BitcodeReader.cpp revision 4dc2b39bf89d7c87868008ef8a0f807e0419aca6
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/AutoUpgrade.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/OperandTraits.h"
27using namespace llvm;
28
29void BitcodeReader::FreeState() {
30  delete Buffer;
31  Buffer = 0;
32  std::vector<PATypeHolder>().swap(TypeList);
33  ValueList.clear();
34
35  std::vector<AttrListPtr>().swap(MAttributes);
36  std::vector<BasicBlock*>().swap(FunctionBBs);
37  std::vector<Function*>().swap(FunctionsWithBodies);
38  DeferredFunctionInfo.clear();
39}
40
41//===----------------------------------------------------------------------===//
42//  Helper functions to implement forward reference resolution, etc.
43//===----------------------------------------------------------------------===//
44
45/// ConvertToString - Convert a string from a record into an std::string, return
46/// true on failure.
47template<typename StrTy>
48static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                            StrTy &Result) {
50  if (Idx > Record.size())
51    return true;
52
53  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54    Result += (char)Record[i];
55  return false;
56}
57
58static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59  switch (Val) {
60  default: // Map unknown/new linkages to external
61  case 0: return GlobalValue::ExternalLinkage;
62  case 1: return GlobalValue::WeakAnyLinkage;
63  case 2: return GlobalValue::AppendingLinkage;
64  case 3: return GlobalValue::InternalLinkage;
65  case 4: return GlobalValue::LinkOnceAnyLinkage;
66  case 5: return GlobalValue::DLLImportLinkage;
67  case 6: return GlobalValue::DLLExportLinkage;
68  case 7: return GlobalValue::ExternalWeakLinkage;
69  case 8: return GlobalValue::CommonLinkage;
70  case 9: return GlobalValue::PrivateLinkage;
71  case 10: return GlobalValue::WeakODRLinkage;
72  case 11: return GlobalValue::LinkOnceODRLinkage;
73  }
74}
75
76static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
77  switch (Val) {
78  default: // Map unknown visibilities to default.
79  case 0: return GlobalValue::DefaultVisibility;
80  case 1: return GlobalValue::HiddenVisibility;
81  case 2: return GlobalValue::ProtectedVisibility;
82  }
83}
84
85static int GetDecodedCastOpcode(unsigned Val) {
86  switch (Val) {
87  default: return -1;
88  case bitc::CAST_TRUNC   : return Instruction::Trunc;
89  case bitc::CAST_ZEXT    : return Instruction::ZExt;
90  case bitc::CAST_SEXT    : return Instruction::SExt;
91  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
92  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
93  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
94  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
95  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
96  case bitc::CAST_FPEXT   : return Instruction::FPExt;
97  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
98  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
99  case bitc::CAST_BITCAST : return Instruction::BitCast;
100  }
101}
102static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
103  switch (Val) {
104  default: return -1;
105  case bitc::BINOP_ADD:  return Instruction::Add;
106  case bitc::BINOP_SUB:  return Instruction::Sub;
107  case bitc::BINOP_MUL:  return Instruction::Mul;
108  case bitc::BINOP_UDIV: return Instruction::UDiv;
109  case bitc::BINOP_SDIV:
110    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
111  case bitc::BINOP_UREM: return Instruction::URem;
112  case bitc::BINOP_SREM:
113    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
114  case bitc::BINOP_SHL:  return Instruction::Shl;
115  case bitc::BINOP_LSHR: return Instruction::LShr;
116  case bitc::BINOP_ASHR: return Instruction::AShr;
117  case bitc::BINOP_AND:  return Instruction::And;
118  case bitc::BINOP_OR:   return Instruction::Or;
119  case bitc::BINOP_XOR:  return Instruction::Xor;
120  }
121}
122
123namespace llvm {
124namespace {
125  /// @brief A class for maintaining the slot number definition
126  /// as a placeholder for the actual definition for forward constants defs.
127  class ConstantPlaceHolder : public ConstantExpr {
128    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
129    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
130  public:
131    // allocate space for exactly one operand
132    void *operator new(size_t s) {
133      return User::operator new(s, 1);
134    }
135    explicit ConstantPlaceHolder(const Type *Ty)
136      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
137      Op<0>() = UndefValue::get(Type::Int32Ty);
138    }
139
140    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
141    static inline bool classof(const ConstantPlaceHolder *) { return true; }
142    static bool classof(const Value *V) {
143      return isa<ConstantExpr>(V) &&
144             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
145    }
146
147
148    /// Provide fast operand accessors
149    DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
150  };
151}
152
153
154  // FIXME: can we inherit this from ConstantExpr?
155template <>
156struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
157};
158
159DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
160}
161
162void BitcodeReaderValueList::resize(unsigned Desired) {
163  if (Desired > Capacity) {
164    // Since we expect many values to come from the bitcode file we better
165    // allocate the double amount, so that the array size grows exponentially
166    // at each reallocation.  Also, add a small amount of 100 extra elements
167    // each time, to reallocate less frequently when the array is still small.
168    //
169    Capacity = Desired * 2 + 100;
170    Use *New = allocHungoffUses(Capacity);
171    Use *Old = OperandList;
172    unsigned Ops = getNumOperands();
173    for (int i(Ops - 1); i >= 0; --i)
174      New[i] = Old[i].get();
175    OperandList = New;
176    if (Old) Use::zap(Old, Old + Ops, true);
177  }
178}
179
180Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
181                                                    const Type *Ty) {
182  if (Idx >= size()) {
183    // Insert a bunch of null values.
184    resize(Idx + 1);
185    NumOperands = Idx+1;
186  }
187
188  if (Value *V = OperandList[Idx]) {
189    assert(Ty == V->getType() && "Type mismatch in constant table!");
190    return cast<Constant>(V);
191  }
192
193  // Create and return a placeholder, which will later be RAUW'd.
194  Constant *C = new ConstantPlaceHolder(Ty);
195  OperandList[Idx] = C;
196  return C;
197}
198
199Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
200  if (Idx >= size()) {
201    // Insert a bunch of null values.
202    resize(Idx + 1);
203    NumOperands = Idx+1;
204  }
205
206  if (Value *V = OperandList[Idx]) {
207    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
208    return V;
209  }
210
211  // No type specified, must be invalid reference.
212  if (Ty == 0) return 0;
213
214  // Create and return a placeholder, which will later be RAUW'd.
215  Value *V = new Argument(Ty);
216  OperandList[Idx] = V;
217  return V;
218}
219
220/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
221/// resolves any forward references.  The idea behind this is that we sometimes
222/// get constants (such as large arrays) which reference *many* forward ref
223/// constants.  Replacing each of these causes a lot of thrashing when
224/// building/reuniquing the constant.  Instead of doing this, we look at all the
225/// uses and rewrite all the place holders at once for any constant that uses
226/// a placeholder.
227void BitcodeReaderValueList::ResolveConstantForwardRefs() {
228  // Sort the values by-pointer so that they are efficient to look up with a
229  // binary search.
230  std::sort(ResolveConstants.begin(), ResolveConstants.end());
231
232  SmallVector<Constant*, 64> NewOps;
233
234  while (!ResolveConstants.empty()) {
235    Value *RealVal = getOperand(ResolveConstants.back().second);
236    Constant *Placeholder = ResolveConstants.back().first;
237    ResolveConstants.pop_back();
238
239    // Loop over all users of the placeholder, updating them to reference the
240    // new value.  If they reference more than one placeholder, update them all
241    // at once.
242    while (!Placeholder->use_empty()) {
243      Value::use_iterator UI = Placeholder->use_begin();
244
245      // If the using object isn't uniqued, just update the operands.  This
246      // handles instructions and initializers for global variables.
247      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
248        UI.getUse().set(RealVal);
249        continue;
250      }
251
252      // Otherwise, we have a constant that uses the placeholder.  Replace that
253      // constant with a new constant that has *all* placeholder uses updated.
254      Constant *UserC = cast<Constant>(*UI);
255      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
256           I != E; ++I) {
257        Value *NewOp;
258        if (!isa<ConstantPlaceHolder>(*I)) {
259          // Not a placeholder reference.
260          NewOp = *I;
261        } else if (*I == Placeholder) {
262          // Common case is that it just references this one placeholder.
263          NewOp = RealVal;
264        } else {
265          // Otherwise, look up the placeholder in ResolveConstants.
266          ResolveConstantsTy::iterator It =
267            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
268                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
269                                                            0));
270          assert(It != ResolveConstants.end() && It->first == *I);
271          NewOp = this->getOperand(It->second);
272        }
273
274        NewOps.push_back(cast<Constant>(NewOp));
275      }
276
277      // Make the new constant.
278      Constant *NewC;
279      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
280        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
281      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
282        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
283                                   UserCS->getType()->isPacked());
284      } else if (isa<ConstantVector>(UserC)) {
285        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
286      } else {
287        // Must be a constant expression.
288        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
289                                                          NewOps.size());
290      }
291
292      UserC->replaceAllUsesWith(NewC);
293      UserC->destroyConstant();
294      NewOps.clear();
295    }
296
297    delete Placeholder;
298  }
299}
300
301
302const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
303  // If the TypeID is in range, return it.
304  if (ID < TypeList.size())
305    return TypeList[ID].get();
306  if (!isTypeTable) return 0;
307
308  // The type table allows forward references.  Push as many Opaque types as
309  // needed to get up to ID.
310  while (TypeList.size() <= ID)
311    TypeList.push_back(OpaqueType::get());
312  return TypeList.back().get();
313}
314
315//===----------------------------------------------------------------------===//
316//  Functions for parsing blocks from the bitcode file
317//===----------------------------------------------------------------------===//
318
319bool BitcodeReader::ParseAttributeBlock() {
320  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
321    return Error("Malformed block record");
322
323  if (!MAttributes.empty())
324    return Error("Multiple PARAMATTR blocks found!");
325
326  SmallVector<uint64_t, 64> Record;
327
328  SmallVector<AttributeWithIndex, 8> Attrs;
329
330  // Read all the records.
331  while (1) {
332    unsigned Code = Stream.ReadCode();
333    if (Code == bitc::END_BLOCK) {
334      if (Stream.ReadBlockEnd())
335        return Error("Error at end of PARAMATTR block");
336      return false;
337    }
338
339    if (Code == bitc::ENTER_SUBBLOCK) {
340      // No known subblocks, always skip them.
341      Stream.ReadSubBlockID();
342      if (Stream.SkipBlock())
343        return Error("Malformed block record");
344      continue;
345    }
346
347    if (Code == bitc::DEFINE_ABBREV) {
348      Stream.ReadAbbrevRecord();
349      continue;
350    }
351
352    // Read a record.
353    Record.clear();
354    switch (Stream.ReadRecord(Code, Record)) {
355    default:  // Default behavior: ignore.
356      break;
357    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
358      if (Record.size() & 1)
359        return Error("Invalid ENTRY record");
360
361      // FIXME : Remove this autoupgrade code in LLVM 3.0.
362      // If Function attributes are using index 0 then transfer them
363      // to index ~0. Index 0 is used for return value attributes but used to be
364      // used for function attributes.
365      Attributes RetAttribute = Attribute::None;
366      Attributes FnAttribute = Attribute::None;
367      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
368        // FIXME: remove in LLVM 3.0
369        // The alignment is stored as a 16-bit raw value from bits 31--16.
370        // We shift the bits above 31 down by 11 bits.
371
372        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
373        if (Alignment && !isPowerOf2_32(Alignment))
374          return Error("Alignment is not a power of two.");
375
376        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
377        if (Alignment)
378          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
379        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
380        Record[i+1] = ReconstitutedAttr;
381
382        if (Record[i] == 0)
383          RetAttribute = Record[i+1];
384        else if (Record[i] == ~0U)
385          FnAttribute = Record[i+1];
386      }
387
388      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
389                              Attribute::ReadOnly|Attribute::ReadNone);
390
391      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
392          (RetAttribute & OldRetAttrs) != 0) {
393        if (FnAttribute == Attribute::None) { // add a slot so they get added.
394          Record.push_back(~0U);
395          Record.push_back(0);
396        }
397
398        FnAttribute  |= RetAttribute & OldRetAttrs;
399        RetAttribute &= ~OldRetAttrs;
400      }
401
402      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
403        if (Record[i] == 0) {
404          if (RetAttribute != Attribute::None)
405            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
406        } else if (Record[i] == ~0U) {
407          if (FnAttribute != Attribute::None)
408            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
409        } else if (Record[i+1] != Attribute::None)
410          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
411      }
412
413      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
414      Attrs.clear();
415      break;
416    }
417    }
418  }
419}
420
421
422bool BitcodeReader::ParseTypeTable() {
423  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
424    return Error("Malformed block record");
425
426  if (!TypeList.empty())
427    return Error("Multiple TYPE_BLOCKs found!");
428
429  SmallVector<uint64_t, 64> Record;
430  unsigned NumRecords = 0;
431
432  // Read all the records for this type table.
433  while (1) {
434    unsigned Code = Stream.ReadCode();
435    if (Code == bitc::END_BLOCK) {
436      if (NumRecords != TypeList.size())
437        return Error("Invalid type forward reference in TYPE_BLOCK");
438      if (Stream.ReadBlockEnd())
439        return Error("Error at end of type table block");
440      return false;
441    }
442
443    if (Code == bitc::ENTER_SUBBLOCK) {
444      // No known subblocks, always skip them.
445      Stream.ReadSubBlockID();
446      if (Stream.SkipBlock())
447        return Error("Malformed block record");
448      continue;
449    }
450
451    if (Code == bitc::DEFINE_ABBREV) {
452      Stream.ReadAbbrevRecord();
453      continue;
454    }
455
456    // Read a record.
457    Record.clear();
458    const Type *ResultTy = 0;
459    switch (Stream.ReadRecord(Code, Record)) {
460    default:  // Default behavior: unknown type.
461      ResultTy = 0;
462      break;
463    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
464      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
465      // type list.  This allows us to reserve space.
466      if (Record.size() < 1)
467        return Error("Invalid TYPE_CODE_NUMENTRY record");
468      TypeList.reserve(Record[0]);
469      continue;
470    case bitc::TYPE_CODE_VOID:      // VOID
471      ResultTy = Type::VoidTy;
472      break;
473    case bitc::TYPE_CODE_FLOAT:     // FLOAT
474      ResultTy = Type::FloatTy;
475      break;
476    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
477      ResultTy = Type::DoubleTy;
478      break;
479    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
480      ResultTy = Type::X86_FP80Ty;
481      break;
482    case bitc::TYPE_CODE_FP128:     // FP128
483      ResultTy = Type::FP128Ty;
484      break;
485    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
486      ResultTy = Type::PPC_FP128Ty;
487      break;
488    case bitc::TYPE_CODE_LABEL:     // LABEL
489      ResultTy = Type::LabelTy;
490      break;
491    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
492      ResultTy = 0;
493      break;
494    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
495      if (Record.size() < 1)
496        return Error("Invalid Integer type record");
497
498      ResultTy = IntegerType::get(Record[0]);
499      break;
500    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
501                                    //          [pointee type, address space]
502      if (Record.size() < 1)
503        return Error("Invalid POINTER type record");
504      unsigned AddressSpace = 0;
505      if (Record.size() == 2)
506        AddressSpace = Record[1];
507      ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
508      break;
509    }
510    case bitc::TYPE_CODE_FUNCTION: {
511      // FIXME: attrid is dead, remove it in LLVM 3.0
512      // FUNCTION: [vararg, attrid, retty, paramty x N]
513      if (Record.size() < 3)
514        return Error("Invalid FUNCTION type record");
515      std::vector<const Type*> ArgTys;
516      for (unsigned i = 3, e = Record.size(); i != e; ++i)
517        ArgTys.push_back(getTypeByID(Record[i], true));
518
519      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
520                                   Record[0]);
521      break;
522    }
523    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
524      if (Record.size() < 1)
525        return Error("Invalid STRUCT type record");
526      std::vector<const Type*> EltTys;
527      for (unsigned i = 1, e = Record.size(); i != e; ++i)
528        EltTys.push_back(getTypeByID(Record[i], true));
529      ResultTy = StructType::get(EltTys, Record[0]);
530      break;
531    }
532    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
533      if (Record.size() < 2)
534        return Error("Invalid ARRAY type record");
535      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
536      break;
537    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
538      if (Record.size() < 2)
539        return Error("Invalid VECTOR type record");
540      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
541      break;
542    }
543
544    if (NumRecords == TypeList.size()) {
545      // If this is a new type slot, just append it.
546      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
547      ++NumRecords;
548    } else if (ResultTy == 0) {
549      // Otherwise, this was forward referenced, so an opaque type was created,
550      // but the result type is actually just an opaque.  Leave the one we
551      // created previously.
552      ++NumRecords;
553    } else {
554      // Otherwise, this was forward referenced, so an opaque type was created.
555      // Resolve the opaque type to the real type now.
556      assert(NumRecords < TypeList.size() && "Typelist imbalance");
557      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
558
559      // Don't directly push the new type on the Tab. Instead we want to replace
560      // the opaque type we previously inserted with the new concrete value. The
561      // refinement from the abstract (opaque) type to the new type causes all
562      // uses of the abstract type to use the concrete type (NewTy). This will
563      // also cause the opaque type to be deleted.
564      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
565
566      // This should have replaced the old opaque type with the new type in the
567      // value table... or with a preexisting type that was already in the
568      // system.  Let's just make sure it did.
569      assert(TypeList[NumRecords-1].get() != OldTy &&
570             "refineAbstractType didn't work!");
571    }
572  }
573}
574
575
576bool BitcodeReader::ParseTypeSymbolTable() {
577  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
578    return Error("Malformed block record");
579
580  SmallVector<uint64_t, 64> Record;
581
582  // Read all the records for this type table.
583  std::string TypeName;
584  while (1) {
585    unsigned Code = Stream.ReadCode();
586    if (Code == bitc::END_BLOCK) {
587      if (Stream.ReadBlockEnd())
588        return Error("Error at end of type symbol table block");
589      return false;
590    }
591
592    if (Code == bitc::ENTER_SUBBLOCK) {
593      // No known subblocks, always skip them.
594      Stream.ReadSubBlockID();
595      if (Stream.SkipBlock())
596        return Error("Malformed block record");
597      continue;
598    }
599
600    if (Code == bitc::DEFINE_ABBREV) {
601      Stream.ReadAbbrevRecord();
602      continue;
603    }
604
605    // Read a record.
606    Record.clear();
607    switch (Stream.ReadRecord(Code, Record)) {
608    default:  // Default behavior: unknown type.
609      break;
610    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
611      if (ConvertToString(Record, 1, TypeName))
612        return Error("Invalid TST_ENTRY record");
613      unsigned TypeID = Record[0];
614      if (TypeID >= TypeList.size())
615        return Error("Invalid Type ID in TST_ENTRY record");
616
617      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
618      TypeName.clear();
619      break;
620    }
621  }
622}
623
624bool BitcodeReader::ParseValueSymbolTable() {
625  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
626    return Error("Malformed block record");
627
628  SmallVector<uint64_t, 64> Record;
629
630  // Read all the records for this value table.
631  SmallString<128> ValueName;
632  while (1) {
633    unsigned Code = Stream.ReadCode();
634    if (Code == bitc::END_BLOCK) {
635      if (Stream.ReadBlockEnd())
636        return Error("Error at end of value symbol table block");
637      return false;
638    }
639    if (Code == bitc::ENTER_SUBBLOCK) {
640      // No known subblocks, always skip them.
641      Stream.ReadSubBlockID();
642      if (Stream.SkipBlock())
643        return Error("Malformed block record");
644      continue;
645    }
646
647    if (Code == bitc::DEFINE_ABBREV) {
648      Stream.ReadAbbrevRecord();
649      continue;
650    }
651
652    // Read a record.
653    Record.clear();
654    switch (Stream.ReadRecord(Code, Record)) {
655    default:  // Default behavior: unknown type.
656      break;
657    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
658      if (ConvertToString(Record, 1, ValueName))
659        return Error("Invalid TST_ENTRY record");
660      unsigned ValueID = Record[0];
661      if (ValueID >= ValueList.size())
662        return Error("Invalid Value ID in VST_ENTRY record");
663      Value *V = ValueList[ValueID];
664
665      V->setName(&ValueName[0], ValueName.size());
666      ValueName.clear();
667      break;
668    }
669    case bitc::VST_CODE_BBENTRY: {
670      if (ConvertToString(Record, 1, ValueName))
671        return Error("Invalid VST_BBENTRY record");
672      BasicBlock *BB = getBasicBlock(Record[0]);
673      if (BB == 0)
674        return Error("Invalid BB ID in VST_BBENTRY record");
675
676      BB->setName(&ValueName[0], ValueName.size());
677      ValueName.clear();
678      break;
679    }
680    }
681  }
682}
683
684/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
685/// the LSB for dense VBR encoding.
686static uint64_t DecodeSignRotatedValue(uint64_t V) {
687  if ((V & 1) == 0)
688    return V >> 1;
689  if (V != 1)
690    return -(V >> 1);
691  // There is no such thing as -0 with integers.  "-0" really means MININT.
692  return 1ULL << 63;
693}
694
695/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
696/// values and aliases that we can.
697bool BitcodeReader::ResolveGlobalAndAliasInits() {
698  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
699  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
700
701  GlobalInitWorklist.swap(GlobalInits);
702  AliasInitWorklist.swap(AliasInits);
703
704  while (!GlobalInitWorklist.empty()) {
705    unsigned ValID = GlobalInitWorklist.back().second;
706    if (ValID >= ValueList.size()) {
707      // Not ready to resolve this yet, it requires something later in the file.
708      GlobalInits.push_back(GlobalInitWorklist.back());
709    } else {
710      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
711        GlobalInitWorklist.back().first->setInitializer(C);
712      else
713        return Error("Global variable initializer is not a constant!");
714    }
715    GlobalInitWorklist.pop_back();
716  }
717
718  while (!AliasInitWorklist.empty()) {
719    unsigned ValID = AliasInitWorklist.back().second;
720    if (ValID >= ValueList.size()) {
721      AliasInits.push_back(AliasInitWorklist.back());
722    } else {
723      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
724        AliasInitWorklist.back().first->setAliasee(C);
725      else
726        return Error("Alias initializer is not a constant!");
727    }
728    AliasInitWorklist.pop_back();
729  }
730  return false;
731}
732
733
734bool BitcodeReader::ParseConstants() {
735  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
736    return Error("Malformed block record");
737
738  SmallVector<uint64_t, 64> Record;
739
740  // Read all the records for this value table.
741  const Type *CurTy = Type::Int32Ty;
742  unsigned NextCstNo = ValueList.size();
743  while (1) {
744    unsigned Code = Stream.ReadCode();
745    if (Code == bitc::END_BLOCK)
746      break;
747
748    if (Code == bitc::ENTER_SUBBLOCK) {
749      // No known subblocks, always skip them.
750      Stream.ReadSubBlockID();
751      if (Stream.SkipBlock())
752        return Error("Malformed block record");
753      continue;
754    }
755
756    if (Code == bitc::DEFINE_ABBREV) {
757      Stream.ReadAbbrevRecord();
758      continue;
759    }
760
761    // Read a record.
762    Record.clear();
763    Value *V = 0;
764    switch (Stream.ReadRecord(Code, Record)) {
765    default:  // Default behavior: unknown constant
766    case bitc::CST_CODE_UNDEF:     // UNDEF
767      V = UndefValue::get(CurTy);
768      break;
769    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
770      if (Record.empty())
771        return Error("Malformed CST_SETTYPE record");
772      if (Record[0] >= TypeList.size())
773        return Error("Invalid Type ID in CST_SETTYPE record");
774      CurTy = TypeList[Record[0]];
775      continue;  // Skip the ValueList manipulation.
776    case bitc::CST_CODE_NULL:      // NULL
777      V = Constant::getNullValue(CurTy);
778      break;
779    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
780      if (!isa<IntegerType>(CurTy) || Record.empty())
781        return Error("Invalid CST_INTEGER record");
782      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
783      break;
784    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
785      if (!isa<IntegerType>(CurTy) || Record.empty())
786        return Error("Invalid WIDE_INTEGER record");
787
788      unsigned NumWords = Record.size();
789      SmallVector<uint64_t, 8> Words;
790      Words.resize(NumWords);
791      for (unsigned i = 0; i != NumWords; ++i)
792        Words[i] = DecodeSignRotatedValue(Record[i]);
793      V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
794                                 NumWords, &Words[0]));
795      break;
796    }
797    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
798      if (Record.empty())
799        return Error("Invalid FLOAT record");
800      if (CurTy == Type::FloatTy)
801        V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
802      else if (CurTy == Type::DoubleTy)
803        V = ConstantFP::get(APFloat(APInt(64, Record[0])));
804      else if (CurTy == Type::X86_FP80Ty)
805        V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
806      else if (CurTy == Type::FP128Ty)
807        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
808      else if (CurTy == Type::PPC_FP128Ty)
809        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
810      else
811        V = UndefValue::get(CurTy);
812      break;
813    }
814
815    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
816      if (Record.empty())
817        return Error("Invalid CST_AGGREGATE record");
818
819      unsigned Size = Record.size();
820      std::vector<Constant*> Elts;
821
822      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
823        for (unsigned i = 0; i != Size; ++i)
824          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
825                                                     STy->getElementType(i)));
826        V = ConstantStruct::get(STy, Elts);
827      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
828        const Type *EltTy = ATy->getElementType();
829        for (unsigned i = 0; i != Size; ++i)
830          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
831        V = ConstantArray::get(ATy, Elts);
832      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
833        const Type *EltTy = VTy->getElementType();
834        for (unsigned i = 0; i != Size; ++i)
835          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
836        V = ConstantVector::get(Elts);
837      } else {
838        V = UndefValue::get(CurTy);
839      }
840      break;
841    }
842    case bitc::CST_CODE_STRING: { // STRING: [values]
843      if (Record.empty())
844        return Error("Invalid CST_AGGREGATE record");
845
846      const ArrayType *ATy = cast<ArrayType>(CurTy);
847      const Type *EltTy = ATy->getElementType();
848
849      unsigned Size = Record.size();
850      std::vector<Constant*> Elts;
851      for (unsigned i = 0; i != Size; ++i)
852        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
853      V = ConstantArray::get(ATy, Elts);
854      break;
855    }
856    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
857      if (Record.empty())
858        return Error("Invalid CST_AGGREGATE record");
859
860      const ArrayType *ATy = cast<ArrayType>(CurTy);
861      const Type *EltTy = ATy->getElementType();
862
863      unsigned Size = Record.size();
864      std::vector<Constant*> Elts;
865      for (unsigned i = 0; i != Size; ++i)
866        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
867      Elts.push_back(Constant::getNullValue(EltTy));
868      V = ConstantArray::get(ATy, Elts);
869      break;
870    }
871    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
872      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
873      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
874      if (Opc < 0) {
875        V = UndefValue::get(CurTy);  // Unknown binop.
876      } else {
877        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
878        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
879        V = ConstantExpr::get(Opc, LHS, RHS);
880      }
881      break;
882    }
883    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
884      if (Record.size() < 3) return Error("Invalid CE_CAST record");
885      int Opc = GetDecodedCastOpcode(Record[0]);
886      if (Opc < 0) {
887        V = UndefValue::get(CurTy);  // Unknown cast.
888      } else {
889        const Type *OpTy = getTypeByID(Record[1]);
890        if (!OpTy) return Error("Invalid CE_CAST record");
891        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
892        V = ConstantExpr::getCast(Opc, Op, CurTy);
893      }
894      break;
895    }
896    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
897      if (Record.size() & 1) return Error("Invalid CE_GEP record");
898      SmallVector<Constant*, 16> Elts;
899      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
900        const Type *ElTy = getTypeByID(Record[i]);
901        if (!ElTy) return Error("Invalid CE_GEP record");
902        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
903      }
904      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
905      break;
906    }
907    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
908      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
909      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
910                                                              Type::Int1Ty),
911                                  ValueList.getConstantFwdRef(Record[1],CurTy),
912                                  ValueList.getConstantFwdRef(Record[2],CurTy));
913      break;
914    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
915      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
916      const VectorType *OpTy =
917        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
918      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
919      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
920      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
921      V = ConstantExpr::getExtractElement(Op0, Op1);
922      break;
923    }
924    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
925      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
926      if (Record.size() < 3 || OpTy == 0)
927        return Error("Invalid CE_INSERTELT record");
928      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
929      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
930                                                  OpTy->getElementType());
931      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
932      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
933      break;
934    }
935    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
936      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
937      if (Record.size() < 3 || OpTy == 0)
938        return Error("Invalid CE_SHUFFLEVEC record");
939      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
940      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
941      const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
942      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
943      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
944      break;
945    }
946    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
947      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
948      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
949      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
950        return Error("Invalid CE_SHUFVEC_EX record");
951      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
952      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
953      const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
954      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
955      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
956      break;
957    }
958    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
959      if (Record.size() < 4) return Error("Invalid CE_CMP record");
960      const Type *OpTy = getTypeByID(Record[0]);
961      if (OpTy == 0) return Error("Invalid CE_CMP record");
962      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
963      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
964
965      if (OpTy->isFloatingPoint())
966        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
967      else if (!isa<VectorType>(OpTy))
968        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
969      else if (OpTy->isFPOrFPVector())
970        V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
971      else
972        V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
973      break;
974    }
975    case bitc::CST_CODE_INLINEASM: {
976      if (Record.size() < 2) return Error("Invalid INLINEASM record");
977      std::string AsmStr, ConstrStr;
978      bool HasSideEffects = Record[0];
979      unsigned AsmStrSize = Record[1];
980      if (2+AsmStrSize >= Record.size())
981        return Error("Invalid INLINEASM record");
982      unsigned ConstStrSize = Record[2+AsmStrSize];
983      if (3+AsmStrSize+ConstStrSize > Record.size())
984        return Error("Invalid INLINEASM record");
985
986      for (unsigned i = 0; i != AsmStrSize; ++i)
987        AsmStr += (char)Record[2+i];
988      for (unsigned i = 0; i != ConstStrSize; ++i)
989        ConstrStr += (char)Record[3+AsmStrSize+i];
990      const PointerType *PTy = cast<PointerType>(CurTy);
991      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
992                         AsmStr, ConstrStr, HasSideEffects);
993      break;
994    }
995    }
996
997    ValueList.AssignValue(V, NextCstNo);
998    ++NextCstNo;
999  }
1000
1001  if (NextCstNo != ValueList.size())
1002    return Error("Invalid constant reference!");
1003
1004  if (Stream.ReadBlockEnd())
1005    return Error("Error at end of constants block");
1006
1007  // Once all the constants have been read, go through and resolve forward
1008  // references.
1009  ValueList.ResolveConstantForwardRefs();
1010  return false;
1011}
1012
1013/// RememberAndSkipFunctionBody - When we see the block for a function body,
1014/// remember where it is and then skip it.  This lets us lazily deserialize the
1015/// functions.
1016bool BitcodeReader::RememberAndSkipFunctionBody() {
1017  // Get the function we are talking about.
1018  if (FunctionsWithBodies.empty())
1019    return Error("Insufficient function protos");
1020
1021  Function *Fn = FunctionsWithBodies.back();
1022  FunctionsWithBodies.pop_back();
1023
1024  // Save the current stream state.
1025  uint64_t CurBit = Stream.GetCurrentBitNo();
1026  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1027
1028  // Set the functions linkage to GhostLinkage so we know it is lazily
1029  // deserialized.
1030  Fn->setLinkage(GlobalValue::GhostLinkage);
1031
1032  // Skip over the function block for now.
1033  if (Stream.SkipBlock())
1034    return Error("Malformed block record");
1035  return false;
1036}
1037
1038bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1039  // Reject multiple MODULE_BLOCK's in a single bitstream.
1040  if (TheModule)
1041    return Error("Multiple MODULE_BLOCKs in same stream");
1042
1043  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1044    return Error("Malformed block record");
1045
1046  // Otherwise, create the module.
1047  TheModule = new Module(ModuleID);
1048
1049  SmallVector<uint64_t, 64> Record;
1050  std::vector<std::string> SectionTable;
1051  std::vector<std::string> GCTable;
1052
1053  // Read all the records for this module.
1054  while (!Stream.AtEndOfStream()) {
1055    unsigned Code = Stream.ReadCode();
1056    if (Code == bitc::END_BLOCK) {
1057      if (Stream.ReadBlockEnd())
1058        return Error("Error at end of module block");
1059
1060      // Patch the initializers for globals and aliases up.
1061      ResolveGlobalAndAliasInits();
1062      if (!GlobalInits.empty() || !AliasInits.empty())
1063        return Error("Malformed global initializer set");
1064      if (!FunctionsWithBodies.empty())
1065        return Error("Too few function bodies found");
1066
1067      // Look for intrinsic functions which need to be upgraded at some point
1068      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1069           FI != FE; ++FI) {
1070        Function* NewFn;
1071        if (UpgradeIntrinsicFunction(FI, NewFn))
1072          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1073      }
1074
1075      // Force deallocation of memory for these vectors to favor the client that
1076      // want lazy deserialization.
1077      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1078      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1079      std::vector<Function*>().swap(FunctionsWithBodies);
1080      return false;
1081    }
1082
1083    if (Code == bitc::ENTER_SUBBLOCK) {
1084      switch (Stream.ReadSubBlockID()) {
1085      default:  // Skip unknown content.
1086        if (Stream.SkipBlock())
1087          return Error("Malformed block record");
1088        break;
1089      case bitc::BLOCKINFO_BLOCK_ID:
1090        if (Stream.ReadBlockInfoBlock())
1091          return Error("Malformed BlockInfoBlock");
1092        break;
1093      case bitc::PARAMATTR_BLOCK_ID:
1094        if (ParseAttributeBlock())
1095          return true;
1096        break;
1097      case bitc::TYPE_BLOCK_ID:
1098        if (ParseTypeTable())
1099          return true;
1100        break;
1101      case bitc::TYPE_SYMTAB_BLOCK_ID:
1102        if (ParseTypeSymbolTable())
1103          return true;
1104        break;
1105      case bitc::VALUE_SYMTAB_BLOCK_ID:
1106        if (ParseValueSymbolTable())
1107          return true;
1108        break;
1109      case bitc::CONSTANTS_BLOCK_ID:
1110        if (ParseConstants() || ResolveGlobalAndAliasInits())
1111          return true;
1112        break;
1113      case bitc::FUNCTION_BLOCK_ID:
1114        // If this is the first function body we've seen, reverse the
1115        // FunctionsWithBodies list.
1116        if (!HasReversedFunctionsWithBodies) {
1117          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1118          HasReversedFunctionsWithBodies = true;
1119        }
1120
1121        if (RememberAndSkipFunctionBody())
1122          return true;
1123        break;
1124      }
1125      continue;
1126    }
1127
1128    if (Code == bitc::DEFINE_ABBREV) {
1129      Stream.ReadAbbrevRecord();
1130      continue;
1131    }
1132
1133    // Read a record.
1134    switch (Stream.ReadRecord(Code, Record)) {
1135    default: break;  // Default behavior, ignore unknown content.
1136    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1137      if (Record.size() < 1)
1138        return Error("Malformed MODULE_CODE_VERSION");
1139      // Only version #0 is supported so far.
1140      if (Record[0] != 0)
1141        return Error("Unknown bitstream version!");
1142      break;
1143    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1144      std::string S;
1145      if (ConvertToString(Record, 0, S))
1146        return Error("Invalid MODULE_CODE_TRIPLE record");
1147      TheModule->setTargetTriple(S);
1148      break;
1149    }
1150    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1151      std::string S;
1152      if (ConvertToString(Record, 0, S))
1153        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1154      TheModule->setDataLayout(S);
1155      break;
1156    }
1157    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1158      std::string S;
1159      if (ConvertToString(Record, 0, S))
1160        return Error("Invalid MODULE_CODE_ASM record");
1161      TheModule->setModuleInlineAsm(S);
1162      break;
1163    }
1164    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1165      std::string S;
1166      if (ConvertToString(Record, 0, S))
1167        return Error("Invalid MODULE_CODE_DEPLIB record");
1168      TheModule->addLibrary(S);
1169      break;
1170    }
1171    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1172      std::string S;
1173      if (ConvertToString(Record, 0, S))
1174        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1175      SectionTable.push_back(S);
1176      break;
1177    }
1178    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1179      std::string S;
1180      if (ConvertToString(Record, 0, S))
1181        return Error("Invalid MODULE_CODE_GCNAME record");
1182      GCTable.push_back(S);
1183      break;
1184    }
1185    // GLOBALVAR: [pointer type, isconst, initid,
1186    //             linkage, alignment, section, visibility, threadlocal]
1187    case bitc::MODULE_CODE_GLOBALVAR: {
1188      if (Record.size() < 6)
1189        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1190      const Type *Ty = getTypeByID(Record[0]);
1191      if (!isa<PointerType>(Ty))
1192        return Error("Global not a pointer type!");
1193      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1194      Ty = cast<PointerType>(Ty)->getElementType();
1195
1196      bool isConstant = Record[1];
1197      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1198      unsigned Alignment = (1 << Record[4]) >> 1;
1199      std::string Section;
1200      if (Record[5]) {
1201        if (Record[5]-1 >= SectionTable.size())
1202          return Error("Invalid section ID");
1203        Section = SectionTable[Record[5]-1];
1204      }
1205      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1206      if (Record.size() > 6)
1207        Visibility = GetDecodedVisibility(Record[6]);
1208      bool isThreadLocal = false;
1209      if (Record.size() > 7)
1210        isThreadLocal = Record[7];
1211
1212      GlobalVariable *NewGV =
1213        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1214                           isThreadLocal, AddressSpace);
1215      NewGV->setAlignment(Alignment);
1216      if (!Section.empty())
1217        NewGV->setSection(Section);
1218      NewGV->setVisibility(Visibility);
1219      NewGV->setThreadLocal(isThreadLocal);
1220
1221      ValueList.push_back(NewGV);
1222
1223      // Remember which value to use for the global initializer.
1224      if (unsigned InitID = Record[2])
1225        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1226      break;
1227    }
1228    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1229    //             alignment, section, visibility, gc]
1230    case bitc::MODULE_CODE_FUNCTION: {
1231      if (Record.size() < 8)
1232        return Error("Invalid MODULE_CODE_FUNCTION record");
1233      const Type *Ty = getTypeByID(Record[0]);
1234      if (!isa<PointerType>(Ty))
1235        return Error("Function not a pointer type!");
1236      const FunctionType *FTy =
1237        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1238      if (!FTy)
1239        return Error("Function not a pointer to function type!");
1240
1241      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1242                                        "", TheModule);
1243
1244      Func->setCallingConv(Record[1]);
1245      bool isProto = Record[2];
1246      Func->setLinkage(GetDecodedLinkage(Record[3]));
1247      Func->setAttributes(getAttributes(Record[4]));
1248
1249      Func->setAlignment((1 << Record[5]) >> 1);
1250      if (Record[6]) {
1251        if (Record[6]-1 >= SectionTable.size())
1252          return Error("Invalid section ID");
1253        Func->setSection(SectionTable[Record[6]-1]);
1254      }
1255      Func->setVisibility(GetDecodedVisibility(Record[7]));
1256      if (Record.size() > 8 && Record[8]) {
1257        if (Record[8]-1 > GCTable.size())
1258          return Error("Invalid GC ID");
1259        Func->setGC(GCTable[Record[8]-1].c_str());
1260      }
1261      ValueList.push_back(Func);
1262
1263      // If this is a function with a body, remember the prototype we are
1264      // creating now, so that we can match up the body with them later.
1265      if (!isProto)
1266        FunctionsWithBodies.push_back(Func);
1267      break;
1268    }
1269    // ALIAS: [alias type, aliasee val#, linkage]
1270    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1271    case bitc::MODULE_CODE_ALIAS: {
1272      if (Record.size() < 3)
1273        return Error("Invalid MODULE_ALIAS record");
1274      const Type *Ty = getTypeByID(Record[0]);
1275      if (!isa<PointerType>(Ty))
1276        return Error("Function not a pointer type!");
1277
1278      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1279                                           "", 0, TheModule);
1280      // Old bitcode files didn't have visibility field.
1281      if (Record.size() > 3)
1282        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1283      ValueList.push_back(NewGA);
1284      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1285      break;
1286    }
1287    /// MODULE_CODE_PURGEVALS: [numvals]
1288    case bitc::MODULE_CODE_PURGEVALS:
1289      // Trim down the value list to the specified size.
1290      if (Record.size() < 1 || Record[0] > ValueList.size())
1291        return Error("Invalid MODULE_PURGEVALS record");
1292      ValueList.shrinkTo(Record[0]);
1293      break;
1294    }
1295    Record.clear();
1296  }
1297
1298  return Error("Premature end of bitstream");
1299}
1300
1301/// SkipWrapperHeader - Some systems wrap bc files with a special header for
1302/// padding or other reasons.  The format of this header is:
1303///
1304/// struct bc_header {
1305///   uint32_t Magic;         // 0x0B17C0DE
1306///   uint32_t Version;       // Version, currently always 0.
1307///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1308///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1309///   ... potentially other gunk ...
1310/// };
1311///
1312/// This function is called when we find a file with a matching magic number.
1313/// In this case, skip down to the subsection of the file that is actually a BC
1314/// file.
1315static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1316  enum {
1317    KnownHeaderSize = 4*4,  // Size of header we read.
1318    OffsetField = 2*4,      // Offset in bytes to Offset field.
1319    SizeField = 3*4         // Offset in bytes to Size field.
1320  };
1321
1322
1323  // Must contain the header!
1324  if (BufEnd-BufPtr < KnownHeaderSize) return true;
1325
1326  unsigned Offset = ( BufPtr[OffsetField  ]        |
1327                     (BufPtr[OffsetField+1] << 8)  |
1328                     (BufPtr[OffsetField+2] << 16) |
1329                     (BufPtr[OffsetField+3] << 24));
1330  unsigned Size   = ( BufPtr[SizeField    ]        |
1331                     (BufPtr[SizeField  +1] << 8)  |
1332                     (BufPtr[SizeField  +2] << 16) |
1333                     (BufPtr[SizeField  +3] << 24));
1334
1335  // Verify that Offset+Size fits in the file.
1336  if (Offset+Size > unsigned(BufEnd-BufPtr))
1337    return true;
1338  BufPtr += Offset;
1339  BufEnd = BufPtr+Size;
1340  return false;
1341}
1342
1343bool BitcodeReader::ParseBitcode() {
1344  TheModule = 0;
1345
1346  if (Buffer->getBufferSize() & 3)
1347    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1348
1349  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1350  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1351
1352  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1353  // The magic number is 0x0B17C0DE stored in little endian.
1354  if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1355      BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1356    if (SkipWrapperHeader(BufPtr, BufEnd))
1357      return Error("Invalid bitcode wrapper header");
1358
1359  Stream.init(BufPtr, BufEnd);
1360
1361  // Sniff for the signature.
1362  if (Stream.Read(8) != 'B' ||
1363      Stream.Read(8) != 'C' ||
1364      Stream.Read(4) != 0x0 ||
1365      Stream.Read(4) != 0xC ||
1366      Stream.Read(4) != 0xE ||
1367      Stream.Read(4) != 0xD)
1368    return Error("Invalid bitcode signature");
1369
1370  // We expect a number of well-defined blocks, though we don't necessarily
1371  // need to understand them all.
1372  while (!Stream.AtEndOfStream()) {
1373    unsigned Code = Stream.ReadCode();
1374
1375    if (Code != bitc::ENTER_SUBBLOCK)
1376      return Error("Invalid record at top-level");
1377
1378    unsigned BlockID = Stream.ReadSubBlockID();
1379
1380    // We only know the MODULE subblock ID.
1381    switch (BlockID) {
1382    case bitc::BLOCKINFO_BLOCK_ID:
1383      if (Stream.ReadBlockInfoBlock())
1384        return Error("Malformed BlockInfoBlock");
1385      break;
1386    case bitc::MODULE_BLOCK_ID:
1387      if (ParseModule(Buffer->getBufferIdentifier()))
1388        return true;
1389      break;
1390    default:
1391      if (Stream.SkipBlock())
1392        return Error("Malformed block record");
1393      break;
1394    }
1395  }
1396
1397  return false;
1398}
1399
1400
1401/// ParseFunctionBody - Lazily parse the specified function body block.
1402bool BitcodeReader::ParseFunctionBody(Function *F) {
1403  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1404    return Error("Malformed block record");
1405
1406  unsigned ModuleValueListSize = ValueList.size();
1407
1408  // Add all the function arguments to the value table.
1409  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1410    ValueList.push_back(I);
1411
1412  unsigned NextValueNo = ValueList.size();
1413  BasicBlock *CurBB = 0;
1414  unsigned CurBBNo = 0;
1415
1416  // Read all the records.
1417  SmallVector<uint64_t, 64> Record;
1418  while (1) {
1419    unsigned Code = Stream.ReadCode();
1420    if (Code == bitc::END_BLOCK) {
1421      if (Stream.ReadBlockEnd())
1422        return Error("Error at end of function block");
1423      break;
1424    }
1425
1426    if (Code == bitc::ENTER_SUBBLOCK) {
1427      switch (Stream.ReadSubBlockID()) {
1428      default:  // Skip unknown content.
1429        if (Stream.SkipBlock())
1430          return Error("Malformed block record");
1431        break;
1432      case bitc::CONSTANTS_BLOCK_ID:
1433        if (ParseConstants()) return true;
1434        NextValueNo = ValueList.size();
1435        break;
1436      case bitc::VALUE_SYMTAB_BLOCK_ID:
1437        if (ParseValueSymbolTable()) return true;
1438        break;
1439      }
1440      continue;
1441    }
1442
1443    if (Code == bitc::DEFINE_ABBREV) {
1444      Stream.ReadAbbrevRecord();
1445      continue;
1446    }
1447
1448    // Read a record.
1449    Record.clear();
1450    Instruction *I = 0;
1451    switch (Stream.ReadRecord(Code, Record)) {
1452    default: // Default behavior: reject
1453      return Error("Unknown instruction");
1454    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1455      if (Record.size() < 1 || Record[0] == 0)
1456        return Error("Invalid DECLAREBLOCKS record");
1457      // Create all the basic blocks for the function.
1458      FunctionBBs.resize(Record[0]);
1459      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1460        FunctionBBs[i] = BasicBlock::Create("", F);
1461      CurBB = FunctionBBs[0];
1462      continue;
1463
1464    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1465      unsigned OpNum = 0;
1466      Value *LHS, *RHS;
1467      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1468          getValue(Record, OpNum, LHS->getType(), RHS) ||
1469          OpNum+1 != Record.size())
1470        return Error("Invalid BINOP record");
1471
1472      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1473      if (Opc == -1) return Error("Invalid BINOP record");
1474      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1475      break;
1476    }
1477    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1478      unsigned OpNum = 0;
1479      Value *Op;
1480      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1481          OpNum+2 != Record.size())
1482        return Error("Invalid CAST record");
1483
1484      const Type *ResTy = getTypeByID(Record[OpNum]);
1485      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1486      if (Opc == -1 || ResTy == 0)
1487        return Error("Invalid CAST record");
1488      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1489      break;
1490    }
1491    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1492      unsigned OpNum = 0;
1493      Value *BasePtr;
1494      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1495        return Error("Invalid GEP record");
1496
1497      SmallVector<Value*, 16> GEPIdx;
1498      while (OpNum != Record.size()) {
1499        Value *Op;
1500        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1501          return Error("Invalid GEP record");
1502        GEPIdx.push_back(Op);
1503      }
1504
1505      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1506      break;
1507    }
1508
1509    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1510                                       // EXTRACTVAL: [opty, opval, n x indices]
1511      unsigned OpNum = 0;
1512      Value *Agg;
1513      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1514        return Error("Invalid EXTRACTVAL record");
1515
1516      SmallVector<unsigned, 4> EXTRACTVALIdx;
1517      for (unsigned RecSize = Record.size();
1518           OpNum != RecSize; ++OpNum) {
1519        uint64_t Index = Record[OpNum];
1520        if ((unsigned)Index != Index)
1521          return Error("Invalid EXTRACTVAL index");
1522        EXTRACTVALIdx.push_back((unsigned)Index);
1523      }
1524
1525      I = ExtractValueInst::Create(Agg,
1526                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1527      break;
1528    }
1529
1530    case bitc::FUNC_CODE_INST_INSERTVAL: {
1531                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1532      unsigned OpNum = 0;
1533      Value *Agg;
1534      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1535        return Error("Invalid INSERTVAL record");
1536      Value *Val;
1537      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1538        return Error("Invalid INSERTVAL record");
1539
1540      SmallVector<unsigned, 4> INSERTVALIdx;
1541      for (unsigned RecSize = Record.size();
1542           OpNum != RecSize; ++OpNum) {
1543        uint64_t Index = Record[OpNum];
1544        if ((unsigned)Index != Index)
1545          return Error("Invalid INSERTVAL index");
1546        INSERTVALIdx.push_back((unsigned)Index);
1547      }
1548
1549      I = InsertValueInst::Create(Agg, Val,
1550                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1551      break;
1552    }
1553
1554    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1555      // obsolete form of select
1556      // handles select i1 ... in old bitcode
1557      unsigned OpNum = 0;
1558      Value *TrueVal, *FalseVal, *Cond;
1559      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1560          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1561          getValue(Record, OpNum, Type::Int1Ty, Cond))
1562        return Error("Invalid SELECT record");
1563
1564      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1565      break;
1566    }
1567
1568    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1569      // new form of select
1570      // handles select i1 or select [N x i1]
1571      unsigned OpNum = 0;
1572      Value *TrueVal, *FalseVal, *Cond;
1573      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1574          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1575          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1576        return Error("Invalid SELECT record");
1577
1578      // select condition can be either i1 or [N x i1]
1579      if (const VectorType* vector_type =
1580          dyn_cast<const VectorType>(Cond->getType())) {
1581        // expect <n x i1>
1582        if (vector_type->getElementType() != Type::Int1Ty)
1583          return Error("Invalid SELECT condition type");
1584      } else {
1585        // expect i1
1586        if (Cond->getType() != Type::Int1Ty)
1587          return Error("Invalid SELECT condition type");
1588      }
1589
1590      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1591      break;
1592    }
1593
1594    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1595      unsigned OpNum = 0;
1596      Value *Vec, *Idx;
1597      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1598          getValue(Record, OpNum, Type::Int32Ty, Idx))
1599        return Error("Invalid EXTRACTELT record");
1600      I = new ExtractElementInst(Vec, Idx);
1601      break;
1602    }
1603
1604    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1605      unsigned OpNum = 0;
1606      Value *Vec, *Elt, *Idx;
1607      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1608          getValue(Record, OpNum,
1609                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1610          getValue(Record, OpNum, Type::Int32Ty, Idx))
1611        return Error("Invalid INSERTELT record");
1612      I = InsertElementInst::Create(Vec, Elt, Idx);
1613      break;
1614    }
1615
1616    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1617      unsigned OpNum = 0;
1618      Value *Vec1, *Vec2, *Mask;
1619      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1620          getValue(Record, OpNum, Vec1->getType(), Vec2))
1621        return Error("Invalid SHUFFLEVEC record");
1622
1623      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1624        return Error("Invalid SHUFFLEVEC record");
1625      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1626      break;
1627    }
1628
1629    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1630      // VFCmp/VICmp
1631      // or old form of ICmp/FCmp returning bool
1632      unsigned OpNum = 0;
1633      Value *LHS, *RHS;
1634      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1635          getValue(Record, OpNum, LHS->getType(), RHS) ||
1636          OpNum+1 != Record.size())
1637        return Error("Invalid CMP record");
1638
1639      if (LHS->getType()->isFloatingPoint())
1640        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1641      else if (!isa<VectorType>(LHS->getType()))
1642        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1643      else if (LHS->getType()->isFPOrFPVector())
1644        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1645      else
1646        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1647      break;
1648    }
1649    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1650      // Fcmp/ICmp returning bool or vector of bool
1651      unsigned OpNum = 0;
1652      Value *LHS, *RHS;
1653      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1654          getValue(Record, OpNum, LHS->getType(), RHS) ||
1655          OpNum+1 != Record.size())
1656        return Error("Invalid CMP2 record");
1657
1658      if (LHS->getType()->isFPOrFPVector())
1659        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1660      else
1661        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1662      break;
1663    }
1664    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1665      if (Record.size() != 2)
1666        return Error("Invalid GETRESULT record");
1667      unsigned OpNum = 0;
1668      Value *Op;
1669      getValueTypePair(Record, OpNum, NextValueNo, Op);
1670      unsigned Index = Record[1];
1671      I = ExtractValueInst::Create(Op, Index);
1672      break;
1673    }
1674
1675    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1676      {
1677        unsigned Size = Record.size();
1678        if (Size == 0) {
1679          I = ReturnInst::Create();
1680          break;
1681        }
1682
1683        unsigned OpNum = 0;
1684        SmallVector<Value *,4> Vs;
1685        do {
1686          Value *Op = NULL;
1687          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1688            return Error("Invalid RET record");
1689          Vs.push_back(Op);
1690        } while(OpNum != Record.size());
1691
1692        const Type *ReturnType = F->getReturnType();
1693        if (Vs.size() > 1 ||
1694            (isa<StructType>(ReturnType) &&
1695             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1696          Value *RV = UndefValue::get(ReturnType);
1697          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1698            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1699            CurBB->getInstList().push_back(I);
1700            ValueList.AssignValue(I, NextValueNo++);
1701            RV = I;
1702          }
1703          I = ReturnInst::Create(RV);
1704          break;
1705        }
1706
1707        I = ReturnInst::Create(Vs[0]);
1708        break;
1709      }
1710    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1711      if (Record.size() != 1 && Record.size() != 3)
1712        return Error("Invalid BR record");
1713      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1714      if (TrueDest == 0)
1715        return Error("Invalid BR record");
1716
1717      if (Record.size() == 1)
1718        I = BranchInst::Create(TrueDest);
1719      else {
1720        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1721        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1722        if (FalseDest == 0 || Cond == 0)
1723          return Error("Invalid BR record");
1724        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1725      }
1726      break;
1727    }
1728    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1729      if (Record.size() < 3 || (Record.size() & 1) == 0)
1730        return Error("Invalid SWITCH record");
1731      const Type *OpTy = getTypeByID(Record[0]);
1732      Value *Cond = getFnValueByID(Record[1], OpTy);
1733      BasicBlock *Default = getBasicBlock(Record[2]);
1734      if (OpTy == 0 || Cond == 0 || Default == 0)
1735        return Error("Invalid SWITCH record");
1736      unsigned NumCases = (Record.size()-3)/2;
1737      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1738      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1739        ConstantInt *CaseVal =
1740          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1741        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1742        if (CaseVal == 0 || DestBB == 0) {
1743          delete SI;
1744          return Error("Invalid SWITCH record!");
1745        }
1746        SI->addCase(CaseVal, DestBB);
1747      }
1748      I = SI;
1749      break;
1750    }
1751
1752    case bitc::FUNC_CODE_INST_INVOKE: {
1753      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1754      if (Record.size() < 4) return Error("Invalid INVOKE record");
1755      AttrListPtr PAL = getAttributes(Record[0]);
1756      unsigned CCInfo = Record[1];
1757      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1758      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1759
1760      unsigned OpNum = 4;
1761      Value *Callee;
1762      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1763        return Error("Invalid INVOKE record");
1764
1765      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1766      const FunctionType *FTy = !CalleeTy ? 0 :
1767        dyn_cast<FunctionType>(CalleeTy->getElementType());
1768
1769      // Check that the right number of fixed parameters are here.
1770      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1771          Record.size() < OpNum+FTy->getNumParams())
1772        return Error("Invalid INVOKE record");
1773
1774      SmallVector<Value*, 16> Ops;
1775      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1776        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1777        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1778      }
1779
1780      if (!FTy->isVarArg()) {
1781        if (Record.size() != OpNum)
1782          return Error("Invalid INVOKE record");
1783      } else {
1784        // Read type/value pairs for varargs params.
1785        while (OpNum != Record.size()) {
1786          Value *Op;
1787          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1788            return Error("Invalid INVOKE record");
1789          Ops.push_back(Op);
1790        }
1791      }
1792
1793      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1794                             Ops.begin(), Ops.end());
1795      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1796      cast<InvokeInst>(I)->setAttributes(PAL);
1797      break;
1798    }
1799    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1800      I = new UnwindInst();
1801      break;
1802    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1803      I = new UnreachableInst();
1804      break;
1805    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1806      if (Record.size() < 1 || ((Record.size()-1)&1))
1807        return Error("Invalid PHI record");
1808      const Type *Ty = getTypeByID(Record[0]);
1809      if (!Ty) return Error("Invalid PHI record");
1810
1811      PHINode *PN = PHINode::Create(Ty);
1812      PN->reserveOperandSpace((Record.size()-1)/2);
1813
1814      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1815        Value *V = getFnValueByID(Record[1+i], Ty);
1816        BasicBlock *BB = getBasicBlock(Record[2+i]);
1817        if (!V || !BB) return Error("Invalid PHI record");
1818        PN->addIncoming(V, BB);
1819      }
1820      I = PN;
1821      break;
1822    }
1823
1824    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1825      if (Record.size() < 3)
1826        return Error("Invalid MALLOC record");
1827      const PointerType *Ty =
1828        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1829      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1830      unsigned Align = Record[2];
1831      if (!Ty || !Size) return Error("Invalid MALLOC record");
1832      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1833      break;
1834    }
1835    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1836      unsigned OpNum = 0;
1837      Value *Op;
1838      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1839          OpNum != Record.size())
1840        return Error("Invalid FREE record");
1841      I = new FreeInst(Op);
1842      break;
1843    }
1844    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1845      if (Record.size() < 3)
1846        return Error("Invalid ALLOCA record");
1847      const PointerType *Ty =
1848        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1849      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1850      unsigned Align = Record[2];
1851      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1852      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1853      break;
1854    }
1855    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1856      unsigned OpNum = 0;
1857      Value *Op;
1858      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1859          OpNum+2 != Record.size())
1860        return Error("Invalid LOAD record");
1861
1862      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1863      break;
1864    }
1865    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1866      unsigned OpNum = 0;
1867      Value *Val, *Ptr;
1868      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1869          getValue(Record, OpNum,
1870                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1871          OpNum+2 != Record.size())
1872        return Error("Invalid STORE record");
1873
1874      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1875      break;
1876    }
1877    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1878      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1879      unsigned OpNum = 0;
1880      Value *Val, *Ptr;
1881      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1882          getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1883          OpNum+2 != Record.size())
1884        return Error("Invalid STORE record");
1885
1886      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1887      break;
1888    }
1889    case bitc::FUNC_CODE_INST_CALL: {
1890      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1891      if (Record.size() < 3)
1892        return Error("Invalid CALL record");
1893
1894      AttrListPtr PAL = getAttributes(Record[0]);
1895      unsigned CCInfo = Record[1];
1896
1897      unsigned OpNum = 2;
1898      Value *Callee;
1899      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1900        return Error("Invalid CALL record");
1901
1902      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1903      const FunctionType *FTy = 0;
1904      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1905      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1906        return Error("Invalid CALL record");
1907
1908      SmallVector<Value*, 16> Args;
1909      // Read the fixed params.
1910      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1911        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1912          Args.push_back(getBasicBlock(Record[OpNum]));
1913        else
1914          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1915        if (Args.back() == 0) return Error("Invalid CALL record");
1916      }
1917
1918      // Read type/value pairs for varargs params.
1919      if (!FTy->isVarArg()) {
1920        if (OpNum != Record.size())
1921          return Error("Invalid CALL record");
1922      } else {
1923        while (OpNum != Record.size()) {
1924          Value *Op;
1925          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1926            return Error("Invalid CALL record");
1927          Args.push_back(Op);
1928        }
1929      }
1930
1931      I = CallInst::Create(Callee, Args.begin(), Args.end());
1932      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1933      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1934      cast<CallInst>(I)->setAttributes(PAL);
1935      break;
1936    }
1937    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1938      if (Record.size() < 3)
1939        return Error("Invalid VAARG record");
1940      const Type *OpTy = getTypeByID(Record[0]);
1941      Value *Op = getFnValueByID(Record[1], OpTy);
1942      const Type *ResTy = getTypeByID(Record[2]);
1943      if (!OpTy || !Op || !ResTy)
1944        return Error("Invalid VAARG record");
1945      I = new VAArgInst(Op, ResTy);
1946      break;
1947    }
1948    }
1949
1950    // Add instruction to end of current BB.  If there is no current BB, reject
1951    // this file.
1952    if (CurBB == 0) {
1953      delete I;
1954      return Error("Invalid instruction with no BB");
1955    }
1956    CurBB->getInstList().push_back(I);
1957
1958    // If this was a terminator instruction, move to the next block.
1959    if (isa<TerminatorInst>(I)) {
1960      ++CurBBNo;
1961      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1962    }
1963
1964    // Non-void values get registered in the value table for future use.
1965    if (I && I->getType() != Type::VoidTy)
1966      ValueList.AssignValue(I, NextValueNo++);
1967  }
1968
1969  // Check the function list for unresolved values.
1970  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1971    if (A->getParent() == 0) {
1972      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1973      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1974        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1975          A->replaceAllUsesWith(UndefValue::get(A->getType()));
1976          delete A;
1977        }
1978      }
1979      return Error("Never resolved value found in function!");
1980    }
1981  }
1982
1983  // Trim the value list down to the size it was before we parsed this function.
1984  ValueList.shrinkTo(ModuleValueListSize);
1985  std::vector<BasicBlock*>().swap(FunctionBBs);
1986
1987  return false;
1988}
1989
1990//===----------------------------------------------------------------------===//
1991// ModuleProvider implementation
1992//===----------------------------------------------------------------------===//
1993
1994
1995bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1996  // If it already is material, ignore the request.
1997  if (!F->hasNotBeenReadFromBitcode()) return false;
1998
1999  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2000    DeferredFunctionInfo.find(F);
2001  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2002
2003  // Move the bit stream to the saved position of the deferred function body and
2004  // restore the real linkage type for the function.
2005  Stream.JumpToBit(DFII->second.first);
2006  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2007
2008  if (ParseFunctionBody(F)) {
2009    if (ErrInfo) *ErrInfo = ErrorString;
2010    return true;
2011  }
2012
2013  // Upgrade any old intrinsic calls in the function.
2014  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2015       E = UpgradedIntrinsics.end(); I != E; ++I) {
2016    if (I->first != I->second) {
2017      for (Value::use_iterator UI = I->first->use_begin(),
2018           UE = I->first->use_end(); UI != UE; ) {
2019        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2020          UpgradeIntrinsicCall(CI, I->second);
2021      }
2022    }
2023  }
2024
2025  return false;
2026}
2027
2028void BitcodeReader::dematerializeFunction(Function *F) {
2029  // If this function isn't materialized, or if it is a proto, this is a noop.
2030  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2031    return;
2032
2033  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2034
2035  // Just forget the function body, we can remat it later.
2036  F->deleteBody();
2037  F->setLinkage(GlobalValue::GhostLinkage);
2038}
2039
2040
2041Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2042  for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2043       DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2044       ++I) {
2045    Function *F = I->first;
2046    if (F->hasNotBeenReadFromBitcode() &&
2047        materializeFunction(F, ErrInfo))
2048      return 0;
2049  }
2050
2051  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2052  // delete the old functions to clean up. We can't do this unless the entire
2053  // module is materialized because there could always be another function body
2054  // with calls to the old function.
2055  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2056       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2057    if (I->first != I->second) {
2058      for (Value::use_iterator UI = I->first->use_begin(),
2059           UE = I->first->use_end(); UI != UE; ) {
2060        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2061          UpgradeIntrinsicCall(CI, I->second);
2062      }
2063      ValueList.replaceUsesOfWith(I->first, I->second);
2064      I->first->eraseFromParent();
2065    }
2066  }
2067  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2068
2069  return TheModule;
2070}
2071
2072
2073/// This method is provided by the parent ModuleProvde class and overriden
2074/// here. It simply releases the module from its provided and frees up our
2075/// state.
2076/// @brief Release our hold on the generated module
2077Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2078  // Since we're losing control of this Module, we must hand it back complete
2079  Module *M = ModuleProvider::releaseModule(ErrInfo);
2080  FreeState();
2081  return M;
2082}
2083
2084
2085//===----------------------------------------------------------------------===//
2086// External interface
2087//===----------------------------------------------------------------------===//
2088
2089/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2090///
2091ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2092                                               std::string *ErrMsg) {
2093  BitcodeReader *R = new BitcodeReader(Buffer);
2094  if (R->ParseBitcode()) {
2095    if (ErrMsg)
2096      *ErrMsg = R->getErrorString();
2097
2098    // Don't let the BitcodeReader dtor delete 'Buffer'.
2099    R->releaseMemoryBuffer();
2100    delete R;
2101    return 0;
2102  }
2103  return R;
2104}
2105
2106/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2107/// If an error occurs, return null and fill in *ErrMsg if non-null.
2108Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2109  BitcodeReader *R;
2110  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2111  if (!R) return 0;
2112
2113  // Read in the entire module.
2114  Module *M = R->materializeModule(ErrMsg);
2115
2116  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2117  // there was an error.
2118  R->releaseMemoryBuffer();
2119
2120  // If there was no error, tell ModuleProvider not to delete it when its dtor
2121  // is run.
2122  if (M)
2123    M = R->releaseModule(ErrMsg);
2124
2125  delete R;
2126  return M;
2127}
2128