BitcodeReader.cpp revision 50dead06ffc107edb7e84857baaeeb09039c631c
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/AutoUpgrade.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/OperandTraits.h"
29using namespace llvm;
30
31void BitcodeReader::FreeState() {
32  delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36
37  std::vector<AttrListPtr>().swap(MAttributes);
38  std::vector<BasicBlock*>().swap(FunctionBBs);
39  std::vector<Function*>().swap(FunctionsWithBodies);
40  DeferredFunctionInfo.clear();
41}
42
43//===----------------------------------------------------------------------===//
44//  Helper functions to implement forward reference resolution, etc.
45//===----------------------------------------------------------------------===//
46
47/// ConvertToString - Convert a string from a record into an std::string, return
48/// true on failure.
49template<typename StrTy>
50static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                            StrTy &Result) {
52  if (Idx > Record.size())
53    return true;
54
55  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56    Result += (char)Record[i];
57  return false;
58}
59
60static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61  switch (Val) {
62  default: // Map unknown/new linkages to external
63  case 0: return GlobalValue::ExternalLinkage;
64  case 1: return GlobalValue::WeakAnyLinkage;
65  case 2: return GlobalValue::AppendingLinkage;
66  case 3: return GlobalValue::InternalLinkage;
67  case 4: return GlobalValue::LinkOnceAnyLinkage;
68  case 5: return GlobalValue::DLLImportLinkage;
69  case 6: return GlobalValue::DLLExportLinkage;
70  case 7: return GlobalValue::ExternalWeakLinkage;
71  case 8: return GlobalValue::CommonLinkage;
72  case 9: return GlobalValue::PrivateLinkage;
73  case 10: return GlobalValue::WeakODRLinkage;
74  case 11: return GlobalValue::LinkOnceODRLinkage;
75  case 12: return GlobalValue::AvailableExternallyLinkage;
76  }
77}
78
79static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
80  switch (Val) {
81  default: // Map unknown visibilities to default.
82  case 0: return GlobalValue::DefaultVisibility;
83  case 1: return GlobalValue::HiddenVisibility;
84  case 2: return GlobalValue::ProtectedVisibility;
85  }
86}
87
88static int GetDecodedCastOpcode(unsigned Val) {
89  switch (Val) {
90  default: return -1;
91  case bitc::CAST_TRUNC   : return Instruction::Trunc;
92  case bitc::CAST_ZEXT    : return Instruction::ZExt;
93  case bitc::CAST_SEXT    : return Instruction::SExt;
94  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
95  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
96  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
97  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
98  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
99  case bitc::CAST_FPEXT   : return Instruction::FPExt;
100  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
101  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
102  case bitc::CAST_BITCAST : return Instruction::BitCast;
103  }
104}
105static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
106  switch (Val) {
107  default: return -1;
108  case bitc::BINOP_ADD:
109    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
110  case bitc::BINOP_SUB:
111    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
112  case bitc::BINOP_MUL:
113    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
114  case bitc::BINOP_UDIV: return Instruction::UDiv;
115  case bitc::BINOP_SDIV:
116    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
117  case bitc::BINOP_UREM: return Instruction::URem;
118  case bitc::BINOP_SREM:
119    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
120  case bitc::BINOP_SHL:  return Instruction::Shl;
121  case bitc::BINOP_LSHR: return Instruction::LShr;
122  case bitc::BINOP_ASHR: return Instruction::AShr;
123  case bitc::BINOP_AND:  return Instruction::And;
124  case bitc::BINOP_OR:   return Instruction::Or;
125  case bitc::BINOP_XOR:  return Instruction::Xor;
126  }
127}
128
129namespace llvm {
130namespace {
131  /// @brief A class for maintaining the slot number definition
132  /// as a placeholder for the actual definition for forward constants defs.
133  class ConstantPlaceHolder : public ConstantExpr {
134    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
135    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
136  public:
137    // allocate space for exactly one operand
138    void *operator new(size_t s) {
139      return User::operator new(s, 1);
140    }
141    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
142      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
143      Op<0>() = Context.getUndef(Type::Int32Ty);
144    }
145
146    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
147    static inline bool classof(const ConstantPlaceHolder *) { return true; }
148    static bool classof(const Value *V) {
149      return isa<ConstantExpr>(V) &&
150             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
151    }
152
153
154    /// Provide fast operand accessors
155    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
156  };
157}
158
159// FIXME: can we inherit this from ConstantExpr?
160template <>
161struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
162};
163}
164
165
166void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
167  if (Idx == size()) {
168    push_back(V);
169    return;
170  }
171
172  if (Idx >= size())
173    resize(Idx+1);
174
175  WeakVH &OldV = ValuePtrs[Idx];
176  if (OldV == 0) {
177    OldV = V;
178    return;
179  }
180
181  // Handle constants and non-constants (e.g. instrs) differently for
182  // efficiency.
183  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
184    ResolveConstants.push_back(std::make_pair(PHC, Idx));
185    OldV = V;
186  } else {
187    // If there was a forward reference to this value, replace it.
188    Value *PrevVal = OldV;
189    OldV->replaceAllUsesWith(V);
190    delete PrevVal;
191  }
192}
193
194
195Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
196                                                    const Type *Ty) {
197  if (Idx >= size())
198    resize(Idx + 1);
199
200  if (Value *V = ValuePtrs[Idx]) {
201    assert(Ty == V->getType() && "Type mismatch in constant table!");
202    return cast<Constant>(V);
203  }
204
205  // Create and return a placeholder, which will later be RAUW'd.
206  Constant *C = new ConstantPlaceHolder(Ty, Context);
207  ValuePtrs[Idx] = C;
208  return C;
209}
210
211Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
212  if (Idx >= size())
213    resize(Idx + 1);
214
215  if (Value *V = ValuePtrs[Idx]) {
216    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
217    return V;
218  }
219
220  // No type specified, must be invalid reference.
221  if (Ty == 0) return 0;
222
223  // Create and return a placeholder, which will later be RAUW'd.
224  Value *V = new Argument(Ty);
225  ValuePtrs[Idx] = V;
226  return V;
227}
228
229/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
230/// resolves any forward references.  The idea behind this is that we sometimes
231/// get constants (such as large arrays) which reference *many* forward ref
232/// constants.  Replacing each of these causes a lot of thrashing when
233/// building/reuniquing the constant.  Instead of doing this, we look at all the
234/// uses and rewrite all the place holders at once for any constant that uses
235/// a placeholder.
236void BitcodeReaderValueList::ResolveConstantForwardRefs() {
237  // Sort the values by-pointer so that they are efficient to look up with a
238  // binary search.
239  std::sort(ResolveConstants.begin(), ResolveConstants.end());
240
241  SmallVector<Constant*, 64> NewOps;
242
243  while (!ResolveConstants.empty()) {
244    Value *RealVal = operator[](ResolveConstants.back().second);
245    Constant *Placeholder = ResolveConstants.back().first;
246    ResolveConstants.pop_back();
247
248    // Loop over all users of the placeholder, updating them to reference the
249    // new value.  If they reference more than one placeholder, update them all
250    // at once.
251    while (!Placeholder->use_empty()) {
252      Value::use_iterator UI = Placeholder->use_begin();
253
254      // If the using object isn't uniqued, just update the operands.  This
255      // handles instructions and initializers for global variables.
256      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
257        UI.getUse().set(RealVal);
258        continue;
259      }
260
261      // Otherwise, we have a constant that uses the placeholder.  Replace that
262      // constant with a new constant that has *all* placeholder uses updated.
263      Constant *UserC = cast<Constant>(*UI);
264      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
265           I != E; ++I) {
266        Value *NewOp;
267        if (!isa<ConstantPlaceHolder>(*I)) {
268          // Not a placeholder reference.
269          NewOp = *I;
270        } else if (*I == Placeholder) {
271          // Common case is that it just references this one placeholder.
272          NewOp = RealVal;
273        } else {
274          // Otherwise, look up the placeholder in ResolveConstants.
275          ResolveConstantsTy::iterator It =
276            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
277                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
278                                                            0));
279          assert(It != ResolveConstants.end() && It->first == *I);
280          NewOp = operator[](It->second);
281        }
282
283        NewOps.push_back(cast<Constant>(NewOp));
284      }
285
286      // Make the new constant.
287      Constant *NewC;
288      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
289        NewC = Context.getConstantArray(UserCA->getType(), &NewOps[0],
290                                        NewOps.size());
291      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
292        NewC = Context.getConstantStruct(&NewOps[0], NewOps.size(),
293                                         UserCS->getType()->isPacked());
294      } else if (isa<ConstantVector>(UserC)) {
295        NewC = Context.getConstantVector(&NewOps[0], NewOps.size());
296      } else {
297        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
298        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
299                                                          NewOps.size());
300      }
301
302      UserC->replaceAllUsesWith(NewC);
303      UserC->destroyConstant();
304      NewOps.clear();
305    }
306
307    // Update all ValueHandles, they should be the only users at this point.
308    Placeholder->replaceAllUsesWith(RealVal);
309    delete Placeholder;
310  }
311}
312
313
314const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
315  // If the TypeID is in range, return it.
316  if (ID < TypeList.size())
317    return TypeList[ID].get();
318  if (!isTypeTable) return 0;
319
320  // The type table allows forward references.  Push as many Opaque types as
321  // needed to get up to ID.
322  while (TypeList.size() <= ID)
323    TypeList.push_back(Context.getOpaqueType());
324  return TypeList.back().get();
325}
326
327//===----------------------------------------------------------------------===//
328//  Functions for parsing blocks from the bitcode file
329//===----------------------------------------------------------------------===//
330
331bool BitcodeReader::ParseAttributeBlock() {
332  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
333    return Error("Malformed block record");
334
335  if (!MAttributes.empty())
336    return Error("Multiple PARAMATTR blocks found!");
337
338  SmallVector<uint64_t, 64> Record;
339
340  SmallVector<AttributeWithIndex, 8> Attrs;
341
342  // Read all the records.
343  while (1) {
344    unsigned Code = Stream.ReadCode();
345    if (Code == bitc::END_BLOCK) {
346      if (Stream.ReadBlockEnd())
347        return Error("Error at end of PARAMATTR block");
348      return false;
349    }
350
351    if (Code == bitc::ENTER_SUBBLOCK) {
352      // No known subblocks, always skip them.
353      Stream.ReadSubBlockID();
354      if (Stream.SkipBlock())
355        return Error("Malformed block record");
356      continue;
357    }
358
359    if (Code == bitc::DEFINE_ABBREV) {
360      Stream.ReadAbbrevRecord();
361      continue;
362    }
363
364    // Read a record.
365    Record.clear();
366    switch (Stream.ReadRecord(Code, Record)) {
367    default:  // Default behavior: ignore.
368      break;
369    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
370      if (Record.size() & 1)
371        return Error("Invalid ENTRY record");
372
373      // FIXME : Remove this autoupgrade code in LLVM 3.0.
374      // If Function attributes are using index 0 then transfer them
375      // to index ~0. Index 0 is used for return value attributes but used to be
376      // used for function attributes.
377      Attributes RetAttribute = Attribute::None;
378      Attributes FnAttribute = Attribute::None;
379      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
380        // FIXME: remove in LLVM 3.0
381        // The alignment is stored as a 16-bit raw value from bits 31--16.
382        // We shift the bits above 31 down by 11 bits.
383
384        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
385        if (Alignment && !isPowerOf2_32(Alignment))
386          return Error("Alignment is not a power of two.");
387
388        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
389        if (Alignment)
390          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
391        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
392        Record[i+1] = ReconstitutedAttr;
393
394        if (Record[i] == 0)
395          RetAttribute = Record[i+1];
396        else if (Record[i] == ~0U)
397          FnAttribute = Record[i+1];
398      }
399
400      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
401                              Attribute::ReadOnly|Attribute::ReadNone);
402
403      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
404          (RetAttribute & OldRetAttrs) != 0) {
405        if (FnAttribute == Attribute::None) { // add a slot so they get added.
406          Record.push_back(~0U);
407          Record.push_back(0);
408        }
409
410        FnAttribute  |= RetAttribute & OldRetAttrs;
411        RetAttribute &= ~OldRetAttrs;
412      }
413
414      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
415        if (Record[i] == 0) {
416          if (RetAttribute != Attribute::None)
417            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
418        } else if (Record[i] == ~0U) {
419          if (FnAttribute != Attribute::None)
420            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
421        } else if (Record[i+1] != Attribute::None)
422          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
423      }
424
425      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
426      Attrs.clear();
427      break;
428    }
429    }
430  }
431}
432
433
434bool BitcodeReader::ParseTypeTable() {
435  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
436    return Error("Malformed block record");
437
438  if (!TypeList.empty())
439    return Error("Multiple TYPE_BLOCKs found!");
440
441  SmallVector<uint64_t, 64> Record;
442  unsigned NumRecords = 0;
443
444  // Read all the records for this type table.
445  while (1) {
446    unsigned Code = Stream.ReadCode();
447    if (Code == bitc::END_BLOCK) {
448      if (NumRecords != TypeList.size())
449        return Error("Invalid type forward reference in TYPE_BLOCK");
450      if (Stream.ReadBlockEnd())
451        return Error("Error at end of type table block");
452      return false;
453    }
454
455    if (Code == bitc::ENTER_SUBBLOCK) {
456      // No known subblocks, always skip them.
457      Stream.ReadSubBlockID();
458      if (Stream.SkipBlock())
459        return Error("Malformed block record");
460      continue;
461    }
462
463    if (Code == bitc::DEFINE_ABBREV) {
464      Stream.ReadAbbrevRecord();
465      continue;
466    }
467
468    // Read a record.
469    Record.clear();
470    const Type *ResultTy = 0;
471    switch (Stream.ReadRecord(Code, Record)) {
472    default:  // Default behavior: unknown type.
473      ResultTy = 0;
474      break;
475    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
476      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
477      // type list.  This allows us to reserve space.
478      if (Record.size() < 1)
479        return Error("Invalid TYPE_CODE_NUMENTRY record");
480      TypeList.reserve(Record[0]);
481      continue;
482    case bitc::TYPE_CODE_VOID:      // VOID
483      ResultTy = Type::VoidTy;
484      break;
485    case bitc::TYPE_CODE_FLOAT:     // FLOAT
486      ResultTy = Type::FloatTy;
487      break;
488    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
489      ResultTy = Type::DoubleTy;
490      break;
491    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
492      ResultTy = Type::X86_FP80Ty;
493      break;
494    case bitc::TYPE_CODE_FP128:     // FP128
495      ResultTy = Type::FP128Ty;
496      break;
497    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
498      ResultTy = Type::PPC_FP128Ty;
499      break;
500    case bitc::TYPE_CODE_LABEL:     // LABEL
501      ResultTy = Type::LabelTy;
502      break;
503    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
504      ResultTy = 0;
505      break;
506    case bitc::TYPE_CODE_METADATA:  // METADATA
507      ResultTy = Type::MetadataTy;
508      break;
509    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
510      if (Record.size() < 1)
511        return Error("Invalid Integer type record");
512
513      ResultTy = Context.getIntegerType(Record[0]);
514      break;
515    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
516                                    //          [pointee type, address space]
517      if (Record.size() < 1)
518        return Error("Invalid POINTER type record");
519      unsigned AddressSpace = 0;
520      if (Record.size() == 2)
521        AddressSpace = Record[1];
522      ResultTy = Context.getPointerType(getTypeByID(Record[0], true),
523                                        AddressSpace);
524      break;
525    }
526    case bitc::TYPE_CODE_FUNCTION: {
527      // FIXME: attrid is dead, remove it in LLVM 3.0
528      // FUNCTION: [vararg, attrid, retty, paramty x N]
529      if (Record.size() < 3)
530        return Error("Invalid FUNCTION type record");
531      std::vector<const Type*> ArgTys;
532      for (unsigned i = 3, e = Record.size(); i != e; ++i)
533        ArgTys.push_back(getTypeByID(Record[i], true));
534
535      ResultTy = Context.getFunctionType(getTypeByID(Record[2], true), ArgTys,
536                                   Record[0]);
537      break;
538    }
539    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
540      if (Record.size() < 1)
541        return Error("Invalid STRUCT type record");
542      std::vector<const Type*> EltTys;
543      for (unsigned i = 1, e = Record.size(); i != e; ++i)
544        EltTys.push_back(getTypeByID(Record[i], true));
545      ResultTy = Context.getStructType(EltTys, Record[0]);
546      break;
547    }
548    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
549      if (Record.size() < 2)
550        return Error("Invalid ARRAY type record");
551      ResultTy = Context.getArrayType(getTypeByID(Record[1], true), Record[0]);
552      break;
553    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
554      if (Record.size() < 2)
555        return Error("Invalid VECTOR type record");
556      ResultTy = Context.getVectorType(getTypeByID(Record[1], true), Record[0]);
557      break;
558    }
559
560    if (NumRecords == TypeList.size()) {
561      // If this is a new type slot, just append it.
562      TypeList.push_back(ResultTy ? ResultTy : Context.getOpaqueType());
563      ++NumRecords;
564    } else if (ResultTy == 0) {
565      // Otherwise, this was forward referenced, so an opaque type was created,
566      // but the result type is actually just an opaque.  Leave the one we
567      // created previously.
568      ++NumRecords;
569    } else {
570      // Otherwise, this was forward referenced, so an opaque type was created.
571      // Resolve the opaque type to the real type now.
572      assert(NumRecords < TypeList.size() && "Typelist imbalance");
573      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
574
575      // Don't directly push the new type on the Tab. Instead we want to replace
576      // the opaque type we previously inserted with the new concrete value. The
577      // refinement from the abstract (opaque) type to the new type causes all
578      // uses of the abstract type to use the concrete type (NewTy). This will
579      // also cause the opaque type to be deleted.
580      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
581
582      // This should have replaced the old opaque type with the new type in the
583      // value table... or with a preexisting type that was already in the
584      // system.  Let's just make sure it did.
585      assert(TypeList[NumRecords-1].get() != OldTy &&
586             "refineAbstractType didn't work!");
587    }
588  }
589}
590
591
592bool BitcodeReader::ParseTypeSymbolTable() {
593  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
594    return Error("Malformed block record");
595
596  SmallVector<uint64_t, 64> Record;
597
598  // Read all the records for this type table.
599  std::string TypeName;
600  while (1) {
601    unsigned Code = Stream.ReadCode();
602    if (Code == bitc::END_BLOCK) {
603      if (Stream.ReadBlockEnd())
604        return Error("Error at end of type symbol table block");
605      return false;
606    }
607
608    if (Code == bitc::ENTER_SUBBLOCK) {
609      // No known subblocks, always skip them.
610      Stream.ReadSubBlockID();
611      if (Stream.SkipBlock())
612        return Error("Malformed block record");
613      continue;
614    }
615
616    if (Code == bitc::DEFINE_ABBREV) {
617      Stream.ReadAbbrevRecord();
618      continue;
619    }
620
621    // Read a record.
622    Record.clear();
623    switch (Stream.ReadRecord(Code, Record)) {
624    default:  // Default behavior: unknown type.
625      break;
626    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
627      if (ConvertToString(Record, 1, TypeName))
628        return Error("Invalid TST_ENTRY record");
629      unsigned TypeID = Record[0];
630      if (TypeID >= TypeList.size())
631        return Error("Invalid Type ID in TST_ENTRY record");
632
633      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
634      TypeName.clear();
635      break;
636    }
637  }
638}
639
640bool BitcodeReader::ParseValueSymbolTable() {
641  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
642    return Error("Malformed block record");
643
644  SmallVector<uint64_t, 64> Record;
645
646  // Read all the records for this value table.
647  SmallString<128> ValueName;
648  while (1) {
649    unsigned Code = Stream.ReadCode();
650    if (Code == bitc::END_BLOCK) {
651      if (Stream.ReadBlockEnd())
652        return Error("Error at end of value symbol table block");
653      return false;
654    }
655    if (Code == bitc::ENTER_SUBBLOCK) {
656      // No known subblocks, always skip them.
657      Stream.ReadSubBlockID();
658      if (Stream.SkipBlock())
659        return Error("Malformed block record");
660      continue;
661    }
662
663    if (Code == bitc::DEFINE_ABBREV) {
664      Stream.ReadAbbrevRecord();
665      continue;
666    }
667
668    // Read a record.
669    Record.clear();
670    switch (Stream.ReadRecord(Code, Record)) {
671    default:  // Default behavior: unknown type.
672      break;
673    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
674      if (ConvertToString(Record, 1, ValueName))
675        return Error("Invalid VST_ENTRY record");
676      unsigned ValueID = Record[0];
677      if (ValueID >= ValueList.size())
678        return Error("Invalid Value ID in VST_ENTRY record");
679      Value *V = ValueList[ValueID];
680
681      V->setName(&ValueName[0], ValueName.size());
682      ValueName.clear();
683      break;
684    }
685    case bitc::VST_CODE_BBENTRY: {
686      if (ConvertToString(Record, 1, ValueName))
687        return Error("Invalid VST_BBENTRY record");
688      BasicBlock *BB = getBasicBlock(Record[0]);
689      if (BB == 0)
690        return Error("Invalid BB ID in VST_BBENTRY record");
691
692      BB->setName(&ValueName[0], ValueName.size());
693      ValueName.clear();
694      break;
695    }
696    }
697  }
698}
699
700/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
701/// the LSB for dense VBR encoding.
702static uint64_t DecodeSignRotatedValue(uint64_t V) {
703  if ((V & 1) == 0)
704    return V >> 1;
705  if (V != 1)
706    return -(V >> 1);
707  // There is no such thing as -0 with integers.  "-0" really means MININT.
708  return 1ULL << 63;
709}
710
711/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
712/// values and aliases that we can.
713bool BitcodeReader::ResolveGlobalAndAliasInits() {
714  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
715  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
716
717  GlobalInitWorklist.swap(GlobalInits);
718  AliasInitWorklist.swap(AliasInits);
719
720  while (!GlobalInitWorklist.empty()) {
721    unsigned ValID = GlobalInitWorklist.back().second;
722    if (ValID >= ValueList.size()) {
723      // Not ready to resolve this yet, it requires something later in the file.
724      GlobalInits.push_back(GlobalInitWorklist.back());
725    } else {
726      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
727        GlobalInitWorklist.back().first->setInitializer(C);
728      else
729        return Error("Global variable initializer is not a constant!");
730    }
731    GlobalInitWorklist.pop_back();
732  }
733
734  while (!AliasInitWorklist.empty()) {
735    unsigned ValID = AliasInitWorklist.back().second;
736    if (ValID >= ValueList.size()) {
737      AliasInits.push_back(AliasInitWorklist.back());
738    } else {
739      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
740        AliasInitWorklist.back().first->setAliasee(C);
741      else
742        return Error("Alias initializer is not a constant!");
743    }
744    AliasInitWorklist.pop_back();
745  }
746  return false;
747}
748
749
750bool BitcodeReader::ParseConstants() {
751  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
752    return Error("Malformed block record");
753
754  SmallVector<uint64_t, 64> Record;
755
756  // Read all the records for this value table.
757  const Type *CurTy = Type::Int32Ty;
758  unsigned NextCstNo = ValueList.size();
759  while (1) {
760    unsigned Code = Stream.ReadCode();
761    if (Code == bitc::END_BLOCK)
762      break;
763
764    if (Code == bitc::ENTER_SUBBLOCK) {
765      // No known subblocks, always skip them.
766      Stream.ReadSubBlockID();
767      if (Stream.SkipBlock())
768        return Error("Malformed block record");
769      continue;
770    }
771
772    if (Code == bitc::DEFINE_ABBREV) {
773      Stream.ReadAbbrevRecord();
774      continue;
775    }
776
777    // Read a record.
778    Record.clear();
779    Value *V = 0;
780    switch (Stream.ReadRecord(Code, Record)) {
781    default:  // Default behavior: unknown constant
782    case bitc::CST_CODE_UNDEF:     // UNDEF
783      V = Context.getUndef(CurTy);
784      break;
785    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
786      if (Record.empty())
787        return Error("Malformed CST_SETTYPE record");
788      if (Record[0] >= TypeList.size())
789        return Error("Invalid Type ID in CST_SETTYPE record");
790      CurTy = TypeList[Record[0]];
791      continue;  // Skip the ValueList manipulation.
792    case bitc::CST_CODE_NULL:      // NULL
793      V = Context.getNullValue(CurTy);
794      break;
795    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
796      if (!isa<IntegerType>(CurTy) || Record.empty())
797        return Error("Invalid CST_INTEGER record");
798      V = Context.getConstantInt(CurTy, DecodeSignRotatedValue(Record[0]));
799      break;
800    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
801      if (!isa<IntegerType>(CurTy) || Record.empty())
802        return Error("Invalid WIDE_INTEGER record");
803
804      unsigned NumWords = Record.size();
805      SmallVector<uint64_t, 8> Words;
806      Words.resize(NumWords);
807      for (unsigned i = 0; i != NumWords; ++i)
808        Words[i] = DecodeSignRotatedValue(Record[i]);
809      V = Context.getConstantInt(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
810                                 NumWords, &Words[0]));
811      break;
812    }
813    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
814      if (Record.empty())
815        return Error("Invalid FLOAT record");
816      if (CurTy == Type::FloatTy)
817        V = Context.getConstantFP(APFloat(APInt(32, (uint32_t)Record[0])));
818      else if (CurTy == Type::DoubleTy)
819        V = Context.getConstantFP(APFloat(APInt(64, Record[0])));
820      else if (CurTy == Type::X86_FP80Ty) {
821        // Bits are not stored the same way as a normal i80 APInt, compensate.
822        uint64_t Rearrange[2];
823        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
824        Rearrange[1] = Record[0] >> 48;
825        V = Context.getConstantFP(APFloat(APInt(80, 2, Rearrange)));
826      } else if (CurTy == Type::FP128Ty)
827        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0]), true));
828      else if (CurTy == Type::PPC_FP128Ty)
829        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0])));
830      else
831        V = Context.getUndef(CurTy);
832      break;
833    }
834
835    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
836      if (Record.empty())
837        return Error("Invalid CST_AGGREGATE record");
838
839      unsigned Size = Record.size();
840      std::vector<Constant*> Elts;
841
842      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
843        for (unsigned i = 0; i != Size; ++i)
844          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
845                                                     STy->getElementType(i)));
846        V = Context.getConstantStruct(STy, Elts);
847      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
848        const Type *EltTy = ATy->getElementType();
849        for (unsigned i = 0; i != Size; ++i)
850          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
851        V = Context.getConstantArray(ATy, Elts);
852      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
853        const Type *EltTy = VTy->getElementType();
854        for (unsigned i = 0; i != Size; ++i)
855          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
856        V = Context.getConstantVector(Elts);
857      } else {
858        V = Context.getUndef(CurTy);
859      }
860      break;
861    }
862    case bitc::CST_CODE_STRING: { // STRING: [values]
863      if (Record.empty())
864        return Error("Invalid CST_AGGREGATE record");
865
866      const ArrayType *ATy = cast<ArrayType>(CurTy);
867      const Type *EltTy = ATy->getElementType();
868
869      unsigned Size = Record.size();
870      std::vector<Constant*> Elts;
871      for (unsigned i = 0; i != Size; ++i)
872        Elts.push_back(Context.getConstantInt(EltTy, Record[i]));
873      V = Context.getConstantArray(ATy, Elts);
874      break;
875    }
876    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
877      if (Record.empty())
878        return Error("Invalid CST_AGGREGATE record");
879
880      const ArrayType *ATy = cast<ArrayType>(CurTy);
881      const Type *EltTy = ATy->getElementType();
882
883      unsigned Size = Record.size();
884      std::vector<Constant*> Elts;
885      for (unsigned i = 0; i != Size; ++i)
886        Elts.push_back(Context.getConstantInt(EltTy, Record[i]));
887      Elts.push_back(Context.getNullValue(EltTy));
888      V = Context.getConstantArray(ATy, Elts);
889      break;
890    }
891    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
892      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
893      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
894      if (Opc < 0) {
895        V = Context.getUndef(CurTy);  // Unknown binop.
896      } else {
897        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
898        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
899        V = Context.getConstantExpr(Opc, LHS, RHS);
900      }
901      break;
902    }
903    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
904      if (Record.size() < 3) return Error("Invalid CE_CAST record");
905      int Opc = GetDecodedCastOpcode(Record[0]);
906      if (Opc < 0) {
907        V = Context.getUndef(CurTy);  // Unknown cast.
908      } else {
909        const Type *OpTy = getTypeByID(Record[1]);
910        if (!OpTy) return Error("Invalid CE_CAST record");
911        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
912        V = Context.getConstantExprCast(Opc, Op, CurTy);
913      }
914      break;
915    }
916    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
917      if (Record.size() & 1) return Error("Invalid CE_GEP record");
918      SmallVector<Constant*, 16> Elts;
919      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
920        const Type *ElTy = getTypeByID(Record[i]);
921        if (!ElTy) return Error("Invalid CE_GEP record");
922        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
923      }
924      V = Context.getConstantExprGetElementPtr(Elts[0], &Elts[1],
925                                               Elts.size()-1);
926      break;
927    }
928    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
929      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
930      V = Context.getConstantExprSelect(ValueList.getConstantFwdRef(Record[0],
931                                                              Type::Int1Ty),
932                                  ValueList.getConstantFwdRef(Record[1],CurTy),
933                                  ValueList.getConstantFwdRef(Record[2],CurTy));
934      break;
935    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
936      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
937      const VectorType *OpTy =
938        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
939      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
940      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
941      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
942      V = Context.getConstantExprExtractElement(Op0, Op1);
943      break;
944    }
945    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
946      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
947      if (Record.size() < 3 || OpTy == 0)
948        return Error("Invalid CE_INSERTELT record");
949      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
950      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
951                                                  OpTy->getElementType());
952      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
953      V = Context.getConstantExprInsertElement(Op0, Op1, Op2);
954      break;
955    }
956    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
957      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
958      if (Record.size() < 3 || OpTy == 0)
959        return Error("Invalid CE_SHUFFLEVEC record");
960      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
961      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
962      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
963                                                 OpTy->getNumElements());
964      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
965      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
966      break;
967    }
968    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
969      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
970      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
971      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
972        return Error("Invalid CE_SHUFVEC_EX record");
973      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
974      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
975      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
976                                                 RTy->getNumElements());
977      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
978      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
979      break;
980    }
981    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
982      if (Record.size() < 4) return Error("Invalid CE_CMP record");
983      const Type *OpTy = getTypeByID(Record[0]);
984      if (OpTy == 0) return Error("Invalid CE_CMP record");
985      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
986      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
987
988      if (OpTy->isFloatingPoint())
989        V = Context.getConstantExprFCmp(Record[3], Op0, Op1);
990      else
991        V = Context.getConstantExprICmp(Record[3], Op0, Op1);
992      break;
993    }
994    case bitc::CST_CODE_INLINEASM: {
995      if (Record.size() < 2) return Error("Invalid INLINEASM record");
996      std::string AsmStr, ConstrStr;
997      bool HasSideEffects = Record[0];
998      unsigned AsmStrSize = Record[1];
999      if (2+AsmStrSize >= Record.size())
1000        return Error("Invalid INLINEASM record");
1001      unsigned ConstStrSize = Record[2+AsmStrSize];
1002      if (3+AsmStrSize+ConstStrSize > Record.size())
1003        return Error("Invalid INLINEASM record");
1004
1005      for (unsigned i = 0; i != AsmStrSize; ++i)
1006        AsmStr += (char)Record[2+i];
1007      for (unsigned i = 0; i != ConstStrSize; ++i)
1008        ConstrStr += (char)Record[3+AsmStrSize+i];
1009      const PointerType *PTy = cast<PointerType>(CurTy);
1010      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1011                         AsmStr, ConstrStr, HasSideEffects);
1012      break;
1013    }
1014    case bitc::CST_CODE_MDSTRING: {
1015      unsigned MDStringLength = Record.size();
1016      SmallString<8> String;
1017      String.resize(MDStringLength);
1018      for (unsigned i = 0; i != MDStringLength; ++i)
1019        String[i] = Record[i];
1020      V = Context.getMDString(String.c_str(), String.c_str() + MDStringLength);
1021      break;
1022    }
1023    case bitc::CST_CODE_MDNODE: {
1024      if (Record.empty() || Record.size() % 2 == 1)
1025        return Error("Invalid CST_MDNODE record");
1026
1027      unsigned Size = Record.size();
1028      SmallVector<Value*, 8> Elts;
1029      for (unsigned i = 0; i != Size; i += 2) {
1030        const Type *Ty = getTypeByID(Record[i], false);
1031        if (Ty != Type::VoidTy)
1032          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1033        else
1034          Elts.push_back(NULL);
1035      }
1036      V = Context.getMDNode(&Elts[0], Elts.size());
1037      break;
1038    }
1039    }
1040
1041    ValueList.AssignValue(V, NextCstNo);
1042    ++NextCstNo;
1043  }
1044
1045  if (NextCstNo != ValueList.size())
1046    return Error("Invalid constant reference!");
1047
1048  if (Stream.ReadBlockEnd())
1049    return Error("Error at end of constants block");
1050
1051  // Once all the constants have been read, go through and resolve forward
1052  // references.
1053  ValueList.ResolveConstantForwardRefs();
1054  return false;
1055}
1056
1057/// RememberAndSkipFunctionBody - When we see the block for a function body,
1058/// remember where it is and then skip it.  This lets us lazily deserialize the
1059/// functions.
1060bool BitcodeReader::RememberAndSkipFunctionBody() {
1061  // Get the function we are talking about.
1062  if (FunctionsWithBodies.empty())
1063    return Error("Insufficient function protos");
1064
1065  Function *Fn = FunctionsWithBodies.back();
1066  FunctionsWithBodies.pop_back();
1067
1068  // Save the current stream state.
1069  uint64_t CurBit = Stream.GetCurrentBitNo();
1070  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1071
1072  // Set the functions linkage to GhostLinkage so we know it is lazily
1073  // deserialized.
1074  Fn->setLinkage(GlobalValue::GhostLinkage);
1075
1076  // Skip over the function block for now.
1077  if (Stream.SkipBlock())
1078    return Error("Malformed block record");
1079  return false;
1080}
1081
1082bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1083  // Reject multiple MODULE_BLOCK's in a single bitstream.
1084  if (TheModule)
1085    return Error("Multiple MODULE_BLOCKs in same stream");
1086
1087  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1088    return Error("Malformed block record");
1089
1090  // Otherwise, create the module.
1091  TheModule = new Module(ModuleID, Context);
1092
1093  SmallVector<uint64_t, 64> Record;
1094  std::vector<std::string> SectionTable;
1095  std::vector<std::string> GCTable;
1096
1097  // Read all the records for this module.
1098  while (!Stream.AtEndOfStream()) {
1099    unsigned Code = Stream.ReadCode();
1100    if (Code == bitc::END_BLOCK) {
1101      if (Stream.ReadBlockEnd())
1102        return Error("Error at end of module block");
1103
1104      // Patch the initializers for globals and aliases up.
1105      ResolveGlobalAndAliasInits();
1106      if (!GlobalInits.empty() || !AliasInits.empty())
1107        return Error("Malformed global initializer set");
1108      if (!FunctionsWithBodies.empty())
1109        return Error("Too few function bodies found");
1110
1111      // Look for intrinsic functions which need to be upgraded at some point
1112      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1113           FI != FE; ++FI) {
1114        Function* NewFn;
1115        if (UpgradeIntrinsicFunction(FI, NewFn))
1116          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1117      }
1118
1119      // Force deallocation of memory for these vectors to favor the client that
1120      // want lazy deserialization.
1121      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1122      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1123      std::vector<Function*>().swap(FunctionsWithBodies);
1124      return false;
1125    }
1126
1127    if (Code == bitc::ENTER_SUBBLOCK) {
1128      switch (Stream.ReadSubBlockID()) {
1129      default:  // Skip unknown content.
1130        if (Stream.SkipBlock())
1131          return Error("Malformed block record");
1132        break;
1133      case bitc::BLOCKINFO_BLOCK_ID:
1134        if (Stream.ReadBlockInfoBlock())
1135          return Error("Malformed BlockInfoBlock");
1136        break;
1137      case bitc::PARAMATTR_BLOCK_ID:
1138        if (ParseAttributeBlock())
1139          return true;
1140        break;
1141      case bitc::TYPE_BLOCK_ID:
1142        if (ParseTypeTable())
1143          return true;
1144        break;
1145      case bitc::TYPE_SYMTAB_BLOCK_ID:
1146        if (ParseTypeSymbolTable())
1147          return true;
1148        break;
1149      case bitc::VALUE_SYMTAB_BLOCK_ID:
1150        if (ParseValueSymbolTable())
1151          return true;
1152        break;
1153      case bitc::CONSTANTS_BLOCK_ID:
1154        if (ParseConstants() || ResolveGlobalAndAliasInits())
1155          return true;
1156        break;
1157      case bitc::FUNCTION_BLOCK_ID:
1158        // If this is the first function body we've seen, reverse the
1159        // FunctionsWithBodies list.
1160        if (!HasReversedFunctionsWithBodies) {
1161          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1162          HasReversedFunctionsWithBodies = true;
1163        }
1164
1165        if (RememberAndSkipFunctionBody())
1166          return true;
1167        break;
1168      }
1169      continue;
1170    }
1171
1172    if (Code == bitc::DEFINE_ABBREV) {
1173      Stream.ReadAbbrevRecord();
1174      continue;
1175    }
1176
1177    // Read a record.
1178    switch (Stream.ReadRecord(Code, Record)) {
1179    default: break;  // Default behavior, ignore unknown content.
1180    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1181      if (Record.size() < 1)
1182        return Error("Malformed MODULE_CODE_VERSION");
1183      // Only version #0 is supported so far.
1184      if (Record[0] != 0)
1185        return Error("Unknown bitstream version!");
1186      break;
1187    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1188      std::string S;
1189      if (ConvertToString(Record, 0, S))
1190        return Error("Invalid MODULE_CODE_TRIPLE record");
1191      TheModule->setTargetTriple(S);
1192      break;
1193    }
1194    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1195      std::string S;
1196      if (ConvertToString(Record, 0, S))
1197        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1198      TheModule->setDataLayout(S);
1199      break;
1200    }
1201    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1202      std::string S;
1203      if (ConvertToString(Record, 0, S))
1204        return Error("Invalid MODULE_CODE_ASM record");
1205      TheModule->setModuleInlineAsm(S);
1206      break;
1207    }
1208    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1209      std::string S;
1210      if (ConvertToString(Record, 0, S))
1211        return Error("Invalid MODULE_CODE_DEPLIB record");
1212      TheModule->addLibrary(S);
1213      break;
1214    }
1215    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1216      std::string S;
1217      if (ConvertToString(Record, 0, S))
1218        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1219      SectionTable.push_back(S);
1220      break;
1221    }
1222    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1223      std::string S;
1224      if (ConvertToString(Record, 0, S))
1225        return Error("Invalid MODULE_CODE_GCNAME record");
1226      GCTable.push_back(S);
1227      break;
1228    }
1229    // GLOBALVAR: [pointer type, isconst, initid,
1230    //             linkage, alignment, section, visibility, threadlocal]
1231    case bitc::MODULE_CODE_GLOBALVAR: {
1232      if (Record.size() < 6)
1233        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1234      const Type *Ty = getTypeByID(Record[0]);
1235      if (!isa<PointerType>(Ty))
1236        return Error("Global not a pointer type!");
1237      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1238      Ty = cast<PointerType>(Ty)->getElementType();
1239
1240      bool isConstant = Record[1];
1241      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1242      unsigned Alignment = (1 << Record[4]) >> 1;
1243      std::string Section;
1244      if (Record[5]) {
1245        if (Record[5]-1 >= SectionTable.size())
1246          return Error("Invalid section ID");
1247        Section = SectionTable[Record[5]-1];
1248      }
1249      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1250      if (Record.size() > 6)
1251        Visibility = GetDecodedVisibility(Record[6]);
1252      bool isThreadLocal = false;
1253      if (Record.size() > 7)
1254        isThreadLocal = Record[7];
1255
1256      GlobalVariable *NewGV =
1257        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1258                           isThreadLocal, AddressSpace);
1259      NewGV->setAlignment(Alignment);
1260      if (!Section.empty())
1261        NewGV->setSection(Section);
1262      NewGV->setVisibility(Visibility);
1263      NewGV->setThreadLocal(isThreadLocal);
1264
1265      ValueList.push_back(NewGV);
1266
1267      // Remember which value to use for the global initializer.
1268      if (unsigned InitID = Record[2])
1269        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1270      break;
1271    }
1272    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1273    //             alignment, section, visibility, gc]
1274    case bitc::MODULE_CODE_FUNCTION: {
1275      if (Record.size() < 8)
1276        return Error("Invalid MODULE_CODE_FUNCTION record");
1277      const Type *Ty = getTypeByID(Record[0]);
1278      if (!isa<PointerType>(Ty))
1279        return Error("Function not a pointer type!");
1280      const FunctionType *FTy =
1281        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1282      if (!FTy)
1283        return Error("Function not a pointer to function type!");
1284
1285      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1286                                        "", TheModule);
1287
1288      Func->setCallingConv(Record[1]);
1289      bool isProto = Record[2];
1290      Func->setLinkage(GetDecodedLinkage(Record[3]));
1291      Func->setAttributes(getAttributes(Record[4]));
1292
1293      Func->setAlignment((1 << Record[5]) >> 1);
1294      if (Record[6]) {
1295        if (Record[6]-1 >= SectionTable.size())
1296          return Error("Invalid section ID");
1297        Func->setSection(SectionTable[Record[6]-1]);
1298      }
1299      Func->setVisibility(GetDecodedVisibility(Record[7]));
1300      if (Record.size() > 8 && Record[8]) {
1301        if (Record[8]-1 > GCTable.size())
1302          return Error("Invalid GC ID");
1303        Func->setGC(GCTable[Record[8]-1].c_str());
1304      }
1305      ValueList.push_back(Func);
1306
1307      // If this is a function with a body, remember the prototype we are
1308      // creating now, so that we can match up the body with them later.
1309      if (!isProto)
1310        FunctionsWithBodies.push_back(Func);
1311      break;
1312    }
1313    // ALIAS: [alias type, aliasee val#, linkage]
1314    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1315    case bitc::MODULE_CODE_ALIAS: {
1316      if (Record.size() < 3)
1317        return Error("Invalid MODULE_ALIAS record");
1318      const Type *Ty = getTypeByID(Record[0]);
1319      if (!isa<PointerType>(Ty))
1320        return Error("Function not a pointer type!");
1321
1322      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1323                                           "", 0, TheModule);
1324      // Old bitcode files didn't have visibility field.
1325      if (Record.size() > 3)
1326        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1327      ValueList.push_back(NewGA);
1328      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1329      break;
1330    }
1331    /// MODULE_CODE_PURGEVALS: [numvals]
1332    case bitc::MODULE_CODE_PURGEVALS:
1333      // Trim down the value list to the specified size.
1334      if (Record.size() < 1 || Record[0] > ValueList.size())
1335        return Error("Invalid MODULE_PURGEVALS record");
1336      ValueList.shrinkTo(Record[0]);
1337      break;
1338    }
1339    Record.clear();
1340  }
1341
1342  return Error("Premature end of bitstream");
1343}
1344
1345bool BitcodeReader::ParseBitcode() {
1346  TheModule = 0;
1347
1348  if (Buffer->getBufferSize() & 3)
1349    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1350
1351  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1352  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1353
1354  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1355  // The magic number is 0x0B17C0DE stored in little endian.
1356  if (isBitcodeWrapper(BufPtr, BufEnd))
1357    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1358      return Error("Invalid bitcode wrapper header");
1359
1360  StreamFile.init(BufPtr, BufEnd);
1361  Stream.init(StreamFile);
1362
1363  // Sniff for the signature.
1364  if (Stream.Read(8) != 'B' ||
1365      Stream.Read(8) != 'C' ||
1366      Stream.Read(4) != 0x0 ||
1367      Stream.Read(4) != 0xC ||
1368      Stream.Read(4) != 0xE ||
1369      Stream.Read(4) != 0xD)
1370    return Error("Invalid bitcode signature");
1371
1372  // We expect a number of well-defined blocks, though we don't necessarily
1373  // need to understand them all.
1374  while (!Stream.AtEndOfStream()) {
1375    unsigned Code = Stream.ReadCode();
1376
1377    if (Code != bitc::ENTER_SUBBLOCK)
1378      return Error("Invalid record at top-level");
1379
1380    unsigned BlockID = Stream.ReadSubBlockID();
1381
1382    // We only know the MODULE subblock ID.
1383    switch (BlockID) {
1384    case bitc::BLOCKINFO_BLOCK_ID:
1385      if (Stream.ReadBlockInfoBlock())
1386        return Error("Malformed BlockInfoBlock");
1387      break;
1388    case bitc::MODULE_BLOCK_ID:
1389      if (ParseModule(Buffer->getBufferIdentifier()))
1390        return true;
1391      break;
1392    default:
1393      if (Stream.SkipBlock())
1394        return Error("Malformed block record");
1395      break;
1396    }
1397  }
1398
1399  return false;
1400}
1401
1402
1403/// ParseFunctionBody - Lazily parse the specified function body block.
1404bool BitcodeReader::ParseFunctionBody(Function *F) {
1405  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1406    return Error("Malformed block record");
1407
1408  unsigned ModuleValueListSize = ValueList.size();
1409
1410  // Add all the function arguments to the value table.
1411  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1412    ValueList.push_back(I);
1413
1414  unsigned NextValueNo = ValueList.size();
1415  BasicBlock *CurBB = 0;
1416  unsigned CurBBNo = 0;
1417
1418  // Read all the records.
1419  SmallVector<uint64_t, 64> Record;
1420  while (1) {
1421    unsigned Code = Stream.ReadCode();
1422    if (Code == bitc::END_BLOCK) {
1423      if (Stream.ReadBlockEnd())
1424        return Error("Error at end of function block");
1425      break;
1426    }
1427
1428    if (Code == bitc::ENTER_SUBBLOCK) {
1429      switch (Stream.ReadSubBlockID()) {
1430      default:  // Skip unknown content.
1431        if (Stream.SkipBlock())
1432          return Error("Malformed block record");
1433        break;
1434      case bitc::CONSTANTS_BLOCK_ID:
1435        if (ParseConstants()) return true;
1436        NextValueNo = ValueList.size();
1437        break;
1438      case bitc::VALUE_SYMTAB_BLOCK_ID:
1439        if (ParseValueSymbolTable()) return true;
1440        break;
1441      }
1442      continue;
1443    }
1444
1445    if (Code == bitc::DEFINE_ABBREV) {
1446      Stream.ReadAbbrevRecord();
1447      continue;
1448    }
1449
1450    // Read a record.
1451    Record.clear();
1452    Instruction *I = 0;
1453    switch (Stream.ReadRecord(Code, Record)) {
1454    default: // Default behavior: reject
1455      return Error("Unknown instruction");
1456    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1457      if (Record.size() < 1 || Record[0] == 0)
1458        return Error("Invalid DECLAREBLOCKS record");
1459      // Create all the basic blocks for the function.
1460      FunctionBBs.resize(Record[0]);
1461      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1462        FunctionBBs[i] = BasicBlock::Create("", F);
1463      CurBB = FunctionBBs[0];
1464      continue;
1465
1466    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1467      unsigned OpNum = 0;
1468      Value *LHS, *RHS;
1469      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1470          getValue(Record, OpNum, LHS->getType(), RHS) ||
1471          OpNum+1 != Record.size())
1472        return Error("Invalid BINOP record");
1473
1474      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1475      if (Opc == -1) return Error("Invalid BINOP record");
1476      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1477      break;
1478    }
1479    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1480      unsigned OpNum = 0;
1481      Value *Op;
1482      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1483          OpNum+2 != Record.size())
1484        return Error("Invalid CAST record");
1485
1486      const Type *ResTy = getTypeByID(Record[OpNum]);
1487      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1488      if (Opc == -1 || ResTy == 0)
1489        return Error("Invalid CAST record");
1490      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1491      break;
1492    }
1493    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1494      unsigned OpNum = 0;
1495      Value *BasePtr;
1496      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1497        return Error("Invalid GEP record");
1498
1499      SmallVector<Value*, 16> GEPIdx;
1500      while (OpNum != Record.size()) {
1501        Value *Op;
1502        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1503          return Error("Invalid GEP record");
1504        GEPIdx.push_back(Op);
1505      }
1506
1507      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1508      break;
1509    }
1510
1511    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1512                                       // EXTRACTVAL: [opty, opval, n x indices]
1513      unsigned OpNum = 0;
1514      Value *Agg;
1515      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1516        return Error("Invalid EXTRACTVAL record");
1517
1518      SmallVector<unsigned, 4> EXTRACTVALIdx;
1519      for (unsigned RecSize = Record.size();
1520           OpNum != RecSize; ++OpNum) {
1521        uint64_t Index = Record[OpNum];
1522        if ((unsigned)Index != Index)
1523          return Error("Invalid EXTRACTVAL index");
1524        EXTRACTVALIdx.push_back((unsigned)Index);
1525      }
1526
1527      I = ExtractValueInst::Create(Agg,
1528                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1529      break;
1530    }
1531
1532    case bitc::FUNC_CODE_INST_INSERTVAL: {
1533                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1534      unsigned OpNum = 0;
1535      Value *Agg;
1536      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1537        return Error("Invalid INSERTVAL record");
1538      Value *Val;
1539      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1540        return Error("Invalid INSERTVAL record");
1541
1542      SmallVector<unsigned, 4> INSERTVALIdx;
1543      for (unsigned RecSize = Record.size();
1544           OpNum != RecSize; ++OpNum) {
1545        uint64_t Index = Record[OpNum];
1546        if ((unsigned)Index != Index)
1547          return Error("Invalid INSERTVAL index");
1548        INSERTVALIdx.push_back((unsigned)Index);
1549      }
1550
1551      I = InsertValueInst::Create(Agg, Val,
1552                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1553      break;
1554    }
1555
1556    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1557      // obsolete form of select
1558      // handles select i1 ... in old bitcode
1559      unsigned OpNum = 0;
1560      Value *TrueVal, *FalseVal, *Cond;
1561      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1562          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1563          getValue(Record, OpNum, Type::Int1Ty, Cond))
1564        return Error("Invalid SELECT record");
1565
1566      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1567      break;
1568    }
1569
1570    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1571      // new form of select
1572      // handles select i1 or select [N x i1]
1573      unsigned OpNum = 0;
1574      Value *TrueVal, *FalseVal, *Cond;
1575      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1576          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1577          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1578        return Error("Invalid SELECT record");
1579
1580      // select condition can be either i1 or [N x i1]
1581      if (const VectorType* vector_type =
1582          dyn_cast<const VectorType>(Cond->getType())) {
1583        // expect <n x i1>
1584        if (vector_type->getElementType() != Type::Int1Ty)
1585          return Error("Invalid SELECT condition type");
1586      } else {
1587        // expect i1
1588        if (Cond->getType() != Type::Int1Ty)
1589          return Error("Invalid SELECT condition type");
1590      }
1591
1592      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1593      break;
1594    }
1595
1596    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1597      unsigned OpNum = 0;
1598      Value *Vec, *Idx;
1599      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1600          getValue(Record, OpNum, Type::Int32Ty, Idx))
1601        return Error("Invalid EXTRACTELT record");
1602      I = new ExtractElementInst(Vec, Idx);
1603      break;
1604    }
1605
1606    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1607      unsigned OpNum = 0;
1608      Value *Vec, *Elt, *Idx;
1609      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1610          getValue(Record, OpNum,
1611                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1612          getValue(Record, OpNum, Type::Int32Ty, Idx))
1613        return Error("Invalid INSERTELT record");
1614      I = InsertElementInst::Create(Vec, Elt, Idx);
1615      break;
1616    }
1617
1618    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1619      unsigned OpNum = 0;
1620      Value *Vec1, *Vec2, *Mask;
1621      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1622          getValue(Record, OpNum, Vec1->getType(), Vec2))
1623        return Error("Invalid SHUFFLEVEC record");
1624
1625      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1626        return Error("Invalid SHUFFLEVEC record");
1627      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1628      break;
1629    }
1630
1631    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1632      // Old form of ICmp/FCmp returning bool
1633      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1634      // both legal on vectors but had different behaviour.
1635    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1636      // FCmp/ICmp returning bool or vector of bool
1637
1638      unsigned OpNum = 0;
1639      Value *LHS, *RHS;
1640      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1641          getValue(Record, OpNum, LHS->getType(), RHS) ||
1642          OpNum+1 != Record.size())
1643        return Error("Invalid CMP record");
1644
1645      if (LHS->getType()->isFPOrFPVector())
1646        I = new FCmpInst(Context, (FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1647      else
1648        I = new ICmpInst(Context, (ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1649      break;
1650    }
1651
1652    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1653      if (Record.size() != 2)
1654        return Error("Invalid GETRESULT record");
1655      unsigned OpNum = 0;
1656      Value *Op;
1657      getValueTypePair(Record, OpNum, NextValueNo, Op);
1658      unsigned Index = Record[1];
1659      I = ExtractValueInst::Create(Op, Index);
1660      break;
1661    }
1662
1663    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1664      {
1665        unsigned Size = Record.size();
1666        if (Size == 0) {
1667          I = ReturnInst::Create();
1668          break;
1669        }
1670
1671        unsigned OpNum = 0;
1672        SmallVector<Value *,4> Vs;
1673        do {
1674          Value *Op = NULL;
1675          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1676            return Error("Invalid RET record");
1677          Vs.push_back(Op);
1678        } while(OpNum != Record.size());
1679
1680        const Type *ReturnType = F->getReturnType();
1681        if (Vs.size() > 1 ||
1682            (isa<StructType>(ReturnType) &&
1683             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1684          Value *RV = Context.getUndef(ReturnType);
1685          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1686            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1687            CurBB->getInstList().push_back(I);
1688            ValueList.AssignValue(I, NextValueNo++);
1689            RV = I;
1690          }
1691          I = ReturnInst::Create(RV);
1692          break;
1693        }
1694
1695        I = ReturnInst::Create(Vs[0]);
1696        break;
1697      }
1698    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1699      if (Record.size() != 1 && Record.size() != 3)
1700        return Error("Invalid BR record");
1701      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1702      if (TrueDest == 0)
1703        return Error("Invalid BR record");
1704
1705      if (Record.size() == 1)
1706        I = BranchInst::Create(TrueDest);
1707      else {
1708        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1709        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1710        if (FalseDest == 0 || Cond == 0)
1711          return Error("Invalid BR record");
1712        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1713      }
1714      break;
1715    }
1716    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1717      if (Record.size() < 3 || (Record.size() & 1) == 0)
1718        return Error("Invalid SWITCH record");
1719      const Type *OpTy = getTypeByID(Record[0]);
1720      Value *Cond = getFnValueByID(Record[1], OpTy);
1721      BasicBlock *Default = getBasicBlock(Record[2]);
1722      if (OpTy == 0 || Cond == 0 || Default == 0)
1723        return Error("Invalid SWITCH record");
1724      unsigned NumCases = (Record.size()-3)/2;
1725      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1726      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1727        ConstantInt *CaseVal =
1728          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1729        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1730        if (CaseVal == 0 || DestBB == 0) {
1731          delete SI;
1732          return Error("Invalid SWITCH record!");
1733        }
1734        SI->addCase(CaseVal, DestBB);
1735      }
1736      I = SI;
1737      break;
1738    }
1739
1740    case bitc::FUNC_CODE_INST_INVOKE: {
1741      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1742      if (Record.size() < 4) return Error("Invalid INVOKE record");
1743      AttrListPtr PAL = getAttributes(Record[0]);
1744      unsigned CCInfo = Record[1];
1745      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1746      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1747
1748      unsigned OpNum = 4;
1749      Value *Callee;
1750      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1751        return Error("Invalid INVOKE record");
1752
1753      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1754      const FunctionType *FTy = !CalleeTy ? 0 :
1755        dyn_cast<FunctionType>(CalleeTy->getElementType());
1756
1757      // Check that the right number of fixed parameters are here.
1758      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1759          Record.size() < OpNum+FTy->getNumParams())
1760        return Error("Invalid INVOKE record");
1761
1762      SmallVector<Value*, 16> Ops;
1763      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1764        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1765        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1766      }
1767
1768      if (!FTy->isVarArg()) {
1769        if (Record.size() != OpNum)
1770          return Error("Invalid INVOKE record");
1771      } else {
1772        // Read type/value pairs for varargs params.
1773        while (OpNum != Record.size()) {
1774          Value *Op;
1775          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1776            return Error("Invalid INVOKE record");
1777          Ops.push_back(Op);
1778        }
1779      }
1780
1781      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1782                             Ops.begin(), Ops.end());
1783      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1784      cast<InvokeInst>(I)->setAttributes(PAL);
1785      break;
1786    }
1787    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1788      I = new UnwindInst();
1789      break;
1790    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1791      I = new UnreachableInst();
1792      break;
1793    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1794      if (Record.size() < 1 || ((Record.size()-1)&1))
1795        return Error("Invalid PHI record");
1796      const Type *Ty = getTypeByID(Record[0]);
1797      if (!Ty) return Error("Invalid PHI record");
1798
1799      PHINode *PN = PHINode::Create(Ty);
1800      PN->reserveOperandSpace((Record.size()-1)/2);
1801
1802      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1803        Value *V = getFnValueByID(Record[1+i], Ty);
1804        BasicBlock *BB = getBasicBlock(Record[2+i]);
1805        if (!V || !BB) return Error("Invalid PHI record");
1806        PN->addIncoming(V, BB);
1807      }
1808      I = PN;
1809      break;
1810    }
1811
1812    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1813      if (Record.size() < 3)
1814        return Error("Invalid MALLOC record");
1815      const PointerType *Ty =
1816        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1817      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1818      unsigned Align = Record[2];
1819      if (!Ty || !Size) return Error("Invalid MALLOC record");
1820      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1821      break;
1822    }
1823    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1824      unsigned OpNum = 0;
1825      Value *Op;
1826      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1827          OpNum != Record.size())
1828        return Error("Invalid FREE record");
1829      I = new FreeInst(Op);
1830      break;
1831    }
1832    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1833      if (Record.size() < 3)
1834        return Error("Invalid ALLOCA record");
1835      const PointerType *Ty =
1836        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1837      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1838      unsigned Align = Record[2];
1839      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1840      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1841      break;
1842    }
1843    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1844      unsigned OpNum = 0;
1845      Value *Op;
1846      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1847          OpNum+2 != Record.size())
1848        return Error("Invalid LOAD record");
1849
1850      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1851      break;
1852    }
1853    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1854      unsigned OpNum = 0;
1855      Value *Val, *Ptr;
1856      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1857          getValue(Record, OpNum,
1858                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1859          OpNum+2 != Record.size())
1860        return Error("Invalid STORE record");
1861
1862      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1863      break;
1864    }
1865    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1866      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1867      unsigned OpNum = 0;
1868      Value *Val, *Ptr;
1869      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1870          getValue(Record, OpNum,
1871                   Context.getPointerTypeUnqual(Val->getType()), Ptr)||
1872          OpNum+2 != Record.size())
1873        return Error("Invalid STORE record");
1874
1875      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1876      break;
1877    }
1878    case bitc::FUNC_CODE_INST_CALL: {
1879      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1880      if (Record.size() < 3)
1881        return Error("Invalid CALL record");
1882
1883      AttrListPtr PAL = getAttributes(Record[0]);
1884      unsigned CCInfo = Record[1];
1885
1886      unsigned OpNum = 2;
1887      Value *Callee;
1888      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1889        return Error("Invalid CALL record");
1890
1891      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1892      const FunctionType *FTy = 0;
1893      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1894      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1895        return Error("Invalid CALL record");
1896
1897      SmallVector<Value*, 16> Args;
1898      // Read the fixed params.
1899      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1900        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1901          Args.push_back(getBasicBlock(Record[OpNum]));
1902        else
1903          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1904        if (Args.back() == 0) return Error("Invalid CALL record");
1905      }
1906
1907      // Read type/value pairs for varargs params.
1908      if (!FTy->isVarArg()) {
1909        if (OpNum != Record.size())
1910          return Error("Invalid CALL record");
1911      } else {
1912        while (OpNum != Record.size()) {
1913          Value *Op;
1914          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1915            return Error("Invalid CALL record");
1916          Args.push_back(Op);
1917        }
1918      }
1919
1920      I = CallInst::Create(Callee, Args.begin(), Args.end());
1921      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1922      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1923      cast<CallInst>(I)->setAttributes(PAL);
1924      break;
1925    }
1926    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1927      if (Record.size() < 3)
1928        return Error("Invalid VAARG record");
1929      const Type *OpTy = getTypeByID(Record[0]);
1930      Value *Op = getFnValueByID(Record[1], OpTy);
1931      const Type *ResTy = getTypeByID(Record[2]);
1932      if (!OpTy || !Op || !ResTy)
1933        return Error("Invalid VAARG record");
1934      I = new VAArgInst(Op, ResTy);
1935      break;
1936    }
1937    }
1938
1939    // Add instruction to end of current BB.  If there is no current BB, reject
1940    // this file.
1941    if (CurBB == 0) {
1942      delete I;
1943      return Error("Invalid instruction with no BB");
1944    }
1945    CurBB->getInstList().push_back(I);
1946
1947    // If this was a terminator instruction, move to the next block.
1948    if (isa<TerminatorInst>(I)) {
1949      ++CurBBNo;
1950      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1951    }
1952
1953    // Non-void values get registered in the value table for future use.
1954    if (I && I->getType() != Type::VoidTy)
1955      ValueList.AssignValue(I, NextValueNo++);
1956  }
1957
1958  // Check the function list for unresolved values.
1959  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1960    if (A->getParent() == 0) {
1961      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1962      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1963        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1964          A->replaceAllUsesWith(Context.getUndef(A->getType()));
1965          delete A;
1966        }
1967      }
1968      return Error("Never resolved value found in function!");
1969    }
1970  }
1971
1972  // Trim the value list down to the size it was before we parsed this function.
1973  ValueList.shrinkTo(ModuleValueListSize);
1974  std::vector<BasicBlock*>().swap(FunctionBBs);
1975
1976  return false;
1977}
1978
1979//===----------------------------------------------------------------------===//
1980// ModuleProvider implementation
1981//===----------------------------------------------------------------------===//
1982
1983
1984bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1985  // If it already is material, ignore the request.
1986  if (!F->hasNotBeenReadFromBitcode()) return false;
1987
1988  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1989    DeferredFunctionInfo.find(F);
1990  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1991
1992  // Move the bit stream to the saved position of the deferred function body and
1993  // restore the real linkage type for the function.
1994  Stream.JumpToBit(DFII->second.first);
1995  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
1996
1997  if (ParseFunctionBody(F)) {
1998    if (ErrInfo) *ErrInfo = ErrorString;
1999    return true;
2000  }
2001
2002  // Upgrade any old intrinsic calls in the function.
2003  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2004       E = UpgradedIntrinsics.end(); I != E; ++I) {
2005    if (I->first != I->second) {
2006      for (Value::use_iterator UI = I->first->use_begin(),
2007           UE = I->first->use_end(); UI != UE; ) {
2008        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2009          UpgradeIntrinsicCall(CI, I->second);
2010      }
2011    }
2012  }
2013
2014  return false;
2015}
2016
2017void BitcodeReader::dematerializeFunction(Function *F) {
2018  // If this function isn't materialized, or if it is a proto, this is a noop.
2019  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2020    return;
2021
2022  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2023
2024  // Just forget the function body, we can remat it later.
2025  F->deleteBody();
2026  F->setLinkage(GlobalValue::GhostLinkage);
2027}
2028
2029
2030Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2031  // Iterate over the module, deserializing any functions that are still on
2032  // disk.
2033  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2034       F != E; ++F)
2035    if (F->hasNotBeenReadFromBitcode() &&
2036        materializeFunction(F, ErrInfo))
2037      return 0;
2038
2039  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2040  // delete the old functions to clean up. We can't do this unless the entire
2041  // module is materialized because there could always be another function body
2042  // with calls to the old function.
2043  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2044       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2045    if (I->first != I->second) {
2046      for (Value::use_iterator UI = I->first->use_begin(),
2047           UE = I->first->use_end(); UI != UE; ) {
2048        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2049          UpgradeIntrinsicCall(CI, I->second);
2050      }
2051      if (!I->first->use_empty())
2052        I->first->replaceAllUsesWith(I->second);
2053      I->first->eraseFromParent();
2054    }
2055  }
2056  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2057
2058  return TheModule;
2059}
2060
2061
2062/// This method is provided by the parent ModuleProvde class and overriden
2063/// here. It simply releases the module from its provided and frees up our
2064/// state.
2065/// @brief Release our hold on the generated module
2066Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2067  // Since we're losing control of this Module, we must hand it back complete
2068  Module *M = ModuleProvider::releaseModule(ErrInfo);
2069  FreeState();
2070  return M;
2071}
2072
2073
2074//===----------------------------------------------------------------------===//
2075// External interface
2076//===----------------------------------------------------------------------===//
2077
2078/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2079///
2080ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2081                                               LLVMContext& Context,
2082                                               std::string *ErrMsg) {
2083  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2084  if (R->ParseBitcode()) {
2085    if (ErrMsg)
2086      *ErrMsg = R->getErrorString();
2087
2088    // Don't let the BitcodeReader dtor delete 'Buffer'.
2089    R->releaseMemoryBuffer();
2090    delete R;
2091    return 0;
2092  }
2093  return R;
2094}
2095
2096/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2097/// If an error occurs, return null and fill in *ErrMsg if non-null.
2098Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2099                               std::string *ErrMsg){
2100  BitcodeReader *R;
2101  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2102                                                           ErrMsg));
2103  if (!R) return 0;
2104
2105  // Read in the entire module.
2106  Module *M = R->materializeModule(ErrMsg);
2107
2108  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2109  // there was an error.
2110  R->releaseMemoryBuffer();
2111
2112  // If there was no error, tell ModuleProvider not to delete it when its dtor
2113  // is run.
2114  if (M)
2115    M = R->releaseModule(ErrMsg);
2116
2117  delete R;
2118  return M;
2119}
2120