BitcodeReader.cpp revision 69bd41dfe33f24414be281ba5e2204b7348c33ae
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Bitcode/ReaderWriter.h"
11#include "BitcodeReader.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/AutoUpgrade.h"
15#include "llvm/Bitcode/LLVMBitCodes.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/DerivedTypes.h"
18#include "llvm/IR/InlineAsm.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/IR/LLVMContext.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/OperandTraits.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/Support/DataStream.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30enum {
31  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
32};
33
34void BitcodeReader::materializeForwardReferencedFunctions() {
35  while (!BlockAddrFwdRefs.empty()) {
36    Function *F = BlockAddrFwdRefs.begin()->first;
37    F->Materialize();
38  }
39}
40
41void BitcodeReader::FreeState() {
42  if (BufferOwned)
43    delete Buffer;
44  Buffer = 0;
45  std::vector<Type*>().swap(TypeList);
46  ValueList.clear();
47  MDValueList.clear();
48
49  std::vector<AttributeSet>().swap(MAttributes);
50  std::vector<BasicBlock*>().swap(FunctionBBs);
51  std::vector<Function*>().swap(FunctionsWithBodies);
52  DeferredFunctionInfo.clear();
53  MDKindMap.clear();
54
55  assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
56}
57
58//===----------------------------------------------------------------------===//
59//  Helper functions to implement forward reference resolution, etc.
60//===----------------------------------------------------------------------===//
61
62/// ConvertToString - Convert a string from a record into an std::string, return
63/// true on failure.
64template<typename StrTy>
65static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
66                            StrTy &Result) {
67  if (Idx > Record.size())
68    return true;
69
70  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
71    Result += (char)Record[i];
72  return false;
73}
74
75static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
76  switch (Val) {
77  default: // Map unknown/new linkages to external
78  case 0:  return GlobalValue::ExternalLinkage;
79  case 1:  return GlobalValue::WeakAnyLinkage;
80  case 2:  return GlobalValue::AppendingLinkage;
81  case 3:  return GlobalValue::InternalLinkage;
82  case 4:  return GlobalValue::LinkOnceAnyLinkage;
83  case 5:  return GlobalValue::DLLImportLinkage;
84  case 6:  return GlobalValue::DLLExportLinkage;
85  case 7:  return GlobalValue::ExternalWeakLinkage;
86  case 8:  return GlobalValue::CommonLinkage;
87  case 9:  return GlobalValue::PrivateLinkage;
88  case 10: return GlobalValue::WeakODRLinkage;
89  case 11: return GlobalValue::LinkOnceODRLinkage;
90  case 12: return GlobalValue::AvailableExternallyLinkage;
91  case 13: return GlobalValue::LinkerPrivateLinkage;
92  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
93  case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
94  }
95}
96
97static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
98  switch (Val) {
99  default: // Map unknown visibilities to default.
100  case 0: return GlobalValue::DefaultVisibility;
101  case 1: return GlobalValue::HiddenVisibility;
102  case 2: return GlobalValue::ProtectedVisibility;
103  }
104}
105
106static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
107  switch (Val) {
108    case 0: return GlobalVariable::NotThreadLocal;
109    default: // Map unknown non-zero value to general dynamic.
110    case 1: return GlobalVariable::GeneralDynamicTLSModel;
111    case 2: return GlobalVariable::LocalDynamicTLSModel;
112    case 3: return GlobalVariable::InitialExecTLSModel;
113    case 4: return GlobalVariable::LocalExecTLSModel;
114  }
115}
116
117static int GetDecodedCastOpcode(unsigned Val) {
118  switch (Val) {
119  default: return -1;
120  case bitc::CAST_TRUNC   : return Instruction::Trunc;
121  case bitc::CAST_ZEXT    : return Instruction::ZExt;
122  case bitc::CAST_SEXT    : return Instruction::SExt;
123  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
124  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
125  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
126  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
127  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
128  case bitc::CAST_FPEXT   : return Instruction::FPExt;
129  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
130  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
131  case bitc::CAST_BITCAST : return Instruction::BitCast;
132  }
133}
134static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
135  switch (Val) {
136  default: return -1;
137  case bitc::BINOP_ADD:
138    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
139  case bitc::BINOP_SUB:
140    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
141  case bitc::BINOP_MUL:
142    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
143  case bitc::BINOP_UDIV: return Instruction::UDiv;
144  case bitc::BINOP_SDIV:
145    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
146  case bitc::BINOP_UREM: return Instruction::URem;
147  case bitc::BINOP_SREM:
148    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
149  case bitc::BINOP_SHL:  return Instruction::Shl;
150  case bitc::BINOP_LSHR: return Instruction::LShr;
151  case bitc::BINOP_ASHR: return Instruction::AShr;
152  case bitc::BINOP_AND:  return Instruction::And;
153  case bitc::BINOP_OR:   return Instruction::Or;
154  case bitc::BINOP_XOR:  return Instruction::Xor;
155  }
156}
157
158static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
159  switch (Val) {
160  default: return AtomicRMWInst::BAD_BINOP;
161  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
162  case bitc::RMW_ADD: return AtomicRMWInst::Add;
163  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
164  case bitc::RMW_AND: return AtomicRMWInst::And;
165  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
166  case bitc::RMW_OR: return AtomicRMWInst::Or;
167  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
168  case bitc::RMW_MAX: return AtomicRMWInst::Max;
169  case bitc::RMW_MIN: return AtomicRMWInst::Min;
170  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
171  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
172  }
173}
174
175static AtomicOrdering GetDecodedOrdering(unsigned Val) {
176  switch (Val) {
177  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
178  case bitc::ORDERING_UNORDERED: return Unordered;
179  case bitc::ORDERING_MONOTONIC: return Monotonic;
180  case bitc::ORDERING_ACQUIRE: return Acquire;
181  case bitc::ORDERING_RELEASE: return Release;
182  case bitc::ORDERING_ACQREL: return AcquireRelease;
183  default: // Map unknown orderings to sequentially-consistent.
184  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
185  }
186}
187
188static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
189  switch (Val) {
190  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
191  default: // Map unknown scopes to cross-thread.
192  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
193  }
194}
195
196namespace llvm {
197namespace {
198  /// @brief A class for maintaining the slot number definition
199  /// as a placeholder for the actual definition for forward constants defs.
200  class ConstantPlaceHolder : public ConstantExpr {
201    void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
202  public:
203    // allocate space for exactly one operand
204    void *operator new(size_t s) {
205      return User::operator new(s, 1);
206    }
207    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
208      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
209      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
210    }
211
212    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
213    static bool classof(const Value *V) {
214      return isa<ConstantExpr>(V) &&
215             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
216    }
217
218
219    /// Provide fast operand accessors
220    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221  };
222}
223
224// FIXME: can we inherit this from ConstantExpr?
225template <>
226struct OperandTraits<ConstantPlaceHolder> :
227  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
228};
229}
230
231
232void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
233  if (Idx == size()) {
234    push_back(V);
235    return;
236  }
237
238  if (Idx >= size())
239    resize(Idx+1);
240
241  WeakVH &OldV = ValuePtrs[Idx];
242  if (OldV == 0) {
243    OldV = V;
244    return;
245  }
246
247  // Handle constants and non-constants (e.g. instrs) differently for
248  // efficiency.
249  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
250    ResolveConstants.push_back(std::make_pair(PHC, Idx));
251    OldV = V;
252  } else {
253    // If there was a forward reference to this value, replace it.
254    Value *PrevVal = OldV;
255    OldV->replaceAllUsesWith(V);
256    delete PrevVal;
257  }
258}
259
260
261Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
262                                                    Type *Ty) {
263  if (Idx >= size())
264    resize(Idx + 1);
265
266  if (Value *V = ValuePtrs[Idx]) {
267    assert(Ty == V->getType() && "Type mismatch in constant table!");
268    return cast<Constant>(V);
269  }
270
271  // Create and return a placeholder, which will later be RAUW'd.
272  Constant *C = new ConstantPlaceHolder(Ty, Context);
273  ValuePtrs[Idx] = C;
274  return C;
275}
276
277Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
278  if (Idx >= size())
279    resize(Idx + 1);
280
281  if (Value *V = ValuePtrs[Idx]) {
282    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
283    return V;
284  }
285
286  // No type specified, must be invalid reference.
287  if (Ty == 0) return 0;
288
289  // Create and return a placeholder, which will later be RAUW'd.
290  Value *V = new Argument(Ty);
291  ValuePtrs[Idx] = V;
292  return V;
293}
294
295/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
296/// resolves any forward references.  The idea behind this is that we sometimes
297/// get constants (such as large arrays) which reference *many* forward ref
298/// constants.  Replacing each of these causes a lot of thrashing when
299/// building/reuniquing the constant.  Instead of doing this, we look at all the
300/// uses and rewrite all the place holders at once for any constant that uses
301/// a placeholder.
302void BitcodeReaderValueList::ResolveConstantForwardRefs() {
303  // Sort the values by-pointer so that they are efficient to look up with a
304  // binary search.
305  std::sort(ResolveConstants.begin(), ResolveConstants.end());
306
307  SmallVector<Constant*, 64> NewOps;
308
309  while (!ResolveConstants.empty()) {
310    Value *RealVal = operator[](ResolveConstants.back().second);
311    Constant *Placeholder = ResolveConstants.back().first;
312    ResolveConstants.pop_back();
313
314    // Loop over all users of the placeholder, updating them to reference the
315    // new value.  If they reference more than one placeholder, update them all
316    // at once.
317    while (!Placeholder->use_empty()) {
318      Value::use_iterator UI = Placeholder->use_begin();
319      User *U = *UI;
320
321      // If the using object isn't uniqued, just update the operands.  This
322      // handles instructions and initializers for global variables.
323      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
324        UI.getUse().set(RealVal);
325        continue;
326      }
327
328      // Otherwise, we have a constant that uses the placeholder.  Replace that
329      // constant with a new constant that has *all* placeholder uses updated.
330      Constant *UserC = cast<Constant>(U);
331      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
332           I != E; ++I) {
333        Value *NewOp;
334        if (!isa<ConstantPlaceHolder>(*I)) {
335          // Not a placeholder reference.
336          NewOp = *I;
337        } else if (*I == Placeholder) {
338          // Common case is that it just references this one placeholder.
339          NewOp = RealVal;
340        } else {
341          // Otherwise, look up the placeholder in ResolveConstants.
342          ResolveConstantsTy::iterator It =
343            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
344                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
345                                                            0));
346          assert(It != ResolveConstants.end() && It->first == *I);
347          NewOp = operator[](It->second);
348        }
349
350        NewOps.push_back(cast<Constant>(NewOp));
351      }
352
353      // Make the new constant.
354      Constant *NewC;
355      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
356        NewC = ConstantArray::get(UserCA->getType(), NewOps);
357      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
358        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
359      } else if (isa<ConstantVector>(UserC)) {
360        NewC = ConstantVector::get(NewOps);
361      } else {
362        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
363        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
364      }
365
366      UserC->replaceAllUsesWith(NewC);
367      UserC->destroyConstant();
368      NewOps.clear();
369    }
370
371    // Update all ValueHandles, they should be the only users at this point.
372    Placeholder->replaceAllUsesWith(RealVal);
373    delete Placeholder;
374  }
375}
376
377void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
378  if (Idx == size()) {
379    push_back(V);
380    return;
381  }
382
383  if (Idx >= size())
384    resize(Idx+1);
385
386  WeakVH &OldV = MDValuePtrs[Idx];
387  if (OldV == 0) {
388    OldV = V;
389    return;
390  }
391
392  // If there was a forward reference to this value, replace it.
393  MDNode *PrevVal = cast<MDNode>(OldV);
394  OldV->replaceAllUsesWith(V);
395  MDNode::deleteTemporary(PrevVal);
396  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
397  // value for Idx.
398  MDValuePtrs[Idx] = V;
399}
400
401Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
402  if (Idx >= size())
403    resize(Idx + 1);
404
405  if (Value *V = MDValuePtrs[Idx]) {
406    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
407    return V;
408  }
409
410  // Create and return a placeholder, which will later be RAUW'd.
411  Value *V = MDNode::getTemporary(Context, None);
412  MDValuePtrs[Idx] = V;
413  return V;
414}
415
416Type *BitcodeReader::getTypeByID(unsigned ID) {
417  // The type table size is always specified correctly.
418  if (ID >= TypeList.size())
419    return 0;
420
421  if (Type *Ty = TypeList[ID])
422    return Ty;
423
424  // If we have a forward reference, the only possible case is when it is to a
425  // named struct.  Just create a placeholder for now.
426  return TypeList[ID] = StructType::create(Context);
427}
428
429
430//===----------------------------------------------------------------------===//
431//  Functions for parsing blocks from the bitcode file
432//===----------------------------------------------------------------------===//
433
434
435/// \brief This fills an AttrBuilder object with the LLVM attributes that have
436/// been decoded from the given integer. This function must stay in sync with
437/// 'encodeLLVMAttributesForBitcode'.
438static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
439                                           uint64_t EncodedAttrs) {
440  // FIXME: Remove in 4.0.
441
442  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
443  // the bits above 31 down by 11 bits.
444  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
445  assert((!Alignment || isPowerOf2_32(Alignment)) &&
446         "Alignment must be a power of two.");
447
448  if (Alignment)
449    B.addAlignmentAttr(Alignment);
450  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
451                (EncodedAttrs & 0xffff));
452}
453
454bool BitcodeReader::ParseAttributeBlock() {
455  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
456    return Error("Malformed block record");
457
458  if (!MAttributes.empty())
459    return Error("Multiple PARAMATTR blocks found!");
460
461  SmallVector<uint64_t, 64> Record;
462
463  SmallVector<AttributeSet, 8> Attrs;
464
465  // Read all the records.
466  while (1) {
467    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
468
469    switch (Entry.Kind) {
470    case BitstreamEntry::SubBlock: // Handled for us already.
471    case BitstreamEntry::Error:
472      return Error("Error at end of PARAMATTR block");
473    case BitstreamEntry::EndBlock:
474      return false;
475    case BitstreamEntry::Record:
476      // The interesting case.
477      break;
478    }
479
480    // Read a record.
481    Record.clear();
482    switch (Stream.readRecord(Entry.ID, Record)) {
483    default:  // Default behavior: ignore.
484      break;
485    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
486      // FIXME: Remove in 4.0.
487      if (Record.size() & 1)
488        return Error("Invalid ENTRY record");
489
490      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
491        AttrBuilder B;
492        decodeLLVMAttributesForBitcode(B, Record[i+1]);
493        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
494      }
495
496      MAttributes.push_back(AttributeSet::get(Context, Attrs));
497      Attrs.clear();
498      break;
499    }
500    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
501      for (unsigned i = 0, e = Record.size(); i != e; ++i)
502        Attrs.push_back(MAttributeGroups[Record[i]]);
503
504      MAttributes.push_back(AttributeSet::get(Context, Attrs));
505      Attrs.clear();
506      break;
507    }
508    }
509  }
510}
511
512bool BitcodeReader::ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
513  switch (Code) {
514  case bitc::ATTR_KIND_ALIGNMENT:
515    *Kind = Attribute::Alignment;
516    return false;
517  case bitc::ATTR_KIND_ALWAYS_INLINE:
518    *Kind = Attribute::AlwaysInline;
519    return false;
520  case bitc::ATTR_KIND_BUILTIN:
521    *Kind = Attribute::Builtin;
522    return false;
523  case bitc::ATTR_KIND_BY_VAL:
524    *Kind = Attribute::ByVal;
525    return false;
526  case bitc::ATTR_KIND_COLD:
527    *Kind = Attribute::Cold;
528    return false;
529  case bitc::ATTR_KIND_INLINE_HINT:
530    *Kind = Attribute::InlineHint;
531    return false;
532  case bitc::ATTR_KIND_IN_REG:
533    *Kind = Attribute::InReg;
534    return false;
535  case bitc::ATTR_KIND_MIN_SIZE:
536    *Kind = Attribute::MinSize;
537    return false;
538  case bitc::ATTR_KIND_NAKED:
539    *Kind = Attribute::Naked;
540    return false;
541  case bitc::ATTR_KIND_NEST:
542    *Kind = Attribute::Nest;
543    return false;
544  case bitc::ATTR_KIND_NO_ALIAS:
545    *Kind = Attribute::NoAlias;
546    return false;
547  case bitc::ATTR_KIND_NO_BUILTIN:
548    *Kind = Attribute::NoBuiltin;
549    return false;
550  case bitc::ATTR_KIND_NO_CAPTURE:
551    *Kind = Attribute::NoCapture;
552    return false;
553  case bitc::ATTR_KIND_NO_DUPLICATE:
554    *Kind = Attribute::NoDuplicate;
555    return false;
556  case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
557    *Kind = Attribute::NoImplicitFloat;
558    return false;
559  case bitc::ATTR_KIND_NO_INLINE:
560    *Kind = Attribute::NoInline;
561    return false;
562  case bitc::ATTR_KIND_NON_LAZY_BIND:
563    *Kind = Attribute::NonLazyBind;
564    return false;
565  case bitc::ATTR_KIND_NO_RED_ZONE:
566    *Kind = Attribute::NoRedZone;
567    return false;
568  case bitc::ATTR_KIND_NO_RETURN:
569    *Kind = Attribute::NoReturn;
570    return false;
571  case bitc::ATTR_KIND_NO_UNWIND:
572    *Kind = Attribute::NoUnwind;
573    return false;
574  case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
575    *Kind = Attribute::OptimizeForSize;
576    return false;
577  case bitc::ATTR_KIND_OPTIMIZE_NONE:
578    *Kind = Attribute::OptimizeNone;
579    return false;
580  case bitc::ATTR_KIND_READ_NONE:
581    *Kind = Attribute::ReadNone;
582    return false;
583  case bitc::ATTR_KIND_READ_ONLY:
584    *Kind = Attribute::ReadOnly;
585    return false;
586  case bitc::ATTR_KIND_RETURNED:
587    *Kind = Attribute::Returned;
588    return false;
589  case bitc::ATTR_KIND_RETURNS_TWICE:
590    *Kind = Attribute::ReturnsTwice;
591    return false;
592  case bitc::ATTR_KIND_S_EXT:
593    *Kind = Attribute::SExt;
594    return false;
595  case bitc::ATTR_KIND_STACK_ALIGNMENT:
596    *Kind = Attribute::StackAlignment;
597    return false;
598  case bitc::ATTR_KIND_STACK_PROTECT:
599    *Kind = Attribute::StackProtect;
600    return false;
601  case bitc::ATTR_KIND_STACK_PROTECT_REQ:
602    *Kind = Attribute::StackProtectReq;
603    return false;
604  case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
605    *Kind = Attribute::StackProtectStrong;
606    return false;
607  case bitc::ATTR_KIND_STRUCT_RET:
608    *Kind = Attribute::StructRet;
609    return false;
610  case bitc::ATTR_KIND_SANITIZE_ADDRESS:
611    *Kind = Attribute::SanitizeAddress;
612    return false;
613  case bitc::ATTR_KIND_SANITIZE_THREAD:
614    *Kind = Attribute::SanitizeThread;
615    return false;
616  case bitc::ATTR_KIND_SANITIZE_MEMORY:
617    *Kind = Attribute::SanitizeMemory;
618    return false;
619  case bitc::ATTR_KIND_UW_TABLE:
620    *Kind = Attribute::UWTable;
621    return false;
622  case bitc::ATTR_KIND_Z_EXT:
623    *Kind = Attribute::ZExt;
624    return false;
625  default:
626    std::string Buf;
627    raw_string_ostream fmt(Buf);
628    fmt << "Unknown attribute kind (" << Code << ")";
629    fmt.flush();
630    return Error(Buf.c_str());
631  }
632}
633
634bool BitcodeReader::ParseAttributeGroupBlock() {
635  if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
636    return Error("Malformed block record");
637
638  if (!MAttributeGroups.empty())
639    return Error("Multiple PARAMATTR_GROUP blocks found!");
640
641  SmallVector<uint64_t, 64> Record;
642
643  // Read all the records.
644  while (1) {
645    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
646
647    switch (Entry.Kind) {
648    case BitstreamEntry::SubBlock: // Handled for us already.
649    case BitstreamEntry::Error:
650      return Error("Error at end of PARAMATTR_GROUP block");
651    case BitstreamEntry::EndBlock:
652      return false;
653    case BitstreamEntry::Record:
654      // The interesting case.
655      break;
656    }
657
658    // Read a record.
659    Record.clear();
660    switch (Stream.readRecord(Entry.ID, Record)) {
661    default:  // Default behavior: ignore.
662      break;
663    case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
664      if (Record.size() < 3)
665        return Error("Invalid ENTRY record");
666
667      uint64_t GrpID = Record[0];
668      uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
669
670      AttrBuilder B;
671      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
672        if (Record[i] == 0) {        // Enum attribute
673          Attribute::AttrKind Kind;
674          if (ParseAttrKind(Record[++i], &Kind))
675            return true;
676
677          B.addAttribute(Kind);
678        } else if (Record[i] == 1) { // Align attribute
679          Attribute::AttrKind Kind;
680          if (ParseAttrKind(Record[++i], &Kind))
681            return true;
682          if (Kind == Attribute::Alignment)
683            B.addAlignmentAttr(Record[++i]);
684          else
685            B.addStackAlignmentAttr(Record[++i]);
686        } else {                     // String attribute
687          assert((Record[i] == 3 || Record[i] == 4) &&
688                 "Invalid attribute group entry");
689          bool HasValue = (Record[i++] == 4);
690          SmallString<64> KindStr;
691          SmallString<64> ValStr;
692
693          while (Record[i] != 0 && i != e)
694            KindStr += Record[i++];
695          assert(Record[i] == 0 && "Kind string not null terminated");
696
697          if (HasValue) {
698            // Has a value associated with it.
699            ++i; // Skip the '0' that terminates the "kind" string.
700            while (Record[i] != 0 && i != e)
701              ValStr += Record[i++];
702            assert(Record[i] == 0 && "Value string not null terminated");
703          }
704
705          B.addAttribute(KindStr.str(), ValStr.str());
706        }
707      }
708
709      MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
710      break;
711    }
712    }
713  }
714}
715
716bool BitcodeReader::ParseTypeTable() {
717  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
718    return Error("Malformed block record");
719
720  return ParseTypeTableBody();
721}
722
723bool BitcodeReader::ParseTypeTableBody() {
724  if (!TypeList.empty())
725    return Error("Multiple TYPE_BLOCKs found!");
726
727  SmallVector<uint64_t, 64> Record;
728  unsigned NumRecords = 0;
729
730  SmallString<64> TypeName;
731
732  // Read all the records for this type table.
733  while (1) {
734    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
735
736    switch (Entry.Kind) {
737    case BitstreamEntry::SubBlock: // Handled for us already.
738    case BitstreamEntry::Error:
739      Error("Error in the type table block");
740      return true;
741    case BitstreamEntry::EndBlock:
742      if (NumRecords != TypeList.size())
743        return Error("Invalid type forward reference in TYPE_BLOCK");
744      return false;
745    case BitstreamEntry::Record:
746      // The interesting case.
747      break;
748    }
749
750    // Read a record.
751    Record.clear();
752    Type *ResultTy = 0;
753    switch (Stream.readRecord(Entry.ID, Record)) {
754    default: return Error("unknown type in type table");
755    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
756      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
757      // type list.  This allows us to reserve space.
758      if (Record.size() < 1)
759        return Error("Invalid TYPE_CODE_NUMENTRY record");
760      TypeList.resize(Record[0]);
761      continue;
762    case bitc::TYPE_CODE_VOID:      // VOID
763      ResultTy = Type::getVoidTy(Context);
764      break;
765    case bitc::TYPE_CODE_HALF:     // HALF
766      ResultTy = Type::getHalfTy(Context);
767      break;
768    case bitc::TYPE_CODE_FLOAT:     // FLOAT
769      ResultTy = Type::getFloatTy(Context);
770      break;
771    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
772      ResultTy = Type::getDoubleTy(Context);
773      break;
774    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
775      ResultTy = Type::getX86_FP80Ty(Context);
776      break;
777    case bitc::TYPE_CODE_FP128:     // FP128
778      ResultTy = Type::getFP128Ty(Context);
779      break;
780    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
781      ResultTy = Type::getPPC_FP128Ty(Context);
782      break;
783    case bitc::TYPE_CODE_LABEL:     // LABEL
784      ResultTy = Type::getLabelTy(Context);
785      break;
786    case bitc::TYPE_CODE_METADATA:  // METADATA
787      ResultTy = Type::getMetadataTy(Context);
788      break;
789    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
790      ResultTy = Type::getX86_MMXTy(Context);
791      break;
792    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
793      if (Record.size() < 1)
794        return Error("Invalid Integer type record");
795
796      ResultTy = IntegerType::get(Context, Record[0]);
797      break;
798    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
799                                    //          [pointee type, address space]
800      if (Record.size() < 1)
801        return Error("Invalid POINTER type record");
802      unsigned AddressSpace = 0;
803      if (Record.size() == 2)
804        AddressSpace = Record[1];
805      ResultTy = getTypeByID(Record[0]);
806      if (ResultTy == 0) return Error("invalid element type in pointer type");
807      ResultTy = PointerType::get(ResultTy, AddressSpace);
808      break;
809    }
810    case bitc::TYPE_CODE_FUNCTION_OLD: {
811      // FIXME: attrid is dead, remove it in LLVM 4.0
812      // FUNCTION: [vararg, attrid, retty, paramty x N]
813      if (Record.size() < 3)
814        return Error("Invalid FUNCTION type record");
815      SmallVector<Type*, 8> ArgTys;
816      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
817        if (Type *T = getTypeByID(Record[i]))
818          ArgTys.push_back(T);
819        else
820          break;
821      }
822
823      ResultTy = getTypeByID(Record[2]);
824      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
825        return Error("invalid type in function type");
826
827      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
828      break;
829    }
830    case bitc::TYPE_CODE_FUNCTION: {
831      // FUNCTION: [vararg, retty, paramty x N]
832      if (Record.size() < 2)
833        return Error("Invalid FUNCTION type record");
834      SmallVector<Type*, 8> ArgTys;
835      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
836        if (Type *T = getTypeByID(Record[i]))
837          ArgTys.push_back(T);
838        else
839          break;
840      }
841
842      ResultTy = getTypeByID(Record[1]);
843      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
844        return Error("invalid type in function type");
845
846      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
847      break;
848    }
849    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
850      if (Record.size() < 1)
851        return Error("Invalid STRUCT type record");
852      SmallVector<Type*, 8> EltTys;
853      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
854        if (Type *T = getTypeByID(Record[i]))
855          EltTys.push_back(T);
856        else
857          break;
858      }
859      if (EltTys.size() != Record.size()-1)
860        return Error("invalid type in struct type");
861      ResultTy = StructType::get(Context, EltTys, Record[0]);
862      break;
863    }
864    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
865      if (ConvertToString(Record, 0, TypeName))
866        return Error("Invalid STRUCT_NAME record");
867      continue;
868
869    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
870      if (Record.size() < 1)
871        return Error("Invalid STRUCT type record");
872
873      if (NumRecords >= TypeList.size())
874        return Error("invalid TYPE table");
875
876      // Check to see if this was forward referenced, if so fill in the temp.
877      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
878      if (Res) {
879        Res->setName(TypeName);
880        TypeList[NumRecords] = 0;
881      } else  // Otherwise, create a new struct.
882        Res = StructType::create(Context, TypeName);
883      TypeName.clear();
884
885      SmallVector<Type*, 8> EltTys;
886      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
887        if (Type *T = getTypeByID(Record[i]))
888          EltTys.push_back(T);
889        else
890          break;
891      }
892      if (EltTys.size() != Record.size()-1)
893        return Error("invalid STRUCT type record");
894      Res->setBody(EltTys, Record[0]);
895      ResultTy = Res;
896      break;
897    }
898    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
899      if (Record.size() != 1)
900        return Error("Invalid OPAQUE type record");
901
902      if (NumRecords >= TypeList.size())
903        return Error("invalid TYPE table");
904
905      // Check to see if this was forward referenced, if so fill in the temp.
906      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
907      if (Res) {
908        Res->setName(TypeName);
909        TypeList[NumRecords] = 0;
910      } else  // Otherwise, create a new struct with no body.
911        Res = StructType::create(Context, TypeName);
912      TypeName.clear();
913      ResultTy = Res;
914      break;
915    }
916    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
917      if (Record.size() < 2)
918        return Error("Invalid ARRAY type record");
919      if ((ResultTy = getTypeByID(Record[1])))
920        ResultTy = ArrayType::get(ResultTy, Record[0]);
921      else
922        return Error("Invalid ARRAY type element");
923      break;
924    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
925      if (Record.size() < 2)
926        return Error("Invalid VECTOR type record");
927      if ((ResultTy = getTypeByID(Record[1])))
928        ResultTy = VectorType::get(ResultTy, Record[0]);
929      else
930        return Error("Invalid ARRAY type element");
931      break;
932    }
933
934    if (NumRecords >= TypeList.size())
935      return Error("invalid TYPE table");
936    assert(ResultTy && "Didn't read a type?");
937    assert(TypeList[NumRecords] == 0 && "Already read type?");
938    TypeList[NumRecords++] = ResultTy;
939  }
940}
941
942bool BitcodeReader::ParseValueSymbolTable() {
943  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
944    return Error("Malformed block record");
945
946  SmallVector<uint64_t, 64> Record;
947
948  // Read all the records for this value table.
949  SmallString<128> ValueName;
950  while (1) {
951    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
952
953    switch (Entry.Kind) {
954    case BitstreamEntry::SubBlock: // Handled for us already.
955    case BitstreamEntry::Error:
956      return Error("malformed value symbol table block");
957    case BitstreamEntry::EndBlock:
958      return false;
959    case BitstreamEntry::Record:
960      // The interesting case.
961      break;
962    }
963
964    // Read a record.
965    Record.clear();
966    switch (Stream.readRecord(Entry.ID, Record)) {
967    default:  // Default behavior: unknown type.
968      break;
969    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
970      if (ConvertToString(Record, 1, ValueName))
971        return Error("Invalid VST_ENTRY record");
972      unsigned ValueID = Record[0];
973      if (ValueID >= ValueList.size())
974        return Error("Invalid Value ID in VST_ENTRY record");
975      Value *V = ValueList[ValueID];
976
977      V->setName(StringRef(ValueName.data(), ValueName.size()));
978      ValueName.clear();
979      break;
980    }
981    case bitc::VST_CODE_BBENTRY: {
982      if (ConvertToString(Record, 1, ValueName))
983        return Error("Invalid VST_BBENTRY record");
984      BasicBlock *BB = getBasicBlock(Record[0]);
985      if (BB == 0)
986        return Error("Invalid BB ID in VST_BBENTRY record");
987
988      BB->setName(StringRef(ValueName.data(), ValueName.size()));
989      ValueName.clear();
990      break;
991    }
992    }
993  }
994}
995
996bool BitcodeReader::ParseMetadata() {
997  unsigned NextMDValueNo = MDValueList.size();
998
999  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1000    return Error("Malformed block record");
1001
1002  SmallVector<uint64_t, 64> Record;
1003
1004  // Read all the records.
1005  while (1) {
1006    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1007
1008    switch (Entry.Kind) {
1009    case BitstreamEntry::SubBlock: // Handled for us already.
1010    case BitstreamEntry::Error:
1011      Error("malformed metadata block");
1012      return true;
1013    case BitstreamEntry::EndBlock:
1014      return false;
1015    case BitstreamEntry::Record:
1016      // The interesting case.
1017      break;
1018    }
1019
1020    bool IsFunctionLocal = false;
1021    // Read a record.
1022    Record.clear();
1023    unsigned Code = Stream.readRecord(Entry.ID, Record);
1024    switch (Code) {
1025    default:  // Default behavior: ignore.
1026      break;
1027    case bitc::METADATA_NAME: {
1028      // Read name of the named metadata.
1029      SmallString<8> Name(Record.begin(), Record.end());
1030      Record.clear();
1031      Code = Stream.ReadCode();
1032
1033      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1034      unsigned NextBitCode = Stream.readRecord(Code, Record);
1035      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1036
1037      // Read named metadata elements.
1038      unsigned Size = Record.size();
1039      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1040      for (unsigned i = 0; i != Size; ++i) {
1041        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1042        if (MD == 0)
1043          return Error("Malformed metadata record");
1044        NMD->addOperand(MD);
1045      }
1046      break;
1047    }
1048    case bitc::METADATA_FN_NODE:
1049      IsFunctionLocal = true;
1050      // fall-through
1051    case bitc::METADATA_NODE: {
1052      if (Record.size() % 2 == 1)
1053        return Error("Invalid METADATA_NODE record");
1054
1055      unsigned Size = Record.size();
1056      SmallVector<Value*, 8> Elts;
1057      for (unsigned i = 0; i != Size; i += 2) {
1058        Type *Ty = getTypeByID(Record[i]);
1059        if (!Ty) return Error("Invalid METADATA_NODE record");
1060        if (Ty->isMetadataTy())
1061          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1062        else if (!Ty->isVoidTy())
1063          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1064        else
1065          Elts.push_back(NULL);
1066      }
1067      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1068      IsFunctionLocal = false;
1069      MDValueList.AssignValue(V, NextMDValueNo++);
1070      break;
1071    }
1072    case bitc::METADATA_STRING: {
1073      SmallString<8> String(Record.begin(), Record.end());
1074      Value *V = MDString::get(Context, String);
1075      MDValueList.AssignValue(V, NextMDValueNo++);
1076      break;
1077    }
1078    case bitc::METADATA_KIND: {
1079      if (Record.size() < 2)
1080        return Error("Invalid METADATA_KIND record");
1081
1082      unsigned Kind = Record[0];
1083      SmallString<8> Name(Record.begin()+1, Record.end());
1084
1085      unsigned NewKind = TheModule->getMDKindID(Name.str());
1086      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1087        return Error("Conflicting METADATA_KIND records");
1088      break;
1089    }
1090    }
1091  }
1092}
1093
1094/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1095/// the LSB for dense VBR encoding.
1096uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1097  if ((V & 1) == 0)
1098    return V >> 1;
1099  if (V != 1)
1100    return -(V >> 1);
1101  // There is no such thing as -0 with integers.  "-0" really means MININT.
1102  return 1ULL << 63;
1103}
1104
1105/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1106/// values and aliases that we can.
1107bool BitcodeReader::ResolveGlobalAndAliasInits() {
1108  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1109  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1110  std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1111
1112  GlobalInitWorklist.swap(GlobalInits);
1113  AliasInitWorklist.swap(AliasInits);
1114  FunctionPrefixWorklist.swap(FunctionPrefixes);
1115
1116  while (!GlobalInitWorklist.empty()) {
1117    unsigned ValID = GlobalInitWorklist.back().second;
1118    if (ValID >= ValueList.size()) {
1119      // Not ready to resolve this yet, it requires something later in the file.
1120      GlobalInits.push_back(GlobalInitWorklist.back());
1121    } else {
1122      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1123        GlobalInitWorklist.back().first->setInitializer(C);
1124      else
1125        return Error("Global variable initializer is not a constant!");
1126    }
1127    GlobalInitWorklist.pop_back();
1128  }
1129
1130  while (!AliasInitWorklist.empty()) {
1131    unsigned ValID = AliasInitWorklist.back().second;
1132    if (ValID >= ValueList.size()) {
1133      AliasInits.push_back(AliasInitWorklist.back());
1134    } else {
1135      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1136        AliasInitWorklist.back().first->setAliasee(C);
1137      else
1138        return Error("Alias initializer is not a constant!");
1139    }
1140    AliasInitWorklist.pop_back();
1141  }
1142
1143  while (!FunctionPrefixWorklist.empty()) {
1144    unsigned ValID = FunctionPrefixWorklist.back().second;
1145    if (ValID >= ValueList.size()) {
1146      FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1147    } else {
1148      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1149        FunctionPrefixWorklist.back().first->setPrefixData(C);
1150      else
1151        return Error("Function prefix is not a constant!");
1152    }
1153    FunctionPrefixWorklist.pop_back();
1154  }
1155
1156  return false;
1157}
1158
1159static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1160  SmallVector<uint64_t, 8> Words(Vals.size());
1161  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1162                 BitcodeReader::decodeSignRotatedValue);
1163
1164  return APInt(TypeBits, Words);
1165}
1166
1167bool BitcodeReader::ParseConstants() {
1168  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1169    return Error("Malformed block record");
1170
1171  SmallVector<uint64_t, 64> Record;
1172
1173  // Read all the records for this value table.
1174  Type *CurTy = Type::getInt32Ty(Context);
1175  unsigned NextCstNo = ValueList.size();
1176  while (1) {
1177    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1178
1179    switch (Entry.Kind) {
1180    case BitstreamEntry::SubBlock: // Handled for us already.
1181    case BitstreamEntry::Error:
1182      return Error("malformed block record in AST file");
1183    case BitstreamEntry::EndBlock:
1184      if (NextCstNo != ValueList.size())
1185        return Error("Invalid constant reference!");
1186
1187      // Once all the constants have been read, go through and resolve forward
1188      // references.
1189      ValueList.ResolveConstantForwardRefs();
1190      return false;
1191    case BitstreamEntry::Record:
1192      // The interesting case.
1193      break;
1194    }
1195
1196    // Read a record.
1197    Record.clear();
1198    Value *V = 0;
1199    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1200    switch (BitCode) {
1201    default:  // Default behavior: unknown constant
1202    case bitc::CST_CODE_UNDEF:     // UNDEF
1203      V = UndefValue::get(CurTy);
1204      break;
1205    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1206      if (Record.empty())
1207        return Error("Malformed CST_SETTYPE record");
1208      if (Record[0] >= TypeList.size())
1209        return Error("Invalid Type ID in CST_SETTYPE record");
1210      CurTy = TypeList[Record[0]];
1211      continue;  // Skip the ValueList manipulation.
1212    case bitc::CST_CODE_NULL:      // NULL
1213      V = Constant::getNullValue(CurTy);
1214      break;
1215    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1216      if (!CurTy->isIntegerTy() || Record.empty())
1217        return Error("Invalid CST_INTEGER record");
1218      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1219      break;
1220    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1221      if (!CurTy->isIntegerTy() || Record.empty())
1222        return Error("Invalid WIDE_INTEGER record");
1223
1224      APInt VInt = ReadWideAPInt(Record,
1225                                 cast<IntegerType>(CurTy)->getBitWidth());
1226      V = ConstantInt::get(Context, VInt);
1227
1228      break;
1229    }
1230    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1231      if (Record.empty())
1232        return Error("Invalid FLOAT record");
1233      if (CurTy->isHalfTy())
1234        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1235                                             APInt(16, (uint16_t)Record[0])));
1236      else if (CurTy->isFloatTy())
1237        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1238                                             APInt(32, (uint32_t)Record[0])));
1239      else if (CurTy->isDoubleTy())
1240        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1241                                             APInt(64, Record[0])));
1242      else if (CurTy->isX86_FP80Ty()) {
1243        // Bits are not stored the same way as a normal i80 APInt, compensate.
1244        uint64_t Rearrange[2];
1245        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1246        Rearrange[1] = Record[0] >> 48;
1247        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1248                                             APInt(80, Rearrange)));
1249      } else if (CurTy->isFP128Ty())
1250        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1251                                             APInt(128, Record)));
1252      else if (CurTy->isPPC_FP128Ty())
1253        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1254                                             APInt(128, Record)));
1255      else
1256        V = UndefValue::get(CurTy);
1257      break;
1258    }
1259
1260    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1261      if (Record.empty())
1262        return Error("Invalid CST_AGGREGATE record");
1263
1264      unsigned Size = Record.size();
1265      SmallVector<Constant*, 16> Elts;
1266
1267      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1268        for (unsigned i = 0; i != Size; ++i)
1269          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1270                                                     STy->getElementType(i)));
1271        V = ConstantStruct::get(STy, Elts);
1272      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1273        Type *EltTy = ATy->getElementType();
1274        for (unsigned i = 0; i != Size; ++i)
1275          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1276        V = ConstantArray::get(ATy, Elts);
1277      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1278        Type *EltTy = VTy->getElementType();
1279        for (unsigned i = 0; i != Size; ++i)
1280          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1281        V = ConstantVector::get(Elts);
1282      } else {
1283        V = UndefValue::get(CurTy);
1284      }
1285      break;
1286    }
1287    case bitc::CST_CODE_STRING:    // STRING: [values]
1288    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1289      if (Record.empty())
1290        return Error("Invalid CST_STRING record");
1291
1292      SmallString<16> Elts(Record.begin(), Record.end());
1293      V = ConstantDataArray::getString(Context, Elts,
1294                                       BitCode == bitc::CST_CODE_CSTRING);
1295      break;
1296    }
1297    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1298      if (Record.empty())
1299        return Error("Invalid CST_DATA record");
1300
1301      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1302      unsigned Size = Record.size();
1303
1304      if (EltTy->isIntegerTy(8)) {
1305        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1306        if (isa<VectorType>(CurTy))
1307          V = ConstantDataVector::get(Context, Elts);
1308        else
1309          V = ConstantDataArray::get(Context, Elts);
1310      } else if (EltTy->isIntegerTy(16)) {
1311        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1312        if (isa<VectorType>(CurTy))
1313          V = ConstantDataVector::get(Context, Elts);
1314        else
1315          V = ConstantDataArray::get(Context, Elts);
1316      } else if (EltTy->isIntegerTy(32)) {
1317        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1318        if (isa<VectorType>(CurTy))
1319          V = ConstantDataVector::get(Context, Elts);
1320        else
1321          V = ConstantDataArray::get(Context, Elts);
1322      } else if (EltTy->isIntegerTy(64)) {
1323        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1324        if (isa<VectorType>(CurTy))
1325          V = ConstantDataVector::get(Context, Elts);
1326        else
1327          V = ConstantDataArray::get(Context, Elts);
1328      } else if (EltTy->isFloatTy()) {
1329        SmallVector<float, 16> Elts(Size);
1330        std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1331        if (isa<VectorType>(CurTy))
1332          V = ConstantDataVector::get(Context, Elts);
1333        else
1334          V = ConstantDataArray::get(Context, Elts);
1335      } else if (EltTy->isDoubleTy()) {
1336        SmallVector<double, 16> Elts(Size);
1337        std::transform(Record.begin(), Record.end(), Elts.begin(),
1338                       BitsToDouble);
1339        if (isa<VectorType>(CurTy))
1340          V = ConstantDataVector::get(Context, Elts);
1341        else
1342          V = ConstantDataArray::get(Context, Elts);
1343      } else {
1344        return Error("Unknown element type in CE_DATA");
1345      }
1346      break;
1347    }
1348
1349    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1350      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1351      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1352      if (Opc < 0) {
1353        V = UndefValue::get(CurTy);  // Unknown binop.
1354      } else {
1355        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1356        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1357        unsigned Flags = 0;
1358        if (Record.size() >= 4) {
1359          if (Opc == Instruction::Add ||
1360              Opc == Instruction::Sub ||
1361              Opc == Instruction::Mul ||
1362              Opc == Instruction::Shl) {
1363            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1364              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1365            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1366              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1367          } else if (Opc == Instruction::SDiv ||
1368                     Opc == Instruction::UDiv ||
1369                     Opc == Instruction::LShr ||
1370                     Opc == Instruction::AShr) {
1371            if (Record[3] & (1 << bitc::PEO_EXACT))
1372              Flags |= SDivOperator::IsExact;
1373          }
1374        }
1375        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1376      }
1377      break;
1378    }
1379    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1380      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1381      int Opc = GetDecodedCastOpcode(Record[0]);
1382      if (Opc < 0) {
1383        V = UndefValue::get(CurTy);  // Unknown cast.
1384      } else {
1385        Type *OpTy = getTypeByID(Record[1]);
1386        if (!OpTy) return Error("Invalid CE_CAST record");
1387        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1388        V = ConstantExpr::getCast(Opc, Op, CurTy);
1389      }
1390      break;
1391    }
1392    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1393    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1394      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1395      SmallVector<Constant*, 16> Elts;
1396      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1397        Type *ElTy = getTypeByID(Record[i]);
1398        if (!ElTy) return Error("Invalid CE_GEP record");
1399        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1400      }
1401      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1402      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1403                                         BitCode ==
1404                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1405      break;
1406    }
1407    case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1408      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1409
1410      Type *SelectorTy = Type::getInt1Ty(Context);
1411
1412      // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1413      // vector. Otherwise, it must be a single bit.
1414      if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1415        SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1416                                     VTy->getNumElements());
1417
1418      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1419                                                              SelectorTy),
1420                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1421                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1422      break;
1423    }
1424    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1425      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1426      VectorType *OpTy =
1427        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1428      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1429      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1430      Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1431                                                  Type::getInt32Ty(Context));
1432      V = ConstantExpr::getExtractElement(Op0, Op1);
1433      break;
1434    }
1435    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1436      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1437      if (Record.size() < 3 || OpTy == 0)
1438        return Error("Invalid CE_INSERTELT record");
1439      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1440      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1441                                                  OpTy->getElementType());
1442      Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1443                                                  Type::getInt32Ty(Context));
1444      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1445      break;
1446    }
1447    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1448      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1449      if (Record.size() < 3 || OpTy == 0)
1450        return Error("Invalid CE_SHUFFLEVEC record");
1451      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1452      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1453      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1454                                                 OpTy->getNumElements());
1455      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1456      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1457      break;
1458    }
1459    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1460      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1461      VectorType *OpTy =
1462        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1463      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1464        return Error("Invalid CE_SHUFVEC_EX record");
1465      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1466      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1467      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1468                                                 RTy->getNumElements());
1469      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1470      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1471      break;
1472    }
1473    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1474      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1475      Type *OpTy = getTypeByID(Record[0]);
1476      if (OpTy == 0) return Error("Invalid CE_CMP record");
1477      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1478      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1479
1480      if (OpTy->isFPOrFPVectorTy())
1481        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1482      else
1483        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1484      break;
1485    }
1486    // This maintains backward compatibility, pre-asm dialect keywords.
1487    // FIXME: Remove with the 4.0 release.
1488    case bitc::CST_CODE_INLINEASM_OLD: {
1489      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1490      std::string AsmStr, ConstrStr;
1491      bool HasSideEffects = Record[0] & 1;
1492      bool IsAlignStack = Record[0] >> 1;
1493      unsigned AsmStrSize = Record[1];
1494      if (2+AsmStrSize >= Record.size())
1495        return Error("Invalid INLINEASM record");
1496      unsigned ConstStrSize = Record[2+AsmStrSize];
1497      if (3+AsmStrSize+ConstStrSize > Record.size())
1498        return Error("Invalid INLINEASM record");
1499
1500      for (unsigned i = 0; i != AsmStrSize; ++i)
1501        AsmStr += (char)Record[2+i];
1502      for (unsigned i = 0; i != ConstStrSize; ++i)
1503        ConstrStr += (char)Record[3+AsmStrSize+i];
1504      PointerType *PTy = cast<PointerType>(CurTy);
1505      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1506                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1507      break;
1508    }
1509    // This version adds support for the asm dialect keywords (e.g.,
1510    // inteldialect).
1511    case bitc::CST_CODE_INLINEASM: {
1512      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1513      std::string AsmStr, ConstrStr;
1514      bool HasSideEffects = Record[0] & 1;
1515      bool IsAlignStack = (Record[0] >> 1) & 1;
1516      unsigned AsmDialect = Record[0] >> 2;
1517      unsigned AsmStrSize = Record[1];
1518      if (2+AsmStrSize >= Record.size())
1519        return Error("Invalid INLINEASM record");
1520      unsigned ConstStrSize = Record[2+AsmStrSize];
1521      if (3+AsmStrSize+ConstStrSize > Record.size())
1522        return Error("Invalid INLINEASM record");
1523
1524      for (unsigned i = 0; i != AsmStrSize; ++i)
1525        AsmStr += (char)Record[2+i];
1526      for (unsigned i = 0; i != ConstStrSize; ++i)
1527        ConstrStr += (char)Record[3+AsmStrSize+i];
1528      PointerType *PTy = cast<PointerType>(CurTy);
1529      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1530                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1531                         InlineAsm::AsmDialect(AsmDialect));
1532      break;
1533    }
1534    case bitc::CST_CODE_BLOCKADDRESS:{
1535      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1536      Type *FnTy = getTypeByID(Record[0]);
1537      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1538      Function *Fn =
1539        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1540      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1541
1542      // If the function is already parsed we can insert the block address right
1543      // away.
1544      if (!Fn->empty()) {
1545        Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1546        for (size_t I = 0, E = Record[2]; I != E; ++I) {
1547          if (BBI == BBE)
1548            return Error("Invalid blockaddress block #");
1549          ++BBI;
1550        }
1551        V = BlockAddress::get(Fn, BBI);
1552      } else {
1553        // Otherwise insert a placeholder and remember it so it can be inserted
1554        // when the function is parsed.
1555        GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1556                                                    Type::getInt8Ty(Context),
1557                                            false, GlobalValue::InternalLinkage,
1558                                                    0, "");
1559        BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1560        V = FwdRef;
1561      }
1562      break;
1563    }
1564    }
1565
1566    ValueList.AssignValue(V, NextCstNo);
1567    ++NextCstNo;
1568  }
1569}
1570
1571bool BitcodeReader::ParseUseLists() {
1572  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1573    return Error("Malformed block record");
1574
1575  SmallVector<uint64_t, 64> Record;
1576
1577  // Read all the records.
1578  while (1) {
1579    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1580
1581    switch (Entry.Kind) {
1582    case BitstreamEntry::SubBlock: // Handled for us already.
1583    case BitstreamEntry::Error:
1584      return Error("malformed use list block");
1585    case BitstreamEntry::EndBlock:
1586      return false;
1587    case BitstreamEntry::Record:
1588      // The interesting case.
1589      break;
1590    }
1591
1592    // Read a use list record.
1593    Record.clear();
1594    switch (Stream.readRecord(Entry.ID, Record)) {
1595    default:  // Default behavior: unknown type.
1596      break;
1597    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1598      unsigned RecordLength = Record.size();
1599      if (RecordLength < 1)
1600        return Error ("Invalid UseList reader!");
1601      UseListRecords.push_back(Record);
1602      break;
1603    }
1604    }
1605  }
1606}
1607
1608/// RememberAndSkipFunctionBody - When we see the block for a function body,
1609/// remember where it is and then skip it.  This lets us lazily deserialize the
1610/// functions.
1611bool BitcodeReader::RememberAndSkipFunctionBody() {
1612  // Get the function we are talking about.
1613  if (FunctionsWithBodies.empty())
1614    return Error("Insufficient function protos");
1615
1616  Function *Fn = FunctionsWithBodies.back();
1617  FunctionsWithBodies.pop_back();
1618
1619  // Save the current stream state.
1620  uint64_t CurBit = Stream.GetCurrentBitNo();
1621  DeferredFunctionInfo[Fn] = CurBit;
1622
1623  // Skip over the function block for now.
1624  if (Stream.SkipBlock())
1625    return Error("Malformed block record");
1626  return false;
1627}
1628
1629bool BitcodeReader::GlobalCleanup() {
1630  // Patch the initializers for globals and aliases up.
1631  ResolveGlobalAndAliasInits();
1632  if (!GlobalInits.empty() || !AliasInits.empty())
1633    return Error("Malformed global initializer set");
1634
1635  // Look for intrinsic functions which need to be upgraded at some point
1636  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1637       FI != FE; ++FI) {
1638    Function *NewFn;
1639    if (UpgradeIntrinsicFunction(FI, NewFn))
1640      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1641  }
1642
1643  // Look for global variables which need to be renamed.
1644  for (Module::global_iterator
1645         GI = TheModule->global_begin(), GE = TheModule->global_end();
1646       GI != GE; ++GI)
1647    UpgradeGlobalVariable(GI);
1648  // Force deallocation of memory for these vectors to favor the client that
1649  // want lazy deserialization.
1650  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1651  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1652  return false;
1653}
1654
1655bool BitcodeReader::ParseModule(bool Resume) {
1656  if (Resume)
1657    Stream.JumpToBit(NextUnreadBit);
1658  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1659    return Error("Malformed block record");
1660
1661  SmallVector<uint64_t, 64> Record;
1662  std::vector<std::string> SectionTable;
1663  std::vector<std::string> GCTable;
1664
1665  // Read all the records for this module.
1666  while (1) {
1667    BitstreamEntry Entry = Stream.advance();
1668
1669    switch (Entry.Kind) {
1670    case BitstreamEntry::Error:
1671      Error("malformed module block");
1672      return true;
1673    case BitstreamEntry::EndBlock:
1674      return GlobalCleanup();
1675
1676    case BitstreamEntry::SubBlock:
1677      switch (Entry.ID) {
1678      default:  // Skip unknown content.
1679        if (Stream.SkipBlock())
1680          return Error("Malformed block record");
1681        break;
1682      case bitc::BLOCKINFO_BLOCK_ID:
1683        if (Stream.ReadBlockInfoBlock())
1684          return Error("Malformed BlockInfoBlock");
1685        break;
1686      case bitc::PARAMATTR_BLOCK_ID:
1687        if (ParseAttributeBlock())
1688          return true;
1689        break;
1690      case bitc::PARAMATTR_GROUP_BLOCK_ID:
1691        if (ParseAttributeGroupBlock())
1692          return true;
1693        break;
1694      case bitc::TYPE_BLOCK_ID_NEW:
1695        if (ParseTypeTable())
1696          return true;
1697        break;
1698      case bitc::VALUE_SYMTAB_BLOCK_ID:
1699        if (ParseValueSymbolTable())
1700          return true;
1701        SeenValueSymbolTable = true;
1702        break;
1703      case bitc::CONSTANTS_BLOCK_ID:
1704        if (ParseConstants() || ResolveGlobalAndAliasInits())
1705          return true;
1706        break;
1707      case bitc::METADATA_BLOCK_ID:
1708        if (ParseMetadata())
1709          return true;
1710        break;
1711      case bitc::FUNCTION_BLOCK_ID:
1712        // If this is the first function body we've seen, reverse the
1713        // FunctionsWithBodies list.
1714        if (!SeenFirstFunctionBody) {
1715          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1716          if (GlobalCleanup())
1717            return true;
1718          SeenFirstFunctionBody = true;
1719        }
1720
1721        if (RememberAndSkipFunctionBody())
1722          return true;
1723        // For streaming bitcode, suspend parsing when we reach the function
1724        // bodies. Subsequent materialization calls will resume it when
1725        // necessary. For streaming, the function bodies must be at the end of
1726        // the bitcode. If the bitcode file is old, the symbol table will be
1727        // at the end instead and will not have been seen yet. In this case,
1728        // just finish the parse now.
1729        if (LazyStreamer && SeenValueSymbolTable) {
1730          NextUnreadBit = Stream.GetCurrentBitNo();
1731          return false;
1732        }
1733        break;
1734      case bitc::USELIST_BLOCK_ID:
1735        if (ParseUseLists())
1736          return true;
1737        break;
1738      }
1739      continue;
1740
1741    case BitstreamEntry::Record:
1742      // The interesting case.
1743      break;
1744    }
1745
1746
1747    // Read a record.
1748    switch (Stream.readRecord(Entry.ID, Record)) {
1749    default: break;  // Default behavior, ignore unknown content.
1750    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1751      if (Record.size() < 1)
1752        return Error("Malformed MODULE_CODE_VERSION");
1753      // Only version #0 and #1 are supported so far.
1754      unsigned module_version = Record[0];
1755      switch (module_version) {
1756        default: return Error("Unknown bitstream version!");
1757        case 0:
1758          UseRelativeIDs = false;
1759          break;
1760        case 1:
1761          UseRelativeIDs = true;
1762          break;
1763      }
1764      break;
1765    }
1766    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1767      std::string S;
1768      if (ConvertToString(Record, 0, S))
1769        return Error("Invalid MODULE_CODE_TRIPLE record");
1770      TheModule->setTargetTriple(S);
1771      break;
1772    }
1773    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1774      std::string S;
1775      if (ConvertToString(Record, 0, S))
1776        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1777      TheModule->setDataLayout(S);
1778      break;
1779    }
1780    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1781      std::string S;
1782      if (ConvertToString(Record, 0, S))
1783        return Error("Invalid MODULE_CODE_ASM record");
1784      TheModule->setModuleInlineAsm(S);
1785      break;
1786    }
1787    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1788      // FIXME: Remove in 4.0.
1789      std::string S;
1790      if (ConvertToString(Record, 0, S))
1791        return Error("Invalid MODULE_CODE_DEPLIB record");
1792      // Ignore value.
1793      break;
1794    }
1795    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1796      std::string S;
1797      if (ConvertToString(Record, 0, S))
1798        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1799      SectionTable.push_back(S);
1800      break;
1801    }
1802    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1803      std::string S;
1804      if (ConvertToString(Record, 0, S))
1805        return Error("Invalid MODULE_CODE_GCNAME record");
1806      GCTable.push_back(S);
1807      break;
1808    }
1809    // GLOBALVAR: [pointer type, isconst, initid,
1810    //             linkage, alignment, section, visibility, threadlocal,
1811    //             unnamed_addr]
1812    case bitc::MODULE_CODE_GLOBALVAR: {
1813      if (Record.size() < 6)
1814        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1815      Type *Ty = getTypeByID(Record[0]);
1816      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1817      if (!Ty->isPointerTy())
1818        return Error("Global not a pointer type!");
1819      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1820      Ty = cast<PointerType>(Ty)->getElementType();
1821
1822      bool isConstant = Record[1];
1823      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1824      unsigned Alignment = (1 << Record[4]) >> 1;
1825      std::string Section;
1826      if (Record[5]) {
1827        if (Record[5]-1 >= SectionTable.size())
1828          return Error("Invalid section ID");
1829        Section = SectionTable[Record[5]-1];
1830      }
1831      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1832      if (Record.size() > 6)
1833        Visibility = GetDecodedVisibility(Record[6]);
1834
1835      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1836      if (Record.size() > 7)
1837        TLM = GetDecodedThreadLocalMode(Record[7]);
1838
1839      bool UnnamedAddr = false;
1840      if (Record.size() > 8)
1841        UnnamedAddr = Record[8];
1842
1843      bool ExternallyInitialized = false;
1844      if (Record.size() > 9)
1845        ExternallyInitialized = Record[9];
1846
1847      GlobalVariable *NewGV =
1848        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1849                           TLM, AddressSpace, ExternallyInitialized);
1850      NewGV->setAlignment(Alignment);
1851      if (!Section.empty())
1852        NewGV->setSection(Section);
1853      NewGV->setVisibility(Visibility);
1854      NewGV->setUnnamedAddr(UnnamedAddr);
1855
1856      ValueList.push_back(NewGV);
1857
1858      // Remember which value to use for the global initializer.
1859      if (unsigned InitID = Record[2])
1860        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1861      break;
1862    }
1863    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1864    //             alignment, section, visibility, gc, unnamed_addr]
1865    case bitc::MODULE_CODE_FUNCTION: {
1866      if (Record.size() < 8)
1867        return Error("Invalid MODULE_CODE_FUNCTION record");
1868      Type *Ty = getTypeByID(Record[0]);
1869      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1870      if (!Ty->isPointerTy())
1871        return Error("Function not a pointer type!");
1872      FunctionType *FTy =
1873        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1874      if (!FTy)
1875        return Error("Function not a pointer to function type!");
1876
1877      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1878                                        "", TheModule);
1879
1880      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1881      bool isProto = Record[2];
1882      Func->setLinkage(GetDecodedLinkage(Record[3]));
1883      Func->setAttributes(getAttributes(Record[4]));
1884
1885      Func->setAlignment((1 << Record[5]) >> 1);
1886      if (Record[6]) {
1887        if (Record[6]-1 >= SectionTable.size())
1888          return Error("Invalid section ID");
1889        Func->setSection(SectionTable[Record[6]-1]);
1890      }
1891      Func->setVisibility(GetDecodedVisibility(Record[7]));
1892      if (Record.size() > 8 && Record[8]) {
1893        if (Record[8]-1 > GCTable.size())
1894          return Error("Invalid GC ID");
1895        Func->setGC(GCTable[Record[8]-1].c_str());
1896      }
1897      bool UnnamedAddr = false;
1898      if (Record.size() > 9)
1899        UnnamedAddr = Record[9];
1900      Func->setUnnamedAddr(UnnamedAddr);
1901      if (Record.size() > 10 && Record[10] != 0)
1902        FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
1903      ValueList.push_back(Func);
1904
1905      // If this is a function with a body, remember the prototype we are
1906      // creating now, so that we can match up the body with them later.
1907      if (!isProto) {
1908        FunctionsWithBodies.push_back(Func);
1909        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1910      }
1911      break;
1912    }
1913    // ALIAS: [alias type, aliasee val#, linkage]
1914    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1915    case bitc::MODULE_CODE_ALIAS: {
1916      if (Record.size() < 3)
1917        return Error("Invalid MODULE_ALIAS record");
1918      Type *Ty = getTypeByID(Record[0]);
1919      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1920      if (!Ty->isPointerTy())
1921        return Error("Function not a pointer type!");
1922
1923      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1924                                           "", 0, TheModule);
1925      // Old bitcode files didn't have visibility field.
1926      if (Record.size() > 3)
1927        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1928      ValueList.push_back(NewGA);
1929      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1930      break;
1931    }
1932    /// MODULE_CODE_PURGEVALS: [numvals]
1933    case bitc::MODULE_CODE_PURGEVALS:
1934      // Trim down the value list to the specified size.
1935      if (Record.size() < 1 || Record[0] > ValueList.size())
1936        return Error("Invalid MODULE_PURGEVALS record");
1937      ValueList.shrinkTo(Record[0]);
1938      break;
1939    }
1940    Record.clear();
1941  }
1942}
1943
1944bool BitcodeReader::ParseBitcodeInto(Module *M) {
1945  TheModule = 0;
1946
1947  if (InitStream()) return true;
1948
1949  // Sniff for the signature.
1950  if (Stream.Read(8) != 'B' ||
1951      Stream.Read(8) != 'C' ||
1952      Stream.Read(4) != 0x0 ||
1953      Stream.Read(4) != 0xC ||
1954      Stream.Read(4) != 0xE ||
1955      Stream.Read(4) != 0xD)
1956    return Error("Invalid bitcode signature");
1957
1958  // We expect a number of well-defined blocks, though we don't necessarily
1959  // need to understand them all.
1960  while (1) {
1961    if (Stream.AtEndOfStream())
1962      return false;
1963
1964    BitstreamEntry Entry =
1965      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1966
1967    switch (Entry.Kind) {
1968    case BitstreamEntry::Error:
1969      Error("malformed module file");
1970      return true;
1971    case BitstreamEntry::EndBlock:
1972      return false;
1973
1974    case BitstreamEntry::SubBlock:
1975      switch (Entry.ID) {
1976      case bitc::BLOCKINFO_BLOCK_ID:
1977        if (Stream.ReadBlockInfoBlock())
1978          return Error("Malformed BlockInfoBlock");
1979        break;
1980      case bitc::MODULE_BLOCK_ID:
1981        // Reject multiple MODULE_BLOCK's in a single bitstream.
1982        if (TheModule)
1983          return Error("Multiple MODULE_BLOCKs in same stream");
1984        TheModule = M;
1985        if (ParseModule(false))
1986          return true;
1987        if (LazyStreamer) return false;
1988        break;
1989      default:
1990        if (Stream.SkipBlock())
1991          return Error("Malformed block record");
1992        break;
1993      }
1994      continue;
1995    case BitstreamEntry::Record:
1996      // There should be no records in the top-level of blocks.
1997
1998      // The ranlib in Xcode 4 will align archive members by appending newlines
1999      // to the end of them. If this file size is a multiple of 4 but not 8, we
2000      // have to read and ignore these final 4 bytes :-(
2001      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2002          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2003          Stream.AtEndOfStream())
2004        return false;
2005
2006      return Error("Invalid record at top-level");
2007    }
2008  }
2009}
2010
2011bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
2012  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2013    return Error("Malformed block record");
2014
2015  SmallVector<uint64_t, 64> Record;
2016
2017  // Read all the records for this module.
2018  while (1) {
2019    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2020
2021    switch (Entry.Kind) {
2022    case BitstreamEntry::SubBlock: // Handled for us already.
2023    case BitstreamEntry::Error:
2024      return Error("malformed module block");
2025    case BitstreamEntry::EndBlock:
2026      return false;
2027    case BitstreamEntry::Record:
2028      // The interesting case.
2029      break;
2030    }
2031
2032    // Read a record.
2033    switch (Stream.readRecord(Entry.ID, Record)) {
2034    default: break;  // Default behavior, ignore unknown content.
2035    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2036      std::string S;
2037      if (ConvertToString(Record, 0, S))
2038        return Error("Invalid MODULE_CODE_TRIPLE record");
2039      Triple = S;
2040      break;
2041    }
2042    }
2043    Record.clear();
2044  }
2045}
2046
2047bool BitcodeReader::ParseTriple(std::string &Triple) {
2048  if (InitStream()) return true;
2049
2050  // Sniff for the signature.
2051  if (Stream.Read(8) != 'B' ||
2052      Stream.Read(8) != 'C' ||
2053      Stream.Read(4) != 0x0 ||
2054      Stream.Read(4) != 0xC ||
2055      Stream.Read(4) != 0xE ||
2056      Stream.Read(4) != 0xD)
2057    return Error("Invalid bitcode signature");
2058
2059  // We expect a number of well-defined blocks, though we don't necessarily
2060  // need to understand them all.
2061  while (1) {
2062    BitstreamEntry Entry = Stream.advance();
2063
2064    switch (Entry.Kind) {
2065    case BitstreamEntry::Error:
2066      Error("malformed module file");
2067      return true;
2068    case BitstreamEntry::EndBlock:
2069      return false;
2070
2071    case BitstreamEntry::SubBlock:
2072      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2073        return ParseModuleTriple(Triple);
2074
2075      // Ignore other sub-blocks.
2076      if (Stream.SkipBlock()) {
2077        Error("malformed block record in AST file");
2078        return true;
2079      }
2080      continue;
2081
2082    case BitstreamEntry::Record:
2083      Stream.skipRecord(Entry.ID);
2084      continue;
2085    }
2086  }
2087}
2088
2089/// ParseMetadataAttachment - Parse metadata attachments.
2090bool BitcodeReader::ParseMetadataAttachment() {
2091  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2092    return Error("Malformed block record");
2093
2094  SmallVector<uint64_t, 64> Record;
2095  while (1) {
2096    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2097
2098    switch (Entry.Kind) {
2099    case BitstreamEntry::SubBlock: // Handled for us already.
2100    case BitstreamEntry::Error:
2101      return Error("malformed metadata block");
2102    case BitstreamEntry::EndBlock:
2103      return false;
2104    case BitstreamEntry::Record:
2105      // The interesting case.
2106      break;
2107    }
2108
2109    // Read a metadata attachment record.
2110    Record.clear();
2111    switch (Stream.readRecord(Entry.ID, Record)) {
2112    default:  // Default behavior: ignore.
2113      break;
2114    case bitc::METADATA_ATTACHMENT: {
2115      unsigned RecordLength = Record.size();
2116      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2117        return Error ("Invalid METADATA_ATTACHMENT reader!");
2118      Instruction *Inst = InstructionList[Record[0]];
2119      for (unsigned i = 1; i != RecordLength; i = i+2) {
2120        unsigned Kind = Record[i];
2121        DenseMap<unsigned, unsigned>::iterator I =
2122          MDKindMap.find(Kind);
2123        if (I == MDKindMap.end())
2124          return Error("Invalid metadata kind ID");
2125        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2126        Inst->setMetadata(I->second, cast<MDNode>(Node));
2127        if (I->second == LLVMContext::MD_tbaa)
2128          InstsWithTBAATag.push_back(Inst);
2129      }
2130      break;
2131    }
2132    }
2133  }
2134}
2135
2136/// ParseFunctionBody - Lazily parse the specified function body block.
2137bool BitcodeReader::ParseFunctionBody(Function *F) {
2138  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2139    return Error("Malformed block record");
2140
2141  InstructionList.clear();
2142  unsigned ModuleValueListSize = ValueList.size();
2143  unsigned ModuleMDValueListSize = MDValueList.size();
2144
2145  // Add all the function arguments to the value table.
2146  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2147    ValueList.push_back(I);
2148
2149  unsigned NextValueNo = ValueList.size();
2150  BasicBlock *CurBB = 0;
2151  unsigned CurBBNo = 0;
2152
2153  DebugLoc LastLoc;
2154
2155  // Read all the records.
2156  SmallVector<uint64_t, 64> Record;
2157  while (1) {
2158    BitstreamEntry Entry = Stream.advance();
2159
2160    switch (Entry.Kind) {
2161    case BitstreamEntry::Error:
2162      return Error("Bitcode error in function block");
2163    case BitstreamEntry::EndBlock:
2164      goto OutOfRecordLoop;
2165
2166    case BitstreamEntry::SubBlock:
2167      switch (Entry.ID) {
2168      default:  // Skip unknown content.
2169        if (Stream.SkipBlock())
2170          return Error("Malformed block record");
2171        break;
2172      case bitc::CONSTANTS_BLOCK_ID:
2173        if (ParseConstants()) return true;
2174        NextValueNo = ValueList.size();
2175        break;
2176      case bitc::VALUE_SYMTAB_BLOCK_ID:
2177        if (ParseValueSymbolTable()) return true;
2178        break;
2179      case bitc::METADATA_ATTACHMENT_ID:
2180        if (ParseMetadataAttachment()) return true;
2181        break;
2182      case bitc::METADATA_BLOCK_ID:
2183        if (ParseMetadata()) return true;
2184        break;
2185      }
2186      continue;
2187
2188    case BitstreamEntry::Record:
2189      // The interesting case.
2190      break;
2191    }
2192
2193    // Read a record.
2194    Record.clear();
2195    Instruction *I = 0;
2196    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2197    switch (BitCode) {
2198    default: // Default behavior: reject
2199      return Error("Unknown instruction");
2200    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2201      if (Record.size() < 1 || Record[0] == 0)
2202        return Error("Invalid DECLAREBLOCKS record");
2203      // Create all the basic blocks for the function.
2204      FunctionBBs.resize(Record[0]);
2205      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2206        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2207      CurBB = FunctionBBs[0];
2208      continue;
2209
2210    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2211      // This record indicates that the last instruction is at the same
2212      // location as the previous instruction with a location.
2213      I = 0;
2214
2215      // Get the last instruction emitted.
2216      if (CurBB && !CurBB->empty())
2217        I = &CurBB->back();
2218      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2219               !FunctionBBs[CurBBNo-1]->empty())
2220        I = &FunctionBBs[CurBBNo-1]->back();
2221
2222      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2223      I->setDebugLoc(LastLoc);
2224      I = 0;
2225      continue;
2226
2227    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2228      I = 0;     // Get the last instruction emitted.
2229      if (CurBB && !CurBB->empty())
2230        I = &CurBB->back();
2231      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2232               !FunctionBBs[CurBBNo-1]->empty())
2233        I = &FunctionBBs[CurBBNo-1]->back();
2234      if (I == 0 || Record.size() < 4)
2235        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2236
2237      unsigned Line = Record[0], Col = Record[1];
2238      unsigned ScopeID = Record[2], IAID = Record[3];
2239
2240      MDNode *Scope = 0, *IA = 0;
2241      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2242      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2243      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2244      I->setDebugLoc(LastLoc);
2245      I = 0;
2246      continue;
2247    }
2248
2249    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2250      unsigned OpNum = 0;
2251      Value *LHS, *RHS;
2252      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2253          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2254          OpNum+1 > Record.size())
2255        return Error("Invalid BINOP record");
2256
2257      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2258      if (Opc == -1) return Error("Invalid BINOP record");
2259      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2260      InstructionList.push_back(I);
2261      if (OpNum < Record.size()) {
2262        if (Opc == Instruction::Add ||
2263            Opc == Instruction::Sub ||
2264            Opc == Instruction::Mul ||
2265            Opc == Instruction::Shl) {
2266          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2267            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2268          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2269            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2270        } else if (Opc == Instruction::SDiv ||
2271                   Opc == Instruction::UDiv ||
2272                   Opc == Instruction::LShr ||
2273                   Opc == Instruction::AShr) {
2274          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2275            cast<BinaryOperator>(I)->setIsExact(true);
2276        } else if (isa<FPMathOperator>(I)) {
2277          FastMathFlags FMF;
2278          if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2279            FMF.setUnsafeAlgebra();
2280          if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2281            FMF.setNoNaNs();
2282          if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2283            FMF.setNoInfs();
2284          if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2285            FMF.setNoSignedZeros();
2286          if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2287            FMF.setAllowReciprocal();
2288          if (FMF.any())
2289            I->setFastMathFlags(FMF);
2290        }
2291
2292      }
2293      break;
2294    }
2295    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2296      unsigned OpNum = 0;
2297      Value *Op;
2298      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2299          OpNum+2 != Record.size())
2300        return Error("Invalid CAST record");
2301
2302      Type *ResTy = getTypeByID(Record[OpNum]);
2303      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2304      if (Opc == -1 || ResTy == 0)
2305        return Error("Invalid CAST record");
2306      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2307      InstructionList.push_back(I);
2308      break;
2309    }
2310    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2311    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2312      unsigned OpNum = 0;
2313      Value *BasePtr;
2314      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2315        return Error("Invalid GEP record");
2316
2317      SmallVector<Value*, 16> GEPIdx;
2318      while (OpNum != Record.size()) {
2319        Value *Op;
2320        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2321          return Error("Invalid GEP record");
2322        GEPIdx.push_back(Op);
2323      }
2324
2325      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2326      InstructionList.push_back(I);
2327      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2328        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2329      break;
2330    }
2331
2332    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2333                                       // EXTRACTVAL: [opty, opval, n x indices]
2334      unsigned OpNum = 0;
2335      Value *Agg;
2336      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2337        return Error("Invalid EXTRACTVAL record");
2338
2339      SmallVector<unsigned, 4> EXTRACTVALIdx;
2340      for (unsigned RecSize = Record.size();
2341           OpNum != RecSize; ++OpNum) {
2342        uint64_t Index = Record[OpNum];
2343        if ((unsigned)Index != Index)
2344          return Error("Invalid EXTRACTVAL index");
2345        EXTRACTVALIdx.push_back((unsigned)Index);
2346      }
2347
2348      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2349      InstructionList.push_back(I);
2350      break;
2351    }
2352
2353    case bitc::FUNC_CODE_INST_INSERTVAL: {
2354                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2355      unsigned OpNum = 0;
2356      Value *Agg;
2357      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2358        return Error("Invalid INSERTVAL record");
2359      Value *Val;
2360      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2361        return Error("Invalid INSERTVAL record");
2362
2363      SmallVector<unsigned, 4> INSERTVALIdx;
2364      for (unsigned RecSize = Record.size();
2365           OpNum != RecSize; ++OpNum) {
2366        uint64_t Index = Record[OpNum];
2367        if ((unsigned)Index != Index)
2368          return Error("Invalid INSERTVAL index");
2369        INSERTVALIdx.push_back((unsigned)Index);
2370      }
2371
2372      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2373      InstructionList.push_back(I);
2374      break;
2375    }
2376
2377    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2378      // obsolete form of select
2379      // handles select i1 ... in old bitcode
2380      unsigned OpNum = 0;
2381      Value *TrueVal, *FalseVal, *Cond;
2382      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2383          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2384          popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2385        return Error("Invalid SELECT record");
2386
2387      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2388      InstructionList.push_back(I);
2389      break;
2390    }
2391
2392    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2393      // new form of select
2394      // handles select i1 or select [N x i1]
2395      unsigned OpNum = 0;
2396      Value *TrueVal, *FalseVal, *Cond;
2397      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2398          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2399          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2400        return Error("Invalid SELECT record");
2401
2402      // select condition can be either i1 or [N x i1]
2403      if (VectorType* vector_type =
2404          dyn_cast<VectorType>(Cond->getType())) {
2405        // expect <n x i1>
2406        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2407          return Error("Invalid SELECT condition type");
2408      } else {
2409        // expect i1
2410        if (Cond->getType() != Type::getInt1Ty(Context))
2411          return Error("Invalid SELECT condition type");
2412      }
2413
2414      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2415      InstructionList.push_back(I);
2416      break;
2417    }
2418
2419    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2420      unsigned OpNum = 0;
2421      Value *Vec, *Idx;
2422      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2423          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2424        return Error("Invalid EXTRACTELT record");
2425      I = ExtractElementInst::Create(Vec, Idx);
2426      InstructionList.push_back(I);
2427      break;
2428    }
2429
2430    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2431      unsigned OpNum = 0;
2432      Value *Vec, *Elt, *Idx;
2433      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2434          popValue(Record, OpNum, NextValueNo,
2435                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2436          popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2437        return Error("Invalid INSERTELT record");
2438      I = InsertElementInst::Create(Vec, Elt, Idx);
2439      InstructionList.push_back(I);
2440      break;
2441    }
2442
2443    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2444      unsigned OpNum = 0;
2445      Value *Vec1, *Vec2, *Mask;
2446      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2447          popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2448        return Error("Invalid SHUFFLEVEC record");
2449
2450      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2451        return Error("Invalid SHUFFLEVEC record");
2452      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2453      InstructionList.push_back(I);
2454      break;
2455    }
2456
2457    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2458      // Old form of ICmp/FCmp returning bool
2459      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2460      // both legal on vectors but had different behaviour.
2461    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2462      // FCmp/ICmp returning bool or vector of bool
2463
2464      unsigned OpNum = 0;
2465      Value *LHS, *RHS;
2466      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2467          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2468          OpNum+1 != Record.size())
2469        return Error("Invalid CMP record");
2470
2471      if (LHS->getType()->isFPOrFPVectorTy())
2472        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2473      else
2474        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2475      InstructionList.push_back(I);
2476      break;
2477    }
2478
2479    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2480      {
2481        unsigned Size = Record.size();
2482        if (Size == 0) {
2483          I = ReturnInst::Create(Context);
2484          InstructionList.push_back(I);
2485          break;
2486        }
2487
2488        unsigned OpNum = 0;
2489        Value *Op = NULL;
2490        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2491          return Error("Invalid RET record");
2492        if (OpNum != Record.size())
2493          return Error("Invalid RET record");
2494
2495        I = ReturnInst::Create(Context, Op);
2496        InstructionList.push_back(I);
2497        break;
2498      }
2499    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2500      if (Record.size() != 1 && Record.size() != 3)
2501        return Error("Invalid BR record");
2502      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2503      if (TrueDest == 0)
2504        return Error("Invalid BR record");
2505
2506      if (Record.size() == 1) {
2507        I = BranchInst::Create(TrueDest);
2508        InstructionList.push_back(I);
2509      }
2510      else {
2511        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2512        Value *Cond = getValue(Record, 2, NextValueNo,
2513                               Type::getInt1Ty(Context));
2514        if (FalseDest == 0 || Cond == 0)
2515          return Error("Invalid BR record");
2516        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2517        InstructionList.push_back(I);
2518      }
2519      break;
2520    }
2521    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2522      // Check magic
2523      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2524        // "New" SwitchInst format with case ranges. The changes to write this
2525        // format were reverted but we still recognize bitcode that uses it.
2526        // Hopefully someday we will have support for case ranges and can use
2527        // this format again.
2528
2529        Type *OpTy = getTypeByID(Record[1]);
2530        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2531
2532        Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2533        BasicBlock *Default = getBasicBlock(Record[3]);
2534        if (OpTy == 0 || Cond == 0 || Default == 0)
2535          return Error("Invalid SWITCH record");
2536
2537        unsigned NumCases = Record[4];
2538
2539        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2540        InstructionList.push_back(SI);
2541
2542        unsigned CurIdx = 5;
2543        for (unsigned i = 0; i != NumCases; ++i) {
2544          SmallVector<ConstantInt*, 1> CaseVals;
2545          unsigned NumItems = Record[CurIdx++];
2546          for (unsigned ci = 0; ci != NumItems; ++ci) {
2547            bool isSingleNumber = Record[CurIdx++];
2548
2549            APInt Low;
2550            unsigned ActiveWords = 1;
2551            if (ValueBitWidth > 64)
2552              ActiveWords = Record[CurIdx++];
2553            Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2554                                ValueBitWidth);
2555            CurIdx += ActiveWords;
2556
2557            if (!isSingleNumber) {
2558              ActiveWords = 1;
2559              if (ValueBitWidth > 64)
2560                ActiveWords = Record[CurIdx++];
2561              APInt High =
2562                  ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2563                                ValueBitWidth);
2564              CurIdx += ActiveWords;
2565
2566              // FIXME: It is not clear whether values in the range should be
2567              // compared as signed or unsigned values. The partially
2568              // implemented changes that used this format in the past used
2569              // unsigned comparisons.
2570              for ( ; Low.ule(High); ++Low)
2571                CaseVals.push_back(ConstantInt::get(Context, Low));
2572            } else
2573              CaseVals.push_back(ConstantInt::get(Context, Low));
2574          }
2575          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2576          for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
2577                 cve = CaseVals.end(); cvi != cve; ++cvi)
2578            SI->addCase(*cvi, DestBB);
2579        }
2580        I = SI;
2581        break;
2582      }
2583
2584      // Old SwitchInst format without case ranges.
2585
2586      if (Record.size() < 3 || (Record.size() & 1) == 0)
2587        return Error("Invalid SWITCH record");
2588      Type *OpTy = getTypeByID(Record[0]);
2589      Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2590      BasicBlock *Default = getBasicBlock(Record[2]);
2591      if (OpTy == 0 || Cond == 0 || Default == 0)
2592        return Error("Invalid SWITCH record");
2593      unsigned NumCases = (Record.size()-3)/2;
2594      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2595      InstructionList.push_back(SI);
2596      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2597        ConstantInt *CaseVal =
2598          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2599        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2600        if (CaseVal == 0 || DestBB == 0) {
2601          delete SI;
2602          return Error("Invalid SWITCH record!");
2603        }
2604        SI->addCase(CaseVal, DestBB);
2605      }
2606      I = SI;
2607      break;
2608    }
2609    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2610      if (Record.size() < 2)
2611        return Error("Invalid INDIRECTBR record");
2612      Type *OpTy = getTypeByID(Record[0]);
2613      Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2614      if (OpTy == 0 || Address == 0)
2615        return Error("Invalid INDIRECTBR record");
2616      unsigned NumDests = Record.size()-2;
2617      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2618      InstructionList.push_back(IBI);
2619      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2620        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2621          IBI->addDestination(DestBB);
2622        } else {
2623          delete IBI;
2624          return Error("Invalid INDIRECTBR record!");
2625        }
2626      }
2627      I = IBI;
2628      break;
2629    }
2630
2631    case bitc::FUNC_CODE_INST_INVOKE: {
2632      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2633      if (Record.size() < 4) return Error("Invalid INVOKE record");
2634      AttributeSet PAL = getAttributes(Record[0]);
2635      unsigned CCInfo = Record[1];
2636      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2637      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2638
2639      unsigned OpNum = 4;
2640      Value *Callee;
2641      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2642        return Error("Invalid INVOKE record");
2643
2644      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2645      FunctionType *FTy = !CalleeTy ? 0 :
2646        dyn_cast<FunctionType>(CalleeTy->getElementType());
2647
2648      // Check that the right number of fixed parameters are here.
2649      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2650          Record.size() < OpNum+FTy->getNumParams())
2651        return Error("Invalid INVOKE record");
2652
2653      SmallVector<Value*, 16> Ops;
2654      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2655        Ops.push_back(getValue(Record, OpNum, NextValueNo,
2656                               FTy->getParamType(i)));
2657        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2658      }
2659
2660      if (!FTy->isVarArg()) {
2661        if (Record.size() != OpNum)
2662          return Error("Invalid INVOKE record");
2663      } else {
2664        // Read type/value pairs for varargs params.
2665        while (OpNum != Record.size()) {
2666          Value *Op;
2667          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2668            return Error("Invalid INVOKE record");
2669          Ops.push_back(Op);
2670        }
2671      }
2672
2673      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2674      InstructionList.push_back(I);
2675      cast<InvokeInst>(I)->setCallingConv(
2676        static_cast<CallingConv::ID>(CCInfo));
2677      cast<InvokeInst>(I)->setAttributes(PAL);
2678      break;
2679    }
2680    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2681      unsigned Idx = 0;
2682      Value *Val = 0;
2683      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2684        return Error("Invalid RESUME record");
2685      I = ResumeInst::Create(Val);
2686      InstructionList.push_back(I);
2687      break;
2688    }
2689    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2690      I = new UnreachableInst(Context);
2691      InstructionList.push_back(I);
2692      break;
2693    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2694      if (Record.size() < 1 || ((Record.size()-1)&1))
2695        return Error("Invalid PHI record");
2696      Type *Ty = getTypeByID(Record[0]);
2697      if (!Ty) return Error("Invalid PHI record");
2698
2699      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2700      InstructionList.push_back(PN);
2701
2702      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2703        Value *V;
2704        // With the new function encoding, it is possible that operands have
2705        // negative IDs (for forward references).  Use a signed VBR
2706        // representation to keep the encoding small.
2707        if (UseRelativeIDs)
2708          V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2709        else
2710          V = getValue(Record, 1+i, NextValueNo, Ty);
2711        BasicBlock *BB = getBasicBlock(Record[2+i]);
2712        if (!V || !BB) return Error("Invalid PHI record");
2713        PN->addIncoming(V, BB);
2714      }
2715      I = PN;
2716      break;
2717    }
2718
2719    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2720      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2721      unsigned Idx = 0;
2722      if (Record.size() < 4)
2723        return Error("Invalid LANDINGPAD record");
2724      Type *Ty = getTypeByID(Record[Idx++]);
2725      if (!Ty) return Error("Invalid LANDINGPAD record");
2726      Value *PersFn = 0;
2727      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2728        return Error("Invalid LANDINGPAD record");
2729
2730      bool IsCleanup = !!Record[Idx++];
2731      unsigned NumClauses = Record[Idx++];
2732      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2733      LP->setCleanup(IsCleanup);
2734      for (unsigned J = 0; J != NumClauses; ++J) {
2735        LandingPadInst::ClauseType CT =
2736          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2737        Value *Val;
2738
2739        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2740          delete LP;
2741          return Error("Invalid LANDINGPAD record");
2742        }
2743
2744        assert((CT != LandingPadInst::Catch ||
2745                !isa<ArrayType>(Val->getType())) &&
2746               "Catch clause has a invalid type!");
2747        assert((CT != LandingPadInst::Filter ||
2748                isa<ArrayType>(Val->getType())) &&
2749               "Filter clause has invalid type!");
2750        LP->addClause(Val);
2751      }
2752
2753      I = LP;
2754      InstructionList.push_back(I);
2755      break;
2756    }
2757
2758    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2759      if (Record.size() != 4)
2760        return Error("Invalid ALLOCA record");
2761      PointerType *Ty =
2762        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2763      Type *OpTy = getTypeByID(Record[1]);
2764      Value *Size = getFnValueByID(Record[2], OpTy);
2765      unsigned Align = Record[3];
2766      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2767      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2768      InstructionList.push_back(I);
2769      break;
2770    }
2771    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2772      unsigned OpNum = 0;
2773      Value *Op;
2774      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2775          OpNum+2 != Record.size())
2776        return Error("Invalid LOAD record");
2777
2778      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2779      InstructionList.push_back(I);
2780      break;
2781    }
2782    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2783       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2784      unsigned OpNum = 0;
2785      Value *Op;
2786      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2787          OpNum+4 != Record.size())
2788        return Error("Invalid LOADATOMIC record");
2789
2790
2791      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2792      if (Ordering == NotAtomic || Ordering == Release ||
2793          Ordering == AcquireRelease)
2794        return Error("Invalid LOADATOMIC record");
2795      if (Ordering != NotAtomic && Record[OpNum] == 0)
2796        return Error("Invalid LOADATOMIC record");
2797      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2798
2799      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2800                       Ordering, SynchScope);
2801      InstructionList.push_back(I);
2802      break;
2803    }
2804    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2805      unsigned OpNum = 0;
2806      Value *Val, *Ptr;
2807      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2808          popValue(Record, OpNum, NextValueNo,
2809                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2810          OpNum+2 != Record.size())
2811        return Error("Invalid STORE record");
2812
2813      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2814      InstructionList.push_back(I);
2815      break;
2816    }
2817    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2818      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2819      unsigned OpNum = 0;
2820      Value *Val, *Ptr;
2821      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2822          popValue(Record, OpNum, NextValueNo,
2823                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2824          OpNum+4 != Record.size())
2825        return Error("Invalid STOREATOMIC record");
2826
2827      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2828      if (Ordering == NotAtomic || Ordering == Acquire ||
2829          Ordering == AcquireRelease)
2830        return Error("Invalid STOREATOMIC record");
2831      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2832      if (Ordering != NotAtomic && Record[OpNum] == 0)
2833        return Error("Invalid STOREATOMIC record");
2834
2835      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2836                        Ordering, SynchScope);
2837      InstructionList.push_back(I);
2838      break;
2839    }
2840    case bitc::FUNC_CODE_INST_CMPXCHG: {
2841      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2842      unsigned OpNum = 0;
2843      Value *Ptr, *Cmp, *New;
2844      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2845          popValue(Record, OpNum, NextValueNo,
2846                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2847          popValue(Record, OpNum, NextValueNo,
2848                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2849          OpNum+3 != Record.size())
2850        return Error("Invalid CMPXCHG record");
2851      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2852      if (Ordering == NotAtomic || Ordering == Unordered)
2853        return Error("Invalid CMPXCHG record");
2854      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2855      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2856      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2857      InstructionList.push_back(I);
2858      break;
2859    }
2860    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2861      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2862      unsigned OpNum = 0;
2863      Value *Ptr, *Val;
2864      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2865          popValue(Record, OpNum, NextValueNo,
2866                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2867          OpNum+4 != Record.size())
2868        return Error("Invalid ATOMICRMW record");
2869      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2870      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2871          Operation > AtomicRMWInst::LAST_BINOP)
2872        return Error("Invalid ATOMICRMW record");
2873      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2874      if (Ordering == NotAtomic || Ordering == Unordered)
2875        return Error("Invalid ATOMICRMW record");
2876      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2877      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2878      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2879      InstructionList.push_back(I);
2880      break;
2881    }
2882    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2883      if (2 != Record.size())
2884        return Error("Invalid FENCE record");
2885      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2886      if (Ordering == NotAtomic || Ordering == Unordered ||
2887          Ordering == Monotonic)
2888        return Error("Invalid FENCE record");
2889      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2890      I = new FenceInst(Context, Ordering, SynchScope);
2891      InstructionList.push_back(I);
2892      break;
2893    }
2894    case bitc::FUNC_CODE_INST_CALL: {
2895      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2896      if (Record.size() < 3)
2897        return Error("Invalid CALL record");
2898
2899      AttributeSet PAL = getAttributes(Record[0]);
2900      unsigned CCInfo = Record[1];
2901
2902      unsigned OpNum = 2;
2903      Value *Callee;
2904      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2905        return Error("Invalid CALL record");
2906
2907      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2908      FunctionType *FTy = 0;
2909      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2910      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2911        return Error("Invalid CALL record");
2912
2913      SmallVector<Value*, 16> Args;
2914      // Read the fixed params.
2915      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2916        if (FTy->getParamType(i)->isLabelTy())
2917          Args.push_back(getBasicBlock(Record[OpNum]));
2918        else
2919          Args.push_back(getValue(Record, OpNum, NextValueNo,
2920                                  FTy->getParamType(i)));
2921        if (Args.back() == 0) return Error("Invalid CALL record");
2922      }
2923
2924      // Read type/value pairs for varargs params.
2925      if (!FTy->isVarArg()) {
2926        if (OpNum != Record.size())
2927          return Error("Invalid CALL record");
2928      } else {
2929        while (OpNum != Record.size()) {
2930          Value *Op;
2931          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2932            return Error("Invalid CALL record");
2933          Args.push_back(Op);
2934        }
2935      }
2936
2937      I = CallInst::Create(Callee, Args);
2938      InstructionList.push_back(I);
2939      cast<CallInst>(I)->setCallingConv(
2940        static_cast<CallingConv::ID>(CCInfo>>1));
2941      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2942      cast<CallInst>(I)->setAttributes(PAL);
2943      break;
2944    }
2945    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2946      if (Record.size() < 3)
2947        return Error("Invalid VAARG record");
2948      Type *OpTy = getTypeByID(Record[0]);
2949      Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2950      Type *ResTy = getTypeByID(Record[2]);
2951      if (!OpTy || !Op || !ResTy)
2952        return Error("Invalid VAARG record");
2953      I = new VAArgInst(Op, ResTy);
2954      InstructionList.push_back(I);
2955      break;
2956    }
2957    }
2958
2959    // Add instruction to end of current BB.  If there is no current BB, reject
2960    // this file.
2961    if (CurBB == 0) {
2962      delete I;
2963      return Error("Invalid instruction with no BB");
2964    }
2965    CurBB->getInstList().push_back(I);
2966
2967    // If this was a terminator instruction, move to the next block.
2968    if (isa<TerminatorInst>(I)) {
2969      ++CurBBNo;
2970      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2971    }
2972
2973    // Non-void values get registered in the value table for future use.
2974    if (I && !I->getType()->isVoidTy())
2975      ValueList.AssignValue(I, NextValueNo++);
2976  }
2977
2978OutOfRecordLoop:
2979
2980  // Check the function list for unresolved values.
2981  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2982    if (A->getParent() == 0) {
2983      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2984      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2985        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2986          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2987          delete A;
2988        }
2989      }
2990      return Error("Never resolved value found in function!");
2991    }
2992  }
2993
2994  // FIXME: Check for unresolved forward-declared metadata references
2995  // and clean up leaks.
2996
2997  // See if anything took the address of blocks in this function.  If so,
2998  // resolve them now.
2999  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3000    BlockAddrFwdRefs.find(F);
3001  if (BAFRI != BlockAddrFwdRefs.end()) {
3002    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3003    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3004      unsigned BlockIdx = RefList[i].first;
3005      if (BlockIdx >= FunctionBBs.size())
3006        return Error("Invalid blockaddress block #");
3007
3008      GlobalVariable *FwdRef = RefList[i].second;
3009      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3010      FwdRef->eraseFromParent();
3011    }
3012
3013    BlockAddrFwdRefs.erase(BAFRI);
3014  }
3015
3016  // Trim the value list down to the size it was before we parsed this function.
3017  ValueList.shrinkTo(ModuleValueListSize);
3018  MDValueList.shrinkTo(ModuleMDValueListSize);
3019  std::vector<BasicBlock*>().swap(FunctionBBs);
3020  return false;
3021}
3022
3023/// FindFunctionInStream - Find the function body in the bitcode stream
3024bool BitcodeReader::FindFunctionInStream(Function *F,
3025       DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
3026  while (DeferredFunctionInfoIterator->second == 0) {
3027    if (Stream.AtEndOfStream())
3028      return Error("Could not find Function in stream");
3029    // ParseModule will parse the next body in the stream and set its
3030    // position in the DeferredFunctionInfo map.
3031    if (ParseModule(true)) return true;
3032  }
3033  return false;
3034}
3035
3036//===----------------------------------------------------------------------===//
3037// GVMaterializer implementation
3038//===----------------------------------------------------------------------===//
3039
3040
3041bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3042  if (const Function *F = dyn_cast<Function>(GV)) {
3043    return F->isDeclaration() &&
3044      DeferredFunctionInfo.count(const_cast<Function*>(F));
3045  }
3046  return false;
3047}
3048
3049bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
3050  Function *F = dyn_cast<Function>(GV);
3051  // If it's not a function or is already material, ignore the request.
3052  if (!F || !F->isMaterializable()) return false;
3053
3054  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3055  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3056  // If its position is recorded as 0, its body is somewhere in the stream
3057  // but we haven't seen it yet.
3058  if (DFII->second == 0)
3059    if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
3060
3061  // Move the bit stream to the saved position of the deferred function body.
3062  Stream.JumpToBit(DFII->second);
3063
3064  if (ParseFunctionBody(F)) {
3065    if (ErrInfo) *ErrInfo = ErrorString;
3066    return true;
3067  }
3068
3069  // Upgrade any old intrinsic calls in the function.
3070  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3071       E = UpgradedIntrinsics.end(); I != E; ++I) {
3072    if (I->first != I->second) {
3073      for (Value::use_iterator UI = I->first->use_begin(),
3074           UE = I->first->use_end(); UI != UE; ) {
3075        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3076          UpgradeIntrinsicCall(CI, I->second);
3077      }
3078    }
3079  }
3080
3081  return false;
3082}
3083
3084bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3085  const Function *F = dyn_cast<Function>(GV);
3086  if (!F || F->isDeclaration())
3087    return false;
3088  return DeferredFunctionInfo.count(const_cast<Function*>(F));
3089}
3090
3091void BitcodeReader::Dematerialize(GlobalValue *GV) {
3092  Function *F = dyn_cast<Function>(GV);
3093  // If this function isn't dematerializable, this is a noop.
3094  if (!F || !isDematerializable(F))
3095    return;
3096
3097  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3098
3099  // Just forget the function body, we can remat it later.
3100  F->deleteBody();
3101}
3102
3103
3104bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
3105  assert(M == TheModule &&
3106         "Can only Materialize the Module this BitcodeReader is attached to.");
3107  // Iterate over the module, deserializing any functions that are still on
3108  // disk.
3109  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3110       F != E; ++F)
3111    if (F->isMaterializable() &&
3112        Materialize(F, ErrInfo))
3113      return true;
3114
3115  // At this point, if there are any function bodies, the current bit is
3116  // pointing to the END_BLOCK record after them. Now make sure the rest
3117  // of the bits in the module have been read.
3118  if (NextUnreadBit)
3119    ParseModule(true);
3120
3121  // Upgrade any intrinsic calls that slipped through (should not happen!) and
3122  // delete the old functions to clean up. We can't do this unless the entire
3123  // module is materialized because there could always be another function body
3124  // with calls to the old function.
3125  for (std::vector<std::pair<Function*, Function*> >::iterator I =
3126       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3127    if (I->first != I->second) {
3128      for (Value::use_iterator UI = I->first->use_begin(),
3129           UE = I->first->use_end(); UI != UE; ) {
3130        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3131          UpgradeIntrinsicCall(CI, I->second);
3132      }
3133      if (!I->first->use_empty())
3134        I->first->replaceAllUsesWith(I->second);
3135      I->first->eraseFromParent();
3136    }
3137  }
3138  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3139
3140  for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
3141    UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
3142
3143  return false;
3144}
3145
3146bool BitcodeReader::InitStream() {
3147  if (LazyStreamer) return InitLazyStream();
3148  return InitStreamFromBuffer();
3149}
3150
3151bool BitcodeReader::InitStreamFromBuffer() {
3152  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3153  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3154
3155  if (Buffer->getBufferSize() & 3) {
3156    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3157      return Error("Invalid bitcode signature");
3158    else
3159      return Error("Bitcode stream should be a multiple of 4 bytes in length");
3160  }
3161
3162  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3163  // The magic number is 0x0B17C0DE stored in little endian.
3164  if (isBitcodeWrapper(BufPtr, BufEnd))
3165    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3166      return Error("Invalid bitcode wrapper header");
3167
3168  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3169  Stream.init(*StreamFile);
3170
3171  return false;
3172}
3173
3174bool BitcodeReader::InitLazyStream() {
3175  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3176  // see it.
3177  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3178  StreamFile.reset(new BitstreamReader(Bytes));
3179  Stream.init(*StreamFile);
3180
3181  unsigned char buf[16];
3182  if (Bytes->readBytes(0, 16, buf) == -1)
3183    return Error("Bitcode stream must be at least 16 bytes in length");
3184
3185  if (!isBitcode(buf, buf + 16))
3186    return Error("Invalid bitcode signature");
3187
3188  if (isBitcodeWrapper(buf, buf + 4)) {
3189    const unsigned char *bitcodeStart = buf;
3190    const unsigned char *bitcodeEnd = buf + 16;
3191    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3192    Bytes->dropLeadingBytes(bitcodeStart - buf);
3193    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3194  }
3195  return false;
3196}
3197
3198//===----------------------------------------------------------------------===//
3199// External interface
3200//===----------------------------------------------------------------------===//
3201
3202/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3203///
3204Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3205                                   LLVMContext& Context,
3206                                   std::string *ErrMsg) {
3207  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3208  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3209  M->setMaterializer(R);
3210  if (R->ParseBitcodeInto(M)) {
3211    if (ErrMsg)
3212      *ErrMsg = R->getErrorString();
3213
3214    delete M;  // Also deletes R.
3215    return 0;
3216  }
3217  // Have the BitcodeReader dtor delete 'Buffer'.
3218  R->setBufferOwned(true);
3219
3220  R->materializeForwardReferencedFunctions();
3221
3222  return M;
3223}
3224
3225
3226Module *llvm::getStreamedBitcodeModule(const std::string &name,
3227                                       DataStreamer *streamer,
3228                                       LLVMContext &Context,
3229                                       std::string *ErrMsg) {
3230  Module *M = new Module(name, Context);
3231  BitcodeReader *R = new BitcodeReader(streamer, Context);
3232  M->setMaterializer(R);
3233  if (R->ParseBitcodeInto(M)) {
3234    if (ErrMsg)
3235      *ErrMsg = R->getErrorString();
3236    delete M;  // Also deletes R.
3237    return 0;
3238  }
3239  R->setBufferOwned(false); // no buffer to delete
3240  return M;
3241}
3242
3243/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3244/// If an error occurs, return null and fill in *ErrMsg if non-null.
3245Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3246                               std::string *ErrMsg){
3247  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3248  if (!M) return 0;
3249
3250  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3251  // there was an error.
3252  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3253
3254  // Read in the entire module, and destroy the BitcodeReader.
3255  if (M->MaterializeAllPermanently(ErrMsg)) {
3256    delete M;
3257    return 0;
3258  }
3259
3260  // TODO: Restore the use-lists to the in-memory state when the bitcode was
3261  // written.  We must defer until the Module has been fully materialized.
3262
3263  return M;
3264}
3265
3266std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3267                                         LLVMContext& Context,
3268                                         std::string *ErrMsg) {
3269  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3270  // Don't let the BitcodeReader dtor delete 'Buffer'.
3271  R->setBufferOwned(false);
3272
3273  std::string Triple("");
3274  if (R->ParseTriple(Triple))
3275    if (ErrMsg)
3276      *ErrMsg = R->getErrorString();
3277
3278  delete R;
3279  return Triple;
3280}
3281