BitcodeReader.cpp revision 59bf4fcc0680e75b408579064d1205a132361196
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Metadata.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37  MDValueList.clear();
38
39  std::vector<AttrListPtr>().swap(MAttributes);
40  std::vector<BasicBlock*>().swap(FunctionBBs);
41  std::vector<Function*>().swap(FunctionsWithBodies);
42  DeferredFunctionInfo.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  }
80}
81
82static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83  switch (Val) {
84  default: // Map unknown visibilities to default.
85  case 0: return GlobalValue::DefaultVisibility;
86  case 1: return GlobalValue::HiddenVisibility;
87  case 2: return GlobalValue::ProtectedVisibility;
88  }
89}
90
91static int GetDecodedCastOpcode(unsigned Val) {
92  switch (Val) {
93  default: return -1;
94  case bitc::CAST_TRUNC   : return Instruction::Trunc;
95  case bitc::CAST_ZEXT    : return Instruction::ZExt;
96  case bitc::CAST_SEXT    : return Instruction::SExt;
97  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102  case bitc::CAST_FPEXT   : return Instruction::FPExt;
103  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105  case bitc::CAST_BITCAST : return Instruction::BitCast;
106  }
107}
108static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109  switch (Val) {
110  default: return -1;
111  case bitc::BINOP_ADD:
112    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113  case bitc::BINOP_SUB:
114    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115  case bitc::BINOP_MUL:
116    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117  case bitc::BINOP_UDIV: return Instruction::UDiv;
118  case bitc::BINOP_SDIV:
119    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120  case bitc::BINOP_UREM: return Instruction::URem;
121  case bitc::BINOP_SREM:
122    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123  case bitc::BINOP_SHL:  return Instruction::Shl;
124  case bitc::BINOP_LSHR: return Instruction::LShr;
125  case bitc::BINOP_ASHR: return Instruction::AShr;
126  case bitc::BINOP_AND:  return Instruction::And;
127  case bitc::BINOP_OR:   return Instruction::Or;
128  case bitc::BINOP_XOR:  return Instruction::Xor;
129  }
130}
131
132namespace llvm {
133namespace {
134  /// @brief A class for maintaining the slot number definition
135  /// as a placeholder for the actual definition for forward constants defs.
136  class ConstantPlaceHolder : public ConstantExpr {
137    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139  public:
140    // allocate space for exactly one operand
141    void *operator new(size_t s) {
142      return User::operator new(s, 1);
143    }
144    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147    }
148
149    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150    static inline bool classof(const ConstantPlaceHolder *) { return true; }
151    static bool classof(const Value *V) {
152      return isa<ConstantExpr>(V) &&
153             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154    }
155
156
157    /// Provide fast operand accessors
158    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159  };
160}
161
162// FIXME: can we inherit this from ConstantExpr?
163template <>
164struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165};
166}
167
168
169void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170  if (Idx == size()) {
171    push_back(V);
172    return;
173  }
174
175  if (Idx >= size())
176    resize(Idx+1);
177
178  WeakVH &OldV = ValuePtrs[Idx];
179  if (OldV == 0) {
180    OldV = V;
181    return;
182  }
183
184  // Handle constants and non-constants (e.g. instrs) differently for
185  // efficiency.
186  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187    ResolveConstants.push_back(std::make_pair(PHC, Idx));
188    OldV = V;
189  } else {
190    // If there was a forward reference to this value, replace it.
191    Value *PrevVal = OldV;
192    OldV->replaceAllUsesWith(V);
193    delete PrevVal;
194  }
195}
196
197
198Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                    const Type *Ty) {
200  if (Idx >= size())
201    resize(Idx + 1);
202
203  if (Value *V = ValuePtrs[Idx]) {
204    assert(Ty == V->getType() && "Type mismatch in constant table!");
205    return cast<Constant>(V);
206  }
207
208  // Create and return a placeholder, which will later be RAUW'd.
209  Constant *C = new ConstantPlaceHolder(Ty, Context);
210  ValuePtrs[Idx] = C;
211  return C;
212}
213
214Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215  if (Idx >= size())
216    resize(Idx + 1);
217
218  if (Value *V = ValuePtrs[Idx]) {
219    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220    return V;
221  }
222
223  // No type specified, must be invalid reference.
224  if (Ty == 0) return 0;
225
226  // Create and return a placeholder, which will later be RAUW'd.
227  Value *V = new Argument(Ty);
228  ValuePtrs[Idx] = V;
229  return V;
230}
231
232/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233/// resolves any forward references.  The idea behind this is that we sometimes
234/// get constants (such as large arrays) which reference *many* forward ref
235/// constants.  Replacing each of these causes a lot of thrashing when
236/// building/reuniquing the constant.  Instead of doing this, we look at all the
237/// uses and rewrite all the place holders at once for any constant that uses
238/// a placeholder.
239void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240  // Sort the values by-pointer so that they are efficient to look up with a
241  // binary search.
242  std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244  SmallVector<Constant*, 64> NewOps;
245
246  while (!ResolveConstants.empty()) {
247    Value *RealVal = operator[](ResolveConstants.back().second);
248    Constant *Placeholder = ResolveConstants.back().first;
249    ResolveConstants.pop_back();
250
251    // Loop over all users of the placeholder, updating them to reference the
252    // new value.  If they reference more than one placeholder, update them all
253    // at once.
254    while (!Placeholder->use_empty()) {
255      Value::use_iterator UI = Placeholder->use_begin();
256
257      // If the using object isn't uniqued, just update the operands.  This
258      // handles instructions and initializers for global variables.
259      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260        UI.getUse().set(RealVal);
261        continue;
262      }
263
264      // Otherwise, we have a constant that uses the placeholder.  Replace that
265      // constant with a new constant that has *all* placeholder uses updated.
266      Constant *UserC = cast<Constant>(*UI);
267      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268           I != E; ++I) {
269        Value *NewOp;
270        if (!isa<ConstantPlaceHolder>(*I)) {
271          // Not a placeholder reference.
272          NewOp = *I;
273        } else if (*I == Placeholder) {
274          // Common case is that it just references this one placeholder.
275          NewOp = RealVal;
276        } else {
277          // Otherwise, look up the placeholder in ResolveConstants.
278          ResolveConstantsTy::iterator It =
279            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                            0));
282          assert(It != ResolveConstants.end() && It->first == *I);
283          NewOp = operator[](It->second);
284        }
285
286        NewOps.push_back(cast<Constant>(NewOp));
287      }
288
289      // Make the new constant.
290      Constant *NewC;
291      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                        NewOps.size());
294      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                         UserCS->getType()->isPacked());
297      } else if (isa<ConstantVector>(UserC)) {
298        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299      } else {
300        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302                                                          NewOps.size());
303      }
304
305      UserC->replaceAllUsesWith(NewC);
306      UserC->destroyConstant();
307      NewOps.clear();
308    }
309
310    // Update all ValueHandles, they should be the only users at this point.
311    Placeholder->replaceAllUsesWith(RealVal);
312    delete Placeholder;
313  }
314}
315
316void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317  if (Idx == size()) {
318    push_back(V);
319    return;
320  }
321
322  if (Idx >= size())
323    resize(Idx+1);
324
325  WeakVH &OldV = MDValuePtrs[Idx];
326  if (OldV == 0) {
327    OldV = V;
328    return;
329  }
330
331  // If there was a forward reference to this value, replace it.
332  Value *PrevVal = OldV;
333  OldV->replaceAllUsesWith(V);
334  delete PrevVal;
335  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336  // value for Idx.
337  MDValuePtrs[Idx] = V;
338}
339
340Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341  if (Idx >= size())
342    resize(Idx + 1);
343
344  if (Value *V = MDValuePtrs[Idx]) {
345    assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!");
346    return V;
347  }
348
349  // Create and return a placeholder, which will later be RAUW'd.
350  Value *V = new Argument(Type::getMetadataTy(Context));
351  MDValuePtrs[Idx] = V;
352  return V;
353}
354
355const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356  // If the TypeID is in range, return it.
357  if (ID < TypeList.size())
358    return TypeList[ID].get();
359  if (!isTypeTable) return 0;
360
361  // The type table allows forward references.  Push as many Opaque types as
362  // needed to get up to ID.
363  while (TypeList.size() <= ID)
364    TypeList.push_back(OpaqueType::get(Context));
365  return TypeList.back().get();
366}
367
368//===----------------------------------------------------------------------===//
369//  Functions for parsing blocks from the bitcode file
370//===----------------------------------------------------------------------===//
371
372bool BitcodeReader::ParseAttributeBlock() {
373  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374    return Error("Malformed block record");
375
376  if (!MAttributes.empty())
377    return Error("Multiple PARAMATTR blocks found!");
378
379  SmallVector<uint64_t, 64> Record;
380
381  SmallVector<AttributeWithIndex, 8> Attrs;
382
383  // Read all the records.
384  while (1) {
385    unsigned Code = Stream.ReadCode();
386    if (Code == bitc::END_BLOCK) {
387      if (Stream.ReadBlockEnd())
388        return Error("Error at end of PARAMATTR block");
389      return false;
390    }
391
392    if (Code == bitc::ENTER_SUBBLOCK) {
393      // No known subblocks, always skip them.
394      Stream.ReadSubBlockID();
395      if (Stream.SkipBlock())
396        return Error("Malformed block record");
397      continue;
398    }
399
400    if (Code == bitc::DEFINE_ABBREV) {
401      Stream.ReadAbbrevRecord();
402      continue;
403    }
404
405    // Read a record.
406    Record.clear();
407    switch (Stream.ReadRecord(Code, Record)) {
408    default:  // Default behavior: ignore.
409      break;
410    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411      if (Record.size() & 1)
412        return Error("Invalid ENTRY record");
413
414      // FIXME : Remove this autoupgrade code in LLVM 3.0.
415      // If Function attributes are using index 0 then transfer them
416      // to index ~0. Index 0 is used for return value attributes but used to be
417      // used for function attributes.
418      Attributes RetAttribute = Attribute::None;
419      Attributes FnAttribute = Attribute::None;
420      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421        // FIXME: remove in LLVM 3.0
422        // The alignment is stored as a 16-bit raw value from bits 31--16.
423        // We shift the bits above 31 down by 11 bits.
424
425        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426        if (Alignment && !isPowerOf2_32(Alignment))
427          return Error("Alignment is not a power of two.");
428
429        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430        if (Alignment)
431          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433        Record[i+1] = ReconstitutedAttr;
434
435        if (Record[i] == 0)
436          RetAttribute = Record[i+1];
437        else if (Record[i] == ~0U)
438          FnAttribute = Record[i+1];
439      }
440
441      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442                              Attribute::ReadOnly|Attribute::ReadNone);
443
444      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445          (RetAttribute & OldRetAttrs) != 0) {
446        if (FnAttribute == Attribute::None) { // add a slot so they get added.
447          Record.push_back(~0U);
448          Record.push_back(0);
449        }
450
451        FnAttribute  |= RetAttribute & OldRetAttrs;
452        RetAttribute &= ~OldRetAttrs;
453      }
454
455      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456        if (Record[i] == 0) {
457          if (RetAttribute != Attribute::None)
458            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459        } else if (Record[i] == ~0U) {
460          if (FnAttribute != Attribute::None)
461            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462        } else if (Record[i+1] != Attribute::None)
463          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
464      }
465
466      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467      Attrs.clear();
468      break;
469    }
470    }
471  }
472}
473
474
475bool BitcodeReader::ParseTypeTable() {
476  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477    return Error("Malformed block record");
478
479  if (!TypeList.empty())
480    return Error("Multiple TYPE_BLOCKs found!");
481
482  SmallVector<uint64_t, 64> Record;
483  unsigned NumRecords = 0;
484
485  // Read all the records for this type table.
486  while (1) {
487    unsigned Code = Stream.ReadCode();
488    if (Code == bitc::END_BLOCK) {
489      if (NumRecords != TypeList.size())
490        return Error("Invalid type forward reference in TYPE_BLOCK");
491      if (Stream.ReadBlockEnd())
492        return Error("Error at end of type table block");
493      return false;
494    }
495
496    if (Code == bitc::ENTER_SUBBLOCK) {
497      // No known subblocks, always skip them.
498      Stream.ReadSubBlockID();
499      if (Stream.SkipBlock())
500        return Error("Malformed block record");
501      continue;
502    }
503
504    if (Code == bitc::DEFINE_ABBREV) {
505      Stream.ReadAbbrevRecord();
506      continue;
507    }
508
509    // Read a record.
510    Record.clear();
511    const Type *ResultTy = 0;
512    switch (Stream.ReadRecord(Code, Record)) {
513    default:  // Default behavior: unknown type.
514      ResultTy = 0;
515      break;
516    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518      // type list.  This allows us to reserve space.
519      if (Record.size() < 1)
520        return Error("Invalid TYPE_CODE_NUMENTRY record");
521      TypeList.reserve(Record[0]);
522      continue;
523    case bitc::TYPE_CODE_VOID:      // VOID
524      ResultTy = Type::getVoidTy(Context);
525      break;
526    case bitc::TYPE_CODE_FLOAT:     // FLOAT
527      ResultTy = Type::getFloatTy(Context);
528      break;
529    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
530      ResultTy = Type::getDoubleTy(Context);
531      break;
532    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
533      ResultTy = Type::getX86_FP80Ty(Context);
534      break;
535    case bitc::TYPE_CODE_FP128:     // FP128
536      ResultTy = Type::getFP128Ty(Context);
537      break;
538    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539      ResultTy = Type::getPPC_FP128Ty(Context);
540      break;
541    case bitc::TYPE_CODE_LABEL:     // LABEL
542      ResultTy = Type::getLabelTy(Context);
543      break;
544    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
545      ResultTy = 0;
546      break;
547    case bitc::TYPE_CODE_METADATA:  // METADATA
548      ResultTy = Type::getMetadataTy(Context);
549      break;
550    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
551      if (Record.size() < 1)
552        return Error("Invalid Integer type record");
553
554      ResultTy = IntegerType::get(Context, Record[0]);
555      break;
556    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557                                    //          [pointee type, address space]
558      if (Record.size() < 1)
559        return Error("Invalid POINTER type record");
560      unsigned AddressSpace = 0;
561      if (Record.size() == 2)
562        AddressSpace = Record[1];
563      ResultTy = PointerType::get(getTypeByID(Record[0], true),
564                                        AddressSpace);
565      break;
566    }
567    case bitc::TYPE_CODE_FUNCTION: {
568      // FIXME: attrid is dead, remove it in LLVM 3.0
569      // FUNCTION: [vararg, attrid, retty, paramty x N]
570      if (Record.size() < 3)
571        return Error("Invalid FUNCTION type record");
572      std::vector<const Type*> ArgTys;
573      for (unsigned i = 3, e = Record.size(); i != e; ++i)
574        ArgTys.push_back(getTypeByID(Record[i], true));
575
576      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577                                   Record[0]);
578      break;
579    }
580    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
581      if (Record.size() < 1)
582        return Error("Invalid STRUCT type record");
583      std::vector<const Type*> EltTys;
584      for (unsigned i = 1, e = Record.size(); i != e; ++i)
585        EltTys.push_back(getTypeByID(Record[i], true));
586      ResultTy = StructType::get(Context, EltTys, Record[0]);
587      break;
588    }
589    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
590      if (Record.size() < 2)
591        return Error("Invalid ARRAY type record");
592      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593      break;
594    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid VECTOR type record");
597      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    }
600
601    if (NumRecords == TypeList.size()) {
602      // If this is a new type slot, just append it.
603      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604      ++NumRecords;
605    } else if (ResultTy == 0) {
606      // Otherwise, this was forward referenced, so an opaque type was created,
607      // but the result type is actually just an opaque.  Leave the one we
608      // created previously.
609      ++NumRecords;
610    } else {
611      // Otherwise, this was forward referenced, so an opaque type was created.
612      // Resolve the opaque type to the real type now.
613      assert(NumRecords < TypeList.size() && "Typelist imbalance");
614      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
615
616      // Don't directly push the new type on the Tab. Instead we want to replace
617      // the opaque type we previously inserted with the new concrete value. The
618      // refinement from the abstract (opaque) type to the new type causes all
619      // uses of the abstract type to use the concrete type (NewTy). This will
620      // also cause the opaque type to be deleted.
621      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
622
623      // This should have replaced the old opaque type with the new type in the
624      // value table... or with a preexisting type that was already in the
625      // system.  Let's just make sure it did.
626      assert(TypeList[NumRecords-1].get() != OldTy &&
627             "refineAbstractType didn't work!");
628    }
629  }
630}
631
632
633bool BitcodeReader::ParseTypeSymbolTable() {
634  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635    return Error("Malformed block record");
636
637  SmallVector<uint64_t, 64> Record;
638
639  // Read all the records for this type table.
640  std::string TypeName;
641  while (1) {
642    unsigned Code = Stream.ReadCode();
643    if (Code == bitc::END_BLOCK) {
644      if (Stream.ReadBlockEnd())
645        return Error("Error at end of type symbol table block");
646      return false;
647    }
648
649    if (Code == bitc::ENTER_SUBBLOCK) {
650      // No known subblocks, always skip them.
651      Stream.ReadSubBlockID();
652      if (Stream.SkipBlock())
653        return Error("Malformed block record");
654      continue;
655    }
656
657    if (Code == bitc::DEFINE_ABBREV) {
658      Stream.ReadAbbrevRecord();
659      continue;
660    }
661
662    // Read a record.
663    Record.clear();
664    switch (Stream.ReadRecord(Code, Record)) {
665    default:  // Default behavior: unknown type.
666      break;
667    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
668      if (ConvertToString(Record, 1, TypeName))
669        return Error("Invalid TST_ENTRY record");
670      unsigned TypeID = Record[0];
671      if (TypeID >= TypeList.size())
672        return Error("Invalid Type ID in TST_ENTRY record");
673
674      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675      TypeName.clear();
676      break;
677    }
678  }
679}
680
681bool BitcodeReader::ParseValueSymbolTable() {
682  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683    return Error("Malformed block record");
684
685  SmallVector<uint64_t, 64> Record;
686
687  // Read all the records for this value table.
688  SmallString<128> ValueName;
689  while (1) {
690    unsigned Code = Stream.ReadCode();
691    if (Code == bitc::END_BLOCK) {
692      if (Stream.ReadBlockEnd())
693        return Error("Error at end of value symbol table block");
694      return false;
695    }
696    if (Code == bitc::ENTER_SUBBLOCK) {
697      // No known subblocks, always skip them.
698      Stream.ReadSubBlockID();
699      if (Stream.SkipBlock())
700        return Error("Malformed block record");
701      continue;
702    }
703
704    if (Code == bitc::DEFINE_ABBREV) {
705      Stream.ReadAbbrevRecord();
706      continue;
707    }
708
709    // Read a record.
710    Record.clear();
711    switch (Stream.ReadRecord(Code, Record)) {
712    default:  // Default behavior: unknown type.
713      break;
714    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
715      if (ConvertToString(Record, 1, ValueName))
716        return Error("Invalid VST_ENTRY record");
717      unsigned ValueID = Record[0];
718      if (ValueID >= ValueList.size())
719        return Error("Invalid Value ID in VST_ENTRY record");
720      Value *V = ValueList[ValueID];
721
722      V->setName(StringRef(ValueName.data(), ValueName.size()));
723      ValueName.clear();
724      break;
725    }
726    case bitc::VST_CODE_BBENTRY: {
727      if (ConvertToString(Record, 1, ValueName))
728        return Error("Invalid VST_BBENTRY record");
729      BasicBlock *BB = getBasicBlock(Record[0]);
730      if (BB == 0)
731        return Error("Invalid BB ID in VST_BBENTRY record");
732
733      BB->setName(StringRef(ValueName.data(), ValueName.size()));
734      ValueName.clear();
735      break;
736    }
737    }
738  }
739}
740
741bool BitcodeReader::ParseMetadata() {
742  unsigned NextValueNo = MDValueList.size();
743
744  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745    return Error("Malformed block record");
746
747  SmallVector<uint64_t, 64> Record;
748
749  // Read all the records.
750  while (1) {
751    unsigned Code = Stream.ReadCode();
752    if (Code == bitc::END_BLOCK) {
753      if (Stream.ReadBlockEnd())
754        return Error("Error at end of PARAMATTR block");
755      return false;
756    }
757
758    if (Code == bitc::ENTER_SUBBLOCK) {
759      // No known subblocks, always skip them.
760      Stream.ReadSubBlockID();
761      if (Stream.SkipBlock())
762        return Error("Malformed block record");
763      continue;
764    }
765
766    if (Code == bitc::DEFINE_ABBREV) {
767      Stream.ReadAbbrevRecord();
768      continue;
769    }
770
771    // Read a record.
772    Record.clear();
773    switch (Stream.ReadRecord(Code, Record)) {
774    default:  // Default behavior: ignore.
775      break;
776    case bitc::METADATA_NAME: {
777      // Read named of the named metadata.
778      unsigned NameLength = Record.size();
779      SmallString<8> Name;
780      Name.resize(NameLength);
781      for (unsigned i = 0; i != NameLength; ++i)
782        Name[i] = Record[i];
783      Record.clear();
784      Code = Stream.ReadCode();
785
786      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788        assert ( 0 && "Inavlid Named Metadata record");
789
790      // Read named metadata elements.
791      unsigned Size = Record.size();
792      SmallVector<MetadataBase*, 8> Elts;
793      for (unsigned i = 0; i != Size; ++i) {
794        Value *MD = MDValueList.getValueFwdRef(Record[i]);
795        if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796        Elts.push_back(B);
797      }
798      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799                                     Elts.size(), TheModule);
800      MDValueList.AssignValue(V, NextValueNo++);
801      break;
802    }
803    case bitc::METADATA_NODE: {
804      if (Record.empty() || Record.size() % 2 == 1)
805        return Error("Invalid METADATA_NODE record");
806
807      unsigned Size = Record.size();
808      SmallVector<Value*, 8> Elts;
809      for (unsigned i = 0; i != Size; i += 2) {
810        const Type *Ty = getTypeByID(Record[i], false);
811        if (Ty == Type::getMetadataTy(Context))
812          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813        else if (Ty != Type::getVoidTy(Context))
814          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815        else
816          Elts.push_back(NULL);
817      }
818      Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819      MDValueList.AssignValue(V, NextValueNo++);
820      break;
821    }
822    case bitc::METADATA_STRING: {
823      unsigned MDStringLength = Record.size();
824      SmallString<8> String;
825      String.resize(MDStringLength);
826      for (unsigned i = 0; i != MDStringLength; ++i)
827        String[i] = Record[i];
828      Value *V = MDString::get(Context,
829                               StringRef(String.data(), String.size()));
830      MDValueList.AssignValue(V, NextValueNo++);
831      break;
832    }
833    }
834  }
835}
836
837/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
838/// the LSB for dense VBR encoding.
839static uint64_t DecodeSignRotatedValue(uint64_t V) {
840  if ((V & 1) == 0)
841    return V >> 1;
842  if (V != 1)
843    return -(V >> 1);
844  // There is no such thing as -0 with integers.  "-0" really means MININT.
845  return 1ULL << 63;
846}
847
848/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
849/// values and aliases that we can.
850bool BitcodeReader::ResolveGlobalAndAliasInits() {
851  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
852  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
853
854  GlobalInitWorklist.swap(GlobalInits);
855  AliasInitWorklist.swap(AliasInits);
856
857  while (!GlobalInitWorklist.empty()) {
858    unsigned ValID = GlobalInitWorklist.back().second;
859    if (ValID >= ValueList.size()) {
860      // Not ready to resolve this yet, it requires something later in the file.
861      GlobalInits.push_back(GlobalInitWorklist.back());
862    } else {
863      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
864        GlobalInitWorklist.back().first->setInitializer(C);
865      else
866        return Error("Global variable initializer is not a constant!");
867    }
868    GlobalInitWorklist.pop_back();
869  }
870
871  while (!AliasInitWorklist.empty()) {
872    unsigned ValID = AliasInitWorklist.back().second;
873    if (ValID >= ValueList.size()) {
874      AliasInits.push_back(AliasInitWorklist.back());
875    } else {
876      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
877        AliasInitWorklist.back().first->setAliasee(C);
878      else
879        return Error("Alias initializer is not a constant!");
880    }
881    AliasInitWorklist.pop_back();
882  }
883  return false;
884}
885
886static void SetOptimizationFlags(Value *V, uint64_t Flags) {
887  if (OverflowingBinaryOperator *OBO =
888        dyn_cast<OverflowingBinaryOperator>(V)) {
889    if (Flags & (1 << bitc::OBO_NO_SIGNED_WRAP))
890      OBO->setHasNoSignedWrap(true);
891    if (Flags & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
892      OBO->setHasNoUnsignedWrap(true);
893  } else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
894    if (Flags & (1 << bitc::SDIV_EXACT))
895      Div->setIsExact(true);
896  }
897}
898
899bool BitcodeReader::ParseConstants() {
900  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
901    return Error("Malformed block record");
902
903  SmallVector<uint64_t, 64> Record;
904
905  // Read all the records for this value table.
906  const Type *CurTy = Type::getInt32Ty(Context);
907  unsigned NextCstNo = ValueList.size();
908  while (1) {
909    unsigned Code = Stream.ReadCode();
910    if (Code == bitc::END_BLOCK)
911      break;
912
913    if (Code == bitc::ENTER_SUBBLOCK) {
914      // No known subblocks, always skip them.
915      Stream.ReadSubBlockID();
916      if (Stream.SkipBlock())
917        return Error("Malformed block record");
918      continue;
919    }
920
921    if (Code == bitc::DEFINE_ABBREV) {
922      Stream.ReadAbbrevRecord();
923      continue;
924    }
925
926    // Read a record.
927    Record.clear();
928    Value *V = 0;
929    unsigned BitCode = Stream.ReadRecord(Code, Record);
930    switch (BitCode) {
931    default:  // Default behavior: unknown constant
932    case bitc::CST_CODE_UNDEF:     // UNDEF
933      V = UndefValue::get(CurTy);
934      break;
935    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
936      if (Record.empty())
937        return Error("Malformed CST_SETTYPE record");
938      if (Record[0] >= TypeList.size())
939        return Error("Invalid Type ID in CST_SETTYPE record");
940      CurTy = TypeList[Record[0]];
941      continue;  // Skip the ValueList manipulation.
942    case bitc::CST_CODE_NULL:      // NULL
943      V = Constant::getNullValue(CurTy);
944      break;
945    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
946      if (!isa<IntegerType>(CurTy) || Record.empty())
947        return Error("Invalid CST_INTEGER record");
948      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
949      break;
950    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
951      if (!isa<IntegerType>(CurTy) || Record.empty())
952        return Error("Invalid WIDE_INTEGER record");
953
954      unsigned NumWords = Record.size();
955      SmallVector<uint64_t, 8> Words;
956      Words.resize(NumWords);
957      for (unsigned i = 0; i != NumWords; ++i)
958        Words[i] = DecodeSignRotatedValue(Record[i]);
959      V = ConstantInt::get(Context,
960                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
961                           NumWords, &Words[0]));
962      break;
963    }
964    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
965      if (Record.empty())
966        return Error("Invalid FLOAT record");
967      if (CurTy == Type::getFloatTy(Context))
968        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
969      else if (CurTy == Type::getDoubleTy(Context))
970        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
971      else if (CurTy == Type::getX86_FP80Ty(Context)) {
972        // Bits are not stored the same way as a normal i80 APInt, compensate.
973        uint64_t Rearrange[2];
974        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
975        Rearrange[1] = Record[0] >> 48;
976        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
977      } else if (CurTy == Type::getFP128Ty(Context))
978        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
979      else if (CurTy == Type::getPPC_FP128Ty(Context))
980        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
981      else
982        V = UndefValue::get(CurTy);
983      break;
984    }
985
986    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
987      if (Record.empty())
988        return Error("Invalid CST_AGGREGATE record");
989
990      unsigned Size = Record.size();
991      std::vector<Constant*> Elts;
992
993      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
994        for (unsigned i = 0; i != Size; ++i)
995          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
996                                                     STy->getElementType(i)));
997        V = ConstantStruct::get(STy, Elts);
998      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
999        const Type *EltTy = ATy->getElementType();
1000        for (unsigned i = 0; i != Size; ++i)
1001          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1002        V = ConstantArray::get(ATy, Elts);
1003      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1004        const Type *EltTy = VTy->getElementType();
1005        for (unsigned i = 0; i != Size; ++i)
1006          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1007        V = ConstantVector::get(Elts);
1008      } else {
1009        V = UndefValue::get(CurTy);
1010      }
1011      break;
1012    }
1013    case bitc::CST_CODE_STRING: { // STRING: [values]
1014      if (Record.empty())
1015        return Error("Invalid CST_AGGREGATE record");
1016
1017      const ArrayType *ATy = cast<ArrayType>(CurTy);
1018      const Type *EltTy = ATy->getElementType();
1019
1020      unsigned Size = Record.size();
1021      std::vector<Constant*> Elts;
1022      for (unsigned i = 0; i != Size; ++i)
1023        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1024      V = ConstantArray::get(ATy, Elts);
1025      break;
1026    }
1027    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1028      if (Record.empty())
1029        return Error("Invalid CST_AGGREGATE record");
1030
1031      const ArrayType *ATy = cast<ArrayType>(CurTy);
1032      const Type *EltTy = ATy->getElementType();
1033
1034      unsigned Size = Record.size();
1035      std::vector<Constant*> Elts;
1036      for (unsigned i = 0; i != Size; ++i)
1037        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1038      Elts.push_back(Constant::getNullValue(EltTy));
1039      V = ConstantArray::get(ATy, Elts);
1040      break;
1041    }
1042    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1043      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1044      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1045      if (Opc < 0) {
1046        V = UndefValue::get(CurTy);  // Unknown binop.
1047      } else {
1048        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1049        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1050        V = ConstantExpr::get(Opc, LHS, RHS);
1051      }
1052      if (Record.size() >= 4)
1053        SetOptimizationFlags(V, Record[3]);
1054      break;
1055    }
1056    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1057      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1058      int Opc = GetDecodedCastOpcode(Record[0]);
1059      if (Opc < 0) {
1060        V = UndefValue::get(CurTy);  // Unknown cast.
1061      } else {
1062        const Type *OpTy = getTypeByID(Record[1]);
1063        if (!OpTy) return Error("Invalid CE_CAST record");
1064        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1065        V = ConstantExpr::getCast(Opc, Op, CurTy);
1066      }
1067      break;
1068    }
1069    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1070    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1071      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1072      SmallVector<Constant*, 16> Elts;
1073      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1074        const Type *ElTy = getTypeByID(Record[i]);
1075        if (!ElTy) return Error("Invalid CE_GEP record");
1076        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1077      }
1078      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1079                                               Elts.size()-1);
1080      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1081        cast<GEPOperator>(V)->setIsInBounds(true);
1082      break;
1083    }
1084    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1085      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1086      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1087                                                              Type::getInt1Ty(Context)),
1088                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1089                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1090      break;
1091    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1092      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1093      const VectorType *OpTy =
1094        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1095      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1096      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1097      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1098      V = ConstantExpr::getExtractElement(Op0, Op1);
1099      break;
1100    }
1101    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1102      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1103      if (Record.size() < 3 || OpTy == 0)
1104        return Error("Invalid CE_INSERTELT record");
1105      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1106      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1107                                                  OpTy->getElementType());
1108      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1109      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1110      break;
1111    }
1112    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1113      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1114      if (Record.size() < 3 || OpTy == 0)
1115        return Error("Invalid CE_SHUFFLEVEC record");
1116      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1117      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1118      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1119                                                 OpTy->getNumElements());
1120      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1121      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1122      break;
1123    }
1124    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1125      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1126      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1127      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1128        return Error("Invalid CE_SHUFVEC_EX record");
1129      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1130      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1131      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1132                                                 RTy->getNumElements());
1133      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1134      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1135      break;
1136    }
1137    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1138      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1139      const Type *OpTy = getTypeByID(Record[0]);
1140      if (OpTy == 0) return Error("Invalid CE_CMP record");
1141      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1142      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1143
1144      if (OpTy->isFloatingPoint())
1145        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1146      else
1147        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1148      break;
1149    }
1150    case bitc::CST_CODE_INLINEASM: {
1151      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1152      std::string AsmStr, ConstrStr;
1153      bool HasSideEffects = Record[0];
1154      unsigned AsmStrSize = Record[1];
1155      if (2+AsmStrSize >= Record.size())
1156        return Error("Invalid INLINEASM record");
1157      unsigned ConstStrSize = Record[2+AsmStrSize];
1158      if (3+AsmStrSize+ConstStrSize > Record.size())
1159        return Error("Invalid INLINEASM record");
1160
1161      for (unsigned i = 0; i != AsmStrSize; ++i)
1162        AsmStr += (char)Record[2+i];
1163      for (unsigned i = 0; i != ConstStrSize; ++i)
1164        ConstrStr += (char)Record[3+AsmStrSize+i];
1165      const PointerType *PTy = cast<PointerType>(CurTy);
1166      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1167                         AsmStr, ConstrStr, HasSideEffects);
1168      break;
1169    }
1170    }
1171
1172    ValueList.AssignValue(V, NextCstNo);
1173    ++NextCstNo;
1174  }
1175
1176  if (NextCstNo != ValueList.size())
1177    return Error("Invalid constant reference!");
1178
1179  if (Stream.ReadBlockEnd())
1180    return Error("Error at end of constants block");
1181
1182  // Once all the constants have been read, go through and resolve forward
1183  // references.
1184  ValueList.ResolveConstantForwardRefs();
1185  return false;
1186}
1187
1188/// RememberAndSkipFunctionBody - When we see the block for a function body,
1189/// remember where it is and then skip it.  This lets us lazily deserialize the
1190/// functions.
1191bool BitcodeReader::RememberAndSkipFunctionBody() {
1192  // Get the function we are talking about.
1193  if (FunctionsWithBodies.empty())
1194    return Error("Insufficient function protos");
1195
1196  Function *Fn = FunctionsWithBodies.back();
1197  FunctionsWithBodies.pop_back();
1198
1199  // Save the current stream state.
1200  uint64_t CurBit = Stream.GetCurrentBitNo();
1201  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1202
1203  // Set the functions linkage to GhostLinkage so we know it is lazily
1204  // deserialized.
1205  Fn->setLinkage(GlobalValue::GhostLinkage);
1206
1207  // Skip over the function block for now.
1208  if (Stream.SkipBlock())
1209    return Error("Malformed block record");
1210  return false;
1211}
1212
1213bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1214  // Reject multiple MODULE_BLOCK's in a single bitstream.
1215  if (TheModule)
1216    return Error("Multiple MODULE_BLOCKs in same stream");
1217
1218  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1219    return Error("Malformed block record");
1220
1221  // Otherwise, create the module.
1222  TheModule = new Module(ModuleID, Context);
1223
1224  SmallVector<uint64_t, 64> Record;
1225  std::vector<std::string> SectionTable;
1226  std::vector<std::string> GCTable;
1227
1228  // Read all the records for this module.
1229  while (!Stream.AtEndOfStream()) {
1230    unsigned Code = Stream.ReadCode();
1231    if (Code == bitc::END_BLOCK) {
1232      if (Stream.ReadBlockEnd())
1233        return Error("Error at end of module block");
1234
1235      // Patch the initializers for globals and aliases up.
1236      ResolveGlobalAndAliasInits();
1237      if (!GlobalInits.empty() || !AliasInits.empty())
1238        return Error("Malformed global initializer set");
1239      if (!FunctionsWithBodies.empty())
1240        return Error("Too few function bodies found");
1241
1242      // Look for intrinsic functions which need to be upgraded at some point
1243      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1244           FI != FE; ++FI) {
1245        Function* NewFn;
1246        if (UpgradeIntrinsicFunction(FI, NewFn))
1247          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1248      }
1249
1250      // Force deallocation of memory for these vectors to favor the client that
1251      // want lazy deserialization.
1252      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1253      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1254      std::vector<Function*>().swap(FunctionsWithBodies);
1255      return false;
1256    }
1257
1258    if (Code == bitc::ENTER_SUBBLOCK) {
1259      switch (Stream.ReadSubBlockID()) {
1260      default:  // Skip unknown content.
1261        if (Stream.SkipBlock())
1262          return Error("Malformed block record");
1263        break;
1264      case bitc::BLOCKINFO_BLOCK_ID:
1265        if (Stream.ReadBlockInfoBlock())
1266          return Error("Malformed BlockInfoBlock");
1267        break;
1268      case bitc::PARAMATTR_BLOCK_ID:
1269        if (ParseAttributeBlock())
1270          return true;
1271        break;
1272      case bitc::TYPE_BLOCK_ID:
1273        if (ParseTypeTable())
1274          return true;
1275        break;
1276      case bitc::TYPE_SYMTAB_BLOCK_ID:
1277        if (ParseTypeSymbolTable())
1278          return true;
1279        break;
1280      case bitc::VALUE_SYMTAB_BLOCK_ID:
1281        if (ParseValueSymbolTable())
1282          return true;
1283        break;
1284      case bitc::CONSTANTS_BLOCK_ID:
1285        if (ParseConstants() || ResolveGlobalAndAliasInits())
1286          return true;
1287        break;
1288      case bitc::METADATA_BLOCK_ID:
1289        if (ParseMetadata())
1290          return true;
1291        break;
1292      case bitc::FUNCTION_BLOCK_ID:
1293        // If this is the first function body we've seen, reverse the
1294        // FunctionsWithBodies list.
1295        if (!HasReversedFunctionsWithBodies) {
1296          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1297          HasReversedFunctionsWithBodies = true;
1298        }
1299
1300        if (RememberAndSkipFunctionBody())
1301          return true;
1302        break;
1303      }
1304      continue;
1305    }
1306
1307    if (Code == bitc::DEFINE_ABBREV) {
1308      Stream.ReadAbbrevRecord();
1309      continue;
1310    }
1311
1312    // Read a record.
1313    switch (Stream.ReadRecord(Code, Record)) {
1314    default: break;  // Default behavior, ignore unknown content.
1315    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1316      if (Record.size() < 1)
1317        return Error("Malformed MODULE_CODE_VERSION");
1318      // Only version #0 is supported so far.
1319      if (Record[0] != 0)
1320        return Error("Unknown bitstream version!");
1321      break;
1322    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1323      std::string S;
1324      if (ConvertToString(Record, 0, S))
1325        return Error("Invalid MODULE_CODE_TRIPLE record");
1326      TheModule->setTargetTriple(S);
1327      break;
1328    }
1329    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1330      std::string S;
1331      if (ConvertToString(Record, 0, S))
1332        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1333      TheModule->setDataLayout(S);
1334      break;
1335    }
1336    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1337      std::string S;
1338      if (ConvertToString(Record, 0, S))
1339        return Error("Invalid MODULE_CODE_ASM record");
1340      TheModule->setModuleInlineAsm(S);
1341      break;
1342    }
1343    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1344      std::string S;
1345      if (ConvertToString(Record, 0, S))
1346        return Error("Invalid MODULE_CODE_DEPLIB record");
1347      TheModule->addLibrary(S);
1348      break;
1349    }
1350    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1351      std::string S;
1352      if (ConvertToString(Record, 0, S))
1353        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1354      SectionTable.push_back(S);
1355      break;
1356    }
1357    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1358      std::string S;
1359      if (ConvertToString(Record, 0, S))
1360        return Error("Invalid MODULE_CODE_GCNAME record");
1361      GCTable.push_back(S);
1362      break;
1363    }
1364    // GLOBALVAR: [pointer type, isconst, initid,
1365    //             linkage, alignment, section, visibility, threadlocal]
1366    case bitc::MODULE_CODE_GLOBALVAR: {
1367      if (Record.size() < 6)
1368        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1369      const Type *Ty = getTypeByID(Record[0]);
1370      if (!isa<PointerType>(Ty))
1371        return Error("Global not a pointer type!");
1372      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1373      Ty = cast<PointerType>(Ty)->getElementType();
1374
1375      bool isConstant = Record[1];
1376      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1377      unsigned Alignment = (1 << Record[4]) >> 1;
1378      std::string Section;
1379      if (Record[5]) {
1380        if (Record[5]-1 >= SectionTable.size())
1381          return Error("Invalid section ID");
1382        Section = SectionTable[Record[5]-1];
1383      }
1384      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1385      if (Record.size() > 6)
1386        Visibility = GetDecodedVisibility(Record[6]);
1387      bool isThreadLocal = false;
1388      if (Record.size() > 7)
1389        isThreadLocal = Record[7];
1390
1391      GlobalVariable *NewGV =
1392        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1393                           isThreadLocal, AddressSpace);
1394      NewGV->setAlignment(Alignment);
1395      if (!Section.empty())
1396        NewGV->setSection(Section);
1397      NewGV->setVisibility(Visibility);
1398      NewGV->setThreadLocal(isThreadLocal);
1399
1400      ValueList.push_back(NewGV);
1401
1402      // Remember which value to use for the global initializer.
1403      if (unsigned InitID = Record[2])
1404        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1405      break;
1406    }
1407    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1408    //             alignment, section, visibility, gc]
1409    case bitc::MODULE_CODE_FUNCTION: {
1410      if (Record.size() < 8)
1411        return Error("Invalid MODULE_CODE_FUNCTION record");
1412      const Type *Ty = getTypeByID(Record[0]);
1413      if (!isa<PointerType>(Ty))
1414        return Error("Function not a pointer type!");
1415      const FunctionType *FTy =
1416        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1417      if (!FTy)
1418        return Error("Function not a pointer to function type!");
1419
1420      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1421                                        "", TheModule);
1422
1423      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1424      bool isProto = Record[2];
1425      Func->setLinkage(GetDecodedLinkage(Record[3]));
1426      Func->setAttributes(getAttributes(Record[4]));
1427
1428      Func->setAlignment((1 << Record[5]) >> 1);
1429      if (Record[6]) {
1430        if (Record[6]-1 >= SectionTable.size())
1431          return Error("Invalid section ID");
1432        Func->setSection(SectionTable[Record[6]-1]);
1433      }
1434      Func->setVisibility(GetDecodedVisibility(Record[7]));
1435      if (Record.size() > 8 && Record[8]) {
1436        if (Record[8]-1 > GCTable.size())
1437          return Error("Invalid GC ID");
1438        Func->setGC(GCTable[Record[8]-1].c_str());
1439      }
1440      ValueList.push_back(Func);
1441
1442      // If this is a function with a body, remember the prototype we are
1443      // creating now, so that we can match up the body with them later.
1444      if (!isProto)
1445        FunctionsWithBodies.push_back(Func);
1446      break;
1447    }
1448    // ALIAS: [alias type, aliasee val#, linkage]
1449    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1450    case bitc::MODULE_CODE_ALIAS: {
1451      if (Record.size() < 3)
1452        return Error("Invalid MODULE_ALIAS record");
1453      const Type *Ty = getTypeByID(Record[0]);
1454      if (!isa<PointerType>(Ty))
1455        return Error("Function not a pointer type!");
1456
1457      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1458                                           "", 0, TheModule);
1459      // Old bitcode files didn't have visibility field.
1460      if (Record.size() > 3)
1461        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1462      ValueList.push_back(NewGA);
1463      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1464      break;
1465    }
1466    /// MODULE_CODE_PURGEVALS: [numvals]
1467    case bitc::MODULE_CODE_PURGEVALS:
1468      // Trim down the value list to the specified size.
1469      if (Record.size() < 1 || Record[0] > ValueList.size())
1470        return Error("Invalid MODULE_PURGEVALS record");
1471      ValueList.shrinkTo(Record[0]);
1472      break;
1473    }
1474    Record.clear();
1475  }
1476
1477  return Error("Premature end of bitstream");
1478}
1479
1480bool BitcodeReader::ParseBitcode() {
1481  TheModule = 0;
1482
1483  if (Buffer->getBufferSize() & 3)
1484    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1485
1486  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1487  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1488
1489  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1490  // The magic number is 0x0B17C0DE stored in little endian.
1491  if (isBitcodeWrapper(BufPtr, BufEnd))
1492    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1493      return Error("Invalid bitcode wrapper header");
1494
1495  StreamFile.init(BufPtr, BufEnd);
1496  Stream.init(StreamFile);
1497
1498  // Sniff for the signature.
1499  if (Stream.Read(8) != 'B' ||
1500      Stream.Read(8) != 'C' ||
1501      Stream.Read(4) != 0x0 ||
1502      Stream.Read(4) != 0xC ||
1503      Stream.Read(4) != 0xE ||
1504      Stream.Read(4) != 0xD)
1505    return Error("Invalid bitcode signature");
1506
1507  // We expect a number of well-defined blocks, though we don't necessarily
1508  // need to understand them all.
1509  while (!Stream.AtEndOfStream()) {
1510    unsigned Code = Stream.ReadCode();
1511
1512    if (Code != bitc::ENTER_SUBBLOCK)
1513      return Error("Invalid record at top-level");
1514
1515    unsigned BlockID = Stream.ReadSubBlockID();
1516
1517    // We only know the MODULE subblock ID.
1518    switch (BlockID) {
1519    case bitc::BLOCKINFO_BLOCK_ID:
1520      if (Stream.ReadBlockInfoBlock())
1521        return Error("Malformed BlockInfoBlock");
1522      break;
1523    case bitc::MODULE_BLOCK_ID:
1524      if (ParseModule(Buffer->getBufferIdentifier()))
1525        return true;
1526      break;
1527    default:
1528      if (Stream.SkipBlock())
1529        return Error("Malformed block record");
1530      break;
1531    }
1532  }
1533
1534  return false;
1535}
1536
1537
1538/// ParseFunctionBody - Lazily parse the specified function body block.
1539bool BitcodeReader::ParseFunctionBody(Function *F) {
1540  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1541    return Error("Malformed block record");
1542
1543  unsigned ModuleValueListSize = ValueList.size();
1544
1545  // Add all the function arguments to the value table.
1546  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1547    ValueList.push_back(I);
1548
1549  unsigned NextValueNo = ValueList.size();
1550  BasicBlock *CurBB = 0;
1551  unsigned CurBBNo = 0;
1552
1553  // Read all the records.
1554  SmallVector<uint64_t, 64> Record;
1555  while (1) {
1556    unsigned Code = Stream.ReadCode();
1557    if (Code == bitc::END_BLOCK) {
1558      if (Stream.ReadBlockEnd())
1559        return Error("Error at end of function block");
1560      break;
1561    }
1562
1563    if (Code == bitc::ENTER_SUBBLOCK) {
1564      switch (Stream.ReadSubBlockID()) {
1565      default:  // Skip unknown content.
1566        if (Stream.SkipBlock())
1567          return Error("Malformed block record");
1568        break;
1569      case bitc::CONSTANTS_BLOCK_ID:
1570        if (ParseConstants()) return true;
1571        NextValueNo = ValueList.size();
1572        break;
1573      case bitc::VALUE_SYMTAB_BLOCK_ID:
1574        if (ParseValueSymbolTable()) return true;
1575        break;
1576      }
1577      continue;
1578    }
1579
1580    if (Code == bitc::DEFINE_ABBREV) {
1581      Stream.ReadAbbrevRecord();
1582      continue;
1583    }
1584
1585    // Read a record.
1586    Record.clear();
1587    Instruction *I = 0;
1588    unsigned BitCode = Stream.ReadRecord(Code, Record);
1589    switch (BitCode) {
1590    default: // Default behavior: reject
1591      return Error("Unknown instruction");
1592    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1593      if (Record.size() < 1 || Record[0] == 0)
1594        return Error("Invalid DECLAREBLOCKS record");
1595      // Create all the basic blocks for the function.
1596      FunctionBBs.resize(Record[0]);
1597      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1598        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1599      CurBB = FunctionBBs[0];
1600      continue;
1601
1602    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1603      unsigned OpNum = 0;
1604      Value *LHS, *RHS;
1605      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1606          getValue(Record, OpNum, LHS->getType(), RHS) ||
1607          OpNum+1 > Record.size())
1608        return Error("Invalid BINOP record");
1609
1610      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1611      if (Opc == -1) return Error("Invalid BINOP record");
1612      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1613      if (OpNum < Record.size())
1614        SetOptimizationFlags(I, Record[3]);
1615      break;
1616    }
1617    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1618      unsigned OpNum = 0;
1619      Value *Op;
1620      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1621          OpNum+2 != Record.size())
1622        return Error("Invalid CAST record");
1623
1624      const Type *ResTy = getTypeByID(Record[OpNum]);
1625      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1626      if (Opc == -1 || ResTy == 0)
1627        return Error("Invalid CAST record");
1628      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1629      break;
1630    }
1631    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1632    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1633      unsigned OpNum = 0;
1634      Value *BasePtr;
1635      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1636        return Error("Invalid GEP record");
1637
1638      SmallVector<Value*, 16> GEPIdx;
1639      while (OpNum != Record.size()) {
1640        Value *Op;
1641        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1642          return Error("Invalid GEP record");
1643        GEPIdx.push_back(Op);
1644      }
1645
1646      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1647      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1648        cast<GEPOperator>(I)->setIsInBounds(true);
1649      break;
1650    }
1651
1652    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1653                                       // EXTRACTVAL: [opty, opval, n x indices]
1654      unsigned OpNum = 0;
1655      Value *Agg;
1656      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1657        return Error("Invalid EXTRACTVAL record");
1658
1659      SmallVector<unsigned, 4> EXTRACTVALIdx;
1660      for (unsigned RecSize = Record.size();
1661           OpNum != RecSize; ++OpNum) {
1662        uint64_t Index = Record[OpNum];
1663        if ((unsigned)Index != Index)
1664          return Error("Invalid EXTRACTVAL index");
1665        EXTRACTVALIdx.push_back((unsigned)Index);
1666      }
1667
1668      I = ExtractValueInst::Create(Agg,
1669                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1670      break;
1671    }
1672
1673    case bitc::FUNC_CODE_INST_INSERTVAL: {
1674                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1675      unsigned OpNum = 0;
1676      Value *Agg;
1677      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1678        return Error("Invalid INSERTVAL record");
1679      Value *Val;
1680      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1681        return Error("Invalid INSERTVAL record");
1682
1683      SmallVector<unsigned, 4> INSERTVALIdx;
1684      for (unsigned RecSize = Record.size();
1685           OpNum != RecSize; ++OpNum) {
1686        uint64_t Index = Record[OpNum];
1687        if ((unsigned)Index != Index)
1688          return Error("Invalid INSERTVAL index");
1689        INSERTVALIdx.push_back((unsigned)Index);
1690      }
1691
1692      I = InsertValueInst::Create(Agg, Val,
1693                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1694      break;
1695    }
1696
1697    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1698      // obsolete form of select
1699      // handles select i1 ... in old bitcode
1700      unsigned OpNum = 0;
1701      Value *TrueVal, *FalseVal, *Cond;
1702      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1703          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1704          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1705        return Error("Invalid SELECT record");
1706
1707      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1708      break;
1709    }
1710
1711    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1712      // new form of select
1713      // handles select i1 or select [N x i1]
1714      unsigned OpNum = 0;
1715      Value *TrueVal, *FalseVal, *Cond;
1716      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1717          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1718          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1719        return Error("Invalid SELECT record");
1720
1721      // select condition can be either i1 or [N x i1]
1722      if (const VectorType* vector_type =
1723          dyn_cast<const VectorType>(Cond->getType())) {
1724        // expect <n x i1>
1725        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1726          return Error("Invalid SELECT condition type");
1727      } else {
1728        // expect i1
1729        if (Cond->getType() != Type::getInt1Ty(Context))
1730          return Error("Invalid SELECT condition type");
1731      }
1732
1733      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1734      break;
1735    }
1736
1737    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1738      unsigned OpNum = 0;
1739      Value *Vec, *Idx;
1740      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1741          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1742        return Error("Invalid EXTRACTELT record");
1743      I = ExtractElementInst::Create(Vec, Idx);
1744      break;
1745    }
1746
1747    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1748      unsigned OpNum = 0;
1749      Value *Vec, *Elt, *Idx;
1750      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1751          getValue(Record, OpNum,
1752                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1753          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1754        return Error("Invalid INSERTELT record");
1755      I = InsertElementInst::Create(Vec, Elt, Idx);
1756      break;
1757    }
1758
1759    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1760      unsigned OpNum = 0;
1761      Value *Vec1, *Vec2, *Mask;
1762      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1763          getValue(Record, OpNum, Vec1->getType(), Vec2))
1764        return Error("Invalid SHUFFLEVEC record");
1765
1766      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1767        return Error("Invalid SHUFFLEVEC record");
1768      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1769      break;
1770    }
1771
1772    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1773      // Old form of ICmp/FCmp returning bool
1774      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1775      // both legal on vectors but had different behaviour.
1776    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1777      // FCmp/ICmp returning bool or vector of bool
1778
1779      unsigned OpNum = 0;
1780      Value *LHS, *RHS;
1781      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1782          getValue(Record, OpNum, LHS->getType(), RHS) ||
1783          OpNum+1 != Record.size())
1784        return Error("Invalid CMP record");
1785
1786      if (LHS->getType()->isFPOrFPVector())
1787        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1788      else
1789        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1790      break;
1791    }
1792
1793    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1794      if (Record.size() != 2)
1795        return Error("Invalid GETRESULT record");
1796      unsigned OpNum = 0;
1797      Value *Op;
1798      getValueTypePair(Record, OpNum, NextValueNo, Op);
1799      unsigned Index = Record[1];
1800      I = ExtractValueInst::Create(Op, Index);
1801      break;
1802    }
1803
1804    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1805      {
1806        unsigned Size = Record.size();
1807        if (Size == 0) {
1808          I = ReturnInst::Create(Context);
1809          break;
1810        }
1811
1812        unsigned OpNum = 0;
1813        SmallVector<Value *,4> Vs;
1814        do {
1815          Value *Op = NULL;
1816          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1817            return Error("Invalid RET record");
1818          Vs.push_back(Op);
1819        } while(OpNum != Record.size());
1820
1821        const Type *ReturnType = F->getReturnType();
1822        if (Vs.size() > 1 ||
1823            (isa<StructType>(ReturnType) &&
1824             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1825          Value *RV = UndefValue::get(ReturnType);
1826          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1827            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1828            CurBB->getInstList().push_back(I);
1829            ValueList.AssignValue(I, NextValueNo++);
1830            RV = I;
1831          }
1832          I = ReturnInst::Create(Context, RV);
1833          break;
1834        }
1835
1836        I = ReturnInst::Create(Context, Vs[0]);
1837        break;
1838      }
1839    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1840      if (Record.size() != 1 && Record.size() != 3)
1841        return Error("Invalid BR record");
1842      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1843      if (TrueDest == 0)
1844        return Error("Invalid BR record");
1845
1846      if (Record.size() == 1)
1847        I = BranchInst::Create(TrueDest);
1848      else {
1849        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1850        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1851        if (FalseDest == 0 || Cond == 0)
1852          return Error("Invalid BR record");
1853        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1854      }
1855      break;
1856    }
1857    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1858      if (Record.size() < 3 || (Record.size() & 1) == 0)
1859        return Error("Invalid SWITCH record");
1860      const Type *OpTy = getTypeByID(Record[0]);
1861      Value *Cond = getFnValueByID(Record[1], OpTy);
1862      BasicBlock *Default = getBasicBlock(Record[2]);
1863      if (OpTy == 0 || Cond == 0 || Default == 0)
1864        return Error("Invalid SWITCH record");
1865      unsigned NumCases = (Record.size()-3)/2;
1866      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1867      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1868        ConstantInt *CaseVal =
1869          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1870        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1871        if (CaseVal == 0 || DestBB == 0) {
1872          delete SI;
1873          return Error("Invalid SWITCH record!");
1874        }
1875        SI->addCase(CaseVal, DestBB);
1876      }
1877      I = SI;
1878      break;
1879    }
1880
1881    case bitc::FUNC_CODE_INST_INVOKE: {
1882      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1883      if (Record.size() < 4) return Error("Invalid INVOKE record");
1884      AttrListPtr PAL = getAttributes(Record[0]);
1885      unsigned CCInfo = Record[1];
1886      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1887      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1888
1889      unsigned OpNum = 4;
1890      Value *Callee;
1891      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1892        return Error("Invalid INVOKE record");
1893
1894      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1895      const FunctionType *FTy = !CalleeTy ? 0 :
1896        dyn_cast<FunctionType>(CalleeTy->getElementType());
1897
1898      // Check that the right number of fixed parameters are here.
1899      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1900          Record.size() < OpNum+FTy->getNumParams())
1901        return Error("Invalid INVOKE record");
1902
1903      SmallVector<Value*, 16> Ops;
1904      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1905        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1906        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1907      }
1908
1909      if (!FTy->isVarArg()) {
1910        if (Record.size() != OpNum)
1911          return Error("Invalid INVOKE record");
1912      } else {
1913        // Read type/value pairs for varargs params.
1914        while (OpNum != Record.size()) {
1915          Value *Op;
1916          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1917            return Error("Invalid INVOKE record");
1918          Ops.push_back(Op);
1919        }
1920      }
1921
1922      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1923                             Ops.begin(), Ops.end());
1924      cast<InvokeInst>(I)->setCallingConv(
1925        static_cast<CallingConv::ID>(CCInfo));
1926      cast<InvokeInst>(I)->setAttributes(PAL);
1927      break;
1928    }
1929    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1930      I = new UnwindInst(Context);
1931      break;
1932    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1933      I = new UnreachableInst(Context);
1934      break;
1935    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1936      if (Record.size() < 1 || ((Record.size()-1)&1))
1937        return Error("Invalid PHI record");
1938      const Type *Ty = getTypeByID(Record[0]);
1939      if (!Ty) return Error("Invalid PHI record");
1940
1941      PHINode *PN = PHINode::Create(Ty);
1942      PN->reserveOperandSpace((Record.size()-1)/2);
1943
1944      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1945        Value *V = getFnValueByID(Record[1+i], Ty);
1946        BasicBlock *BB = getBasicBlock(Record[2+i]);
1947        if (!V || !BB) return Error("Invalid PHI record");
1948        PN->addIncoming(V, BB);
1949      }
1950      I = PN;
1951      break;
1952    }
1953
1954    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1955      if (Record.size() < 3)
1956        return Error("Invalid MALLOC record");
1957      const PointerType *Ty =
1958        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1959      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1960      unsigned Align = Record[2];
1961      if (!Ty || !Size) return Error("Invalid MALLOC record");
1962      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1963      break;
1964    }
1965    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1966      unsigned OpNum = 0;
1967      Value *Op;
1968      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1969          OpNum != Record.size())
1970        return Error("Invalid FREE record");
1971      I = new FreeInst(Op);
1972      break;
1973    }
1974    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1975      if (Record.size() < 3)
1976        return Error("Invalid ALLOCA record");
1977      const PointerType *Ty =
1978        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1979      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1980      unsigned Align = Record[2];
1981      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1982      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1983      break;
1984    }
1985    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1986      unsigned OpNum = 0;
1987      Value *Op;
1988      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1989          OpNum+2 != Record.size())
1990        return Error("Invalid LOAD record");
1991
1992      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1993      break;
1994    }
1995    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1996      unsigned OpNum = 0;
1997      Value *Val, *Ptr;
1998      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1999          getValue(Record, OpNum,
2000                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2001          OpNum+2 != Record.size())
2002        return Error("Invalid STORE record");
2003
2004      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2005      break;
2006    }
2007    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2008      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2009      unsigned OpNum = 0;
2010      Value *Val, *Ptr;
2011      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2012          getValue(Record, OpNum,
2013                   PointerType::getUnqual(Val->getType()), Ptr)||
2014          OpNum+2 != Record.size())
2015        return Error("Invalid STORE record");
2016
2017      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2018      break;
2019    }
2020    case bitc::FUNC_CODE_INST_CALL: {
2021      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2022      if (Record.size() < 3)
2023        return Error("Invalid CALL record");
2024
2025      AttrListPtr PAL = getAttributes(Record[0]);
2026      unsigned CCInfo = Record[1];
2027
2028      unsigned OpNum = 2;
2029      Value *Callee;
2030      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2031        return Error("Invalid CALL record");
2032
2033      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2034      const FunctionType *FTy = 0;
2035      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2036      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2037        return Error("Invalid CALL record");
2038
2039      SmallVector<Value*, 16> Args;
2040      // Read the fixed params.
2041      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2042        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2043          Args.push_back(getBasicBlock(Record[OpNum]));
2044        else
2045          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2046        if (Args.back() == 0) return Error("Invalid CALL record");
2047      }
2048
2049      // Read type/value pairs for varargs params.
2050      if (!FTy->isVarArg()) {
2051        if (OpNum != Record.size())
2052          return Error("Invalid CALL record");
2053      } else {
2054        while (OpNum != Record.size()) {
2055          Value *Op;
2056          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2057            return Error("Invalid CALL record");
2058          Args.push_back(Op);
2059        }
2060      }
2061
2062      I = CallInst::Create(Callee, Args.begin(), Args.end());
2063      cast<CallInst>(I)->setCallingConv(
2064        static_cast<CallingConv::ID>(CCInfo>>1));
2065      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2066      cast<CallInst>(I)->setAttributes(PAL);
2067      break;
2068    }
2069    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2070      if (Record.size() < 3)
2071        return Error("Invalid VAARG record");
2072      const Type *OpTy = getTypeByID(Record[0]);
2073      Value *Op = getFnValueByID(Record[1], OpTy);
2074      const Type *ResTy = getTypeByID(Record[2]);
2075      if (!OpTy || !Op || !ResTy)
2076        return Error("Invalid VAARG record");
2077      I = new VAArgInst(Op, ResTy);
2078      break;
2079    }
2080    }
2081
2082    // Add instruction to end of current BB.  If there is no current BB, reject
2083    // this file.
2084    if (CurBB == 0) {
2085      delete I;
2086      return Error("Invalid instruction with no BB");
2087    }
2088    CurBB->getInstList().push_back(I);
2089
2090    // If this was a terminator instruction, move to the next block.
2091    if (isa<TerminatorInst>(I)) {
2092      ++CurBBNo;
2093      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2094    }
2095
2096    // Non-void values get registered in the value table for future use.
2097    if (I && I->getType() != Type::getVoidTy(Context))
2098      ValueList.AssignValue(I, NextValueNo++);
2099  }
2100
2101  // Check the function list for unresolved values.
2102  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2103    if (A->getParent() == 0) {
2104      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2105      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2106        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2107          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2108          delete A;
2109        }
2110      }
2111      return Error("Never resolved value found in function!");
2112    }
2113  }
2114
2115  // Trim the value list down to the size it was before we parsed this function.
2116  ValueList.shrinkTo(ModuleValueListSize);
2117  std::vector<BasicBlock*>().swap(FunctionBBs);
2118
2119  return false;
2120}
2121
2122//===----------------------------------------------------------------------===//
2123// ModuleProvider implementation
2124//===----------------------------------------------------------------------===//
2125
2126
2127bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2128  // If it already is material, ignore the request.
2129  if (!F->hasNotBeenReadFromBitcode()) return false;
2130
2131  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2132    DeferredFunctionInfo.find(F);
2133  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2134
2135  // Move the bit stream to the saved position of the deferred function body and
2136  // restore the real linkage type for the function.
2137  Stream.JumpToBit(DFII->second.first);
2138  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2139
2140  if (ParseFunctionBody(F)) {
2141    if (ErrInfo) *ErrInfo = ErrorString;
2142    return true;
2143  }
2144
2145  // Upgrade any old intrinsic calls in the function.
2146  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2147       E = UpgradedIntrinsics.end(); I != E; ++I) {
2148    if (I->first != I->second) {
2149      for (Value::use_iterator UI = I->first->use_begin(),
2150           UE = I->first->use_end(); UI != UE; ) {
2151        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2152          UpgradeIntrinsicCall(CI, I->second);
2153      }
2154    }
2155  }
2156
2157  return false;
2158}
2159
2160void BitcodeReader::dematerializeFunction(Function *F) {
2161  // If this function isn't materialized, or if it is a proto, this is a noop.
2162  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2163    return;
2164
2165  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2166
2167  // Just forget the function body, we can remat it later.
2168  F->deleteBody();
2169  F->setLinkage(GlobalValue::GhostLinkage);
2170}
2171
2172
2173Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2174  // Iterate over the module, deserializing any functions that are still on
2175  // disk.
2176  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2177       F != E; ++F)
2178    if (F->hasNotBeenReadFromBitcode() &&
2179        materializeFunction(F, ErrInfo))
2180      return 0;
2181
2182  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2183  // delete the old functions to clean up. We can't do this unless the entire
2184  // module is materialized because there could always be another function body
2185  // with calls to the old function.
2186  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2187       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2188    if (I->first != I->second) {
2189      for (Value::use_iterator UI = I->first->use_begin(),
2190           UE = I->first->use_end(); UI != UE; ) {
2191        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2192          UpgradeIntrinsicCall(CI, I->second);
2193      }
2194      if (!I->first->use_empty())
2195        I->first->replaceAllUsesWith(I->second);
2196      I->first->eraseFromParent();
2197    }
2198  }
2199  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2200
2201  // Check debug info intrinsics.
2202  CheckDebugInfoIntrinsics(TheModule);
2203
2204  return TheModule;
2205}
2206
2207
2208/// This method is provided by the parent ModuleProvde class and overriden
2209/// here. It simply releases the module from its provided and frees up our
2210/// state.
2211/// @brief Release our hold on the generated module
2212Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2213  // Since we're losing control of this Module, we must hand it back complete
2214  Module *M = ModuleProvider::releaseModule(ErrInfo);
2215  FreeState();
2216  return M;
2217}
2218
2219
2220//===----------------------------------------------------------------------===//
2221// External interface
2222//===----------------------------------------------------------------------===//
2223
2224/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2225///
2226ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2227                                               LLVMContext& Context,
2228                                               std::string *ErrMsg) {
2229  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2230  if (R->ParseBitcode()) {
2231    if (ErrMsg)
2232      *ErrMsg = R->getErrorString();
2233
2234    // Don't let the BitcodeReader dtor delete 'Buffer'.
2235    R->releaseMemoryBuffer();
2236    delete R;
2237    return 0;
2238  }
2239  return R;
2240}
2241
2242/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2243/// If an error occurs, return null and fill in *ErrMsg if non-null.
2244Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2245                               std::string *ErrMsg){
2246  BitcodeReader *R;
2247  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2248                                                           ErrMsg));
2249  if (!R) return 0;
2250
2251  // Read in the entire module.
2252  Module *M = R->materializeModule(ErrMsg);
2253
2254  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2255  // there was an error.
2256  R->releaseMemoryBuffer();
2257
2258  // If there was no error, tell ModuleProvider not to delete it when its dtor
2259  // is run.
2260  if (M)
2261    M = R->releaseModule(ErrMsg);
2262
2263  delete R;
2264  return M;
2265}
2266