type/value pairs for varargs params.
2644        while (OpNum != Record.size()) {
2645          Value *Op;
2646          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2647            return Error("Invalid INVOKE record");
2648          Ops.push_back(Op);
2649        }
2650      }
2651
2652      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2653      InstructionList.push_back(I);
2654      cast<InvokeInst>(I)->setCallingConv(
2655        static_cast<CallingConv::ID>(CCInfo));
2656      cast<InvokeInst>(I)->setAttributes(PAL);
2657      break;
2658    }
2659    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2660      unsigned Idx = 0;
2661      Value *Val = 0;
2662      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2663        return Error("Invalid RESUME record");
2664      I = ResumeInst::Create(Val);
2665      InstructionList.push_back(I);
2666      break;
2667    }
2668    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2669      I = new UnreachableInst(Context);
2670      InstructionList.push_back(I);
2671      break;
2672    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2673      if (Record.size() < 1 || ((Record.size()-1)&1))
2674        return Error("Invalid PHI record");
2675      Type *Ty = getTypeByID(Record[0]);
2676      if (!Ty) return Error("Invalid PHI record");
2677
2678      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2679      InstructionList.push_back(PN);
2680
2681      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2682        Value *V;
2683        // With the new function encoding, it is possible that operands have
2684        // negative IDs (for forward references).  Use a signed VBR
2685        // representation to keep the encoding small.
2686        if (UseRelativeIDs)
2687          V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2688        else
2689          V = getValue(Record, 1+i, NextValueNo, Ty);
2690        BasicBlock *BB = getBasicBlock(Record[2+i]);
2691        if (!V || !BB) return Error("Invalid PHI record");
2692        PN->addIncoming(V, BB);
2693      }
2694      I = PN;
2695      break;
2696    }
2697
2698    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2699      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2700      unsigned Idx = 0;
2701      if (Record.size() < 4)
2702        return Error("Invalid LANDINGPAD record");
2703      Type *Ty = getTypeByID(Record[Idx++]);
2704      if (!Ty) return Error("Invalid LANDINGPAD record");
2705      Value *PersFn = 0;
2706      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2707        return Error("Invalid LANDINGPAD record");
2708
2709      bool IsCleanup = !!Record[Idx++];
2710      unsigned NumClauses = Record[Idx++];
2711      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2712      LP->setCleanup(IsCleanup);
2713      for (unsigned J = 0; J != NumClauses; ++J) {
2714        LandingPadInst::ClauseType CT =
2715          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2716        Value *Val;
2717
2718        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2719          delete LP;
2720          return Error("Invalid LANDINGPAD record");
2721        }
2722
2723        assert((CT != LandingPadInst::Catch ||
2724                !isa<ArrayType>(Val->getType())) &&
2725               "Catch clause has a invalid type!");
2726        assert((CT != LandingPadInst::Filter ||
2727                isa<ArrayType>(Val->getType())) &&
2728               "Filter clause has invalid type!");
2729        LP->addClause(Val);
2730      }
2731
2732      I = LP;
2733      InstructionList.push_back(I);
2734      break;
2735    }
2736
2737    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2738      if (Record.size() != 4)
2739        return Error("Invalid ALLOCA record");
2740      PointerType *Ty =
2741        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2742      Type *OpTy = getTypeByID(Record[1]);
2743      Value *Size = getFnValueByID(Record[2], OpTy);
2744      unsigned Align = Record[3];
2745      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2746      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2747      InstructionList.push_back(I);
2748      break;
2749    }
2750    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2751      unsigned OpNum = 0;
2752      Value *Op;
2753      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2754          OpNum+2 != Record.size())
2755        return Error("Invalid LOAD record");
2756
2757      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2758      InstructionList.push_back(I);
2759      break;
2760    }
2761    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2762       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2763      unsigned OpNum = 0;
2764      Value *Op;
2765      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2766          OpNum+4 != Record.size())
2767        return Error("Invalid LOADATOMIC record");
2768
2769
2770      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2771      if (Ordering == NotAtomic || Ordering == Release ||
2772          Ordering == AcquireRelease)
2773        return Error("Invalid LOADATOMIC record");
2774      if (Ordering != NotAtomic && Record[OpNum] == 0)
2775        return Error("Invalid LOADATOMIC record");
2776      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2777
2778      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2779                       Ordering, SynchScope);
2780      InstructionList.push_back(I);
2781      break;
2782    }
2783    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2784      unsigned OpNum = 0;
2785      Value *Val, *Ptr;
2786      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2787          popValue(Record, OpNum, NextValueNo,
2788                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2789          OpNum+2 != Record.size())
2790        return Error("Invalid STORE record");
2791
2792      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2793      InstructionList.push_back(I);
2794      break;
2795    }
2796    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2797      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2798      unsigned OpNum = 0;
2799      Value *Val, *Ptr;
2800      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2801          popValue(Record, OpNum, NextValueNo,
2802                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2803          OpNum+4 != Record.size())
2804        return Error("Invalid STOREATOMIC record");
2805
2806      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2807      if (Ordering == NotAtomic || Ordering == Acquire ||
2808          Ordering == AcquireRelease)
2809        return Error("Invalid STOREATOMIC record");
2810      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2811      if (Ordering != NotAtomic && Record[OpNum] == 0)
2812        return Error("Invalid STOREATOMIC record");
2813
2814      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2815                        Ordering, SynchScope);
2816      InstructionList.push_back(I);
2817      break;
2818    }
2819    case bitc::FUNC_CODE_INST_CMPXCHG: {
2820      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2821      unsigned OpNum = 0;
2822      Value *Ptr, *Cmp, *New;
2823      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2824          popValue(Record, OpNum, NextValueNo,
2825                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2826          popValue(Record, OpNum, NextValueNo,
2827                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2828          OpNum+3 != Record.size())
2829        return Error("Invalid CMPXCHG record");
2830      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2831      if (Ordering == NotAtomic || Ordering == Unordered)
2832        return Error("Invalid CMPXCHG record");
2833      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2834      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2835      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2836      InstructionList.push_back(I);
2837      break;
2838    }
2839    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2840      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2841      unsigned OpNum = 0;
2842      Value *Ptr, *Val;
2843      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2844          popValue(Record, OpNum, NextValueNo,
2845                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2846          OpNum+4 != Record.size())
2847        return Error("Invalid ATOMICRMW record");
2848      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2849      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2850          Operation > AtomicRMWInst::LAST_BINOP)
2851        return Error("Invalid ATOMICRMW record");
2852      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2853      if (Ordering == NotAtomic || Ordering == Unordered)
2854        return Error("Invalid ATOMICRMW record");
2855      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2856      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2857      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2858      InstructionList.push_back(I);
2859      break;
2860    }
2861    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2862      if (2 != Record.size())
2863        return Error("Invalid FENCE record");
2864      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2865      if (Ordering == NotAtomic || Ordering == Unordered ||
2866          Ordering == Monotonic)
2867        return Error("Invalid FENCE record");
2868      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2869      I = new FenceInst(Context, Ordering, SynchScope);
2870      InstructionList.push_back(I);
2871      break;
2872    }
2873    case bitc::FUNC_CODE_INST_CALL: {
2874      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2875      if (Record.size() < 3)
2876        return Error("Invalid CALL record");
2877
2878      AttributeSet PAL = getAttributes(Record[0]);
2879      unsigned CCInfo = Record[1];
2880
2881      unsigned OpNum = 2;
2882      Value *Callee;
2883      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2884        return Error("Invalid CALL record");
2885
2886      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2887      FunctionType *FTy = 0;
2888      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2889      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2890        return Error("Invalid CALL record");
2891
2892      SmallVector<Value*, 16> Args;
2893      // Read the fixed params.
2894      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2895        if (FTy->getParamType(i)->isLabelTy())
2896          Args.push_back(getBasicBlock(Record[OpNum]));
2897        else
2898          Args.push_back(getValue(Record, OpNum, NextValueNo,
2899                                  FTy->getParamType(i)));
2900        if (Args.back() == 0) return Error("Invalid CALL record");
2901      }
2902
2903      // Read type/value pairs for varargs params.
2904      if (!FTy->isVarArg()) {
2905        if (OpNum != Record.size())
2906          return Error("Invalid CALL record");
2907      } else {
2908        while (OpNum != Record.size()) {
2909          Value *Op;
2910          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2911            return Error("Invalid CALL record");
2912          Args.push_back(Op);
2913        }
2914      }
2915
2916      I = CallInst::Create(Callee, Args);
2917      InstructionList.push_back(I);
2918      cast<CallInst>(I)->setCallingConv(
2919        static_cast<CallingConv::ID>(CCInfo>>1));
2920      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2921      cast<CallInst>(I)->setAttributes(PAL);
2922      break;
2923    }
2924    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2925      if (Record.size() < 3)
2926        return Error("Invalid VAARG record");
2927      Type *OpTy = getTypeByID(Record[0]);
2928      Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2929      Type *ResTy = getTypeByID(Record[2]);
2930      if (!OpTy || !Op || !ResTy)
2931        return Error("Invalid VAARG record");
2932      I = new VAArgInst(Op, ResTy);
2933      InstructionList.push_back(I);
2934      break;
2935    }
2936    }
2937
2938    // Add instruction to end of current BB.  If there is no current BB, reject
2939    // this file.
2940    if (CurBB == 0) {
2941      delete I;
2942      return Error("Invalid instruction with no BB");
2943    }
2944    CurBB->getInstList().push_back(I);
2945
2946    // If this was a terminator instruction, move to the next block.
2947    if (isa<TerminatorInst>(I)) {
2948      ++CurBBNo;
2949      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2950    }
2951
2952    // Non-void values get registered in the value table for future use.
2953    if (I && !I->getType()->isVoidTy())
2954      ValueList.AssignValue(I, NextValueNo++);
2955  }
2956
2957OutOfRecordLoop:
2958
2959  // Check the function list for unresolved values.
2960  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2961    if (A->getParent() == 0) {
2962      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2963      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2964        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2965          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2966          delete A;
2967        }
2968      }
2969      return Error("Never resolved value found in function!");
2970    }
2971  }
2972
2973  // FIXME: Check for unresolved forward-declared metadata references
2974  // and clean up leaks.
2975
2976  // See if anything took the address of blocks in this function.  If so,
2977  // resolve them now.
2978  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2979    BlockAddrFwdRefs.find(F);
2980  if (BAFRI != BlockAddrFwdRefs.end()) {
2981    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2982    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2983      unsigned BlockIdx = RefList[i].first;
2984      if (BlockIdx >= FunctionBBs.size())
2985        return Error("Invalid blockaddress block #");
2986
2987      GlobalVariable *FwdRef = RefList[i].second;
2988      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2989      FwdRef->eraseFromParent();
2990    }
2991
2992    BlockAddrFwdRefs.erase(BAFRI);
2993  }
2994
2995  // Trim the value list down to the size it was before we parsed this function.
2996  ValueList.shrinkTo(ModuleValueListSize);
2997  MDValueList.shrinkTo(ModuleMDValueListSize);
2998  std::vector<BasicBlock*>().swap(FunctionBBs);
2999  return false;
3000}
3001
3002/// FindFunctionInStream - Find the function body in the bitcode stream
3003bool BitcodeReader::FindFunctionInStream(Function *F,
3004       DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
3005  while (DeferredFunctionInfoIterator->second == 0) {
3006    if (Stream.AtEndOfStream())
3007      return Error("Could not find Function in stream");
3008    // ParseModule will parse the next body in the stream and set its
3009    // position in the DeferredFunctionInfo map.
3010    if (ParseModule(true)) return true;
3011  }
3012  return false;
3013}
3014
3015//===----------------------------------------------------------------------===//
3016// GVMaterializer implementation
3017//===----------------------------------------------------------------------===//
3018
3019
3020bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3021  if (const Function *F = dyn_cast<Function>(GV)) {
3022    return F->isDeclaration() &&
3023      DeferredFunctionInfo.count(const_cast<Function*>(F));
3024  }
3025  return false;
3026}
3027
3028bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
3029  Function *F = dyn_cast<Function>(GV);
3030  // If it's not a function or is already material, ignore the request.
3031  if (!F || !F->isMaterializable()) return false;
3032
3033  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3034  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3035  // If its position is recorded as 0, its body is somewhere in the stream
3036  // but we haven't seen it yet.
3037  if (DFII->second == 0)
3038    if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
3039
3040  // Move the bit stream to the saved position of the deferred function body.
3041  Stream.JumpToBit(DFII->second);
3042
3043  if (ParseFunctionBody(F)) {
3044    if (ErrInfo) *ErrInfo = ErrorString;
3045    return true;
3046  }
3047
3048  // Upgrade any old intrinsic calls in the function.
3049  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3050       E = UpgradedIntrinsics.end(); I != E; ++I) {
3051    if (I->first != I->second) {
3052      for (Value::use_iterator UI = I->first->use_begin(),
3053           UE = I->first->use_end(); UI != UE; ) {
3054        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3055          UpgradeIntrinsicCall(CI, I->second);
3056      }
3057    }
3058  }
3059
3060  return false;
3061}
3062
3063bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3064  const Function *F = dyn_cast<Function>(GV);
3065  if (!F || F->isDeclaration())
3066    return false;
3067  return DeferredFunctionInfo.count(const_cast<Function*>(F));
3068}
3069
3070void BitcodeReader::Dematerialize(GlobalValue *GV) {
3071  Function *F = dyn_cast<Function>(GV);
3072  // If this function isn't dematerializable, this is a noop.
3073  if (!F || !isDematerializable(F))
3074    return;
3075
3076  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3077
3078  // Just forget the function body, we can remat it later.
3079  F->deleteBody();
3080}
3081
3082
3083bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
3084  assert(M == TheModule &&
3085         "Can only Materialize the Module this BitcodeReader is attached to.");
3086  // Iterate over the module, deserializing any functions that are still on
3087  // disk.
3088  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3089       F != E; ++F)
3090    if (F->isMaterializable() &&
3091        Materialize(F, ErrInfo))
3092      return true;
3093
3094  // At this point, if there are any function bodies, the current bit is
3095  // pointing to the END_BLOCK record after them. Now make sure the rest
3096  // of the bits in the module have been read.
3097  if (NextUnreadBit)
3098    ParseModule(true);
3099
3100  // Upgrade any intrinsic calls that slipped through (should not happen!) and
3101  // delete the old functions to clean up. We can't do this unless the entire
3102  // module is materialized because there could always be another function body
3103  // with calls to the old function.
3104  for (std::vector<std::pair<Function*, Function*> >::iterator I =
3105       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3106    if (I->first != I->second) {
3107      for (Value::use_iterator UI = I->first->use_begin(),
3108           UE = I->first->use_end(); UI != UE; ) {
3109        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3110          UpgradeIntrinsicCall(CI, I->second);
3111      }
3112      if (!I->first->use_empty())
3113        I->first->replaceAllUsesWith(I->second);
3114      I->first->eraseFromParent();
3115    }
3116  }
3117  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3118
3119  return false;
3120}
3121
3122bool BitcodeReader::InitStream() {
3123  if (LazyStreamer) return InitLazyStream();
3124  return InitStreamFromBuffer();
3125}
3126
3127bool BitcodeReader::InitStreamFromBuffer() {
3128  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3129  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3130
3131  if (Buffer->getBufferSize() & 3) {
3132    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3133      return Error("Invalid bitcode signature");
3134    else
3135      return Error("Bitcode stream should be a multiple of 4 bytes in length");
3136  }
3137
3138  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3139  // The magic number is 0x0B17C0DE stored in little endian.
3140  if (isBitcodeWrapper(BufPtr, BufEnd))
3141    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3142      return Error("Invalid bitcode wrapper header");
3143
3144  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3145  Stream.init(*StreamFile);
3146
3147  return false;
3148}
3149
3150bool BitcodeReader::InitLazyStream() {
3151  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3152  // see it.
3153  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3154  StreamFile.reset(new BitstreamReader(Bytes));
3155  Stream.init(*StreamFile);
3156
3157  unsigned char buf[16];
3158  if (Bytes->readBytes(0, 16, buf) == -1)
3159    return Error("Bitcode stream must be at least 16 bytes in length");
3160
3161  if (!isBitcode(buf, buf + 16))
3162    return Error("Invalid bitcode signature");
3163
3164  if (isBitcodeWrapper(buf, buf + 4)) {
3165    const unsigned char *bitcodeStart = buf;
3166    const unsigned char *bitcodeEnd = buf + 16;
3167    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3168    Bytes->dropLeadingBytes(bitcodeStart - buf);
3169    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3170  }
3171  return false;
3172}
3173
3174//===----------------------------------------------------------------------===//
3175// External interface
3176//===----------------------------------------------------------------------===//
3177
3178/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3179///
3180Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3181                                   LLVMContext& Context,
3182                                   std::string *ErrMsg) {
3183  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3184  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3185  M->setMaterializer(R);
3186  if (R->ParseBitcodeInto(M)) {
3187    if (ErrMsg)
3188      *ErrMsg = R->getErrorString();
3189
3190    delete M;  // Also deletes R.
3191    return 0;
3192  }
3193  // Have the BitcodeReader dtor delete 'Buffer'.
3194  R->setBufferOwned(true);
3195
3196  R->materializeForwardReferencedFunctions();
3197
3198  return M;
3199}
3200
3201
3202Module *llvm::getStreamedBitcodeModule(const std::string &name,
3203                                       DataStreamer *streamer,
3204                                       LLVMContext &Context,
3205                                       std::string *ErrMsg) {
3206  Module *M = new Module(name, Context);
3207  BitcodeReader *R = new BitcodeReader(streamer, Context);
3208  M->setMaterializer(R);
3209  if (R->ParseBitcodeInto(M)) {
3210    if (ErrMsg)
3211      *ErrMsg = R->getErrorString();
3212    delete M;  // Also deletes R.
3213    return 0;
3214  }
3215  R->setBufferOwned(false); // no buffer to delete
3216  return M;
3217}
3218
3219/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3220/// If an error occurs, return null and fill in *ErrMsg if non-null.
3221Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3222                               std::string *ErrMsg){
3223  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3224  if (!M) return 0;
3225
3226  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3227  // there was an error.
3228  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3229
3230  // Read in the entire module, and destroy the BitcodeReader.
3231  if (M->MaterializeAllPermanently(ErrMsg)) {
3232    delete M;
3233    return 0;
3234  }
3235
3236  // TODO: Restore the use-lists to the in-memory state when the bitcode was
3237  // written.  We must defer until the Module has been fully materialized.
3238
3239  return M;
3240}
3241
3242std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3243                                         LLVMContext& Context,
3244                                         std::string *ErrMsg) {
3245  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3246  // Don't let the BitcodeReader dtor delete 'Buffer'.
3247  R->setBufferOwned(false);
3248
3249  std::string Triple("");
3250  if (R->ParseTriple(Triple))
3251    if (ErrMsg)
3252      *ErrMsg = R->getErrorString();
3253
3254  delete R;
3255  return Triple;
3256}
3257