BitcodeReader.cpp revision 4b5e207bf24ea9799547a0634acaf7398b32897c
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<Type*>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> :
166  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), NewOps);
296      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
298      } else if (isa<ConstantVector>(UserC)) {
299        NewC = ConstantVector::get(NewOps);
300      } else {
301        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
302        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
303      }
304
305      UserC->replaceAllUsesWith(NewC);
306      UserC->destroyConstant();
307      NewOps.clear();
308    }
309
310    // Update all ValueHandles, they should be the only users at this point.
311    Placeholder->replaceAllUsesWith(RealVal);
312    delete Placeholder;
313  }
314}
315
316void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317  if (Idx == size()) {
318    push_back(V);
319    return;
320  }
321
322  if (Idx >= size())
323    resize(Idx+1);
324
325  WeakVH &OldV = MDValuePtrs[Idx];
326  if (OldV == 0) {
327    OldV = V;
328    return;
329  }
330
331  // If there was a forward reference to this value, replace it.
332  MDNode *PrevVal = cast<MDNode>(OldV);
333  OldV->replaceAllUsesWith(V);
334  MDNode::deleteTemporary(PrevVal);
335  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336  // value for Idx.
337  MDValuePtrs[Idx] = V;
338}
339
340Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341  if (Idx >= size())
342    resize(Idx + 1);
343
344  if (Value *V = MDValuePtrs[Idx]) {
345    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346    return V;
347  }
348
349  // Create and return a placeholder, which will later be RAUW'd.
350  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
351  MDValuePtrs[Idx] = V;
352  return V;
353}
354
355Type *BitcodeReader::getTypeByID(unsigned ID) {
356  // The type table size is always specified correctly.
357  if (ID >= TypeList.size())
358    return 0;
359
360  if (Type *Ty = TypeList[ID])
361    return Ty;
362
363  // If we have a forward reference, the only possible case is when it is to a
364  // named struct.  Just create a placeholder for now.
365  return TypeList[ID] = StructType::createNamed(Context, "");
366}
367
368/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
369Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
370  if (ID >= TypeList.size())
371    TypeList.resize(ID+1);
372
373  return TypeList[ID];
374}
375
376
377//===----------------------------------------------------------------------===//
378//  Functions for parsing blocks from the bitcode file
379//===----------------------------------------------------------------------===//
380
381bool BitcodeReader::ParseAttributeBlock() {
382  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
383    return Error("Malformed block record");
384
385  if (!MAttributes.empty())
386    return Error("Multiple PARAMATTR blocks found!");
387
388  SmallVector<uint64_t, 64> Record;
389
390  SmallVector<AttributeWithIndex, 8> Attrs;
391
392  // Read all the records.
393  while (1) {
394    unsigned Code = Stream.ReadCode();
395    if (Code == bitc::END_BLOCK) {
396      if (Stream.ReadBlockEnd())
397        return Error("Error at end of PARAMATTR block");
398      return false;
399    }
400
401    if (Code == bitc::ENTER_SUBBLOCK) {
402      // No known subblocks, always skip them.
403      Stream.ReadSubBlockID();
404      if (Stream.SkipBlock())
405        return Error("Malformed block record");
406      continue;
407    }
408
409    if (Code == bitc::DEFINE_ABBREV) {
410      Stream.ReadAbbrevRecord();
411      continue;
412    }
413
414    // Read a record.
415    Record.clear();
416    switch (Stream.ReadRecord(Code, Record)) {
417    default:  // Default behavior: ignore.
418      break;
419    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
420      if (Record.size() & 1)
421        return Error("Invalid ENTRY record");
422
423      // FIXME : Remove this autoupgrade code in LLVM 3.0.
424      // If Function attributes are using index 0 then transfer them
425      // to index ~0. Index 0 is used for return value attributes but used to be
426      // used for function attributes.
427      Attributes RetAttribute = Attribute::None;
428      Attributes FnAttribute = Attribute::None;
429      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
430        // FIXME: remove in LLVM 3.0
431        // The alignment is stored as a 16-bit raw value from bits 31--16.
432        // We shift the bits above 31 down by 11 bits.
433
434        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
435        if (Alignment && !isPowerOf2_32(Alignment))
436          return Error("Alignment is not a power of two.");
437
438        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
439        if (Alignment)
440          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
441        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
442        Record[i+1] = ReconstitutedAttr;
443
444        if (Record[i] == 0)
445          RetAttribute = Record[i+1];
446        else if (Record[i] == ~0U)
447          FnAttribute = Record[i+1];
448      }
449
450      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
451                              Attribute::ReadOnly|Attribute::ReadNone);
452
453      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
454          (RetAttribute & OldRetAttrs) != 0) {
455        if (FnAttribute == Attribute::None) { // add a slot so they get added.
456          Record.push_back(~0U);
457          Record.push_back(0);
458        }
459
460        FnAttribute  |= RetAttribute & OldRetAttrs;
461        RetAttribute &= ~OldRetAttrs;
462      }
463
464      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
465        if (Record[i] == 0) {
466          if (RetAttribute != Attribute::None)
467            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
468        } else if (Record[i] == ~0U) {
469          if (FnAttribute != Attribute::None)
470            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
471        } else if (Record[i+1] != Attribute::None)
472          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
473      }
474
475      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
476      Attrs.clear();
477      break;
478    }
479    }
480  }
481}
482
483bool BitcodeReader::ParseTypeTable() {
484  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
485    return Error("Malformed block record");
486
487  return ParseTypeTableBody();
488}
489
490bool BitcodeReader::ParseTypeTableBody() {
491  if (!TypeList.empty())
492    return Error("Multiple TYPE_BLOCKs found!");
493
494  SmallVector<uint64_t, 64> Record;
495  unsigned NumRecords = 0;
496
497  SmallString<64> TypeName;
498
499  // Read all the records for this type table.
500  while (1) {
501    unsigned Code = Stream.ReadCode();
502    if (Code == bitc::END_BLOCK) {
503      if (NumRecords != TypeList.size())
504        return Error("Invalid type forward reference in TYPE_BLOCK");
505      if (Stream.ReadBlockEnd())
506        return Error("Error at end of type table block");
507      return false;
508    }
509
510    if (Code == bitc::ENTER_SUBBLOCK) {
511      // No known subblocks, always skip them.
512      Stream.ReadSubBlockID();
513      if (Stream.SkipBlock())
514        return Error("Malformed block record");
515      continue;
516    }
517
518    if (Code == bitc::DEFINE_ABBREV) {
519      Stream.ReadAbbrevRecord();
520      continue;
521    }
522
523    // Read a record.
524    Record.clear();
525    Type *ResultTy = 0;
526    switch (Stream.ReadRecord(Code, Record)) {
527    default: return Error("unknown type in type table");
528    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
529      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
530      // type list.  This allows us to reserve space.
531      if (Record.size() < 1)
532        return Error("Invalid TYPE_CODE_NUMENTRY record");
533      TypeList.resize(Record[0]);
534      continue;
535    case bitc::TYPE_CODE_VOID:      // VOID
536      ResultTy = Type::getVoidTy(Context);
537      break;
538    case bitc::TYPE_CODE_FLOAT:     // FLOAT
539      ResultTy = Type::getFloatTy(Context);
540      break;
541    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
542      ResultTy = Type::getDoubleTy(Context);
543      break;
544    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
545      ResultTy = Type::getX86_FP80Ty(Context);
546      break;
547    case bitc::TYPE_CODE_FP128:     // FP128
548      ResultTy = Type::getFP128Ty(Context);
549      break;
550    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
551      ResultTy = Type::getPPC_FP128Ty(Context);
552      break;
553    case bitc::TYPE_CODE_LABEL:     // LABEL
554      ResultTy = Type::getLabelTy(Context);
555      break;
556    case bitc::TYPE_CODE_METADATA:  // METADATA
557      ResultTy = Type::getMetadataTy(Context);
558      break;
559    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
560      ResultTy = Type::getX86_MMXTy(Context);
561      break;
562    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
563      if (Record.size() < 1)
564        return Error("Invalid Integer type record");
565
566      ResultTy = IntegerType::get(Context, Record[0]);
567      break;
568    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
569                                    //          [pointee type, address space]
570      if (Record.size() < 1)
571        return Error("Invalid POINTER type record");
572      unsigned AddressSpace = 0;
573      if (Record.size() == 2)
574        AddressSpace = Record[1];
575      ResultTy = getTypeByID(Record[0]);
576      if (ResultTy == 0) return Error("invalid element type in pointer type");
577      ResultTy = PointerType::get(ResultTy, AddressSpace);
578      break;
579    }
580    case bitc::TYPE_CODE_FUNCTION: {
581      // FIXME: attrid is dead, remove it in LLVM 3.0
582      // FUNCTION: [vararg, attrid, retty, paramty x N]
583      if (Record.size() < 3)
584        return Error("Invalid FUNCTION type record");
585      std::vector<Type*> ArgTys;
586      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
587        if (Type *T = getTypeByID(Record[i]))
588          ArgTys.push_back(T);
589        else
590          break;
591      }
592
593      ResultTy = getTypeByID(Record[2]);
594      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
595        return Error("invalid type in function type");
596
597      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
598      break;
599    }
600    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
601      if (Record.size() < 1)
602        return Error("Invalid STRUCT type record");
603      std::vector<Type*> EltTys;
604      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
605        if (Type *T = getTypeByID(Record[i]))
606          EltTys.push_back(T);
607        else
608          break;
609      }
610      if (EltTys.size() != Record.size()-1)
611        return Error("invalid type in struct type");
612      ResultTy = StructType::get(Context, EltTys, Record[0]);
613      break;
614    }
615    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
616      if (ConvertToString(Record, 0, TypeName))
617        return Error("Invalid STRUCT_NAME record");
618      continue;
619
620    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
621      if (Record.size() < 1)
622        return Error("Invalid STRUCT type record");
623
624      if (NumRecords >= TypeList.size())
625        return Error("invalid TYPE table");
626
627      // Check to see if this was forward referenced, if so fill in the temp.
628      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
629      if (Res) {
630        Res->setName(TypeName);
631        TypeList[NumRecords] = 0;
632      } else  // Otherwise, create a new struct.
633        Res = StructType::createNamed(Context, TypeName);
634      TypeName.clear();
635
636      SmallVector<Type*, 8> EltTys;
637      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
638        if (Type *T = getTypeByID(Record[i]))
639          EltTys.push_back(T);
640        else
641          break;
642      }
643      if (EltTys.size() != Record.size()-1)
644        return Error("invalid STRUCT type record");
645      Res->setBody(EltTys, Record[0]);
646      ResultTy = Res;
647      break;
648    }
649    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
650      if (Record.size() != 1)
651        return Error("Invalid OPAQUE type record");
652
653      if (NumRecords >= TypeList.size())
654        return Error("invalid TYPE table");
655
656      // Check to see if this was forward referenced, if so fill in the temp.
657      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
658      if (Res) {
659        Res->setName(TypeName);
660        TypeList[NumRecords] = 0;
661      } else  // Otherwise, create a new struct with no body.
662        Res = StructType::createNamed(Context, TypeName);
663      TypeName.clear();
664      ResultTy = Res;
665      break;
666    }
667    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
668      if (Record.size() < 2)
669        return Error("Invalid ARRAY type record");
670      if ((ResultTy = getTypeByID(Record[1])))
671        ResultTy = ArrayType::get(ResultTy, Record[0]);
672      else
673        return Error("Invalid ARRAY type element");
674      break;
675    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
676      if (Record.size() < 2)
677        return Error("Invalid VECTOR type record");
678      if ((ResultTy = getTypeByID(Record[1])))
679        ResultTy = VectorType::get(ResultTy, Record[0]);
680      else
681        return Error("Invalid ARRAY type element");
682      break;
683    }
684
685    if (NumRecords >= TypeList.size())
686      return Error("invalid TYPE table");
687    assert(ResultTy && "Didn't read a type?");
688    assert(TypeList[NumRecords] == 0 && "Already read type?");
689    TypeList[NumRecords++] = ResultTy;
690  }
691}
692
693// FIXME: Remove in LLVM 3.1
694bool BitcodeReader::ParseOldTypeTable() {
695  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
696    return Error("Malformed block record");
697
698  if (!TypeList.empty())
699    return Error("Multiple TYPE_BLOCKs found!");
700
701
702  // While horrible, we have no good ordering of types in the bc file.  Just
703  // iteratively parse types out of the bc file in multiple passes until we get
704  // them all.  Do this by saving a cursor for the start of the type block.
705  BitstreamCursor StartOfTypeBlockCursor(Stream);
706
707  unsigned NumTypesRead = 0;
708
709  SmallVector<uint64_t, 64> Record;
710RestartScan:
711  unsigned NextTypeID = 0;
712  bool ReadAnyTypes = false;
713
714  // Read all the records for this type table.
715  while (1) {
716    unsigned Code = Stream.ReadCode();
717    if (Code == bitc::END_BLOCK) {
718      if (NextTypeID != TypeList.size())
719        return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
720
721      // If we haven't read all of the types yet, iterate again.
722      if (NumTypesRead != TypeList.size()) {
723        // If we didn't successfully read any types in this pass, then we must
724        // have an unhandled forward reference.
725        if (!ReadAnyTypes)
726          return Error("Obsolete bitcode contains unhandled recursive type");
727
728        Stream = StartOfTypeBlockCursor;
729        goto RestartScan;
730      }
731
732      if (Stream.ReadBlockEnd())
733        return Error("Error at end of type table block");
734      return false;
735    }
736
737    if (Code == bitc::ENTER_SUBBLOCK) {
738      // No known subblocks, always skip them.
739      Stream.ReadSubBlockID();
740      if (Stream.SkipBlock())
741        return Error("Malformed block record");
742      continue;
743    }
744
745    if (Code == bitc::DEFINE_ABBREV) {
746      Stream.ReadAbbrevRecord();
747      continue;
748    }
749
750    // Read a record.
751    Record.clear();
752    Type *ResultTy = 0;
753    switch (Stream.ReadRecord(Code, Record)) {
754    default: return Error("unknown type in type table");
755    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
756      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
757      // type list.  This allows us to reserve space.
758      if (Record.size() < 1)
759        return Error("Invalid TYPE_CODE_NUMENTRY record");
760      TypeList.resize(Record[0]);
761      continue;
762    case bitc::TYPE_CODE_VOID:      // VOID
763      ResultTy = Type::getVoidTy(Context);
764      break;
765    case bitc::TYPE_CODE_FLOAT:     // FLOAT
766      ResultTy = Type::getFloatTy(Context);
767      break;
768    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
769      ResultTy = Type::getDoubleTy(Context);
770      break;
771    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
772      ResultTy = Type::getX86_FP80Ty(Context);
773      break;
774    case bitc::TYPE_CODE_FP128:     // FP128
775      ResultTy = Type::getFP128Ty(Context);
776      break;
777    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
778      ResultTy = Type::getPPC_FP128Ty(Context);
779      break;
780    case bitc::TYPE_CODE_LABEL:     // LABEL
781      ResultTy = Type::getLabelTy(Context);
782      break;
783    case bitc::TYPE_CODE_METADATA:  // METADATA
784      ResultTy = Type::getMetadataTy(Context);
785      break;
786    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
787      ResultTy = Type::getX86_MMXTy(Context);
788      break;
789    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
790      if (Record.size() < 1)
791        return Error("Invalid Integer type record");
792      ResultTy = IntegerType::get(Context, Record[0]);
793      break;
794    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
795      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
796        ResultTy = StructType::createNamed(Context, "");
797      break;
798    case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
799      if (NextTypeID >= TypeList.size()) break;
800      // If we already read it, don't reprocess.
801      if (TypeList[NextTypeID] &&
802          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
803        break;
804
805      // Set a type.
806      if (TypeList[NextTypeID] == 0)
807        TypeList[NextTypeID] = StructType::createNamed(Context, "");
808
809      std::vector<Type*> EltTys;
810      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
811        if (Type *Elt = getTypeByIDOrNull(Record[i]))
812          EltTys.push_back(Elt);
813        else
814          break;
815      }
816
817      if (EltTys.size() != Record.size()-1)
818        break;      // Not all elements are ready.
819
820      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
821      ResultTy = TypeList[NextTypeID];
822      TypeList[NextTypeID] = 0;
823      break;
824    }
825    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
826      //          [pointee type, address space]
827      if (Record.size() < 1)
828        return Error("Invalid POINTER type record");
829      unsigned AddressSpace = 0;
830      if (Record.size() == 2)
831        AddressSpace = Record[1];
832      if ((ResultTy = getTypeByIDOrNull(Record[0])))
833        ResultTy = PointerType::get(ResultTy, AddressSpace);
834      break;
835    }
836    case bitc::TYPE_CODE_FUNCTION: {
837      // FIXME: attrid is dead, remove it in LLVM 3.0
838      // FUNCTION: [vararg, attrid, retty, paramty x N]
839      if (Record.size() < 3)
840        return Error("Invalid FUNCTION type record");
841      std::vector<Type*> ArgTys;
842      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
843        if (Type *Elt = getTypeByIDOrNull(Record[i]))
844          ArgTys.push_back(Elt);
845        else
846          break;
847      }
848      if (ArgTys.size()+3 != Record.size())
849        break;  // Something was null.
850      if ((ResultTy = getTypeByIDOrNull(Record[2])))
851        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
852      break;
853    }
854    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
855      if (Record.size() < 2)
856        return Error("Invalid ARRAY type record");
857      if ((ResultTy = getTypeByIDOrNull(Record[1])))
858        ResultTy = ArrayType::get(ResultTy, Record[0]);
859      break;
860    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
861      if (Record.size() < 2)
862        return Error("Invalid VECTOR type record");
863      if ((ResultTy = getTypeByIDOrNull(Record[1])))
864        ResultTy = VectorType::get(ResultTy, Record[0]);
865      break;
866    }
867
868    if (NextTypeID >= TypeList.size())
869      return Error("invalid TYPE table");
870
871    if (ResultTy && TypeList[NextTypeID] == 0) {
872      ++NumTypesRead;
873      ReadAnyTypes = true;
874
875      TypeList[NextTypeID] = ResultTy;
876    }
877
878    ++NextTypeID;
879  }
880}
881
882
883bool BitcodeReader::ParseOldTypeSymbolTable() {
884  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
885    return Error("Malformed block record");
886
887  SmallVector<uint64_t, 64> Record;
888
889  // Read all the records for this type table.
890  std::string TypeName;
891  while (1) {
892    unsigned Code = Stream.ReadCode();
893    if (Code == bitc::END_BLOCK) {
894      if (Stream.ReadBlockEnd())
895        return Error("Error at end of type symbol table block");
896      return false;
897    }
898
899    if (Code == bitc::ENTER_SUBBLOCK) {
900      // No known subblocks, always skip them.
901      Stream.ReadSubBlockID();
902      if (Stream.SkipBlock())
903        return Error("Malformed block record");
904      continue;
905    }
906
907    if (Code == bitc::DEFINE_ABBREV) {
908      Stream.ReadAbbrevRecord();
909      continue;
910    }
911
912    // Read a record.
913    Record.clear();
914    switch (Stream.ReadRecord(Code, Record)) {
915    default:  // Default behavior: unknown type.
916      break;
917    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
918      if (ConvertToString(Record, 1, TypeName))
919        return Error("Invalid TST_ENTRY record");
920      unsigned TypeID = Record[0];
921      if (TypeID >= TypeList.size())
922        return Error("Invalid Type ID in TST_ENTRY record");
923
924      // Only apply the type name to a struct type with no name.
925      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
926        if (!STy->isAnonymous() && !STy->hasName())
927          STy->setName(TypeName);
928      TypeName.clear();
929      break;
930    }
931  }
932}
933
934bool BitcodeReader::ParseValueSymbolTable() {
935  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
936    return Error("Malformed block record");
937
938  SmallVector<uint64_t, 64> Record;
939
940  // Read all the records for this value table.
941  SmallString<128> ValueName;
942  while (1) {
943    unsigned Code = Stream.ReadCode();
944    if (Code == bitc::END_BLOCK) {
945      if (Stream.ReadBlockEnd())
946        return Error("Error at end of value symbol table block");
947      return false;
948    }
949    if (Code == bitc::ENTER_SUBBLOCK) {
950      // No known subblocks, always skip them.
951      Stream.ReadSubBlockID();
952      if (Stream.SkipBlock())
953        return Error("Malformed block record");
954      continue;
955    }
956
957    if (Code == bitc::DEFINE_ABBREV) {
958      Stream.ReadAbbrevRecord();
959      continue;
960    }
961
962    // Read a record.
963    Record.clear();
964    switch (Stream.ReadRecord(Code, Record)) {
965    default:  // Default behavior: unknown type.
966      break;
967    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
968      if (ConvertToString(Record, 1, ValueName))
969        return Error("Invalid VST_ENTRY record");
970      unsigned ValueID = Record[0];
971      if (ValueID >= ValueList.size())
972        return Error("Invalid Value ID in VST_ENTRY record");
973      Value *V = ValueList[ValueID];
974
975      V->setName(StringRef(ValueName.data(), ValueName.size()));
976      ValueName.clear();
977      break;
978    }
979    case bitc::VST_CODE_BBENTRY: {
980      if (ConvertToString(Record, 1, ValueName))
981        return Error("Invalid VST_BBENTRY record");
982      BasicBlock *BB = getBasicBlock(Record[0]);
983      if (BB == 0)
984        return Error("Invalid BB ID in VST_BBENTRY record");
985
986      BB->setName(StringRef(ValueName.data(), ValueName.size()));
987      ValueName.clear();
988      break;
989    }
990    }
991  }
992}
993
994bool BitcodeReader::ParseMetadata() {
995  unsigned NextMDValueNo = MDValueList.size();
996
997  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
998    return Error("Malformed block record");
999
1000  SmallVector<uint64_t, 64> Record;
1001
1002  // Read all the records.
1003  while (1) {
1004    unsigned Code = Stream.ReadCode();
1005    if (Code == bitc::END_BLOCK) {
1006      if (Stream.ReadBlockEnd())
1007        return Error("Error at end of PARAMATTR block");
1008      return false;
1009    }
1010
1011    if (Code == bitc::ENTER_SUBBLOCK) {
1012      // No known subblocks, always skip them.
1013      Stream.ReadSubBlockID();
1014      if (Stream.SkipBlock())
1015        return Error("Malformed block record");
1016      continue;
1017    }
1018
1019    if (Code == bitc::DEFINE_ABBREV) {
1020      Stream.ReadAbbrevRecord();
1021      continue;
1022    }
1023
1024    bool IsFunctionLocal = false;
1025    // Read a record.
1026    Record.clear();
1027    Code = Stream.ReadRecord(Code, Record);
1028    switch (Code) {
1029    default:  // Default behavior: ignore.
1030      break;
1031    case bitc::METADATA_NAME: {
1032      // Read named of the named metadata.
1033      unsigned NameLength = Record.size();
1034      SmallString<8> Name;
1035      Name.resize(NameLength);
1036      for (unsigned i = 0; i != NameLength; ++i)
1037        Name[i] = Record[i];
1038      Record.clear();
1039      Code = Stream.ReadCode();
1040
1041      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1042      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1043      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1044
1045      // Read named metadata elements.
1046      unsigned Size = Record.size();
1047      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1048      for (unsigned i = 0; i != Size; ++i) {
1049        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1050        if (MD == 0)
1051          return Error("Malformed metadata record");
1052        NMD->addOperand(MD);
1053      }
1054      break;
1055    }
1056    case bitc::METADATA_FN_NODE:
1057      IsFunctionLocal = true;
1058      // fall-through
1059    case bitc::METADATA_NODE: {
1060      if (Record.size() % 2 == 1)
1061        return Error("Invalid METADATA_NODE record");
1062
1063      unsigned Size = Record.size();
1064      SmallVector<Value*, 8> Elts;
1065      for (unsigned i = 0; i != Size; i += 2) {
1066        Type *Ty = getTypeByID(Record[i]);
1067        if (!Ty) return Error("Invalid METADATA_NODE record");
1068        if (Ty->isMetadataTy())
1069          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1070        else if (!Ty->isVoidTy())
1071          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1072        else
1073          Elts.push_back(NULL);
1074      }
1075      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1076      IsFunctionLocal = false;
1077      MDValueList.AssignValue(V, NextMDValueNo++);
1078      break;
1079    }
1080    case bitc::METADATA_STRING: {
1081      unsigned MDStringLength = Record.size();
1082      SmallString<8> String;
1083      String.resize(MDStringLength);
1084      for (unsigned i = 0; i != MDStringLength; ++i)
1085        String[i] = Record[i];
1086      Value *V = MDString::get(Context,
1087                               StringRef(String.data(), String.size()));
1088      MDValueList.AssignValue(V, NextMDValueNo++);
1089      break;
1090    }
1091    case bitc::METADATA_KIND: {
1092      unsigned RecordLength = Record.size();
1093      if (Record.empty() || RecordLength < 2)
1094        return Error("Invalid METADATA_KIND record");
1095      SmallString<8> Name;
1096      Name.resize(RecordLength-1);
1097      unsigned Kind = Record[0];
1098      for (unsigned i = 1; i != RecordLength; ++i)
1099        Name[i-1] = Record[i];
1100
1101      unsigned NewKind = TheModule->getMDKindID(Name.str());
1102      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1103        return Error("Conflicting METADATA_KIND records");
1104      break;
1105    }
1106    }
1107  }
1108}
1109
1110/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1111/// the LSB for dense VBR encoding.
1112static uint64_t DecodeSignRotatedValue(uint64_t V) {
1113  if ((V & 1) == 0)
1114    return V >> 1;
1115  if (V != 1)
1116    return -(V >> 1);
1117  // There is no such thing as -0 with integers.  "-0" really means MININT.
1118  return 1ULL << 63;
1119}
1120
1121/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1122/// values and aliases that we can.
1123bool BitcodeReader::ResolveGlobalAndAliasInits() {
1124  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1125  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1126
1127  GlobalInitWorklist.swap(GlobalInits);
1128  AliasInitWorklist.swap(AliasInits);
1129
1130  while (!GlobalInitWorklist.empty()) {
1131    unsigned ValID = GlobalInitWorklist.back().second;
1132    if (ValID >= ValueList.size()) {
1133      // Not ready to resolve this yet, it requires something later in the file.
1134      GlobalInits.push_back(GlobalInitWorklist.back());
1135    } else {
1136      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1137        GlobalInitWorklist.back().first->setInitializer(C);
1138      else
1139        return Error("Global variable initializer is not a constant!");
1140    }
1141    GlobalInitWorklist.pop_back();
1142  }
1143
1144  while (!AliasInitWorklist.empty()) {
1145    unsigned ValID = AliasInitWorklist.back().second;
1146    if (ValID >= ValueList.size()) {
1147      AliasInits.push_back(AliasInitWorklist.back());
1148    } else {
1149      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1150        AliasInitWorklist.back().first->setAliasee(C);
1151      else
1152        return Error("Alias initializer is not a constant!");
1153    }
1154    AliasInitWorklist.pop_back();
1155  }
1156  return false;
1157}
1158
1159bool BitcodeReader::ParseConstants() {
1160  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1161    return Error("Malformed block record");
1162
1163  SmallVector<uint64_t, 64> Record;
1164
1165  // Read all the records for this value table.
1166  Type *CurTy = Type::getInt32Ty(Context);
1167  unsigned NextCstNo = ValueList.size();
1168  while (1) {
1169    unsigned Code = Stream.ReadCode();
1170    if (Code == bitc::END_BLOCK)
1171      break;
1172
1173    if (Code == bitc::ENTER_SUBBLOCK) {
1174      // No known subblocks, always skip them.
1175      Stream.ReadSubBlockID();
1176      if (Stream.SkipBlock())
1177        return Error("Malformed block record");
1178      continue;
1179    }
1180
1181    if (Code == bitc::DEFINE_ABBREV) {
1182      Stream.ReadAbbrevRecord();
1183      continue;
1184    }
1185
1186    // Read a record.
1187    Record.clear();
1188    Value *V = 0;
1189    unsigned BitCode = Stream.ReadRecord(Code, Record);
1190    switch (BitCode) {
1191    default:  // Default behavior: unknown constant
1192    case bitc::CST_CODE_UNDEF:     // UNDEF
1193      V = UndefValue::get(CurTy);
1194      break;
1195    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1196      if (Record.empty())
1197        return Error("Malformed CST_SETTYPE record");
1198      if (Record[0] >= TypeList.size())
1199        return Error("Invalid Type ID in CST_SETTYPE record");
1200      CurTy = TypeList[Record[0]];
1201      continue;  // Skip the ValueList manipulation.
1202    case bitc::CST_CODE_NULL:      // NULL
1203      V = Constant::getNullValue(CurTy);
1204      break;
1205    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1206      if (!CurTy->isIntegerTy() || Record.empty())
1207        return Error("Invalid CST_INTEGER record");
1208      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1209      break;
1210    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1211      if (!CurTy->isIntegerTy() || Record.empty())
1212        return Error("Invalid WIDE_INTEGER record");
1213
1214      unsigned NumWords = Record.size();
1215      SmallVector<uint64_t, 8> Words;
1216      Words.resize(NumWords);
1217      for (unsigned i = 0; i != NumWords; ++i)
1218        Words[i] = DecodeSignRotatedValue(Record[i]);
1219      V = ConstantInt::get(Context,
1220                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1221                                 Words));
1222      break;
1223    }
1224    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1225      if (Record.empty())
1226        return Error("Invalid FLOAT record");
1227      if (CurTy->isFloatTy())
1228        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1229      else if (CurTy->isDoubleTy())
1230        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1231      else if (CurTy->isX86_FP80Ty()) {
1232        // Bits are not stored the same way as a normal i80 APInt, compensate.
1233        uint64_t Rearrange[2];
1234        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1235        Rearrange[1] = Record[0] >> 48;
1236        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1237      } else if (CurTy->isFP128Ty())
1238        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1239      else if (CurTy->isPPC_FP128Ty())
1240        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1241      else
1242        V = UndefValue::get(CurTy);
1243      break;
1244    }
1245
1246    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1247      if (Record.empty())
1248        return Error("Invalid CST_AGGREGATE record");
1249
1250      unsigned Size = Record.size();
1251      std::vector<Constant*> Elts;
1252
1253      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1254        for (unsigned i = 0; i != Size; ++i)
1255          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1256                                                     STy->getElementType(i)));
1257        V = ConstantStruct::get(STy, Elts);
1258      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1259        Type *EltTy = ATy->getElementType();
1260        for (unsigned i = 0; i != Size; ++i)
1261          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1262        V = ConstantArray::get(ATy, Elts);
1263      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1264        Type *EltTy = VTy->getElementType();
1265        for (unsigned i = 0; i != Size; ++i)
1266          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1267        V = ConstantVector::get(Elts);
1268      } else {
1269        V = UndefValue::get(CurTy);
1270      }
1271      break;
1272    }
1273    case bitc::CST_CODE_STRING: { // STRING: [values]
1274      if (Record.empty())
1275        return Error("Invalid CST_AGGREGATE record");
1276
1277      ArrayType *ATy = cast<ArrayType>(CurTy);
1278      Type *EltTy = ATy->getElementType();
1279
1280      unsigned Size = Record.size();
1281      std::vector<Constant*> Elts;
1282      for (unsigned i = 0; i != Size; ++i)
1283        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1284      V = ConstantArray::get(ATy, Elts);
1285      break;
1286    }
1287    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1288      if (Record.empty())
1289        return Error("Invalid CST_AGGREGATE record");
1290
1291      ArrayType *ATy = cast<ArrayType>(CurTy);
1292      Type *EltTy = ATy->getElementType();
1293
1294      unsigned Size = Record.size();
1295      std::vector<Constant*> Elts;
1296      for (unsigned i = 0; i != Size; ++i)
1297        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1298      Elts.push_back(Constant::getNullValue(EltTy));
1299      V = ConstantArray::get(ATy, Elts);
1300      break;
1301    }
1302    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1303      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1304      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1305      if (Opc < 0) {
1306        V = UndefValue::get(CurTy);  // Unknown binop.
1307      } else {
1308        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1309        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1310        unsigned Flags = 0;
1311        if (Record.size() >= 4) {
1312          if (Opc == Instruction::Add ||
1313              Opc == Instruction::Sub ||
1314              Opc == Instruction::Mul ||
1315              Opc == Instruction::Shl) {
1316            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1317              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1318            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1319              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1320          } else if (Opc == Instruction::SDiv ||
1321                     Opc == Instruction::UDiv ||
1322                     Opc == Instruction::LShr ||
1323                     Opc == Instruction::AShr) {
1324            if (Record[3] & (1 << bitc::PEO_EXACT))
1325              Flags |= SDivOperator::IsExact;
1326          }
1327        }
1328        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1329      }
1330      break;
1331    }
1332    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1333      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1334      int Opc = GetDecodedCastOpcode(Record[0]);
1335      if (Opc < 0) {
1336        V = UndefValue::get(CurTy);  // Unknown cast.
1337      } else {
1338        Type *OpTy = getTypeByID(Record[1]);
1339        if (!OpTy) return Error("Invalid CE_CAST record");
1340        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1341        V = ConstantExpr::getCast(Opc, Op, CurTy);
1342      }
1343      break;
1344    }
1345    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1346    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1347      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1348      SmallVector<Constant*, 16> Elts;
1349      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1350        Type *ElTy = getTypeByID(Record[i]);
1351        if (!ElTy) return Error("Invalid CE_GEP record");
1352        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1353      }
1354      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1355      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1356                                         BitCode ==
1357                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1358      break;
1359    }
1360    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1361      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1362      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1363                                                              Type::getInt1Ty(Context)),
1364                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1365                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1366      break;
1367    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1368      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1369      VectorType *OpTy =
1370        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1371      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1372      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1373      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1374      V = ConstantExpr::getExtractElement(Op0, Op1);
1375      break;
1376    }
1377    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1378      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1379      if (Record.size() < 3 || OpTy == 0)
1380        return Error("Invalid CE_INSERTELT record");
1381      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1382      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1383                                                  OpTy->getElementType());
1384      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1385      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1386      break;
1387    }
1388    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1389      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1390      if (Record.size() < 3 || OpTy == 0)
1391        return Error("Invalid CE_SHUFFLEVEC record");
1392      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1393      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1394      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1395                                                 OpTy->getNumElements());
1396      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1397      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1398      break;
1399    }
1400    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1401      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1402      VectorType *OpTy =
1403        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1404      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1405        return Error("Invalid CE_SHUFVEC_EX record");
1406      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1407      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1408      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1409                                                 RTy->getNumElements());
1410      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1411      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1412      break;
1413    }
1414    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1415      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1416      Type *OpTy = getTypeByID(Record[0]);
1417      if (OpTy == 0) return Error("Invalid CE_CMP record");
1418      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1419      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1420
1421      if (OpTy->isFPOrFPVectorTy())
1422        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1423      else
1424        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1425      break;
1426    }
1427    case bitc::CST_CODE_INLINEASM: {
1428      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1429      std::string AsmStr, ConstrStr;
1430      bool HasSideEffects = Record[0] & 1;
1431      bool IsAlignStack = Record[0] >> 1;
1432      unsigned AsmStrSize = Record[1];
1433      if (2+AsmStrSize >= Record.size())
1434        return Error("Invalid INLINEASM record");
1435      unsigned ConstStrSize = Record[2+AsmStrSize];
1436      if (3+AsmStrSize+ConstStrSize > Record.size())
1437        return Error("Invalid INLINEASM record");
1438
1439      for (unsigned i = 0; i != AsmStrSize; ++i)
1440        AsmStr += (char)Record[2+i];
1441      for (unsigned i = 0; i != ConstStrSize; ++i)
1442        ConstrStr += (char)Record[3+AsmStrSize+i];
1443      PointerType *PTy = cast<PointerType>(CurTy);
1444      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1445                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1446      break;
1447    }
1448    case bitc::CST_CODE_BLOCKADDRESS:{
1449      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1450      Type *FnTy = getTypeByID(Record[0]);
1451      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1452      Function *Fn =
1453        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1454      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1455
1456      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1457                                                  Type::getInt8Ty(Context),
1458                                            false, GlobalValue::InternalLinkage,
1459                                                  0, "");
1460      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1461      V = FwdRef;
1462      break;
1463    }
1464    }
1465
1466    ValueList.AssignValue(V, NextCstNo);
1467    ++NextCstNo;
1468  }
1469
1470  if (NextCstNo != ValueList.size())
1471    return Error("Invalid constant reference!");
1472
1473  if (Stream.ReadBlockEnd())
1474    return Error("Error at end of constants block");
1475
1476  // Once all the constants have been read, go through and resolve forward
1477  // references.
1478  ValueList.ResolveConstantForwardRefs();
1479  return false;
1480}
1481
1482/// RememberAndSkipFunctionBody - When we see the block for a function body,
1483/// remember where it is and then skip it.  This lets us lazily deserialize the
1484/// functions.
1485bool BitcodeReader::RememberAndSkipFunctionBody() {
1486  // Get the function we are talking about.
1487  if (FunctionsWithBodies.empty())
1488    return Error("Insufficient function protos");
1489
1490  Function *Fn = FunctionsWithBodies.back();
1491  FunctionsWithBodies.pop_back();
1492
1493  // Save the current stream state.
1494  uint64_t CurBit = Stream.GetCurrentBitNo();
1495  DeferredFunctionInfo[Fn] = CurBit;
1496
1497  // Skip over the function block for now.
1498  if (Stream.SkipBlock())
1499    return Error("Malformed block record");
1500  return false;
1501}
1502
1503bool BitcodeReader::ParseModule() {
1504  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1505    return Error("Malformed block record");
1506
1507  SmallVector<uint64_t, 64> Record;
1508  std::vector<std::string> SectionTable;
1509  std::vector<std::string> GCTable;
1510
1511  // Read all the records for this module.
1512  while (!Stream.AtEndOfStream()) {
1513    unsigned Code = Stream.ReadCode();
1514    if (Code == bitc::END_BLOCK) {
1515      if (Stream.ReadBlockEnd())
1516        return Error("Error at end of module block");
1517
1518      // Patch the initializers for globals and aliases up.
1519      ResolveGlobalAndAliasInits();
1520      if (!GlobalInits.empty() || !AliasInits.empty())
1521        return Error("Malformed global initializer set");
1522      if (!FunctionsWithBodies.empty())
1523        return Error("Too few function bodies found");
1524
1525      // Look for intrinsic functions which need to be upgraded at some point
1526      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1527           FI != FE; ++FI) {
1528        Function* NewFn;
1529        if (UpgradeIntrinsicFunction(FI, NewFn))
1530          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1531      }
1532
1533      // Look for global variables which need to be renamed.
1534      for (Module::global_iterator
1535             GI = TheModule->global_begin(), GE = TheModule->global_end();
1536           GI != GE; ++GI)
1537        UpgradeGlobalVariable(GI);
1538
1539      // Force deallocation of memory for these vectors to favor the client that
1540      // want lazy deserialization.
1541      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1542      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1543      std::vector<Function*>().swap(FunctionsWithBodies);
1544      return false;
1545    }
1546
1547    if (Code == bitc::ENTER_SUBBLOCK) {
1548      switch (Stream.ReadSubBlockID()) {
1549      default:  // Skip unknown content.
1550        if (Stream.SkipBlock())
1551          return Error("Malformed block record");
1552        break;
1553      case bitc::BLOCKINFO_BLOCK_ID:
1554        if (Stream.ReadBlockInfoBlock())
1555          return Error("Malformed BlockInfoBlock");
1556        break;
1557      case bitc::PARAMATTR_BLOCK_ID:
1558        if (ParseAttributeBlock())
1559          return true;
1560        break;
1561      case bitc::TYPE_BLOCK_ID_NEW:
1562        if (ParseTypeTable())
1563          return true;
1564        break;
1565      case bitc::TYPE_BLOCK_ID_OLD:
1566        if (ParseOldTypeTable())
1567          return true;
1568        break;
1569      case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1570        if (ParseOldTypeSymbolTable())
1571          return true;
1572        break;
1573      case bitc::VALUE_SYMTAB_BLOCK_ID:
1574        if (ParseValueSymbolTable())
1575          return true;
1576        break;
1577      case bitc::CONSTANTS_BLOCK_ID:
1578        if (ParseConstants() || ResolveGlobalAndAliasInits())
1579          return true;
1580        break;
1581      case bitc::METADATA_BLOCK_ID:
1582        if (ParseMetadata())
1583          return true;
1584        break;
1585      case bitc::FUNCTION_BLOCK_ID:
1586        // If this is the first function body we've seen, reverse the
1587        // FunctionsWithBodies list.
1588        if (!HasReversedFunctionsWithBodies) {
1589          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1590          HasReversedFunctionsWithBodies = true;
1591        }
1592
1593        if (RememberAndSkipFunctionBody())
1594          return true;
1595        break;
1596      }
1597      continue;
1598    }
1599
1600    if (Code == bitc::DEFINE_ABBREV) {
1601      Stream.ReadAbbrevRecord();
1602      continue;
1603    }
1604
1605    // Read a record.
1606    switch (Stream.ReadRecord(Code, Record)) {
1607    default: break;  // Default behavior, ignore unknown content.
1608    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1609      if (Record.size() < 1)
1610        return Error("Malformed MODULE_CODE_VERSION");
1611      // Only version #0 is supported so far.
1612      if (Record[0] != 0)
1613        return Error("Unknown bitstream version!");
1614      break;
1615    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1616      std::string S;
1617      if (ConvertToString(Record, 0, S))
1618        return Error("Invalid MODULE_CODE_TRIPLE record");
1619      TheModule->setTargetTriple(S);
1620      break;
1621    }
1622    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1623      std::string S;
1624      if (ConvertToString(Record, 0, S))
1625        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1626      TheModule->setDataLayout(S);
1627      break;
1628    }
1629    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1630      std::string S;
1631      if (ConvertToString(Record, 0, S))
1632        return Error("Invalid MODULE_CODE_ASM record");
1633      TheModule->setModuleInlineAsm(S);
1634      break;
1635    }
1636    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1637      std::string S;
1638      if (ConvertToString(Record, 0, S))
1639        return Error("Invalid MODULE_CODE_DEPLIB record");
1640      TheModule->addLibrary(S);
1641      break;
1642    }
1643    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1644      std::string S;
1645      if (ConvertToString(Record, 0, S))
1646        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1647      SectionTable.push_back(S);
1648      break;
1649    }
1650    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1651      std::string S;
1652      if (ConvertToString(Record, 0, S))
1653        return Error("Invalid MODULE_CODE_GCNAME record");
1654      GCTable.push_back(S);
1655      break;
1656    }
1657    // GLOBALVAR: [pointer type, isconst, initid,
1658    //             linkage, alignment, section, visibility, threadlocal,
1659    //             unnamed_addr]
1660    case bitc::MODULE_CODE_GLOBALVAR: {
1661      if (Record.size() < 6)
1662        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1663      Type *Ty = getTypeByID(Record[0]);
1664      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1665      if (!Ty->isPointerTy())
1666        return Error("Global not a pointer type!");
1667      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1668      Ty = cast<PointerType>(Ty)->getElementType();
1669
1670      bool isConstant = Record[1];
1671      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1672      unsigned Alignment = (1 << Record[4]) >> 1;
1673      std::string Section;
1674      if (Record[5]) {
1675        if (Record[5]-1 >= SectionTable.size())
1676          return Error("Invalid section ID");
1677        Section = SectionTable[Record[5]-1];
1678      }
1679      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1680      if (Record.size() > 6)
1681        Visibility = GetDecodedVisibility(Record[6]);
1682      bool isThreadLocal = false;
1683      if (Record.size() > 7)
1684        isThreadLocal = Record[7];
1685
1686      bool UnnamedAddr = false;
1687      if (Record.size() > 8)
1688        UnnamedAddr = Record[8];
1689
1690      GlobalVariable *NewGV =
1691        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1692                           isThreadLocal, AddressSpace);
1693      NewGV->setAlignment(Alignment);
1694      if (!Section.empty())
1695        NewGV->setSection(Section);
1696      NewGV->setVisibility(Visibility);
1697      NewGV->setThreadLocal(isThreadLocal);
1698      NewGV->setUnnamedAddr(UnnamedAddr);
1699
1700      ValueList.push_back(NewGV);
1701
1702      // Remember which value to use for the global initializer.
1703      if (unsigned InitID = Record[2])
1704        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1705      break;
1706    }
1707    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1708    //             alignment, section, visibility, gc, unnamed_addr]
1709    case bitc::MODULE_CODE_FUNCTION: {
1710      if (Record.size() < 8)
1711        return Error("Invalid MODULE_CODE_FUNCTION record");
1712      Type *Ty = getTypeByID(Record[0]);
1713      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1714      if (!Ty->isPointerTy())
1715        return Error("Function not a pointer type!");
1716      FunctionType *FTy =
1717        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1718      if (!FTy)
1719        return Error("Function not a pointer to function type!");
1720
1721      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1722                                        "", TheModule);
1723
1724      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1725      bool isProto = Record[2];
1726      Func->setLinkage(GetDecodedLinkage(Record[3]));
1727      Func->setAttributes(getAttributes(Record[4]));
1728
1729      Func->setAlignment((1 << Record[5]) >> 1);
1730      if (Record[6]) {
1731        if (Record[6]-1 >= SectionTable.size())
1732          return Error("Invalid section ID");
1733        Func->setSection(SectionTable[Record[6]-1]);
1734      }
1735      Func->setVisibility(GetDecodedVisibility(Record[7]));
1736      if (Record.size() > 8 && Record[8]) {
1737        if (Record[8]-1 > GCTable.size())
1738          return Error("Invalid GC ID");
1739        Func->setGC(GCTable[Record[8]-1].c_str());
1740      }
1741      bool UnnamedAddr = false;
1742      if (Record.size() > 9)
1743        UnnamedAddr = Record[9];
1744      Func->setUnnamedAddr(UnnamedAddr);
1745      ValueList.push_back(Func);
1746
1747      // If this is a function with a body, remember the prototype we are
1748      // creating now, so that we can match up the body with them later.
1749      if (!isProto)
1750        FunctionsWithBodies.push_back(Func);
1751      break;
1752    }
1753    // ALIAS: [alias type, aliasee val#, linkage]
1754    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1755    case bitc::MODULE_CODE_ALIAS: {
1756      if (Record.size() < 3)
1757        return Error("Invalid MODULE_ALIAS record");
1758      Type *Ty = getTypeByID(Record[0]);
1759      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1760      if (!Ty->isPointerTy())
1761        return Error("Function not a pointer type!");
1762
1763      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1764                                           "", 0, TheModule);
1765      // Old bitcode files didn't have visibility field.
1766      if (Record.size() > 3)
1767        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1768      ValueList.push_back(NewGA);
1769      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1770      break;
1771    }
1772    /// MODULE_CODE_PURGEVALS: [numvals]
1773    case bitc::MODULE_CODE_PURGEVALS:
1774      // Trim down the value list to the specified size.
1775      if (Record.size() < 1 || Record[0] > ValueList.size())
1776        return Error("Invalid MODULE_PURGEVALS record");
1777      ValueList.shrinkTo(Record[0]);
1778      break;
1779    }
1780    Record.clear();
1781  }
1782
1783  return Error("Premature end of bitstream");
1784}
1785
1786bool BitcodeReader::ParseBitcodeInto(Module *M) {
1787  TheModule = 0;
1788
1789  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1790  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1791
1792  if (Buffer->getBufferSize() & 3) {
1793    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1794      return Error("Invalid bitcode signature");
1795    else
1796      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1797  }
1798
1799  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1800  // The magic number is 0x0B17C0DE stored in little endian.
1801  if (isBitcodeWrapper(BufPtr, BufEnd))
1802    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1803      return Error("Invalid bitcode wrapper header");
1804
1805  StreamFile.init(BufPtr, BufEnd);
1806  Stream.init(StreamFile);
1807
1808  // Sniff for the signature.
1809  if (Stream.Read(8) != 'B' ||
1810      Stream.Read(8) != 'C' ||
1811      Stream.Read(4) != 0x0 ||
1812      Stream.Read(4) != 0xC ||
1813      Stream.Read(4) != 0xE ||
1814      Stream.Read(4) != 0xD)
1815    return Error("Invalid bitcode signature");
1816
1817  // We expect a number of well-defined blocks, though we don't necessarily
1818  // need to understand them all.
1819  while (!Stream.AtEndOfStream()) {
1820    unsigned Code = Stream.ReadCode();
1821
1822    if (Code != bitc::ENTER_SUBBLOCK) {
1823
1824      // The ranlib in xcode 4 will align archive members by appending newlines to the
1825      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1826      // ignore these final 4 bytes :-(
1827      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1828          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1829	  Stream.AtEndOfStream())
1830        return false;
1831
1832      return Error("Invalid record at top-level");
1833    }
1834
1835    unsigned BlockID = Stream.ReadSubBlockID();
1836
1837    // We only know the MODULE subblock ID.
1838    switch (BlockID) {
1839    case bitc::BLOCKINFO_BLOCK_ID:
1840      if (Stream.ReadBlockInfoBlock())
1841        return Error("Malformed BlockInfoBlock");
1842      break;
1843    case bitc::MODULE_BLOCK_ID:
1844      // Reject multiple MODULE_BLOCK's in a single bitstream.
1845      if (TheModule)
1846        return Error("Multiple MODULE_BLOCKs in same stream");
1847      TheModule = M;
1848      if (ParseModule())
1849        return true;
1850      break;
1851    default:
1852      if (Stream.SkipBlock())
1853        return Error("Malformed block record");
1854      break;
1855    }
1856  }
1857
1858  return false;
1859}
1860
1861bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1862  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1863    return Error("Malformed block record");
1864
1865  SmallVector<uint64_t, 64> Record;
1866
1867  // Read all the records for this module.
1868  while (!Stream.AtEndOfStream()) {
1869    unsigned Code = Stream.ReadCode();
1870    if (Code == bitc::END_BLOCK) {
1871      if (Stream.ReadBlockEnd())
1872        return Error("Error at end of module block");
1873
1874      return false;
1875    }
1876
1877    if (Code == bitc::ENTER_SUBBLOCK) {
1878      switch (Stream.ReadSubBlockID()) {
1879      default:  // Skip unknown content.
1880        if (Stream.SkipBlock())
1881          return Error("Malformed block record");
1882        break;
1883      }
1884      continue;
1885    }
1886
1887    if (Code == bitc::DEFINE_ABBREV) {
1888      Stream.ReadAbbrevRecord();
1889      continue;
1890    }
1891
1892    // Read a record.
1893    switch (Stream.ReadRecord(Code, Record)) {
1894    default: break;  // Default behavior, ignore unknown content.
1895    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1896      if (Record.size() < 1)
1897        return Error("Malformed MODULE_CODE_VERSION");
1898      // Only version #0 is supported so far.
1899      if (Record[0] != 0)
1900        return Error("Unknown bitstream version!");
1901      break;
1902    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1903      std::string S;
1904      if (ConvertToString(Record, 0, S))
1905        return Error("Invalid MODULE_CODE_TRIPLE record");
1906      Triple = S;
1907      break;
1908    }
1909    }
1910    Record.clear();
1911  }
1912
1913  return Error("Premature end of bitstream");
1914}
1915
1916bool BitcodeReader::ParseTriple(std::string &Triple) {
1917  if (Buffer->getBufferSize() & 3)
1918    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1919
1920  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1921  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1922
1923  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1924  // The magic number is 0x0B17C0DE stored in little endian.
1925  if (isBitcodeWrapper(BufPtr, BufEnd))
1926    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1927      return Error("Invalid bitcode wrapper header");
1928
1929  StreamFile.init(BufPtr, BufEnd);
1930  Stream.init(StreamFile);
1931
1932  // Sniff for the signature.
1933  if (Stream.Read(8) != 'B' ||
1934      Stream.Read(8) != 'C' ||
1935      Stream.Read(4) != 0x0 ||
1936      Stream.Read(4) != 0xC ||
1937      Stream.Read(4) != 0xE ||
1938      Stream.Read(4) != 0xD)
1939    return Error("Invalid bitcode signature");
1940
1941  // We expect a number of well-defined blocks, though we don't necessarily
1942  // need to understand them all.
1943  while (!Stream.AtEndOfStream()) {
1944    unsigned Code = Stream.ReadCode();
1945
1946    if (Code != bitc::ENTER_SUBBLOCK)
1947      return Error("Invalid record at top-level");
1948
1949    unsigned BlockID = Stream.ReadSubBlockID();
1950
1951    // We only know the MODULE subblock ID.
1952    switch (BlockID) {
1953    case bitc::MODULE_BLOCK_ID:
1954      if (ParseModuleTriple(Triple))
1955        return true;
1956      break;
1957    default:
1958      if (Stream.SkipBlock())
1959        return Error("Malformed block record");
1960      break;
1961    }
1962  }
1963
1964  return false;
1965}
1966
1967/// ParseMetadataAttachment - Parse metadata attachments.
1968bool BitcodeReader::ParseMetadataAttachment() {
1969  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1970    return Error("Malformed block record");
1971
1972  SmallVector<uint64_t, 64> Record;
1973  while(1) {
1974    unsigned Code = Stream.ReadCode();
1975    if (Code == bitc::END_BLOCK) {
1976      if (Stream.ReadBlockEnd())
1977        return Error("Error at end of PARAMATTR block");
1978      break;
1979    }
1980    if (Code == bitc::DEFINE_ABBREV) {
1981      Stream.ReadAbbrevRecord();
1982      continue;
1983    }
1984    // Read a metadata attachment record.
1985    Record.clear();
1986    switch (Stream.ReadRecord(Code, Record)) {
1987    default:  // Default behavior: ignore.
1988      break;
1989    case bitc::METADATA_ATTACHMENT: {
1990      unsigned RecordLength = Record.size();
1991      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1992        return Error ("Invalid METADATA_ATTACHMENT reader!");
1993      Instruction *Inst = InstructionList[Record[0]];
1994      for (unsigned i = 1; i != RecordLength; i = i+2) {
1995        unsigned Kind = Record[i];
1996        DenseMap<unsigned, unsigned>::iterator I =
1997          MDKindMap.find(Kind);
1998        if (I == MDKindMap.end())
1999          return Error("Invalid metadata kind ID");
2000        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2001        Inst->setMetadata(I->second, cast<MDNode>(Node));
2002      }
2003      break;
2004    }
2005    }
2006  }
2007  return false;
2008}
2009
2010/// ParseFunctionBody - Lazily parse the specified function body block.
2011bool BitcodeReader::ParseFunctionBody(Function *F) {
2012  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2013    return Error("Malformed block record");
2014
2015  InstructionList.clear();
2016  unsigned ModuleValueListSize = ValueList.size();
2017  unsigned ModuleMDValueListSize = MDValueList.size();
2018
2019  // Add all the function arguments to the value table.
2020  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2021    ValueList.push_back(I);
2022
2023  unsigned NextValueNo = ValueList.size();
2024  BasicBlock *CurBB = 0;
2025  unsigned CurBBNo = 0;
2026
2027  DebugLoc LastLoc;
2028
2029  // Read all the records.
2030  SmallVector<uint64_t, 64> Record;
2031  while (1) {
2032    unsigned Code = Stream.ReadCode();
2033    if (Code == bitc::END_BLOCK) {
2034      if (Stream.ReadBlockEnd())
2035        return Error("Error at end of function block");
2036      break;
2037    }
2038
2039    if (Code == bitc::ENTER_SUBBLOCK) {
2040      switch (Stream.ReadSubBlockID()) {
2041      default:  // Skip unknown content.
2042        if (Stream.SkipBlock())
2043          return Error("Malformed block record");
2044        break;
2045      case bitc::CONSTANTS_BLOCK_ID:
2046        if (ParseConstants()) return true;
2047        NextValueNo = ValueList.size();
2048        break;
2049      case bitc::VALUE_SYMTAB_BLOCK_ID:
2050        if (ParseValueSymbolTable()) return true;
2051        break;
2052      case bitc::METADATA_ATTACHMENT_ID:
2053        if (ParseMetadataAttachment()) return true;
2054        break;
2055      case bitc::METADATA_BLOCK_ID:
2056        if (ParseMetadata()) return true;
2057        break;
2058      }
2059      continue;
2060    }
2061
2062    if (Code == bitc::DEFINE_ABBREV) {
2063      Stream.ReadAbbrevRecord();
2064      continue;
2065    }
2066
2067    // Read a record.
2068    Record.clear();
2069    Instruction *I = 0;
2070    unsigned BitCode = Stream.ReadRecord(Code, Record);
2071    switch (BitCode) {
2072    default: // Default behavior: reject
2073      return Error("Unknown instruction");
2074    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2075      if (Record.size() < 1 || Record[0] == 0)
2076        return Error("Invalid DECLAREBLOCKS record");
2077      // Create all the basic blocks for the function.
2078      FunctionBBs.resize(Record[0]);
2079      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2080        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2081      CurBB = FunctionBBs[0];
2082      continue;
2083
2084    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2085      // This record indicates that the last instruction is at the same
2086      // location as the previous instruction with a location.
2087      I = 0;
2088
2089      // Get the last instruction emitted.
2090      if (CurBB && !CurBB->empty())
2091        I = &CurBB->back();
2092      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2093               !FunctionBBs[CurBBNo-1]->empty())
2094        I = &FunctionBBs[CurBBNo-1]->back();
2095
2096      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2097      I->setDebugLoc(LastLoc);
2098      I = 0;
2099      continue;
2100
2101    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2102      I = 0;     // Get the last instruction emitted.
2103      if (CurBB && !CurBB->empty())
2104        I = &CurBB->back();
2105      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2106               !FunctionBBs[CurBBNo-1]->empty())
2107        I = &FunctionBBs[CurBBNo-1]->back();
2108      if (I == 0 || Record.size() < 4)
2109        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2110
2111      unsigned Line = Record[0], Col = Record[1];
2112      unsigned ScopeID = Record[2], IAID = Record[3];
2113
2114      MDNode *Scope = 0, *IA = 0;
2115      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2116      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2117      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2118      I->setDebugLoc(LastLoc);
2119      I = 0;
2120      continue;
2121    }
2122
2123    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2124      unsigned OpNum = 0;
2125      Value *LHS, *RHS;
2126      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2127          getValue(Record, OpNum, LHS->getType(), RHS) ||
2128          OpNum+1 > Record.size())
2129        return Error("Invalid BINOP record");
2130
2131      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2132      if (Opc == -1) return Error("Invalid BINOP record");
2133      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2134      InstructionList.push_back(I);
2135      if (OpNum < Record.size()) {
2136        if (Opc == Instruction::Add ||
2137            Opc == Instruction::Sub ||
2138            Opc == Instruction::Mul ||
2139            Opc == Instruction::Shl) {
2140          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2141            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2142          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2143            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2144        } else if (Opc == Instruction::SDiv ||
2145                   Opc == Instruction::UDiv ||
2146                   Opc == Instruction::LShr ||
2147                   Opc == Instruction::AShr) {
2148          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2149            cast<BinaryOperator>(I)->setIsExact(true);
2150        }
2151      }
2152      break;
2153    }
2154    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2155      unsigned OpNum = 0;
2156      Value *Op;
2157      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2158          OpNum+2 != Record.size())
2159        return Error("Invalid CAST record");
2160
2161      Type *ResTy = getTypeByID(Record[OpNum]);
2162      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2163      if (Opc == -1 || ResTy == 0)
2164        return Error("Invalid CAST record");
2165      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2166      InstructionList.push_back(I);
2167      break;
2168    }
2169    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2170    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2171      unsigned OpNum = 0;
2172      Value *BasePtr;
2173      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2174        return Error("Invalid GEP record");
2175
2176      SmallVector<Value*, 16> GEPIdx;
2177      while (OpNum != Record.size()) {
2178        Value *Op;
2179        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2180          return Error("Invalid GEP record");
2181        GEPIdx.push_back(Op);
2182      }
2183
2184      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
2185      InstructionList.push_back(I);
2186      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2187        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2188      break;
2189    }
2190
2191    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2192                                       // EXTRACTVAL: [opty, opval, n x indices]
2193      unsigned OpNum = 0;
2194      Value *Agg;
2195      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2196        return Error("Invalid EXTRACTVAL record");
2197
2198      SmallVector<unsigned, 4> EXTRACTVALIdx;
2199      for (unsigned RecSize = Record.size();
2200           OpNum != RecSize; ++OpNum) {
2201        uint64_t Index = Record[OpNum];
2202        if ((unsigned)Index != Index)
2203          return Error("Invalid EXTRACTVAL index");
2204        EXTRACTVALIdx.push_back((unsigned)Index);
2205      }
2206
2207      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2208      InstructionList.push_back(I);
2209      break;
2210    }
2211
2212    case bitc::FUNC_CODE_INST_INSERTVAL: {
2213                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2214      unsigned OpNum = 0;
2215      Value *Agg;
2216      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2217        return Error("Invalid INSERTVAL record");
2218      Value *Val;
2219      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2220        return Error("Invalid INSERTVAL record");
2221
2222      SmallVector<unsigned, 4> INSERTVALIdx;
2223      for (unsigned RecSize = Record.size();
2224           OpNum != RecSize; ++OpNum) {
2225        uint64_t Index = Record[OpNum];
2226        if ((unsigned)Index != Index)
2227          return Error("Invalid INSERTVAL index");
2228        INSERTVALIdx.push_back((unsigned)Index);
2229      }
2230
2231      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2232      InstructionList.push_back(I);
2233      break;
2234    }
2235
2236    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2237      // obsolete form of select
2238      // handles select i1 ... in old bitcode
2239      unsigned OpNum = 0;
2240      Value *TrueVal, *FalseVal, *Cond;
2241      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2242          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2243          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2244        return Error("Invalid SELECT record");
2245
2246      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2247      InstructionList.push_back(I);
2248      break;
2249    }
2250
2251    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2252      // new form of select
2253      // handles select i1 or select [N x i1]
2254      unsigned OpNum = 0;
2255      Value *TrueVal, *FalseVal, *Cond;
2256      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2257          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2258          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2259        return Error("Invalid SELECT record");
2260
2261      // select condition can be either i1 or [N x i1]
2262      if (VectorType* vector_type =
2263          dyn_cast<VectorType>(Cond->getType())) {
2264        // expect <n x i1>
2265        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2266          return Error("Invalid SELECT condition type");
2267      } else {
2268        // expect i1
2269        if (Cond->getType() != Type::getInt1Ty(Context))
2270          return Error("Invalid SELECT condition type");
2271      }
2272
2273      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2274      InstructionList.push_back(I);
2275      break;
2276    }
2277
2278    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2279      unsigned OpNum = 0;
2280      Value *Vec, *Idx;
2281      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2282          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2283        return Error("Invalid EXTRACTELT record");
2284      I = ExtractElementInst::Create(Vec, Idx);
2285      InstructionList.push_back(I);
2286      break;
2287    }
2288
2289    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2290      unsigned OpNum = 0;
2291      Value *Vec, *Elt, *Idx;
2292      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2293          getValue(Record, OpNum,
2294                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2295          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2296        return Error("Invalid INSERTELT record");
2297      I = InsertElementInst::Create(Vec, Elt, Idx);
2298      InstructionList.push_back(I);
2299      break;
2300    }
2301
2302    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2303      unsigned OpNum = 0;
2304      Value *Vec1, *Vec2, *Mask;
2305      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2306          getValue(Record, OpNum, Vec1->getType(), Vec2))
2307        return Error("Invalid SHUFFLEVEC record");
2308
2309      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2310        return Error("Invalid SHUFFLEVEC record");
2311      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2312      InstructionList.push_back(I);
2313      break;
2314    }
2315
2316    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2317      // Old form of ICmp/FCmp returning bool
2318      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2319      // both legal on vectors but had different behaviour.
2320    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2321      // FCmp/ICmp returning bool or vector of bool
2322
2323      unsigned OpNum = 0;
2324      Value *LHS, *RHS;
2325      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2326          getValue(Record, OpNum, LHS->getType(), RHS) ||
2327          OpNum+1 != Record.size())
2328        return Error("Invalid CMP record");
2329
2330      if (LHS->getType()->isFPOrFPVectorTy())
2331        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2332      else
2333        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2334      InstructionList.push_back(I);
2335      break;
2336    }
2337
2338    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2339      {
2340        unsigned Size = Record.size();
2341        if (Size == 0) {
2342          I = ReturnInst::Create(Context);
2343          InstructionList.push_back(I);
2344          break;
2345        }
2346
2347        unsigned OpNum = 0;
2348        Value *Op = NULL;
2349        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2350          return Error("Invalid RET record");
2351        if (OpNum != Record.size())
2352          return Error("Invalid RET record");
2353
2354        I = ReturnInst::Create(Context, Op);
2355        InstructionList.push_back(I);
2356        break;
2357      }
2358    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2359      if (Record.size() != 1 && Record.size() != 3)
2360        return Error("Invalid BR record");
2361      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2362      if (TrueDest == 0)
2363        return Error("Invalid BR record");
2364
2365      if (Record.size() == 1) {
2366        I = BranchInst::Create(TrueDest);
2367        InstructionList.push_back(I);
2368      }
2369      else {
2370        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2371        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2372        if (FalseDest == 0 || Cond == 0)
2373          return Error("Invalid BR record");
2374        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2375        InstructionList.push_back(I);
2376      }
2377      break;
2378    }
2379    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2380      if (Record.size() < 3 || (Record.size() & 1) == 0)
2381        return Error("Invalid SWITCH record");
2382      Type *OpTy = getTypeByID(Record[0]);
2383      Value *Cond = getFnValueByID(Record[1], OpTy);
2384      BasicBlock *Default = getBasicBlock(Record[2]);
2385      if (OpTy == 0 || Cond == 0 || Default == 0)
2386        return Error("Invalid SWITCH record");
2387      unsigned NumCases = (Record.size()-3)/2;
2388      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2389      InstructionList.push_back(SI);
2390      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2391        ConstantInt *CaseVal =
2392          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2393        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2394        if (CaseVal == 0 || DestBB == 0) {
2395          delete SI;
2396          return Error("Invalid SWITCH record!");
2397        }
2398        SI->addCase(CaseVal, DestBB);
2399      }
2400      I = SI;
2401      break;
2402    }
2403    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2404      if (Record.size() < 2)
2405        return Error("Invalid INDIRECTBR record");
2406      Type *OpTy = getTypeByID(Record[0]);
2407      Value *Address = getFnValueByID(Record[1], OpTy);
2408      if (OpTy == 0 || Address == 0)
2409        return Error("Invalid INDIRECTBR record");
2410      unsigned NumDests = Record.size()-2;
2411      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2412      InstructionList.push_back(IBI);
2413      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2414        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2415          IBI->addDestination(DestBB);
2416        } else {
2417          delete IBI;
2418          return Error("Invalid INDIRECTBR record!");
2419        }
2420      }
2421      I = IBI;
2422      break;
2423    }
2424
2425    case bitc::FUNC_CODE_INST_INVOKE: {
2426      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2427      if (Record.size() < 4) return Error("Invalid INVOKE record");
2428      AttrListPtr PAL = getAttributes(Record[0]);
2429      unsigned CCInfo = Record[1];
2430      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2431      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2432
2433      unsigned OpNum = 4;
2434      Value *Callee;
2435      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2436        return Error("Invalid INVOKE record");
2437
2438      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2439      FunctionType *FTy = !CalleeTy ? 0 :
2440        dyn_cast<FunctionType>(CalleeTy->getElementType());
2441
2442      // Check that the right number of fixed parameters are here.
2443      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2444          Record.size() < OpNum+FTy->getNumParams())
2445        return Error("Invalid INVOKE record");
2446
2447      SmallVector<Value*, 16> Ops;
2448      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2449        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2450        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2451      }
2452
2453      if (!FTy->isVarArg()) {
2454        if (Record.size() != OpNum)
2455          return Error("Invalid INVOKE record");
2456      } else {
2457        // Read type/value pairs for varargs params.
2458        while (OpNum != Record.size()) {
2459          Value *Op;
2460          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2461            return Error("Invalid INVOKE record");
2462          Ops.push_back(Op);
2463        }
2464      }
2465
2466      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2467      InstructionList.push_back(I);
2468      cast<InvokeInst>(I)->setCallingConv(
2469        static_cast<CallingConv::ID>(CCInfo));
2470      cast<InvokeInst>(I)->setAttributes(PAL);
2471      break;
2472    }
2473    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2474      I = new UnwindInst(Context);
2475      InstructionList.push_back(I);
2476      break;
2477    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2478      I = new UnreachableInst(Context);
2479      InstructionList.push_back(I);
2480      break;
2481    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2482      if (Record.size() < 1 || ((Record.size()-1)&1))
2483        return Error("Invalid PHI record");
2484      Type *Ty = getTypeByID(Record[0]);
2485      if (!Ty) return Error("Invalid PHI record");
2486
2487      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2488      InstructionList.push_back(PN);
2489
2490      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2491        Value *V = getFnValueByID(Record[1+i], Ty);
2492        BasicBlock *BB = getBasicBlock(Record[2+i]);
2493        if (!V || !BB) return Error("Invalid PHI record");
2494        PN->addIncoming(V, BB);
2495      }
2496      I = PN;
2497      break;
2498    }
2499
2500    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2501      if (Record.size() != 4)
2502        return Error("Invalid ALLOCA record");
2503      PointerType *Ty =
2504        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2505      Type *OpTy = getTypeByID(Record[1]);
2506      Value *Size = getFnValueByID(Record[2], OpTy);
2507      unsigned Align = Record[3];
2508      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2509      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2510      InstructionList.push_back(I);
2511      break;
2512    }
2513    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2514      unsigned OpNum = 0;
2515      Value *Op;
2516      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2517          OpNum+2 != Record.size())
2518        return Error("Invalid LOAD record");
2519
2520      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2521      InstructionList.push_back(I);
2522      break;
2523    }
2524    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2525      unsigned OpNum = 0;
2526      Value *Val, *Ptr;
2527      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2528          getValue(Record, OpNum,
2529                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2530          OpNum+2 != Record.size())
2531        return Error("Invalid STORE record");
2532
2533      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2534      InstructionList.push_back(I);
2535      break;
2536    }
2537    case bitc::FUNC_CODE_INST_CALL: {
2538      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2539      if (Record.size() < 3)
2540        return Error("Invalid CALL record");
2541
2542      AttrListPtr PAL = getAttributes(Record[0]);
2543      unsigned CCInfo = Record[1];
2544
2545      unsigned OpNum = 2;
2546      Value *Callee;
2547      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2548        return Error("Invalid CALL record");
2549
2550      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2551      FunctionType *FTy = 0;
2552      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2553      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2554        return Error("Invalid CALL record");
2555
2556      SmallVector<Value*, 16> Args;
2557      // Read the fixed params.
2558      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2559        if (FTy->getParamType(i)->isLabelTy())
2560          Args.push_back(getBasicBlock(Record[OpNum]));
2561        else
2562          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2563        if (Args.back() == 0) return Error("Invalid CALL record");
2564      }
2565
2566      // Read type/value pairs for varargs params.
2567      if (!FTy->isVarArg()) {
2568        if (OpNum != Record.size())
2569          return Error("Invalid CALL record");
2570      } else {
2571        while (OpNum != Record.size()) {
2572          Value *Op;
2573          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2574            return Error("Invalid CALL record");
2575          Args.push_back(Op);
2576        }
2577      }
2578
2579      I = CallInst::Create(Callee, Args);
2580      InstructionList.push_back(I);
2581      cast<CallInst>(I)->setCallingConv(
2582        static_cast<CallingConv::ID>(CCInfo>>1));
2583      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2584      cast<CallInst>(I)->setAttributes(PAL);
2585      break;
2586    }
2587    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2588      if (Record.size() < 3)
2589        return Error("Invalid VAARG record");
2590      Type *OpTy = getTypeByID(Record[0]);
2591      Value *Op = getFnValueByID(Record[1], OpTy);
2592      Type *ResTy = getTypeByID(Record[2]);
2593      if (!OpTy || !Op || !ResTy)
2594        return Error("Invalid VAARG record");
2595      I = new VAArgInst(Op, ResTy);
2596      InstructionList.push_back(I);
2597      break;
2598    }
2599    }
2600
2601    // Add instruction to end of current BB.  If there is no current BB, reject
2602    // this file.
2603    if (CurBB == 0) {
2604      delete I;
2605      return Error("Invalid instruction with no BB");
2606    }
2607    CurBB->getInstList().push_back(I);
2608
2609    // If this was a terminator instruction, move to the next block.
2610    if (isa<TerminatorInst>(I)) {
2611      ++CurBBNo;
2612      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2613    }
2614
2615    // Non-void values get registered in the value table for future use.
2616    if (I && !I->getType()->isVoidTy())
2617      ValueList.AssignValue(I, NextValueNo++);
2618  }
2619
2620  // Check the function list for unresolved values.
2621  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2622    if (A->getParent() == 0) {
2623      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2624      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2625        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2626          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2627          delete A;
2628        }
2629      }
2630      return Error("Never resolved value found in function!");
2631    }
2632  }
2633
2634  // FIXME: Check for unresolved forward-declared metadata references
2635  // and clean up leaks.
2636
2637  // See if anything took the address of blocks in this function.  If so,
2638  // resolve them now.
2639  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2640    BlockAddrFwdRefs.find(F);
2641  if (BAFRI != BlockAddrFwdRefs.end()) {
2642    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2643    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2644      unsigned BlockIdx = RefList[i].first;
2645      if (BlockIdx >= FunctionBBs.size())
2646        return Error("Invalid blockaddress block #");
2647
2648      GlobalVariable *FwdRef = RefList[i].second;
2649      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2650      FwdRef->eraseFromParent();
2651    }
2652
2653    BlockAddrFwdRefs.erase(BAFRI);
2654  }
2655
2656  // Trim the value list down to the size it was before we parsed this function.
2657  ValueList.shrinkTo(ModuleValueListSize);
2658  MDValueList.shrinkTo(ModuleMDValueListSize);
2659  std::vector<BasicBlock*>().swap(FunctionBBs);
2660  return false;
2661}
2662
2663//===----------------------------------------------------------------------===//
2664// GVMaterializer implementation
2665//===----------------------------------------------------------------------===//
2666
2667
2668bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2669  if (const Function *F = dyn_cast<Function>(GV)) {
2670    return F->isDeclaration() &&
2671      DeferredFunctionInfo.count(const_cast<Function*>(F));
2672  }
2673  return false;
2674}
2675
2676bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2677  Function *F = dyn_cast<Function>(GV);
2678  // If it's not a function or is already material, ignore the request.
2679  if (!F || !F->isMaterializable()) return false;
2680
2681  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2682  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2683
2684  // Move the bit stream to the saved position of the deferred function body.
2685  Stream.JumpToBit(DFII->second);
2686
2687  if (ParseFunctionBody(F)) {
2688    if (ErrInfo) *ErrInfo = ErrorString;
2689    return true;
2690  }
2691
2692  // Upgrade any old intrinsic calls in the function.
2693  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2694       E = UpgradedIntrinsics.end(); I != E; ++I) {
2695    if (I->first != I->second) {
2696      for (Value::use_iterator UI = I->first->use_begin(),
2697           UE = I->first->use_end(); UI != UE; ) {
2698        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2699          UpgradeIntrinsicCall(CI, I->second);
2700      }
2701    }
2702  }
2703
2704  return false;
2705}
2706
2707bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2708  const Function *F = dyn_cast<Function>(GV);
2709  if (!F || F->isDeclaration())
2710    return false;
2711  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2712}
2713
2714void BitcodeReader::Dematerialize(GlobalValue *GV) {
2715  Function *F = dyn_cast<Function>(GV);
2716  // If this function isn't dematerializable, this is a noop.
2717  if (!F || !isDematerializable(F))
2718    return;
2719
2720  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2721
2722  // Just forget the function body, we can remat it later.
2723  F->deleteBody();
2724}
2725
2726
2727bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2728  assert(M == TheModule &&
2729         "Can only Materialize the Module this BitcodeReader is attached to.");
2730  // Iterate over the module, deserializing any functions that are still on
2731  // disk.
2732  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2733       F != E; ++F)
2734    if (F->isMaterializable() &&
2735        Materialize(F, ErrInfo))
2736      return true;
2737
2738  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2739  // delete the old functions to clean up. We can't do this unless the entire
2740  // module is materialized because there could always be another function body
2741  // with calls to the old function.
2742  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2743       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2744    if (I->first != I->second) {
2745      for (Value::use_iterator UI = I->first->use_begin(),
2746           UE = I->first->use_end(); UI != UE; ) {
2747        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2748          UpgradeIntrinsicCall(CI, I->second);
2749      }
2750      if (!I->first->use_empty())
2751        I->first->replaceAllUsesWith(I->second);
2752      I->first->eraseFromParent();
2753    }
2754  }
2755  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2756
2757  // Check debug info intrinsics.
2758  CheckDebugInfoIntrinsics(TheModule);
2759
2760  return false;
2761}
2762
2763
2764//===----------------------------------------------------------------------===//
2765// External interface
2766//===----------------------------------------------------------------------===//
2767
2768/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2769///
2770Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2771                                   LLVMContext& Context,
2772                                   std::string *ErrMsg) {
2773  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2774  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2775  M->setMaterializer(R);
2776  if (R->ParseBitcodeInto(M)) {
2777    if (ErrMsg)
2778      *ErrMsg = R->getErrorString();
2779
2780    delete M;  // Also deletes R.
2781    return 0;
2782  }
2783  // Have the BitcodeReader dtor delete 'Buffer'.
2784  R->setBufferOwned(true);
2785  return M;
2786}
2787
2788/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2789/// If an error occurs, return null and fill in *ErrMsg if non-null.
2790Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2791                               std::string *ErrMsg){
2792  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2793  if (!M) return 0;
2794
2795  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2796  // there was an error.
2797  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2798
2799  // Read in the entire module, and destroy the BitcodeReader.
2800  if (M->MaterializeAllPermanently(ErrMsg)) {
2801    delete M;
2802    return 0;
2803  }
2804
2805  return M;
2806}
2807
2808std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2809                                         LLVMContext& Context,
2810                                         std::string *ErrMsg) {
2811  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2812  // Don't let the BitcodeReader dtor delete 'Buffer'.
2813  R->setBufferOwned(false);
2814
2815  std::string Triple("");
2816  if (R->ParseTriple(Triple))
2817    if (ErrMsg)
2818      *ErrMsg = R->getErrorString();
2819
2820  delete R;
2821  return Triple;
2822}
2823