BitcodeReader.cpp revision 69d02e0a174151e0f129731452e819b91d1ab90e
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  delete Buffer;
32  Buffer = 0;
33  std::vector<PATypeHolder>().swap(TypeList);
34  ValueList.clear();
35  MDValueList.clear();
36
37  std::vector<AttrListPtr>().swap(MAttributes);
38  std::vector<BasicBlock*>().swap(FunctionBBs);
39  std::vector<Function*>().swap(FunctionsWithBodies);
40  DeferredFunctionInfo.clear();
41}
42
43//===----------------------------------------------------------------------===//
44//  Helper functions to implement forward reference resolution, etc.
45//===----------------------------------------------------------------------===//
46
47/// ConvertToString - Convert a string from a record into an std::string, return
48/// true on failure.
49template<typename StrTy>
50static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                            StrTy &Result) {
52  if (Idx > Record.size())
53    return true;
54
55  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56    Result += (char)Record[i];
57  return false;
58}
59
60static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61  switch (Val) {
62  default: // Map unknown/new linkages to external
63  case 0:  return GlobalValue::ExternalLinkage;
64  case 1:  return GlobalValue::WeakAnyLinkage;
65  case 2:  return GlobalValue::AppendingLinkage;
66  case 3:  return GlobalValue::InternalLinkage;
67  case 4:  return GlobalValue::LinkOnceAnyLinkage;
68  case 5:  return GlobalValue::DLLImportLinkage;
69  case 6:  return GlobalValue::DLLExportLinkage;
70  case 7:  return GlobalValue::ExternalWeakLinkage;
71  case 8:  return GlobalValue::CommonLinkage;
72  case 9:  return GlobalValue::PrivateLinkage;
73  case 10: return GlobalValue::WeakODRLinkage;
74  case 11: return GlobalValue::LinkOnceODRLinkage;
75  case 12: return GlobalValue::AvailableExternallyLinkage;
76  case 13: return GlobalValue::LinkerPrivateLinkage;
77  }
78}
79
80static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
81  switch (Val) {
82  default: // Map unknown visibilities to default.
83  case 0: return GlobalValue::DefaultVisibility;
84  case 1: return GlobalValue::HiddenVisibility;
85  case 2: return GlobalValue::ProtectedVisibility;
86  }
87}
88
89static int GetDecodedCastOpcode(unsigned Val) {
90  switch (Val) {
91  default: return -1;
92  case bitc::CAST_TRUNC   : return Instruction::Trunc;
93  case bitc::CAST_ZEXT    : return Instruction::ZExt;
94  case bitc::CAST_SEXT    : return Instruction::SExt;
95  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
96  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
97  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
98  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
99  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
100  case bitc::CAST_FPEXT   : return Instruction::FPExt;
101  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
102  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
103  case bitc::CAST_BITCAST : return Instruction::BitCast;
104  }
105}
106static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
107  switch (Val) {
108  default: return -1;
109  case bitc::BINOP_ADD:
110    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
111  case bitc::BINOP_SUB:
112    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
113  case bitc::BINOP_MUL:
114    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
115  case bitc::BINOP_UDIV: return Instruction::UDiv;
116  case bitc::BINOP_SDIV:
117    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
118  case bitc::BINOP_UREM: return Instruction::URem;
119  case bitc::BINOP_SREM:
120    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
121  case bitc::BINOP_SHL:  return Instruction::Shl;
122  case bitc::BINOP_LSHR: return Instruction::LShr;
123  case bitc::BINOP_ASHR: return Instruction::AShr;
124  case bitc::BINOP_AND:  return Instruction::And;
125  case bitc::BINOP_OR:   return Instruction::Or;
126  case bitc::BINOP_XOR:  return Instruction::Xor;
127  }
128}
129
130namespace llvm {
131namespace {
132  /// @brief A class for maintaining the slot number definition
133  /// as a placeholder for the actual definition for forward constants defs.
134  class ConstantPlaceHolder : public ConstantExpr {
135    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
136    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
137  public:
138    // allocate space for exactly one operand
139    void *operator new(size_t s) {
140      return User::operator new(s, 1);
141    }
142    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
143      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
144      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
145    }
146
147    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
148    static inline bool classof(const ConstantPlaceHolder *) { return true; }
149    static bool classof(const Value *V) {
150      return isa<ConstantExpr>(V) &&
151             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
152    }
153
154
155    /// Provide fast operand accessors
156    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
157  };
158}
159
160// FIXME: can we inherit this from ConstantExpr?
161template <>
162struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
163};
164}
165
166
167void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
168  if (Idx == size()) {
169    push_back(V);
170    return;
171  }
172
173  if (Idx >= size())
174    resize(Idx+1);
175
176  WeakVH &OldV = ValuePtrs[Idx];
177  if (OldV == 0) {
178    OldV = V;
179    return;
180  }
181
182  // Handle constants and non-constants (e.g. instrs) differently for
183  // efficiency.
184  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
185    ResolveConstants.push_back(std::make_pair(PHC, Idx));
186    OldV = V;
187  } else {
188    // If there was a forward reference to this value, replace it.
189    Value *PrevVal = OldV;
190    OldV->replaceAllUsesWith(V);
191    delete PrevVal;
192  }
193}
194
195
196Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
197                                                    const Type *Ty) {
198  if (Idx >= size())
199    resize(Idx + 1);
200
201  if (Value *V = ValuePtrs[Idx]) {
202    assert(Ty == V->getType() && "Type mismatch in constant table!");
203    return cast<Constant>(V);
204  }
205
206  // Create and return a placeholder, which will later be RAUW'd.
207  Constant *C = new ConstantPlaceHolder(Ty, Context);
208  ValuePtrs[Idx] = C;
209  return C;
210}
211
212Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
213  if (Idx >= size())
214    resize(Idx + 1);
215
216  if (Value *V = ValuePtrs[Idx]) {
217    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
218    return V;
219  }
220
221  // No type specified, must be invalid reference.
222  if (Ty == 0) return 0;
223
224  // Create and return a placeholder, which will later be RAUW'd.
225  Value *V = new Argument(Ty);
226  ValuePtrs[Idx] = V;
227  return V;
228}
229
230/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
231/// resolves any forward references.  The idea behind this is that we sometimes
232/// get constants (such as large arrays) which reference *many* forward ref
233/// constants.  Replacing each of these causes a lot of thrashing when
234/// building/reuniquing the constant.  Instead of doing this, we look at all the
235/// uses and rewrite all the place holders at once for any constant that uses
236/// a placeholder.
237void BitcodeReaderValueList::ResolveConstantForwardRefs() {
238  // Sort the values by-pointer so that they are efficient to look up with a
239  // binary search.
240  std::sort(ResolveConstants.begin(), ResolveConstants.end());
241
242  SmallVector<Constant*, 64> NewOps;
243
244  while (!ResolveConstants.empty()) {
245    Value *RealVal = operator[](ResolveConstants.back().second);
246    Constant *Placeholder = ResolveConstants.back().first;
247    ResolveConstants.pop_back();
248
249    // Loop over all users of the placeholder, updating them to reference the
250    // new value.  If they reference more than one placeholder, update them all
251    // at once.
252    while (!Placeholder->use_empty()) {
253      Value::use_iterator UI = Placeholder->use_begin();
254
255      // If the using object isn't uniqued, just update the operands.  This
256      // handles instructions and initializers for global variables.
257      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
258        UI.getUse().set(RealVal);
259        continue;
260      }
261
262      // Otherwise, we have a constant that uses the placeholder.  Replace that
263      // constant with a new constant that has *all* placeholder uses updated.
264      Constant *UserC = cast<Constant>(*UI);
265      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
266           I != E; ++I) {
267        Value *NewOp;
268        if (!isa<ConstantPlaceHolder>(*I)) {
269          // Not a placeholder reference.
270          NewOp = *I;
271        } else if (*I == Placeholder) {
272          // Common case is that it just references this one placeholder.
273          NewOp = RealVal;
274        } else {
275          // Otherwise, look up the placeholder in ResolveConstants.
276          ResolveConstantsTy::iterator It =
277            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
278                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
279                                                            0));
280          assert(It != ResolveConstants.end() && It->first == *I);
281          NewOp = operator[](It->second);
282        }
283
284        NewOps.push_back(cast<Constant>(NewOp));
285      }
286
287      // Make the new constant.
288      Constant *NewC;
289      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
290        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
291                                        NewOps.size());
292      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
293        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
294                                         UserCS->getType()->isPacked());
295      } else if (isa<ConstantVector>(UserC)) {
296        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
297      } else {
298        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
299        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
300                                                          NewOps.size());
301      }
302
303      UserC->replaceAllUsesWith(NewC);
304      UserC->destroyConstant();
305      NewOps.clear();
306    }
307
308    // Update all ValueHandles, they should be the only users at this point.
309    Placeholder->replaceAllUsesWith(RealVal);
310    delete Placeholder;
311  }
312}
313
314void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
315  if (Idx == size()) {
316    push_back(V);
317    return;
318  }
319
320  if (Idx >= size())
321    resize(Idx+1);
322
323  WeakVH &OldV = MDValuePtrs[Idx];
324  if (OldV == 0) {
325    OldV = V;
326    return;
327  }
328
329  // If there was a forward reference to this value, replace it.
330  Value *PrevVal = OldV;
331  OldV->replaceAllUsesWith(V);
332  delete PrevVal;
333  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
334  // value for Idx.
335  MDValuePtrs[Idx] = V;
336}
337
338Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
339  if (Idx >= size())
340    resize(Idx + 1);
341
342  if (Value *V = MDValuePtrs[Idx]) {
343    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
344    return V;
345  }
346
347  // Create and return a placeholder, which will later be RAUW'd.
348  Value *V = new Argument(Type::getMetadataTy(Context));
349  MDValuePtrs[Idx] = V;
350  return V;
351}
352
353const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
354  // If the TypeID is in range, return it.
355  if (ID < TypeList.size())
356    return TypeList[ID].get();
357  if (!isTypeTable) return 0;
358
359  // The type table allows forward references.  Push as many Opaque types as
360  // needed to get up to ID.
361  while (TypeList.size() <= ID)
362    TypeList.push_back(OpaqueType::get(Context));
363  return TypeList.back().get();
364}
365
366//===----------------------------------------------------------------------===//
367//  Functions for parsing blocks from the bitcode file
368//===----------------------------------------------------------------------===//
369
370bool BitcodeReader::ParseAttributeBlock() {
371  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
372    return Error("Malformed block record");
373
374  if (!MAttributes.empty())
375    return Error("Multiple PARAMATTR blocks found!");
376
377  SmallVector<uint64_t, 64> Record;
378
379  SmallVector<AttributeWithIndex, 8> Attrs;
380
381  // Read all the records.
382  while (1) {
383    unsigned Code = Stream.ReadCode();
384    if (Code == bitc::END_BLOCK) {
385      if (Stream.ReadBlockEnd())
386        return Error("Error at end of PARAMATTR block");
387      return false;
388    }
389
390    if (Code == bitc::ENTER_SUBBLOCK) {
391      // No known subblocks, always skip them.
392      Stream.ReadSubBlockID();
393      if (Stream.SkipBlock())
394        return Error("Malformed block record");
395      continue;
396    }
397
398    if (Code == bitc::DEFINE_ABBREV) {
399      Stream.ReadAbbrevRecord();
400      continue;
401    }
402
403    // Read a record.
404    Record.clear();
405    switch (Stream.ReadRecord(Code, Record)) {
406    default:  // Default behavior: ignore.
407      break;
408    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
409      if (Record.size() & 1)
410        return Error("Invalid ENTRY record");
411
412      // FIXME : Remove this autoupgrade code in LLVM 3.0.
413      // If Function attributes are using index 0 then transfer them
414      // to index ~0. Index 0 is used for return value attributes but used to be
415      // used for function attributes.
416      Attributes RetAttribute = Attribute::None;
417      Attributes FnAttribute = Attribute::None;
418      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
419        // FIXME: remove in LLVM 3.0
420        // The alignment is stored as a 16-bit raw value from bits 31--16.
421        // We shift the bits above 31 down by 11 bits.
422
423        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
424        if (Alignment && !isPowerOf2_32(Alignment))
425          return Error("Alignment is not a power of two.");
426
427        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
428        if (Alignment)
429          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
430        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
431        Record[i+1] = ReconstitutedAttr;
432
433        if (Record[i] == 0)
434          RetAttribute = Record[i+1];
435        else if (Record[i] == ~0U)
436          FnAttribute = Record[i+1];
437      }
438
439      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
440                              Attribute::ReadOnly|Attribute::ReadNone);
441
442      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
443          (RetAttribute & OldRetAttrs) != 0) {
444        if (FnAttribute == Attribute::None) { // add a slot so they get added.
445          Record.push_back(~0U);
446          Record.push_back(0);
447        }
448
449        FnAttribute  |= RetAttribute & OldRetAttrs;
450        RetAttribute &= ~OldRetAttrs;
451      }
452
453      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
454        if (Record[i] == 0) {
455          if (RetAttribute != Attribute::None)
456            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
457        } else if (Record[i] == ~0U) {
458          if (FnAttribute != Attribute::None)
459            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
460        } else if (Record[i+1] != Attribute::None)
461          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
462      }
463
464      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
465      Attrs.clear();
466      break;
467    }
468    }
469  }
470}
471
472
473bool BitcodeReader::ParseTypeTable() {
474  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
475    return Error("Malformed block record");
476
477  if (!TypeList.empty())
478    return Error("Multiple TYPE_BLOCKs found!");
479
480  SmallVector<uint64_t, 64> Record;
481  unsigned NumRecords = 0;
482
483  // Read all the records for this type table.
484  while (1) {
485    unsigned Code = Stream.ReadCode();
486    if (Code == bitc::END_BLOCK) {
487      if (NumRecords != TypeList.size())
488        return Error("Invalid type forward reference in TYPE_BLOCK");
489      if (Stream.ReadBlockEnd())
490        return Error("Error at end of type table block");
491      return false;
492    }
493
494    if (Code == bitc::ENTER_SUBBLOCK) {
495      // No known subblocks, always skip them.
496      Stream.ReadSubBlockID();
497      if (Stream.SkipBlock())
498        return Error("Malformed block record");
499      continue;
500    }
501
502    if (Code == bitc::DEFINE_ABBREV) {
503      Stream.ReadAbbrevRecord();
504      continue;
505    }
506
507    // Read a record.
508    Record.clear();
509    const Type *ResultTy = 0;
510    switch (Stream.ReadRecord(Code, Record)) {
511    default:  // Default behavior: unknown type.
512      ResultTy = 0;
513      break;
514    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
515      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
516      // type list.  This allows us to reserve space.
517      if (Record.size() < 1)
518        return Error("Invalid TYPE_CODE_NUMENTRY record");
519      TypeList.reserve(Record[0]);
520      continue;
521    case bitc::TYPE_CODE_VOID:      // VOID
522      ResultTy = Type::getVoidTy(Context);
523      break;
524    case bitc::TYPE_CODE_FLOAT:     // FLOAT
525      ResultTy = Type::getFloatTy(Context);
526      break;
527    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
528      ResultTy = Type::getDoubleTy(Context);
529      break;
530    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
531      ResultTy = Type::getX86_FP80Ty(Context);
532      break;
533    case bitc::TYPE_CODE_FP128:     // FP128
534      ResultTy = Type::getFP128Ty(Context);
535      break;
536    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
537      ResultTy = Type::getPPC_FP128Ty(Context);
538      break;
539    case bitc::TYPE_CODE_LABEL:     // LABEL
540      ResultTy = Type::getLabelTy(Context);
541      break;
542    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
543      ResultTy = 0;
544      break;
545    case bitc::TYPE_CODE_METADATA:  // METADATA
546      ResultTy = Type::getMetadataTy(Context);
547      break;
548    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
549      if (Record.size() < 1)
550        return Error("Invalid Integer type record");
551
552      ResultTy = IntegerType::get(Context, Record[0]);
553      break;
554    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
555                                    //          [pointee type, address space]
556      if (Record.size() < 1)
557        return Error("Invalid POINTER type record");
558      unsigned AddressSpace = 0;
559      if (Record.size() == 2)
560        AddressSpace = Record[1];
561      ResultTy = PointerType::get(getTypeByID(Record[0], true),
562                                        AddressSpace);
563      break;
564    }
565    case bitc::TYPE_CODE_FUNCTION: {
566      // FIXME: attrid is dead, remove it in LLVM 3.0
567      // FUNCTION: [vararg, attrid, retty, paramty x N]
568      if (Record.size() < 3)
569        return Error("Invalid FUNCTION type record");
570      std::vector<const Type*> ArgTys;
571      for (unsigned i = 3, e = Record.size(); i != e; ++i)
572        ArgTys.push_back(getTypeByID(Record[i], true));
573
574      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
575                                   Record[0]);
576      break;
577    }
578    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
579      if (Record.size() < 1)
580        return Error("Invalid STRUCT type record");
581      std::vector<const Type*> EltTys;
582      for (unsigned i = 1, e = Record.size(); i != e; ++i)
583        EltTys.push_back(getTypeByID(Record[i], true));
584      ResultTy = StructType::get(Context, EltTys, Record[0]);
585      break;
586    }
587    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
588      if (Record.size() < 2)
589        return Error("Invalid ARRAY type record");
590      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
591      break;
592    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
593      if (Record.size() < 2)
594        return Error("Invalid VECTOR type record");
595      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
596      break;
597    }
598
599    if (NumRecords == TypeList.size()) {
600      // If this is a new type slot, just append it.
601      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
602      ++NumRecords;
603    } else if (ResultTy == 0) {
604      // Otherwise, this was forward referenced, so an opaque type was created,
605      // but the result type is actually just an opaque.  Leave the one we
606      // created previously.
607      ++NumRecords;
608    } else {
609      // Otherwise, this was forward referenced, so an opaque type was created.
610      // Resolve the opaque type to the real type now.
611      assert(NumRecords < TypeList.size() && "Typelist imbalance");
612      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
613
614      // Don't directly push the new type on the Tab. Instead we want to replace
615      // the opaque type we previously inserted with the new concrete value. The
616      // refinement from the abstract (opaque) type to the new type causes all
617      // uses of the abstract type to use the concrete type (NewTy). This will
618      // also cause the opaque type to be deleted.
619      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
620
621      // This should have replaced the old opaque type with the new type in the
622      // value table... or with a preexisting type that was already in the
623      // system.  Let's just make sure it did.
624      assert(TypeList[NumRecords-1].get() != OldTy &&
625             "refineAbstractType didn't work!");
626    }
627  }
628}
629
630
631bool BitcodeReader::ParseTypeSymbolTable() {
632  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
633    return Error("Malformed block record");
634
635  SmallVector<uint64_t, 64> Record;
636
637  // Read all the records for this type table.
638  std::string TypeName;
639  while (1) {
640    unsigned Code = Stream.ReadCode();
641    if (Code == bitc::END_BLOCK) {
642      if (Stream.ReadBlockEnd())
643        return Error("Error at end of type symbol table block");
644      return false;
645    }
646
647    if (Code == bitc::ENTER_SUBBLOCK) {
648      // No known subblocks, always skip them.
649      Stream.ReadSubBlockID();
650      if (Stream.SkipBlock())
651        return Error("Malformed block record");
652      continue;
653    }
654
655    if (Code == bitc::DEFINE_ABBREV) {
656      Stream.ReadAbbrevRecord();
657      continue;
658    }
659
660    // Read a record.
661    Record.clear();
662    switch (Stream.ReadRecord(Code, Record)) {
663    default:  // Default behavior: unknown type.
664      break;
665    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
666      if (ConvertToString(Record, 1, TypeName))
667        return Error("Invalid TST_ENTRY record");
668      unsigned TypeID = Record[0];
669      if (TypeID >= TypeList.size())
670        return Error("Invalid Type ID in TST_ENTRY record");
671
672      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
673      TypeName.clear();
674      break;
675    }
676  }
677}
678
679bool BitcodeReader::ParseValueSymbolTable() {
680  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
681    return Error("Malformed block record");
682
683  SmallVector<uint64_t, 64> Record;
684
685  // Read all the records for this value table.
686  SmallString<128> ValueName;
687  while (1) {
688    unsigned Code = Stream.ReadCode();
689    if (Code == bitc::END_BLOCK) {
690      if (Stream.ReadBlockEnd())
691        return Error("Error at end of value symbol table block");
692      return false;
693    }
694    if (Code == bitc::ENTER_SUBBLOCK) {
695      // No known subblocks, always skip them.
696      Stream.ReadSubBlockID();
697      if (Stream.SkipBlock())
698        return Error("Malformed block record");
699      continue;
700    }
701
702    if (Code == bitc::DEFINE_ABBREV) {
703      Stream.ReadAbbrevRecord();
704      continue;
705    }
706
707    // Read a record.
708    Record.clear();
709    switch (Stream.ReadRecord(Code, Record)) {
710    default:  // Default behavior: unknown type.
711      break;
712    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
713      if (ConvertToString(Record, 1, ValueName))
714        return Error("Invalid VST_ENTRY record");
715      unsigned ValueID = Record[0];
716      if (ValueID >= ValueList.size())
717        return Error("Invalid Value ID in VST_ENTRY record");
718      Value *V = ValueList[ValueID];
719
720      V->setName(StringRef(ValueName.data(), ValueName.size()));
721      ValueName.clear();
722      break;
723    }
724    case bitc::VST_CODE_BBENTRY: {
725      if (ConvertToString(Record, 1, ValueName))
726        return Error("Invalid VST_BBENTRY record");
727      BasicBlock *BB = getBasicBlock(Record[0]);
728      if (BB == 0)
729        return Error("Invalid BB ID in VST_BBENTRY record");
730
731      BB->setName(StringRef(ValueName.data(), ValueName.size()));
732      ValueName.clear();
733      break;
734    }
735    }
736  }
737}
738
739bool BitcodeReader::ParseMetadata() {
740  unsigned NextValueNo = MDValueList.size();
741
742  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
743    return Error("Malformed block record");
744
745  SmallVector<uint64_t, 64> Record;
746
747  // Read all the records.
748  while (1) {
749    unsigned Code = Stream.ReadCode();
750    if (Code == bitc::END_BLOCK) {
751      if (Stream.ReadBlockEnd())
752        return Error("Error at end of PARAMATTR block");
753      return false;
754    }
755
756    if (Code == bitc::ENTER_SUBBLOCK) {
757      // No known subblocks, always skip them.
758      Stream.ReadSubBlockID();
759      if (Stream.SkipBlock())
760        return Error("Malformed block record");
761      continue;
762    }
763
764    if (Code == bitc::DEFINE_ABBREV) {
765      Stream.ReadAbbrevRecord();
766      continue;
767    }
768
769    // Read a record.
770    Record.clear();
771    switch (Stream.ReadRecord(Code, Record)) {
772    default:  // Default behavior: ignore.
773      break;
774    case bitc::METADATA_NAME: {
775      // Read named of the named metadata.
776      unsigned NameLength = Record.size();
777      SmallString<8> Name;
778      Name.resize(NameLength);
779      for (unsigned i = 0; i != NameLength; ++i)
780        Name[i] = Record[i];
781      Record.clear();
782      Code = Stream.ReadCode();
783
784      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
785      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
786        assert ( 0 && "Inavlid Named Metadata record");
787
788      // Read named metadata elements.
789      unsigned Size = Record.size();
790      SmallVector<MDNode *, 8> Elts;
791      for (unsigned i = 0; i != Size; ++i) {
792        if (Record[i] == ~0U)
793          Elts.push_back(NULL);
794        else {
795          Value *MD = MDValueList.getValueFwdRef(Record[i]);
796          if (MDNode *B = dyn_cast_or_null<MDNode>(MD))
797            Elts.push_back(B);
798        }
799      }
800      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
801                                     Elts.size(), TheModule);
802      MDValueList.AssignValue(V, NextValueNo++);
803      break;
804    }
805    case bitc::METADATA_NODE: {
806      if (Record.empty() || Record.size() % 2 == 1)
807        return Error("Invalid METADATA_NODE record");
808
809      unsigned Size = Record.size();
810      SmallVector<Value*, 8> Elts;
811      for (unsigned i = 0; i != Size; i += 2) {
812        const Type *Ty = getTypeByID(Record[i], false);
813        if (Ty->isMetadataTy())
814          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
815        else if (!Ty->isVoidTy())
816          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
817        else
818          Elts.push_back(NULL);
819      }
820      Value *V = MDNode::get(Context, &Elts[0], Elts.size());
821      MDValueList.AssignValue(V, NextValueNo++);
822      break;
823    }
824    case bitc::METADATA_STRING: {
825      unsigned MDStringLength = Record.size();
826      SmallString<8> String;
827      String.resize(MDStringLength);
828      for (unsigned i = 0; i != MDStringLength; ++i)
829        String[i] = Record[i];
830      Value *V = MDString::get(Context,
831                               StringRef(String.data(), String.size()));
832      MDValueList.AssignValue(V, NextValueNo++);
833      break;
834    }
835    case bitc::METADATA_KIND: {
836      unsigned RecordLength = Record.size();
837      if (Record.empty() || RecordLength < 2)
838        return Error("Invalid METADATA_KIND record");
839      SmallString<8> Name;
840      Name.resize(RecordLength-1);
841      unsigned Kind = Record[0];
842      (void) Kind;
843      for (unsigned i = 1; i != RecordLength; ++i)
844        Name[i-1] = Record[i];
845
846      unsigned NewKind = TheModule->getMDKindID(Name.str());
847      assert(Kind == NewKind &&
848             "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
849      break;
850    }
851    }
852  }
853}
854
855/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
856/// the LSB for dense VBR encoding.
857static uint64_t DecodeSignRotatedValue(uint64_t V) {
858  if ((V & 1) == 0)
859    return V >> 1;
860  if (V != 1)
861    return -(V >> 1);
862  // There is no such thing as -0 with integers.  "-0" really means MININT.
863  return 1ULL << 63;
864}
865
866/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
867/// values and aliases that we can.
868bool BitcodeReader::ResolveGlobalAndAliasInits() {
869  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
870  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
871
872  GlobalInitWorklist.swap(GlobalInits);
873  AliasInitWorklist.swap(AliasInits);
874
875  while (!GlobalInitWorklist.empty()) {
876    unsigned ValID = GlobalInitWorklist.back().second;
877    if (ValID >= ValueList.size()) {
878      // Not ready to resolve this yet, it requires something later in the file.
879      GlobalInits.push_back(GlobalInitWorklist.back());
880    } else {
881      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
882        GlobalInitWorklist.back().first->setInitializer(C);
883      else
884        return Error("Global variable initializer is not a constant!");
885    }
886    GlobalInitWorklist.pop_back();
887  }
888
889  while (!AliasInitWorklist.empty()) {
890    unsigned ValID = AliasInitWorklist.back().second;
891    if (ValID >= ValueList.size()) {
892      AliasInits.push_back(AliasInitWorklist.back());
893    } else {
894      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
895        AliasInitWorklist.back().first->setAliasee(C);
896      else
897        return Error("Alias initializer is not a constant!");
898    }
899    AliasInitWorklist.pop_back();
900  }
901  return false;
902}
903
904bool BitcodeReader::ParseConstants() {
905  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
906    return Error("Malformed block record");
907
908  SmallVector<uint64_t, 64> Record;
909
910  // Read all the records for this value table.
911  const Type *CurTy = Type::getInt32Ty(Context);
912  unsigned NextCstNo = ValueList.size();
913  while (1) {
914    unsigned Code = Stream.ReadCode();
915    if (Code == bitc::END_BLOCK)
916      break;
917
918    if (Code == bitc::ENTER_SUBBLOCK) {
919      // No known subblocks, always skip them.
920      Stream.ReadSubBlockID();
921      if (Stream.SkipBlock())
922        return Error("Malformed block record");
923      continue;
924    }
925
926    if (Code == bitc::DEFINE_ABBREV) {
927      Stream.ReadAbbrevRecord();
928      continue;
929    }
930
931    // Read a record.
932    Record.clear();
933    Value *V = 0;
934    unsigned BitCode = Stream.ReadRecord(Code, Record);
935    switch (BitCode) {
936    default:  // Default behavior: unknown constant
937    case bitc::CST_CODE_UNDEF:     // UNDEF
938      V = UndefValue::get(CurTy);
939      break;
940    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
941      if (Record.empty())
942        return Error("Malformed CST_SETTYPE record");
943      if (Record[0] >= TypeList.size())
944        return Error("Invalid Type ID in CST_SETTYPE record");
945      CurTy = TypeList[Record[0]];
946      continue;  // Skip the ValueList manipulation.
947    case bitc::CST_CODE_NULL:      // NULL
948      V = Constant::getNullValue(CurTy);
949      break;
950    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
951      if (!isa<IntegerType>(CurTy) || Record.empty())
952        return Error("Invalid CST_INTEGER record");
953      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
954      break;
955    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
956      if (!isa<IntegerType>(CurTy) || Record.empty())
957        return Error("Invalid WIDE_INTEGER record");
958
959      unsigned NumWords = Record.size();
960      SmallVector<uint64_t, 8> Words;
961      Words.resize(NumWords);
962      for (unsigned i = 0; i != NumWords; ++i)
963        Words[i] = DecodeSignRotatedValue(Record[i]);
964      V = ConstantInt::get(Context,
965                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
966                           NumWords, &Words[0]));
967      break;
968    }
969    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
970      if (Record.empty())
971        return Error("Invalid FLOAT record");
972      if (CurTy->isFloatTy())
973        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
974      else if (CurTy->isDoubleTy())
975        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
976      else if (CurTy->isX86_FP80Ty()) {
977        // Bits are not stored the same way as a normal i80 APInt, compensate.
978        uint64_t Rearrange[2];
979        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
980        Rearrange[1] = Record[0] >> 48;
981        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
982      } else if (CurTy->isFP128Ty())
983        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
984      else if (CurTy->isPPC_FP128Ty())
985        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
986      else
987        V = UndefValue::get(CurTy);
988      break;
989    }
990
991    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
992      if (Record.empty())
993        return Error("Invalid CST_AGGREGATE record");
994
995      unsigned Size = Record.size();
996      std::vector<Constant*> Elts;
997
998      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
999        for (unsigned i = 0; i != Size; ++i)
1000          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1001                                                     STy->getElementType(i)));
1002        V = ConstantStruct::get(STy, Elts);
1003      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1004        const Type *EltTy = ATy->getElementType();
1005        for (unsigned i = 0; i != Size; ++i)
1006          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1007        V = ConstantArray::get(ATy, Elts);
1008      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1009        const Type *EltTy = VTy->getElementType();
1010        for (unsigned i = 0; i != Size; ++i)
1011          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1012        V = ConstantVector::get(Elts);
1013      } else {
1014        V = UndefValue::get(CurTy);
1015      }
1016      break;
1017    }
1018    case bitc::CST_CODE_STRING: { // STRING: [values]
1019      if (Record.empty())
1020        return Error("Invalid CST_AGGREGATE record");
1021
1022      const ArrayType *ATy = cast<ArrayType>(CurTy);
1023      const Type *EltTy = ATy->getElementType();
1024
1025      unsigned Size = Record.size();
1026      std::vector<Constant*> Elts;
1027      for (unsigned i = 0; i != Size; ++i)
1028        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1029      V = ConstantArray::get(ATy, Elts);
1030      break;
1031    }
1032    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1033      if (Record.empty())
1034        return Error("Invalid CST_AGGREGATE record");
1035
1036      const ArrayType *ATy = cast<ArrayType>(CurTy);
1037      const Type *EltTy = ATy->getElementType();
1038
1039      unsigned Size = Record.size();
1040      std::vector<Constant*> Elts;
1041      for (unsigned i = 0; i != Size; ++i)
1042        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1043      Elts.push_back(Constant::getNullValue(EltTy));
1044      V = ConstantArray::get(ATy, Elts);
1045      break;
1046    }
1047    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1048      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1049      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1050      if (Opc < 0) {
1051        V = UndefValue::get(CurTy);  // Unknown binop.
1052      } else {
1053        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1054        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1055        unsigned Flags = 0;
1056        if (Record.size() >= 4) {
1057          if (Opc == Instruction::Add ||
1058              Opc == Instruction::Sub ||
1059              Opc == Instruction::Mul) {
1060            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1061              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1062            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1063              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1064          } else if (Opc == Instruction::SDiv) {
1065            if (Record[3] & (1 << bitc::SDIV_EXACT))
1066              Flags |= SDivOperator::IsExact;
1067          }
1068        }
1069        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1070      }
1071      break;
1072    }
1073    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1074      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1075      int Opc = GetDecodedCastOpcode(Record[0]);
1076      if (Opc < 0) {
1077        V = UndefValue::get(CurTy);  // Unknown cast.
1078      } else {
1079        const Type *OpTy = getTypeByID(Record[1]);
1080        if (!OpTy) return Error("Invalid CE_CAST record");
1081        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1082        V = ConstantExpr::getCast(Opc, Op, CurTy);
1083      }
1084      break;
1085    }
1086    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1087    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1088      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1089      SmallVector<Constant*, 16> Elts;
1090      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1091        const Type *ElTy = getTypeByID(Record[i]);
1092        if (!ElTy) return Error("Invalid CE_GEP record");
1093        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1094      }
1095      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1096        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1097                                                   Elts.size()-1);
1098      else
1099        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1100                                           Elts.size()-1);
1101      break;
1102    }
1103    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1104      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1105      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1106                                                              Type::getInt1Ty(Context)),
1107                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1108                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1109      break;
1110    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1111      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1112      const VectorType *OpTy =
1113        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1114      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1115      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1116      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1117      V = ConstantExpr::getExtractElement(Op0, Op1);
1118      break;
1119    }
1120    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1121      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1122      if (Record.size() < 3 || OpTy == 0)
1123        return Error("Invalid CE_INSERTELT record");
1124      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1125      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1126                                                  OpTy->getElementType());
1127      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1128      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1129      break;
1130    }
1131    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1132      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1133      if (Record.size() < 3 || OpTy == 0)
1134        return Error("Invalid CE_SHUFFLEVEC record");
1135      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1136      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1137      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1138                                                 OpTy->getNumElements());
1139      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1140      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1141      break;
1142    }
1143    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1144      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1145      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1146      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1147        return Error("Invalid CE_SHUFVEC_EX record");
1148      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1149      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1150      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1151                                                 RTy->getNumElements());
1152      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1153      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1154      break;
1155    }
1156    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1157      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1158      const Type *OpTy = getTypeByID(Record[0]);
1159      if (OpTy == 0) return Error("Invalid CE_CMP record");
1160      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1161      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1162
1163      if (OpTy->isFloatingPoint())
1164        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1165      else
1166        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1167      break;
1168    }
1169    case bitc::CST_CODE_INLINEASM: {
1170      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1171      std::string AsmStr, ConstrStr;
1172      bool HasSideEffects = Record[0] & 1;
1173      bool IsAlignStack = Record[0] >> 1;
1174      unsigned AsmStrSize = Record[1];
1175      if (2+AsmStrSize >= Record.size())
1176        return Error("Invalid INLINEASM record");
1177      unsigned ConstStrSize = Record[2+AsmStrSize];
1178      if (3+AsmStrSize+ConstStrSize > Record.size())
1179        return Error("Invalid INLINEASM record");
1180
1181      for (unsigned i = 0; i != AsmStrSize; ++i)
1182        AsmStr += (char)Record[2+i];
1183      for (unsigned i = 0; i != ConstStrSize; ++i)
1184        ConstrStr += (char)Record[3+AsmStrSize+i];
1185      const PointerType *PTy = cast<PointerType>(CurTy);
1186      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1187                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1188      break;
1189    }
1190    case bitc::CST_CODE_BLOCKADDRESS:{
1191      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1192      const Type *FnTy = getTypeByID(Record[0]);
1193      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1194      Function *Fn =
1195        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1196      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1197
1198      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1199                                                  Type::getInt8Ty(Context),
1200                                            false, GlobalValue::InternalLinkage,
1201                                                  0, "");
1202      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1203      V = FwdRef;
1204      break;
1205    }
1206    }
1207
1208    ValueList.AssignValue(V, NextCstNo);
1209    ++NextCstNo;
1210  }
1211
1212  if (NextCstNo != ValueList.size())
1213    return Error("Invalid constant reference!");
1214
1215  if (Stream.ReadBlockEnd())
1216    return Error("Error at end of constants block");
1217
1218  // Once all the constants have been read, go through and resolve forward
1219  // references.
1220  ValueList.ResolveConstantForwardRefs();
1221  return false;
1222}
1223
1224/// RememberAndSkipFunctionBody - When we see the block for a function body,
1225/// remember where it is and then skip it.  This lets us lazily deserialize the
1226/// functions.
1227bool BitcodeReader::RememberAndSkipFunctionBody() {
1228  // Get the function we are talking about.
1229  if (FunctionsWithBodies.empty())
1230    return Error("Insufficient function protos");
1231
1232  Function *Fn = FunctionsWithBodies.back();
1233  FunctionsWithBodies.pop_back();
1234
1235  // Save the current stream state.
1236  uint64_t CurBit = Stream.GetCurrentBitNo();
1237  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1238
1239  // Set the functions linkage to GhostLinkage so we know it is lazily
1240  // deserialized.
1241  Fn->setLinkage(GlobalValue::GhostLinkage);
1242
1243  // Skip over the function block for now.
1244  if (Stream.SkipBlock())
1245    return Error("Malformed block record");
1246  return false;
1247}
1248
1249bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1250  // Reject multiple MODULE_BLOCK's in a single bitstream.
1251  if (TheModule)
1252    return Error("Multiple MODULE_BLOCKs in same stream");
1253
1254  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1255    return Error("Malformed block record");
1256
1257  // Otherwise, create the module.
1258  TheModule = new Module(ModuleID, Context);
1259
1260  SmallVector<uint64_t, 64> Record;
1261  std::vector<std::string> SectionTable;
1262  std::vector<std::string> GCTable;
1263
1264  // Read all the records for this module.
1265  while (!Stream.AtEndOfStream()) {
1266    unsigned Code = Stream.ReadCode();
1267    if (Code == bitc::END_BLOCK) {
1268      if (Stream.ReadBlockEnd())
1269        return Error("Error at end of module block");
1270
1271      // Patch the initializers for globals and aliases up.
1272      ResolveGlobalAndAliasInits();
1273      if (!GlobalInits.empty() || !AliasInits.empty())
1274        return Error("Malformed global initializer set");
1275      if (!FunctionsWithBodies.empty())
1276        return Error("Too few function bodies found");
1277
1278      // Look for intrinsic functions which need to be upgraded at some point
1279      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1280           FI != FE; ++FI) {
1281        Function* NewFn;
1282        if (UpgradeIntrinsicFunction(FI, NewFn))
1283          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1284      }
1285
1286      // Force deallocation of memory for these vectors to favor the client that
1287      // want lazy deserialization.
1288      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1289      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1290      std::vector<Function*>().swap(FunctionsWithBodies);
1291      return false;
1292    }
1293
1294    if (Code == bitc::ENTER_SUBBLOCK) {
1295      switch (Stream.ReadSubBlockID()) {
1296      default:  // Skip unknown content.
1297        if (Stream.SkipBlock())
1298          return Error("Malformed block record");
1299        break;
1300      case bitc::BLOCKINFO_BLOCK_ID:
1301        if (Stream.ReadBlockInfoBlock())
1302          return Error("Malformed BlockInfoBlock");
1303        break;
1304      case bitc::PARAMATTR_BLOCK_ID:
1305        if (ParseAttributeBlock())
1306          return true;
1307        break;
1308      case bitc::TYPE_BLOCK_ID:
1309        if (ParseTypeTable())
1310          return true;
1311        break;
1312      case bitc::TYPE_SYMTAB_BLOCK_ID:
1313        if (ParseTypeSymbolTable())
1314          return true;
1315        break;
1316      case bitc::VALUE_SYMTAB_BLOCK_ID:
1317        if (ParseValueSymbolTable())
1318          return true;
1319        break;
1320      case bitc::CONSTANTS_BLOCK_ID:
1321        if (ParseConstants() || ResolveGlobalAndAliasInits())
1322          return true;
1323        break;
1324      case bitc::METADATA_BLOCK_ID:
1325        if (ParseMetadata())
1326          return true;
1327        break;
1328      case bitc::FUNCTION_BLOCK_ID:
1329        // If this is the first function body we've seen, reverse the
1330        // FunctionsWithBodies list.
1331        if (!HasReversedFunctionsWithBodies) {
1332          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1333          HasReversedFunctionsWithBodies = true;
1334        }
1335
1336        if (RememberAndSkipFunctionBody())
1337          return true;
1338        break;
1339      }
1340      continue;
1341    }
1342
1343    if (Code == bitc::DEFINE_ABBREV) {
1344      Stream.ReadAbbrevRecord();
1345      continue;
1346    }
1347
1348    // Read a record.
1349    switch (Stream.ReadRecord(Code, Record)) {
1350    default: break;  // Default behavior, ignore unknown content.
1351    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1352      if (Record.size() < 1)
1353        return Error("Malformed MODULE_CODE_VERSION");
1354      // Only version #0 is supported so far.
1355      if (Record[0] != 0)
1356        return Error("Unknown bitstream version!");
1357      break;
1358    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1359      std::string S;
1360      if (ConvertToString(Record, 0, S))
1361        return Error("Invalid MODULE_CODE_TRIPLE record");
1362      TheModule->setTargetTriple(S);
1363      break;
1364    }
1365    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1366      std::string S;
1367      if (ConvertToString(Record, 0, S))
1368        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1369      TheModule->setDataLayout(S);
1370      break;
1371    }
1372    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1373      std::string S;
1374      if (ConvertToString(Record, 0, S))
1375        return Error("Invalid MODULE_CODE_ASM record");
1376      TheModule->setModuleInlineAsm(S);
1377      break;
1378    }
1379    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1380      std::string S;
1381      if (ConvertToString(Record, 0, S))
1382        return Error("Invalid MODULE_CODE_DEPLIB record");
1383      TheModule->addLibrary(S);
1384      break;
1385    }
1386    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1387      std::string S;
1388      if (ConvertToString(Record, 0, S))
1389        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1390      SectionTable.push_back(S);
1391      break;
1392    }
1393    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1394      std::string S;
1395      if (ConvertToString(Record, 0, S))
1396        return Error("Invalid MODULE_CODE_GCNAME record");
1397      GCTable.push_back(S);
1398      break;
1399    }
1400    // GLOBALVAR: [pointer type, isconst, initid,
1401    //             linkage, alignment, section, visibility, threadlocal]
1402    case bitc::MODULE_CODE_GLOBALVAR: {
1403      if (Record.size() < 6)
1404        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1405      const Type *Ty = getTypeByID(Record[0]);
1406      if (!isa<PointerType>(Ty))
1407        return Error("Global not a pointer type!");
1408      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1409      Ty = cast<PointerType>(Ty)->getElementType();
1410
1411      bool isConstant = Record[1];
1412      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1413      unsigned Alignment = (1 << Record[4]) >> 1;
1414      std::string Section;
1415      if (Record[5]) {
1416        if (Record[5]-1 >= SectionTable.size())
1417          return Error("Invalid section ID");
1418        Section = SectionTable[Record[5]-1];
1419      }
1420      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1421      if (Record.size() > 6)
1422        Visibility = GetDecodedVisibility(Record[6]);
1423      bool isThreadLocal = false;
1424      if (Record.size() > 7)
1425        isThreadLocal = Record[7];
1426
1427      GlobalVariable *NewGV =
1428        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1429                           isThreadLocal, AddressSpace);
1430      NewGV->setAlignment(Alignment);
1431      if (!Section.empty())
1432        NewGV->setSection(Section);
1433      NewGV->setVisibility(Visibility);
1434      NewGV->setThreadLocal(isThreadLocal);
1435
1436      ValueList.push_back(NewGV);
1437
1438      // Remember which value to use for the global initializer.
1439      if (unsigned InitID = Record[2])
1440        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1441      break;
1442    }
1443    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1444    //             alignment, section, visibility, gc]
1445    case bitc::MODULE_CODE_FUNCTION: {
1446      if (Record.size() < 8)
1447        return Error("Invalid MODULE_CODE_FUNCTION record");
1448      const Type *Ty = getTypeByID(Record[0]);
1449      if (!isa<PointerType>(Ty))
1450        return Error("Function not a pointer type!");
1451      const FunctionType *FTy =
1452        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1453      if (!FTy)
1454        return Error("Function not a pointer to function type!");
1455
1456      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1457                                        "", TheModule);
1458
1459      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1460      bool isProto = Record[2];
1461      Func->setLinkage(GetDecodedLinkage(Record[3]));
1462      Func->setAttributes(getAttributes(Record[4]));
1463
1464      Func->setAlignment((1 << Record[5]) >> 1);
1465      if (Record[6]) {
1466        if (Record[6]-1 >= SectionTable.size())
1467          return Error("Invalid section ID");
1468        Func->setSection(SectionTable[Record[6]-1]);
1469      }
1470      Func->setVisibility(GetDecodedVisibility(Record[7]));
1471      if (Record.size() > 8 && Record[8]) {
1472        if (Record[8]-1 > GCTable.size())
1473          return Error("Invalid GC ID");
1474        Func->setGC(GCTable[Record[8]-1].c_str());
1475      }
1476      ValueList.push_back(Func);
1477
1478      // If this is a function with a body, remember the prototype we are
1479      // creating now, so that we can match up the body with them later.
1480      if (!isProto)
1481        FunctionsWithBodies.push_back(Func);
1482      break;
1483    }
1484    // ALIAS: [alias type, aliasee val#, linkage]
1485    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1486    case bitc::MODULE_CODE_ALIAS: {
1487      if (Record.size() < 3)
1488        return Error("Invalid MODULE_ALIAS record");
1489      const Type *Ty = getTypeByID(Record[0]);
1490      if (!isa<PointerType>(Ty))
1491        return Error("Function not a pointer type!");
1492
1493      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1494                                           "", 0, TheModule);
1495      // Old bitcode files didn't have visibility field.
1496      if (Record.size() > 3)
1497        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1498      ValueList.push_back(NewGA);
1499      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1500      break;
1501    }
1502    /// MODULE_CODE_PURGEVALS: [numvals]
1503    case bitc::MODULE_CODE_PURGEVALS:
1504      // Trim down the value list to the specified size.
1505      if (Record.size() < 1 || Record[0] > ValueList.size())
1506        return Error("Invalid MODULE_PURGEVALS record");
1507      ValueList.shrinkTo(Record[0]);
1508      break;
1509    }
1510    Record.clear();
1511  }
1512
1513  return Error("Premature end of bitstream");
1514}
1515
1516bool BitcodeReader::ParseBitcode() {
1517  TheModule = 0;
1518
1519  if (Buffer->getBufferSize() & 3)
1520    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1521
1522  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1523  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1524
1525  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1526  // The magic number is 0x0B17C0DE stored in little endian.
1527  if (isBitcodeWrapper(BufPtr, BufEnd))
1528    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1529      return Error("Invalid bitcode wrapper header");
1530
1531  StreamFile.init(BufPtr, BufEnd);
1532  Stream.init(StreamFile);
1533
1534  // Sniff for the signature.
1535  if (Stream.Read(8) != 'B' ||
1536      Stream.Read(8) != 'C' ||
1537      Stream.Read(4) != 0x0 ||
1538      Stream.Read(4) != 0xC ||
1539      Stream.Read(4) != 0xE ||
1540      Stream.Read(4) != 0xD)
1541    return Error("Invalid bitcode signature");
1542
1543  // We expect a number of well-defined blocks, though we don't necessarily
1544  // need to understand them all.
1545  while (!Stream.AtEndOfStream()) {
1546    unsigned Code = Stream.ReadCode();
1547
1548    if (Code != bitc::ENTER_SUBBLOCK)
1549      return Error("Invalid record at top-level");
1550
1551    unsigned BlockID = Stream.ReadSubBlockID();
1552
1553    // We only know the MODULE subblock ID.
1554    switch (BlockID) {
1555    case bitc::BLOCKINFO_BLOCK_ID:
1556      if (Stream.ReadBlockInfoBlock())
1557        return Error("Malformed BlockInfoBlock");
1558      break;
1559    case bitc::MODULE_BLOCK_ID:
1560      if (ParseModule(Buffer->getBufferIdentifier()))
1561        return true;
1562      break;
1563    default:
1564      if (Stream.SkipBlock())
1565        return Error("Malformed block record");
1566      break;
1567    }
1568  }
1569
1570  return false;
1571}
1572
1573/// ParseMetadataAttachment - Parse metadata attachments.
1574bool BitcodeReader::ParseMetadataAttachment() {
1575  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1576    return Error("Malformed block record");
1577
1578  SmallVector<uint64_t, 64> Record;
1579  while(1) {
1580    unsigned Code = Stream.ReadCode();
1581    if (Code == bitc::END_BLOCK) {
1582      if (Stream.ReadBlockEnd())
1583        return Error("Error at end of PARAMATTR block");
1584      break;
1585    }
1586    if (Code == bitc::DEFINE_ABBREV) {
1587      Stream.ReadAbbrevRecord();
1588      continue;
1589    }
1590    // Read a metadata attachment record.
1591    Record.clear();
1592    switch (Stream.ReadRecord(Code, Record)) {
1593    default:  // Default behavior: ignore.
1594      break;
1595    case bitc::METADATA_ATTACHMENT: {
1596      unsigned RecordLength = Record.size();
1597      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1598        return Error ("Invalid METADATA_ATTACHMENT reader!");
1599      Instruction *Inst = InstructionList[Record[0]];
1600      for (unsigned i = 1; i != RecordLength; i = i+2) {
1601        unsigned Kind = Record[i];
1602        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1603        Inst->setMetadata(Kind, cast<MDNode>(Node));
1604      }
1605      break;
1606    }
1607    }
1608  }
1609  return false;
1610}
1611
1612/// ParseFunctionBody - Lazily parse the specified function body block.
1613bool BitcodeReader::ParseFunctionBody(Function *F) {
1614  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1615    return Error("Malformed block record");
1616
1617  unsigned ModuleValueListSize = ValueList.size();
1618
1619  // Add all the function arguments to the value table.
1620  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1621    ValueList.push_back(I);
1622
1623  unsigned NextValueNo = ValueList.size();
1624  BasicBlock *CurBB = 0;
1625  unsigned CurBBNo = 0;
1626
1627  // Read all the records.
1628  SmallVector<uint64_t, 64> Record;
1629  while (1) {
1630    unsigned Code = Stream.ReadCode();
1631    if (Code == bitc::END_BLOCK) {
1632      if (Stream.ReadBlockEnd())
1633        return Error("Error at end of function block");
1634      break;
1635    }
1636
1637    if (Code == bitc::ENTER_SUBBLOCK) {
1638      switch (Stream.ReadSubBlockID()) {
1639      default:  // Skip unknown content.
1640        if (Stream.SkipBlock())
1641          return Error("Malformed block record");
1642        break;
1643      case bitc::CONSTANTS_BLOCK_ID:
1644        if (ParseConstants()) return true;
1645        NextValueNo = ValueList.size();
1646        break;
1647      case bitc::VALUE_SYMTAB_BLOCK_ID:
1648        if (ParseValueSymbolTable()) return true;
1649        break;
1650      case bitc::METADATA_ATTACHMENT_ID:
1651        if (ParseMetadataAttachment()) return true;
1652        break;
1653      }
1654      continue;
1655    }
1656
1657    if (Code == bitc::DEFINE_ABBREV) {
1658      Stream.ReadAbbrevRecord();
1659      continue;
1660    }
1661
1662    // Read a record.
1663    Record.clear();
1664    Instruction *I = 0;
1665    unsigned BitCode = Stream.ReadRecord(Code, Record);
1666    switch (BitCode) {
1667    default: // Default behavior: reject
1668      return Error("Unknown instruction");
1669    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1670      if (Record.size() < 1 || Record[0] == 0)
1671        return Error("Invalid DECLAREBLOCKS record");
1672      // Create all the basic blocks for the function.
1673      FunctionBBs.resize(Record[0]);
1674      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1675        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1676      CurBB = FunctionBBs[0];
1677      continue;
1678
1679    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1680      unsigned OpNum = 0;
1681      Value *LHS, *RHS;
1682      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1683          getValue(Record, OpNum, LHS->getType(), RHS) ||
1684          OpNum+1 > Record.size())
1685        return Error("Invalid BINOP record");
1686
1687      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1688      if (Opc == -1) return Error("Invalid BINOP record");
1689      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1690      InstructionList.push_back(I);
1691      if (OpNum < Record.size()) {
1692        if (Opc == Instruction::Add ||
1693            Opc == Instruction::Sub ||
1694            Opc == Instruction::Mul) {
1695          if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1696            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1697          if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1698            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1699        } else if (Opc == Instruction::SDiv) {
1700          if (Record[3] & (1 << bitc::SDIV_EXACT))
1701            cast<BinaryOperator>(I)->setIsExact(true);
1702        }
1703      }
1704      break;
1705    }
1706    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1707      unsigned OpNum = 0;
1708      Value *Op;
1709      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1710          OpNum+2 != Record.size())
1711        return Error("Invalid CAST record");
1712
1713      const Type *ResTy = getTypeByID(Record[OpNum]);
1714      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1715      if (Opc == -1 || ResTy == 0)
1716        return Error("Invalid CAST record");
1717      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1718      InstructionList.push_back(I);
1719      break;
1720    }
1721    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1722    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1723      unsigned OpNum = 0;
1724      Value *BasePtr;
1725      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1726        return Error("Invalid GEP record");
1727
1728      SmallVector<Value*, 16> GEPIdx;
1729      while (OpNum != Record.size()) {
1730        Value *Op;
1731        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1732          return Error("Invalid GEP record");
1733        GEPIdx.push_back(Op);
1734      }
1735
1736      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1737      InstructionList.push_back(I);
1738      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1739        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1740      break;
1741    }
1742
1743    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1744                                       // EXTRACTVAL: [opty, opval, n x indices]
1745      unsigned OpNum = 0;
1746      Value *Agg;
1747      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1748        return Error("Invalid EXTRACTVAL record");
1749
1750      SmallVector<unsigned, 4> EXTRACTVALIdx;
1751      for (unsigned RecSize = Record.size();
1752           OpNum != RecSize; ++OpNum) {
1753        uint64_t Index = Record[OpNum];
1754        if ((unsigned)Index != Index)
1755          return Error("Invalid EXTRACTVAL index");
1756        EXTRACTVALIdx.push_back((unsigned)Index);
1757      }
1758
1759      I = ExtractValueInst::Create(Agg,
1760                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1761      InstructionList.push_back(I);
1762      break;
1763    }
1764
1765    case bitc::FUNC_CODE_INST_INSERTVAL: {
1766                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1767      unsigned OpNum = 0;
1768      Value *Agg;
1769      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1770        return Error("Invalid INSERTVAL record");
1771      Value *Val;
1772      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1773        return Error("Invalid INSERTVAL record");
1774
1775      SmallVector<unsigned, 4> INSERTVALIdx;
1776      for (unsigned RecSize = Record.size();
1777           OpNum != RecSize; ++OpNum) {
1778        uint64_t Index = Record[OpNum];
1779        if ((unsigned)Index != Index)
1780          return Error("Invalid INSERTVAL index");
1781        INSERTVALIdx.push_back((unsigned)Index);
1782      }
1783
1784      I = InsertValueInst::Create(Agg, Val,
1785                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1786      InstructionList.push_back(I);
1787      break;
1788    }
1789
1790    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1791      // obsolete form of select
1792      // handles select i1 ... in old bitcode
1793      unsigned OpNum = 0;
1794      Value *TrueVal, *FalseVal, *Cond;
1795      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1796          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1797          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1798        return Error("Invalid SELECT record");
1799
1800      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1801      InstructionList.push_back(I);
1802      break;
1803    }
1804
1805    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1806      // new form of select
1807      // handles select i1 or select [N x i1]
1808      unsigned OpNum = 0;
1809      Value *TrueVal, *FalseVal, *Cond;
1810      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1811          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1812          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1813        return Error("Invalid SELECT record");
1814
1815      // select condition can be either i1 or [N x i1]
1816      if (const VectorType* vector_type =
1817          dyn_cast<const VectorType>(Cond->getType())) {
1818        // expect <n x i1>
1819        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1820          return Error("Invalid SELECT condition type");
1821      } else {
1822        // expect i1
1823        if (Cond->getType() != Type::getInt1Ty(Context))
1824          return Error("Invalid SELECT condition type");
1825      }
1826
1827      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1828      InstructionList.push_back(I);
1829      break;
1830    }
1831
1832    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1833      unsigned OpNum = 0;
1834      Value *Vec, *Idx;
1835      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1836          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1837        return Error("Invalid EXTRACTELT record");
1838      I = ExtractElementInst::Create(Vec, Idx);
1839      InstructionList.push_back(I);
1840      break;
1841    }
1842
1843    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1844      unsigned OpNum = 0;
1845      Value *Vec, *Elt, *Idx;
1846      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1847          getValue(Record, OpNum,
1848                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1849          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1850        return Error("Invalid INSERTELT record");
1851      I = InsertElementInst::Create(Vec, Elt, Idx);
1852      InstructionList.push_back(I);
1853      break;
1854    }
1855
1856    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1857      unsigned OpNum = 0;
1858      Value *Vec1, *Vec2, *Mask;
1859      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1860          getValue(Record, OpNum, Vec1->getType(), Vec2))
1861        return Error("Invalid SHUFFLEVEC record");
1862
1863      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1864        return Error("Invalid SHUFFLEVEC record");
1865      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1866      InstructionList.push_back(I);
1867      break;
1868    }
1869
1870    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1871      // Old form of ICmp/FCmp returning bool
1872      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1873      // both legal on vectors but had different behaviour.
1874    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1875      // FCmp/ICmp returning bool or vector of bool
1876
1877      unsigned OpNum = 0;
1878      Value *LHS, *RHS;
1879      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1880          getValue(Record, OpNum, LHS->getType(), RHS) ||
1881          OpNum+1 != Record.size())
1882        return Error("Invalid CMP record");
1883
1884      if (LHS->getType()->isFPOrFPVector())
1885        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1886      else
1887        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1888      InstructionList.push_back(I);
1889      break;
1890    }
1891
1892    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1893      if (Record.size() != 2)
1894        return Error("Invalid GETRESULT record");
1895      unsigned OpNum = 0;
1896      Value *Op;
1897      getValueTypePair(Record, OpNum, NextValueNo, Op);
1898      unsigned Index = Record[1];
1899      I = ExtractValueInst::Create(Op, Index);
1900      InstructionList.push_back(I);
1901      break;
1902    }
1903
1904    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1905      {
1906        unsigned Size = Record.size();
1907        if (Size == 0) {
1908          I = ReturnInst::Create(Context);
1909          InstructionList.push_back(I);
1910          break;
1911        }
1912
1913        unsigned OpNum = 0;
1914        SmallVector<Value *,4> Vs;
1915        do {
1916          Value *Op = NULL;
1917          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1918            return Error("Invalid RET record");
1919          Vs.push_back(Op);
1920        } while(OpNum != Record.size());
1921
1922        const Type *ReturnType = F->getReturnType();
1923        if (Vs.size() > 1 ||
1924            (isa<StructType>(ReturnType) &&
1925             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1926          Value *RV = UndefValue::get(ReturnType);
1927          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1928            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1929            InstructionList.push_back(I);
1930            CurBB->getInstList().push_back(I);
1931            ValueList.AssignValue(I, NextValueNo++);
1932            RV = I;
1933          }
1934          I = ReturnInst::Create(Context, RV);
1935          InstructionList.push_back(I);
1936          break;
1937        }
1938
1939        I = ReturnInst::Create(Context, Vs[0]);
1940        InstructionList.push_back(I);
1941        break;
1942      }
1943    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1944      if (Record.size() != 1 && Record.size() != 3)
1945        return Error("Invalid BR record");
1946      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1947      if (TrueDest == 0)
1948        return Error("Invalid BR record");
1949
1950      if (Record.size() == 1) {
1951        I = BranchInst::Create(TrueDest);
1952        InstructionList.push_back(I);
1953      }
1954      else {
1955        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1956        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1957        if (FalseDest == 0 || Cond == 0)
1958          return Error("Invalid BR record");
1959        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1960        InstructionList.push_back(I);
1961      }
1962      break;
1963    }
1964    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1965      if (Record.size() < 3 || (Record.size() & 1) == 0)
1966        return Error("Invalid SWITCH record");
1967      const Type *OpTy = getTypeByID(Record[0]);
1968      Value *Cond = getFnValueByID(Record[1], OpTy);
1969      BasicBlock *Default = getBasicBlock(Record[2]);
1970      if (OpTy == 0 || Cond == 0 || Default == 0)
1971        return Error("Invalid SWITCH record");
1972      unsigned NumCases = (Record.size()-3)/2;
1973      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1974      InstructionList.push_back(SI);
1975      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1976        ConstantInt *CaseVal =
1977          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1978        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1979        if (CaseVal == 0 || DestBB == 0) {
1980          delete SI;
1981          return Error("Invalid SWITCH record!");
1982        }
1983        SI->addCase(CaseVal, DestBB);
1984      }
1985      I = SI;
1986      break;
1987    }
1988    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1989      if (Record.size() < 2)
1990        return Error("Invalid INDIRECTBR record");
1991      const Type *OpTy = getTypeByID(Record[0]);
1992      Value *Address = getFnValueByID(Record[1], OpTy);
1993      if (OpTy == 0 || Address == 0)
1994        return Error("Invalid INDIRECTBR record");
1995      unsigned NumDests = Record.size()-2;
1996      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
1997      InstructionList.push_back(IBI);
1998      for (unsigned i = 0, e = NumDests; i != e; ++i) {
1999        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2000          IBI->addDestination(DestBB);
2001        } else {
2002          delete IBI;
2003          return Error("Invalid INDIRECTBR record!");
2004        }
2005      }
2006      I = IBI;
2007      break;
2008    }
2009
2010    case bitc::FUNC_CODE_INST_INVOKE: {
2011      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2012      if (Record.size() < 4) return Error("Invalid INVOKE record");
2013      AttrListPtr PAL = getAttributes(Record[0]);
2014      unsigned CCInfo = Record[1];
2015      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2016      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2017
2018      unsigned OpNum = 4;
2019      Value *Callee;
2020      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2021        return Error("Invalid INVOKE record");
2022
2023      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2024      const FunctionType *FTy = !CalleeTy ? 0 :
2025        dyn_cast<FunctionType>(CalleeTy->getElementType());
2026
2027      // Check that the right number of fixed parameters are here.
2028      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2029          Record.size() < OpNum+FTy->getNumParams())
2030        return Error("Invalid INVOKE record");
2031
2032      SmallVector<Value*, 16> Ops;
2033      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2034        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2035        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2036      }
2037
2038      if (!FTy->isVarArg()) {
2039        if (Record.size() != OpNum)
2040          return Error("Invalid INVOKE record");
2041      } else {
2042        // Read type/value pairs for varargs params.
2043        while (OpNum != Record.size()) {
2044          Value *Op;
2045          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2046            return Error("Invalid INVOKE record");
2047          Ops.push_back(Op);
2048        }
2049      }
2050
2051      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2052                             Ops.begin(), Ops.end());
2053      InstructionList.push_back(I);
2054      cast<InvokeInst>(I)->setCallingConv(
2055        static_cast<CallingConv::ID>(CCInfo));
2056      cast<InvokeInst>(I)->setAttributes(PAL);
2057      break;
2058    }
2059    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2060      I = new UnwindInst(Context);
2061      InstructionList.push_back(I);
2062      break;
2063    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2064      I = new UnreachableInst(Context);
2065      InstructionList.push_back(I);
2066      break;
2067    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2068      if (Record.size() < 1 || ((Record.size()-1)&1))
2069        return Error("Invalid PHI record");
2070      const Type *Ty = getTypeByID(Record[0]);
2071      if (!Ty) return Error("Invalid PHI record");
2072
2073      PHINode *PN = PHINode::Create(Ty);
2074      InstructionList.push_back(PN);
2075      PN->reserveOperandSpace((Record.size()-1)/2);
2076
2077      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2078        Value *V = getFnValueByID(Record[1+i], Ty);
2079        BasicBlock *BB = getBasicBlock(Record[2+i]);
2080        if (!V || !BB) return Error("Invalid PHI record");
2081        PN->addIncoming(V, BB);
2082      }
2083      I = PN;
2084      break;
2085    }
2086
2087    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2088      // Autoupgrade malloc instruction to malloc call.
2089      // FIXME: Remove in LLVM 3.0.
2090      if (Record.size() < 3)
2091        return Error("Invalid MALLOC record");
2092      const PointerType *Ty =
2093        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2094      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2095      if (!Ty || !Size) return Error("Invalid MALLOC record");
2096      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2097      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2098      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2099      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2100      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2101                                 AllocSize, Size, NULL);
2102      InstructionList.push_back(I);
2103      break;
2104    }
2105    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2106      unsigned OpNum = 0;
2107      Value *Op;
2108      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2109          OpNum != Record.size())
2110        return Error("Invalid FREE record");
2111      if (!CurBB) return Error("Invalid free instruction with no BB");
2112      I = CallInst::CreateFree(Op, CurBB);
2113      InstructionList.push_back(I);
2114      break;
2115    }
2116    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2117      if (Record.size() < 3)
2118        return Error("Invalid ALLOCA record");
2119      const PointerType *Ty =
2120        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2121      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2122      unsigned Align = Record[2];
2123      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2124      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2125      InstructionList.push_back(I);
2126      break;
2127    }
2128    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2129      unsigned OpNum = 0;
2130      Value *Op;
2131      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2132          OpNum+2 != Record.size())
2133        return Error("Invalid LOAD record");
2134
2135      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2136      InstructionList.push_back(I);
2137      break;
2138    }
2139    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2140      unsigned OpNum = 0;
2141      Value *Val, *Ptr;
2142      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2143          getValue(Record, OpNum,
2144                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2145          OpNum+2 != Record.size())
2146        return Error("Invalid STORE record");
2147
2148      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2149      InstructionList.push_back(I);
2150      break;
2151    }
2152    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2153      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2154      unsigned OpNum = 0;
2155      Value *Val, *Ptr;
2156      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2157          getValue(Record, OpNum,
2158                   PointerType::getUnqual(Val->getType()), Ptr)||
2159          OpNum+2 != Record.size())
2160        return Error("Invalid STORE record");
2161
2162      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2163      InstructionList.push_back(I);
2164      break;
2165    }
2166    case bitc::FUNC_CODE_INST_CALL: {
2167      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2168      if (Record.size() < 3)
2169        return Error("Invalid CALL record");
2170
2171      AttrListPtr PAL = getAttributes(Record[0]);
2172      unsigned CCInfo = Record[1];
2173
2174      unsigned OpNum = 2;
2175      Value *Callee;
2176      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2177        return Error("Invalid CALL record");
2178
2179      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2180      const FunctionType *FTy = 0;
2181      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2182      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2183        return Error("Invalid CALL record");
2184
2185      SmallVector<Value*, 16> Args;
2186      // Read the fixed params.
2187      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2188        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2189          Args.push_back(getBasicBlock(Record[OpNum]));
2190        else
2191          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2192        if (Args.back() == 0) return Error("Invalid CALL record");
2193      }
2194
2195      // Read type/value pairs for varargs params.
2196      if (!FTy->isVarArg()) {
2197        if (OpNum != Record.size())
2198          return Error("Invalid CALL record");
2199      } else {
2200        while (OpNum != Record.size()) {
2201          Value *Op;
2202          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2203            return Error("Invalid CALL record");
2204          Args.push_back(Op);
2205        }
2206      }
2207
2208      I = CallInst::Create(Callee, Args.begin(), Args.end());
2209      InstructionList.push_back(I);
2210      cast<CallInst>(I)->setCallingConv(
2211        static_cast<CallingConv::ID>(CCInfo>>1));
2212      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2213      cast<CallInst>(I)->setAttributes(PAL);
2214      break;
2215    }
2216    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2217      if (Record.size() < 3)
2218        return Error("Invalid VAARG record");
2219      const Type *OpTy = getTypeByID(Record[0]);
2220      Value *Op = getFnValueByID(Record[1], OpTy);
2221      const Type *ResTy = getTypeByID(Record[2]);
2222      if (!OpTy || !Op || !ResTy)
2223        return Error("Invalid VAARG record");
2224      I = new VAArgInst(Op, ResTy);
2225      InstructionList.push_back(I);
2226      break;
2227    }
2228    }
2229
2230    // Add instruction to end of current BB.  If there is no current BB, reject
2231    // this file.
2232    if (CurBB == 0) {
2233      delete I;
2234      return Error("Invalid instruction with no BB");
2235    }
2236    CurBB->getInstList().push_back(I);
2237
2238    // If this was a terminator instruction, move to the next block.
2239    if (isa<TerminatorInst>(I)) {
2240      ++CurBBNo;
2241      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2242    }
2243
2244    // Non-void values get registered in the value table for future use.
2245    if (I && !I->getType()->isVoidTy())
2246      ValueList.AssignValue(I, NextValueNo++);
2247  }
2248
2249  // Check the function list for unresolved values.
2250  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2251    if (A->getParent() == 0) {
2252      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2253      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2254        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2255          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2256          delete A;
2257        }
2258      }
2259      return Error("Never resolved value found in function!");
2260    }
2261  }
2262
2263  // See if anything took the address of blocks in this function.  If so,
2264  // resolve them now.
2265  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2266  /// are resolved lazily when functions are loaded.
2267  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2268    BlockAddrFwdRefs.find(F);
2269  if (BAFRI != BlockAddrFwdRefs.end()) {
2270    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2271    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2272      unsigned BlockIdx = RefList[i].first;
2273      if (BlockIdx >= FunctionBBs.size())
2274        return Error("Invalid blockaddress block #");
2275
2276      GlobalVariable *FwdRef = RefList[i].second;
2277      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2278      FwdRef->eraseFromParent();
2279    }
2280
2281    BlockAddrFwdRefs.erase(BAFRI);
2282  }
2283
2284  // Trim the value list down to the size it was before we parsed this function.
2285  ValueList.shrinkTo(ModuleValueListSize);
2286  std::vector<BasicBlock*>().swap(FunctionBBs);
2287
2288  return false;
2289}
2290
2291//===----------------------------------------------------------------------===//
2292// ModuleProvider implementation
2293//===----------------------------------------------------------------------===//
2294
2295
2296bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2297  // If it already is material, ignore the request.
2298  if (!F->hasNotBeenReadFromBitcode()) return false;
2299
2300  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2301    DeferredFunctionInfo.find(F);
2302  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2303
2304  // Move the bit stream to the saved position of the deferred function body and
2305  // restore the real linkage type for the function.
2306  Stream.JumpToBit(DFII->second.first);
2307  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2308
2309  if (ParseFunctionBody(F)) {
2310    if (ErrInfo) *ErrInfo = ErrorString;
2311    return true;
2312  }
2313
2314  // Upgrade any old intrinsic calls in the function.
2315  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2316       E = UpgradedIntrinsics.end(); I != E; ++I) {
2317    if (I->first != I->second) {
2318      for (Value::use_iterator UI = I->first->use_begin(),
2319           UE = I->first->use_end(); UI != UE; ) {
2320        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2321          UpgradeIntrinsicCall(CI, I->second);
2322      }
2323    }
2324  }
2325
2326  return false;
2327}
2328
2329void BitcodeReader::dematerializeFunction(Function *F) {
2330  // If this function isn't materialized, or if it is a proto, this is a noop.
2331  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2332    return;
2333
2334  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2335
2336  // Just forget the function body, we can remat it later.
2337  F->deleteBody();
2338  F->setLinkage(GlobalValue::GhostLinkage);
2339}
2340
2341
2342Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2343  // Iterate over the module, deserializing any functions that are still on
2344  // disk.
2345  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2346       F != E; ++F)
2347    if (F->hasNotBeenReadFromBitcode() &&
2348        materializeFunction(F, ErrInfo))
2349      return 0;
2350
2351  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2352  // delete the old functions to clean up. We can't do this unless the entire
2353  // module is materialized because there could always be another function body
2354  // with calls to the old function.
2355  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2356       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2357    if (I->first != I->second) {
2358      for (Value::use_iterator UI = I->first->use_begin(),
2359           UE = I->first->use_end(); UI != UE; ) {
2360        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2361          UpgradeIntrinsicCall(CI, I->second);
2362      }
2363      if (!I->first->use_empty())
2364        I->first->replaceAllUsesWith(I->second);
2365      I->first->eraseFromParent();
2366    }
2367  }
2368  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2369
2370  // Check debug info intrinsics.
2371  CheckDebugInfoIntrinsics(TheModule);
2372
2373  return TheModule;
2374}
2375
2376
2377/// This method is provided by the parent ModuleProvde class and overriden
2378/// here. It simply releases the module from its provided and frees up our
2379/// state.
2380/// @brief Release our hold on the generated module
2381Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2382  // Since we're losing control of this Module, we must hand it back complete
2383  Module *M = ModuleProvider::releaseModule(ErrInfo);
2384  FreeState();
2385  return M;
2386}
2387
2388
2389//===----------------------------------------------------------------------===//
2390// External interface
2391//===----------------------------------------------------------------------===//
2392
2393/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2394///
2395ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2396                                               LLVMContext& Context,
2397                                               std::string *ErrMsg) {
2398  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2399  if (R->ParseBitcode()) {
2400    if (ErrMsg)
2401      *ErrMsg = R->getErrorString();
2402
2403    // Don't let the BitcodeReader dtor delete 'Buffer'.
2404    R->releaseMemoryBuffer();
2405    delete R;
2406    return 0;
2407  }
2408  return R;
2409}
2410
2411/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2412/// If an error occurs, return null and fill in *ErrMsg if non-null.
2413Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2414                               std::string *ErrMsg){
2415  BitcodeReader *R;
2416  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2417                                                           ErrMsg));
2418  if (!R) return 0;
2419
2420  // Read in the entire module.
2421  Module *M = R->materializeModule(ErrMsg);
2422
2423  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2424  // there was an error.
2425  R->releaseMemoryBuffer();
2426
2427  // If there was no error, tell ModuleProvider not to delete it when its dtor
2428  // is run.
2429  if (M)
2430    M = R->releaseModule(ErrMsg);
2431
2432  delete R;
2433  return M;
2434}
2435