BitcodeReader.cpp revision 6b9cb84f8c3c35d7d753aba1143371dc0d0a9ee3
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
140    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
141  public:
142    // allocate space for exactly one operand
143    void *operator new(size_t s) {
144      return User::operator new(s, 1);
145    }
146    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
147      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
148      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
149    }
150
151    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
152    static inline bool classof(const ConstantPlaceHolder *) { return true; }
153    static bool classof(const Value *V) {
154      return isa<ConstantExpr>(V) &&
155             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
156    }
157
158
159    /// Provide fast operand accessors
160    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
161  };
162}
163
164// FIXME: can we inherit this from ConstantExpr?
165template <>
166struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    const Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                        NewOps.size());
297      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                         UserCS->getType()->isPacked());
300      } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
301        NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
302      } else if (isa<ConstantVector>(UserC)) {
303        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
304      } else {
305        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
306        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
307                                                          NewOps.size());
308      }
309
310      UserC->replaceAllUsesWith(NewC);
311      UserC->destroyConstant();
312      NewOps.clear();
313    }
314
315    // Update all ValueHandles, they should be the only users at this point.
316    Placeholder->replaceAllUsesWith(RealVal);
317    delete Placeholder;
318  }
319}
320
321void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
322  if (Idx == size()) {
323    push_back(V);
324    return;
325  }
326
327  if (Idx >= size())
328    resize(Idx+1);
329
330  WeakVH &OldV = MDValuePtrs[Idx];
331  if (OldV == 0) {
332    OldV = V;
333    return;
334  }
335
336  // If there was a forward reference to this value, replace it.
337  MDNode *PrevVal = cast<MDNode>(OldV);
338  OldV->replaceAllUsesWith(V);
339  MDNode::deleteTemporary(PrevVal);
340  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
341  // value for Idx.
342  MDValuePtrs[Idx] = V;
343}
344
345Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
346  if (Idx >= size())
347    resize(Idx + 1);
348
349  if (Value *V = MDValuePtrs[Idx]) {
350    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
351    return V;
352  }
353
354  // Create and return a placeholder, which will later be RAUW'd.
355  Value *V = MDNode::getTemporary(Context, 0, 0);
356  MDValuePtrs[Idx] = V;
357  return V;
358}
359
360const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
361  // If the TypeID is in range, return it.
362  if (ID < TypeList.size())
363    return TypeList[ID].get();
364  if (!isTypeTable) return 0;
365
366  // The type table allows forward references.  Push as many Opaque types as
367  // needed to get up to ID.
368  while (TypeList.size() <= ID)
369    TypeList.push_back(OpaqueType::get(Context));
370  return TypeList.back().get();
371}
372
373//===----------------------------------------------------------------------===//
374//  Functions for parsing blocks from the bitcode file
375//===----------------------------------------------------------------------===//
376
377bool BitcodeReader::ParseAttributeBlock() {
378  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
379    return Error("Malformed block record");
380
381  if (!MAttributes.empty())
382    return Error("Multiple PARAMATTR blocks found!");
383
384  SmallVector<uint64_t, 64> Record;
385
386  SmallVector<AttributeWithIndex, 8> Attrs;
387
388  // Read all the records.
389  while (1) {
390    unsigned Code = Stream.ReadCode();
391    if (Code == bitc::END_BLOCK) {
392      if (Stream.ReadBlockEnd())
393        return Error("Error at end of PARAMATTR block");
394      return false;
395    }
396
397    if (Code == bitc::ENTER_SUBBLOCK) {
398      // No known subblocks, always skip them.
399      Stream.ReadSubBlockID();
400      if (Stream.SkipBlock())
401        return Error("Malformed block record");
402      continue;
403    }
404
405    if (Code == bitc::DEFINE_ABBREV) {
406      Stream.ReadAbbrevRecord();
407      continue;
408    }
409
410    // Read a record.
411    Record.clear();
412    switch (Stream.ReadRecord(Code, Record)) {
413    default:  // Default behavior: ignore.
414      break;
415    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
416      if (Record.size() & 1)
417        return Error("Invalid ENTRY record");
418
419      // FIXME : Remove this autoupgrade code in LLVM 3.0.
420      // If Function attributes are using index 0 then transfer them
421      // to index ~0. Index 0 is used for return value attributes but used to be
422      // used for function attributes.
423      Attributes RetAttribute = Attribute::None;
424      Attributes FnAttribute = Attribute::None;
425      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
426        // FIXME: remove in LLVM 3.0
427        // The alignment is stored as a 16-bit raw value from bits 31--16.
428        // We shift the bits above 31 down by 11 bits.
429
430        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
431        if (Alignment && !isPowerOf2_32(Alignment))
432          return Error("Alignment is not a power of two.");
433
434        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
435        if (Alignment)
436          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
437        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
438        Record[i+1] = ReconstitutedAttr;
439
440        if (Record[i] == 0)
441          RetAttribute = Record[i+1];
442        else if (Record[i] == ~0U)
443          FnAttribute = Record[i+1];
444      }
445
446      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
447                              Attribute::ReadOnly|Attribute::ReadNone);
448
449      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
450          (RetAttribute & OldRetAttrs) != 0) {
451        if (FnAttribute == Attribute::None) { // add a slot so they get added.
452          Record.push_back(~0U);
453          Record.push_back(0);
454        }
455
456        FnAttribute  |= RetAttribute & OldRetAttrs;
457        RetAttribute &= ~OldRetAttrs;
458      }
459
460      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
461        if (Record[i] == 0) {
462          if (RetAttribute != Attribute::None)
463            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
464        } else if (Record[i] == ~0U) {
465          if (FnAttribute != Attribute::None)
466            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
467        } else if (Record[i+1] != Attribute::None)
468          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
469      }
470
471      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
472      Attrs.clear();
473      break;
474    }
475    }
476  }
477}
478
479
480bool BitcodeReader::ParseTypeTable() {
481  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
482    return Error("Malformed block record");
483
484  if (!TypeList.empty())
485    return Error("Multiple TYPE_BLOCKs found!");
486
487  SmallVector<uint64_t, 64> Record;
488  unsigned NumRecords = 0;
489
490  // Read all the records for this type table.
491  while (1) {
492    unsigned Code = Stream.ReadCode();
493    if (Code == bitc::END_BLOCK) {
494      if (NumRecords != TypeList.size())
495        return Error("Invalid type forward reference in TYPE_BLOCK");
496      if (Stream.ReadBlockEnd())
497        return Error("Error at end of type table block");
498      return false;
499    }
500
501    if (Code == bitc::ENTER_SUBBLOCK) {
502      // No known subblocks, always skip them.
503      Stream.ReadSubBlockID();
504      if (Stream.SkipBlock())
505        return Error("Malformed block record");
506      continue;
507    }
508
509    if (Code == bitc::DEFINE_ABBREV) {
510      Stream.ReadAbbrevRecord();
511      continue;
512    }
513
514    // Read a record.
515    Record.clear();
516    const Type *ResultTy = 0;
517    switch (Stream.ReadRecord(Code, Record)) {
518    default:  // Default behavior: unknown type.
519      ResultTy = 0;
520      break;
521    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
522      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
523      // type list.  This allows us to reserve space.
524      if (Record.size() < 1)
525        return Error("Invalid TYPE_CODE_NUMENTRY record");
526      TypeList.reserve(Record[0]);
527      continue;
528    case bitc::TYPE_CODE_VOID:      // VOID
529      ResultTy = Type::getVoidTy(Context);
530      break;
531    case bitc::TYPE_CODE_FLOAT:     // FLOAT
532      ResultTy = Type::getFloatTy(Context);
533      break;
534    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
535      ResultTy = Type::getDoubleTy(Context);
536      break;
537    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
538      ResultTy = Type::getX86_FP80Ty(Context);
539      break;
540    case bitc::TYPE_CODE_FP128:     // FP128
541      ResultTy = Type::getFP128Ty(Context);
542      break;
543    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
544      ResultTy = Type::getPPC_FP128Ty(Context);
545      break;
546    case bitc::TYPE_CODE_LABEL:     // LABEL
547      ResultTy = Type::getLabelTy(Context);
548      break;
549    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
550      ResultTy = 0;
551      break;
552    case bitc::TYPE_CODE_METADATA:  // METADATA
553      ResultTy = Type::getMetadataTy(Context);
554      break;
555    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556      if (Record.size() < 1)
557        return Error("Invalid Integer type record");
558
559      ResultTy = IntegerType::get(Context, Record[0]);
560      break;
561    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                    //          [pointee type, address space]
563      if (Record.size() < 1)
564        return Error("Invalid POINTER type record");
565      unsigned AddressSpace = 0;
566      if (Record.size() == 2)
567        AddressSpace = Record[1];
568      ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                        AddressSpace);
570      break;
571    }
572    case bitc::TYPE_CODE_FUNCTION: {
573      // FIXME: attrid is dead, remove it in LLVM 3.0
574      // FUNCTION: [vararg, attrid, retty, paramty x N]
575      if (Record.size() < 3)
576        return Error("Invalid FUNCTION type record");
577      std::vector<const Type*> ArgTys;
578      for (unsigned i = 3, e = Record.size(); i != e; ++i)
579        ArgTys.push_back(getTypeByID(Record[i], true));
580
581      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                   Record[0]);
583      break;
584    }
585    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586      if (Record.size() < 1)
587        return Error("Invalid STRUCT type record");
588      std::vector<const Type*> EltTys;
589      for (unsigned i = 1, e = Record.size(); i != e; ++i)
590        EltTys.push_back(getTypeByID(Record[i], true));
591      ResultTy = StructType::get(Context, EltTys, Record[0]);
592      break;
593    }
594    case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
595      SmallVector<const Type*, 8> EltTys;
596      for (unsigned i = 0, e = Record.size(); i != e; ++i)
597        EltTys.push_back(getTypeByID(Record[i], true));
598      ResultTy = UnionType::get(&EltTys[0], EltTys.size());
599      break;
600    }
601    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
602      if (Record.size() < 2)
603        return Error("Invalid ARRAY type record");
604      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
605      break;
606    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
607      if (Record.size() < 2)
608        return Error("Invalid VECTOR type record");
609      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
610      break;
611    }
612
613    if (NumRecords == TypeList.size()) {
614      // If this is a new type slot, just append it.
615      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
616      ++NumRecords;
617    } else if (ResultTy == 0) {
618      // Otherwise, this was forward referenced, so an opaque type was created,
619      // but the result type is actually just an opaque.  Leave the one we
620      // created previously.
621      ++NumRecords;
622    } else {
623      // Otherwise, this was forward referenced, so an opaque type was created.
624      // Resolve the opaque type to the real type now.
625      assert(NumRecords < TypeList.size() && "Typelist imbalance");
626      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
627
628      // Don't directly push the new type on the Tab. Instead we want to replace
629      // the opaque type we previously inserted with the new concrete value. The
630      // refinement from the abstract (opaque) type to the new type causes all
631      // uses of the abstract type to use the concrete type (NewTy). This will
632      // also cause the opaque type to be deleted.
633      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
634
635      // This should have replaced the old opaque type with the new type in the
636      // value table... or with a preexisting type that was already in the
637      // system.  Let's just make sure it did.
638      assert(TypeList[NumRecords-1].get() != OldTy &&
639             "refineAbstractType didn't work!");
640    }
641  }
642}
643
644
645bool BitcodeReader::ParseTypeSymbolTable() {
646  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
647    return Error("Malformed block record");
648
649  SmallVector<uint64_t, 64> Record;
650
651  // Read all the records for this type table.
652  std::string TypeName;
653  while (1) {
654    unsigned Code = Stream.ReadCode();
655    if (Code == bitc::END_BLOCK) {
656      if (Stream.ReadBlockEnd())
657        return Error("Error at end of type symbol table block");
658      return false;
659    }
660
661    if (Code == bitc::ENTER_SUBBLOCK) {
662      // No known subblocks, always skip them.
663      Stream.ReadSubBlockID();
664      if (Stream.SkipBlock())
665        return Error("Malformed block record");
666      continue;
667    }
668
669    if (Code == bitc::DEFINE_ABBREV) {
670      Stream.ReadAbbrevRecord();
671      continue;
672    }
673
674    // Read a record.
675    Record.clear();
676    switch (Stream.ReadRecord(Code, Record)) {
677    default:  // Default behavior: unknown type.
678      break;
679    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
680      if (ConvertToString(Record, 1, TypeName))
681        return Error("Invalid TST_ENTRY record");
682      unsigned TypeID = Record[0];
683      if (TypeID >= TypeList.size())
684        return Error("Invalid Type ID in TST_ENTRY record");
685
686      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
687      TypeName.clear();
688      break;
689    }
690  }
691}
692
693bool BitcodeReader::ParseValueSymbolTable() {
694  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
695    return Error("Malformed block record");
696
697  SmallVector<uint64_t, 64> Record;
698
699  // Read all the records for this value table.
700  SmallString<128> ValueName;
701  while (1) {
702    unsigned Code = Stream.ReadCode();
703    if (Code == bitc::END_BLOCK) {
704      if (Stream.ReadBlockEnd())
705        return Error("Error at end of value symbol table block");
706      return false;
707    }
708    if (Code == bitc::ENTER_SUBBLOCK) {
709      // No known subblocks, always skip them.
710      Stream.ReadSubBlockID();
711      if (Stream.SkipBlock())
712        return Error("Malformed block record");
713      continue;
714    }
715
716    if (Code == bitc::DEFINE_ABBREV) {
717      Stream.ReadAbbrevRecord();
718      continue;
719    }
720
721    // Read a record.
722    Record.clear();
723    switch (Stream.ReadRecord(Code, Record)) {
724    default:  // Default behavior: unknown type.
725      break;
726    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
727      if (ConvertToString(Record, 1, ValueName))
728        return Error("Invalid VST_ENTRY record");
729      unsigned ValueID = Record[0];
730      if (ValueID >= ValueList.size())
731        return Error("Invalid Value ID in VST_ENTRY record");
732      Value *V = ValueList[ValueID];
733
734      V->setName(StringRef(ValueName.data(), ValueName.size()));
735      ValueName.clear();
736      break;
737    }
738    case bitc::VST_CODE_BBENTRY: {
739      if (ConvertToString(Record, 1, ValueName))
740        return Error("Invalid VST_BBENTRY record");
741      BasicBlock *BB = getBasicBlock(Record[0]);
742      if (BB == 0)
743        return Error("Invalid BB ID in VST_BBENTRY record");
744
745      BB->setName(StringRef(ValueName.data(), ValueName.size()));
746      ValueName.clear();
747      break;
748    }
749    }
750  }
751}
752
753bool BitcodeReader::ParseMetadata() {
754  unsigned NextMDValueNo = MDValueList.size();
755
756  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
757    return Error("Malformed block record");
758
759  SmallVector<uint64_t, 64> Record;
760
761  // Read all the records.
762  while (1) {
763    unsigned Code = Stream.ReadCode();
764    if (Code == bitc::END_BLOCK) {
765      if (Stream.ReadBlockEnd())
766        return Error("Error at end of PARAMATTR block");
767      return false;
768    }
769
770    if (Code == bitc::ENTER_SUBBLOCK) {
771      // No known subblocks, always skip them.
772      Stream.ReadSubBlockID();
773      if (Stream.SkipBlock())
774        return Error("Malformed block record");
775      continue;
776    }
777
778    if (Code == bitc::DEFINE_ABBREV) {
779      Stream.ReadAbbrevRecord();
780      continue;
781    }
782
783    bool IsFunctionLocal = false;
784    // Read a record.
785    Record.clear();
786    switch (Stream.ReadRecord(Code, Record)) {
787    default:  // Default behavior: ignore.
788      break;
789    case bitc::METADATA_NAME: {
790      // Read named of the named metadata.
791      unsigned NameLength = Record.size();
792      SmallString<8> Name;
793      Name.resize(NameLength);
794      for (unsigned i = 0; i != NameLength; ++i)
795        Name[i] = Record[i];
796      Record.clear();
797      Code = Stream.ReadCode();
798
799      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
800      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
801        assert ( 0 && "Inavlid Named Metadata record");
802
803      // Read named metadata elements.
804      unsigned Size = Record.size();
805      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
806      for (unsigned i = 0; i != Size; ++i) {
807        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
808        if (MD == 0)
809          return Error("Malformed metadata record");
810        NMD->addOperand(MD);
811      }
812      break;
813    }
814    case bitc::METADATA_FN_NODE:
815      IsFunctionLocal = true;
816      // fall-through
817    case bitc::METADATA_NODE: {
818      if (Record.size() % 2 == 1)
819        return Error("Invalid METADATA_NODE record");
820
821      unsigned Size = Record.size();
822      SmallVector<Value*, 8> Elts;
823      for (unsigned i = 0; i != Size; i += 2) {
824        const Type *Ty = getTypeByID(Record[i], false);
825        if (Ty->isMetadataTy())
826          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
827        else if (!Ty->isVoidTy())
828          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
829        else
830          Elts.push_back(NULL);
831      }
832      Value *V = MDNode::getWhenValsUnresolved(Context,
833                                               Elts.data(), Elts.size(),
834                                               IsFunctionLocal);
835      IsFunctionLocal = false;
836      MDValueList.AssignValue(V, NextMDValueNo++);
837      break;
838    }
839    case bitc::METADATA_STRING: {
840      unsigned MDStringLength = Record.size();
841      SmallString<8> String;
842      String.resize(MDStringLength);
843      for (unsigned i = 0; i != MDStringLength; ++i)
844        String[i] = Record[i];
845      Value *V = MDString::get(Context,
846                               StringRef(String.data(), String.size()));
847      MDValueList.AssignValue(V, NextMDValueNo++);
848      break;
849    }
850    case bitc::METADATA_KIND: {
851      unsigned RecordLength = Record.size();
852      if (Record.empty() || RecordLength < 2)
853        return Error("Invalid METADATA_KIND record");
854      SmallString<8> Name;
855      Name.resize(RecordLength-1);
856      unsigned Kind = Record[0];
857      for (unsigned i = 1; i != RecordLength; ++i)
858        Name[i-1] = Record[i];
859
860      unsigned NewKind = TheModule->getMDKindID(Name.str());
861      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
862        return Error("Conflicting METADATA_KIND records");
863      break;
864    }
865    }
866  }
867}
868
869/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
870/// the LSB for dense VBR encoding.
871static uint64_t DecodeSignRotatedValue(uint64_t V) {
872  if ((V & 1) == 0)
873    return V >> 1;
874  if (V != 1)
875    return -(V >> 1);
876  // There is no such thing as -0 with integers.  "-0" really means MININT.
877  return 1ULL << 63;
878}
879
880/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
881/// values and aliases that we can.
882bool BitcodeReader::ResolveGlobalAndAliasInits() {
883  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
884  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
885
886  GlobalInitWorklist.swap(GlobalInits);
887  AliasInitWorklist.swap(AliasInits);
888
889  while (!GlobalInitWorklist.empty()) {
890    unsigned ValID = GlobalInitWorklist.back().second;
891    if (ValID >= ValueList.size()) {
892      // Not ready to resolve this yet, it requires something later in the file.
893      GlobalInits.push_back(GlobalInitWorklist.back());
894    } else {
895      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
896        GlobalInitWorklist.back().first->setInitializer(C);
897      else
898        return Error("Global variable initializer is not a constant!");
899    }
900    GlobalInitWorklist.pop_back();
901  }
902
903  while (!AliasInitWorklist.empty()) {
904    unsigned ValID = AliasInitWorklist.back().second;
905    if (ValID >= ValueList.size()) {
906      AliasInits.push_back(AliasInitWorklist.back());
907    } else {
908      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
909        AliasInitWorklist.back().first->setAliasee(C);
910      else
911        return Error("Alias initializer is not a constant!");
912    }
913    AliasInitWorklist.pop_back();
914  }
915  return false;
916}
917
918bool BitcodeReader::ParseConstants() {
919  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
920    return Error("Malformed block record");
921
922  SmallVector<uint64_t, 64> Record;
923
924  // Read all the records for this value table.
925  const Type *CurTy = Type::getInt32Ty(Context);
926  unsigned NextCstNo = ValueList.size();
927  while (1) {
928    unsigned Code = Stream.ReadCode();
929    if (Code == bitc::END_BLOCK)
930      break;
931
932    if (Code == bitc::ENTER_SUBBLOCK) {
933      // No known subblocks, always skip them.
934      Stream.ReadSubBlockID();
935      if (Stream.SkipBlock())
936        return Error("Malformed block record");
937      continue;
938    }
939
940    if (Code == bitc::DEFINE_ABBREV) {
941      Stream.ReadAbbrevRecord();
942      continue;
943    }
944
945    // Read a record.
946    Record.clear();
947    Value *V = 0;
948    unsigned BitCode = Stream.ReadRecord(Code, Record);
949    switch (BitCode) {
950    default:  // Default behavior: unknown constant
951    case bitc::CST_CODE_UNDEF:     // UNDEF
952      V = UndefValue::get(CurTy);
953      break;
954    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
955      if (Record.empty())
956        return Error("Malformed CST_SETTYPE record");
957      if (Record[0] >= TypeList.size())
958        return Error("Invalid Type ID in CST_SETTYPE record");
959      CurTy = TypeList[Record[0]];
960      continue;  // Skip the ValueList manipulation.
961    case bitc::CST_CODE_NULL:      // NULL
962      V = Constant::getNullValue(CurTy);
963      break;
964    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
965      if (!CurTy->isIntegerTy() || Record.empty())
966        return Error("Invalid CST_INTEGER record");
967      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
968      break;
969    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
970      if (!CurTy->isIntegerTy() || Record.empty())
971        return Error("Invalid WIDE_INTEGER record");
972
973      unsigned NumWords = Record.size();
974      SmallVector<uint64_t, 8> Words;
975      Words.resize(NumWords);
976      for (unsigned i = 0; i != NumWords; ++i)
977        Words[i] = DecodeSignRotatedValue(Record[i]);
978      V = ConstantInt::get(Context,
979                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
980                           NumWords, &Words[0]));
981      break;
982    }
983    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
984      if (Record.empty())
985        return Error("Invalid FLOAT record");
986      if (CurTy->isFloatTy())
987        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
988      else if (CurTy->isDoubleTy())
989        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
990      else if (CurTy->isX86_FP80Ty()) {
991        // Bits are not stored the same way as a normal i80 APInt, compensate.
992        uint64_t Rearrange[2];
993        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
994        Rearrange[1] = Record[0] >> 48;
995        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
996      } else if (CurTy->isFP128Ty())
997        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
998      else if (CurTy->isPPC_FP128Ty())
999        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1000      else
1001        V = UndefValue::get(CurTy);
1002      break;
1003    }
1004
1005    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1006      if (Record.empty())
1007        return Error("Invalid CST_AGGREGATE record");
1008
1009      unsigned Size = Record.size();
1010      std::vector<Constant*> Elts;
1011
1012      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1013        for (unsigned i = 0; i != Size; ++i)
1014          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1015                                                     STy->getElementType(i)));
1016        V = ConstantStruct::get(STy, Elts);
1017      } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
1018        uint64_t Index = Record[0];
1019        Constant *Val = ValueList.getConstantFwdRef(Record[1],
1020                                        UnTy->getElementType(Index));
1021        V = ConstantUnion::get(UnTy, Val);
1022      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1023        const Type *EltTy = ATy->getElementType();
1024        for (unsigned i = 0; i != Size; ++i)
1025          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1026        V = ConstantArray::get(ATy, Elts);
1027      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1028        const Type *EltTy = VTy->getElementType();
1029        for (unsigned i = 0; i != Size; ++i)
1030          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1031        V = ConstantVector::get(Elts);
1032      } else {
1033        V = UndefValue::get(CurTy);
1034      }
1035      break;
1036    }
1037    case bitc::CST_CODE_STRING: { // STRING: [values]
1038      if (Record.empty())
1039        return Error("Invalid CST_AGGREGATE record");
1040
1041      const ArrayType *ATy = cast<ArrayType>(CurTy);
1042      const Type *EltTy = ATy->getElementType();
1043
1044      unsigned Size = Record.size();
1045      std::vector<Constant*> Elts;
1046      for (unsigned i = 0; i != Size; ++i)
1047        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1048      V = ConstantArray::get(ATy, Elts);
1049      break;
1050    }
1051    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1052      if (Record.empty())
1053        return Error("Invalid CST_AGGREGATE record");
1054
1055      const ArrayType *ATy = cast<ArrayType>(CurTy);
1056      const Type *EltTy = ATy->getElementType();
1057
1058      unsigned Size = Record.size();
1059      std::vector<Constant*> Elts;
1060      for (unsigned i = 0; i != Size; ++i)
1061        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1062      Elts.push_back(Constant::getNullValue(EltTy));
1063      V = ConstantArray::get(ATy, Elts);
1064      break;
1065    }
1066    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1067      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1068      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1069      if (Opc < 0) {
1070        V = UndefValue::get(CurTy);  // Unknown binop.
1071      } else {
1072        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1073        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1074        unsigned Flags = 0;
1075        if (Record.size() >= 4) {
1076          if (Opc == Instruction::Add ||
1077              Opc == Instruction::Sub ||
1078              Opc == Instruction::Mul) {
1079            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1080              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1081            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1082              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1083          } else if (Opc == Instruction::SDiv) {
1084            if (Record[3] & (1 << bitc::SDIV_EXACT))
1085              Flags |= SDivOperator::IsExact;
1086          }
1087        }
1088        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1089      }
1090      break;
1091    }
1092    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1093      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1094      int Opc = GetDecodedCastOpcode(Record[0]);
1095      if (Opc < 0) {
1096        V = UndefValue::get(CurTy);  // Unknown cast.
1097      } else {
1098        const Type *OpTy = getTypeByID(Record[1]);
1099        if (!OpTy) return Error("Invalid CE_CAST record");
1100        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1101        V = ConstantExpr::getCast(Opc, Op, CurTy);
1102      }
1103      break;
1104    }
1105    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1106    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1107      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1108      SmallVector<Constant*, 16> Elts;
1109      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1110        const Type *ElTy = getTypeByID(Record[i]);
1111        if (!ElTy) return Error("Invalid CE_GEP record");
1112        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1113      }
1114      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1115        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1116                                                   Elts.size()-1);
1117      else
1118        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1119                                           Elts.size()-1);
1120      break;
1121    }
1122    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1123      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1124      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1125                                                              Type::getInt1Ty(Context)),
1126                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1127                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1128      break;
1129    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1130      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1131      const VectorType *OpTy =
1132        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1133      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1134      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1135      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1136      V = ConstantExpr::getExtractElement(Op0, Op1);
1137      break;
1138    }
1139    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1140      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1141      if (Record.size() < 3 || OpTy == 0)
1142        return Error("Invalid CE_INSERTELT record");
1143      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1144      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1145                                                  OpTy->getElementType());
1146      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1147      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1148      break;
1149    }
1150    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1151      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1152      if (Record.size() < 3 || OpTy == 0)
1153        return Error("Invalid CE_SHUFFLEVEC record");
1154      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1155      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1156      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1157                                                 OpTy->getNumElements());
1158      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1159      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1160      break;
1161    }
1162    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1163      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1164      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1165      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1166        return Error("Invalid CE_SHUFVEC_EX record");
1167      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1168      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1169      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1170                                                 RTy->getNumElements());
1171      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1172      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1173      break;
1174    }
1175    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1176      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1177      const Type *OpTy = getTypeByID(Record[0]);
1178      if (OpTy == 0) return Error("Invalid CE_CMP record");
1179      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1180      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1181
1182      if (OpTy->isFPOrFPVectorTy())
1183        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1184      else
1185        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1186      break;
1187    }
1188    case bitc::CST_CODE_INLINEASM: {
1189      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1190      std::string AsmStr, ConstrStr;
1191      bool HasSideEffects = Record[0] & 1;
1192      bool IsAlignStack = Record[0] >> 1;
1193      unsigned AsmStrSize = Record[1];
1194      if (2+AsmStrSize >= Record.size())
1195        return Error("Invalid INLINEASM record");
1196      unsigned ConstStrSize = Record[2+AsmStrSize];
1197      if (3+AsmStrSize+ConstStrSize > Record.size())
1198        return Error("Invalid INLINEASM record");
1199
1200      for (unsigned i = 0; i != AsmStrSize; ++i)
1201        AsmStr += (char)Record[2+i];
1202      for (unsigned i = 0; i != ConstStrSize; ++i)
1203        ConstrStr += (char)Record[3+AsmStrSize+i];
1204      const PointerType *PTy = cast<PointerType>(CurTy);
1205      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1206                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1207      break;
1208    }
1209    case bitc::CST_CODE_BLOCKADDRESS:{
1210      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1211      const Type *FnTy = getTypeByID(Record[0]);
1212      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1213      Function *Fn =
1214        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1215      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1216
1217      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1218                                                  Type::getInt8Ty(Context),
1219                                            false, GlobalValue::InternalLinkage,
1220                                                  0, "");
1221      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1222      V = FwdRef;
1223      break;
1224    }
1225    }
1226
1227    ValueList.AssignValue(V, NextCstNo);
1228    ++NextCstNo;
1229  }
1230
1231  if (NextCstNo != ValueList.size())
1232    return Error("Invalid constant reference!");
1233
1234  if (Stream.ReadBlockEnd())
1235    return Error("Error at end of constants block");
1236
1237  // Once all the constants have been read, go through and resolve forward
1238  // references.
1239  ValueList.ResolveConstantForwardRefs();
1240  return false;
1241}
1242
1243/// RememberAndSkipFunctionBody - When we see the block for a function body,
1244/// remember where it is and then skip it.  This lets us lazily deserialize the
1245/// functions.
1246bool BitcodeReader::RememberAndSkipFunctionBody() {
1247  // Get the function we are talking about.
1248  if (FunctionsWithBodies.empty())
1249    return Error("Insufficient function protos");
1250
1251  Function *Fn = FunctionsWithBodies.back();
1252  FunctionsWithBodies.pop_back();
1253
1254  // Save the current stream state.
1255  uint64_t CurBit = Stream.GetCurrentBitNo();
1256  DeferredFunctionInfo[Fn] = CurBit;
1257
1258  // Skip over the function block for now.
1259  if (Stream.SkipBlock())
1260    return Error("Malformed block record");
1261  return false;
1262}
1263
1264bool BitcodeReader::ParseModule() {
1265  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1266    return Error("Malformed block record");
1267
1268  SmallVector<uint64_t, 64> Record;
1269  std::vector<std::string> SectionTable;
1270  std::vector<std::string> GCTable;
1271
1272  // Read all the records for this module.
1273  while (!Stream.AtEndOfStream()) {
1274    unsigned Code = Stream.ReadCode();
1275    if (Code == bitc::END_BLOCK) {
1276      if (Stream.ReadBlockEnd())
1277        return Error("Error at end of module block");
1278
1279      // Patch the initializers for globals and aliases up.
1280      ResolveGlobalAndAliasInits();
1281      if (!GlobalInits.empty() || !AliasInits.empty())
1282        return Error("Malformed global initializer set");
1283      if (!FunctionsWithBodies.empty())
1284        return Error("Too few function bodies found");
1285
1286      // Look for intrinsic functions which need to be upgraded at some point
1287      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1288           FI != FE; ++FI) {
1289        Function* NewFn;
1290        if (UpgradeIntrinsicFunction(FI, NewFn))
1291          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1292      }
1293
1294      // Force deallocation of memory for these vectors to favor the client that
1295      // want lazy deserialization.
1296      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1297      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1298      std::vector<Function*>().swap(FunctionsWithBodies);
1299      return false;
1300    }
1301
1302    if (Code == bitc::ENTER_SUBBLOCK) {
1303      switch (Stream.ReadSubBlockID()) {
1304      default:  // Skip unknown content.
1305        if (Stream.SkipBlock())
1306          return Error("Malformed block record");
1307        break;
1308      case bitc::BLOCKINFO_BLOCK_ID:
1309        if (Stream.ReadBlockInfoBlock())
1310          return Error("Malformed BlockInfoBlock");
1311        break;
1312      case bitc::PARAMATTR_BLOCK_ID:
1313        if (ParseAttributeBlock())
1314          return true;
1315        break;
1316      case bitc::TYPE_BLOCK_ID:
1317        if (ParseTypeTable())
1318          return true;
1319        break;
1320      case bitc::TYPE_SYMTAB_BLOCK_ID:
1321        if (ParseTypeSymbolTable())
1322          return true;
1323        break;
1324      case bitc::VALUE_SYMTAB_BLOCK_ID:
1325        if (ParseValueSymbolTable())
1326          return true;
1327        break;
1328      case bitc::CONSTANTS_BLOCK_ID:
1329        if (ParseConstants() || ResolveGlobalAndAliasInits())
1330          return true;
1331        break;
1332      case bitc::METADATA_BLOCK_ID:
1333        if (ParseMetadata())
1334          return true;
1335        break;
1336      case bitc::FUNCTION_BLOCK_ID:
1337        // If this is the first function body we've seen, reverse the
1338        // FunctionsWithBodies list.
1339        if (!HasReversedFunctionsWithBodies) {
1340          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1341          HasReversedFunctionsWithBodies = true;
1342        }
1343
1344        if (RememberAndSkipFunctionBody())
1345          return true;
1346        break;
1347      }
1348      continue;
1349    }
1350
1351    if (Code == bitc::DEFINE_ABBREV) {
1352      Stream.ReadAbbrevRecord();
1353      continue;
1354    }
1355
1356    // Read a record.
1357    switch (Stream.ReadRecord(Code, Record)) {
1358    default: break;  // Default behavior, ignore unknown content.
1359    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1360      if (Record.size() < 1)
1361        return Error("Malformed MODULE_CODE_VERSION");
1362      // Only version #0 is supported so far.
1363      if (Record[0] != 0)
1364        return Error("Unknown bitstream version!");
1365      break;
1366    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1367      std::string S;
1368      if (ConvertToString(Record, 0, S))
1369        return Error("Invalid MODULE_CODE_TRIPLE record");
1370      TheModule->setTargetTriple(S);
1371      break;
1372    }
1373    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1374      std::string S;
1375      if (ConvertToString(Record, 0, S))
1376        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1377      TheModule->setDataLayout(S);
1378      break;
1379    }
1380    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1381      std::string S;
1382      if (ConvertToString(Record, 0, S))
1383        return Error("Invalid MODULE_CODE_ASM record");
1384      TheModule->setModuleInlineAsm(S);
1385      break;
1386    }
1387    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1388      std::string S;
1389      if (ConvertToString(Record, 0, S))
1390        return Error("Invalid MODULE_CODE_DEPLIB record");
1391      TheModule->addLibrary(S);
1392      break;
1393    }
1394    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1395      std::string S;
1396      if (ConvertToString(Record, 0, S))
1397        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1398      SectionTable.push_back(S);
1399      break;
1400    }
1401    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1402      std::string S;
1403      if (ConvertToString(Record, 0, S))
1404        return Error("Invalid MODULE_CODE_GCNAME record");
1405      GCTable.push_back(S);
1406      break;
1407    }
1408    // GLOBALVAR: [pointer type, isconst, initid,
1409    //             linkage, alignment, section, visibility, threadlocal]
1410    case bitc::MODULE_CODE_GLOBALVAR: {
1411      if (Record.size() < 6)
1412        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1413      const Type *Ty = getTypeByID(Record[0]);
1414      if (!Ty->isPointerTy())
1415        return Error("Global not a pointer type!");
1416      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1417      Ty = cast<PointerType>(Ty)->getElementType();
1418
1419      bool isConstant = Record[1];
1420      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1421      unsigned Alignment = (1 << Record[4]) >> 1;
1422      std::string Section;
1423      if (Record[5]) {
1424        if (Record[5]-1 >= SectionTable.size())
1425          return Error("Invalid section ID");
1426        Section = SectionTable[Record[5]-1];
1427      }
1428      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1429      if (Record.size() > 6)
1430        Visibility = GetDecodedVisibility(Record[6]);
1431      bool isThreadLocal = false;
1432      if (Record.size() > 7)
1433        isThreadLocal = Record[7];
1434
1435      GlobalVariable *NewGV =
1436        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1437                           isThreadLocal, AddressSpace);
1438      NewGV->setAlignment(Alignment);
1439      if (!Section.empty())
1440        NewGV->setSection(Section);
1441      NewGV->setVisibility(Visibility);
1442      NewGV->setThreadLocal(isThreadLocal);
1443
1444      ValueList.push_back(NewGV);
1445
1446      // Remember which value to use for the global initializer.
1447      if (unsigned InitID = Record[2])
1448        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1449      break;
1450    }
1451    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1452    //             alignment, section, visibility, gc]
1453    case bitc::MODULE_CODE_FUNCTION: {
1454      if (Record.size() < 8)
1455        return Error("Invalid MODULE_CODE_FUNCTION record");
1456      const Type *Ty = getTypeByID(Record[0]);
1457      if (!Ty->isPointerTy())
1458        return Error("Function not a pointer type!");
1459      const FunctionType *FTy =
1460        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1461      if (!FTy)
1462        return Error("Function not a pointer to function type!");
1463
1464      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1465                                        "", TheModule);
1466
1467      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1468      bool isProto = Record[2];
1469      Func->setLinkage(GetDecodedLinkage(Record[3]));
1470      Func->setAttributes(getAttributes(Record[4]));
1471
1472      Func->setAlignment((1 << Record[5]) >> 1);
1473      if (Record[6]) {
1474        if (Record[6]-1 >= SectionTable.size())
1475          return Error("Invalid section ID");
1476        Func->setSection(SectionTable[Record[6]-1]);
1477      }
1478      Func->setVisibility(GetDecodedVisibility(Record[7]));
1479      if (Record.size() > 8 && Record[8]) {
1480        if (Record[8]-1 > GCTable.size())
1481          return Error("Invalid GC ID");
1482        Func->setGC(GCTable[Record[8]-1].c_str());
1483      }
1484      ValueList.push_back(Func);
1485
1486      // If this is a function with a body, remember the prototype we are
1487      // creating now, so that we can match up the body with them later.
1488      if (!isProto)
1489        FunctionsWithBodies.push_back(Func);
1490      break;
1491    }
1492    // ALIAS: [alias type, aliasee val#, linkage]
1493    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1494    case bitc::MODULE_CODE_ALIAS: {
1495      if (Record.size() < 3)
1496        return Error("Invalid MODULE_ALIAS record");
1497      const Type *Ty = getTypeByID(Record[0]);
1498      if (!Ty->isPointerTy())
1499        return Error("Function not a pointer type!");
1500
1501      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1502                                           "", 0, TheModule);
1503      // Old bitcode files didn't have visibility field.
1504      if (Record.size() > 3)
1505        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1506      ValueList.push_back(NewGA);
1507      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1508      break;
1509    }
1510    /// MODULE_CODE_PURGEVALS: [numvals]
1511    case bitc::MODULE_CODE_PURGEVALS:
1512      // Trim down the value list to the specified size.
1513      if (Record.size() < 1 || Record[0] > ValueList.size())
1514        return Error("Invalid MODULE_PURGEVALS record");
1515      ValueList.shrinkTo(Record[0]);
1516      break;
1517    }
1518    Record.clear();
1519  }
1520
1521  return Error("Premature end of bitstream");
1522}
1523
1524bool BitcodeReader::ParseBitcodeInto(Module *M) {
1525  TheModule = 0;
1526
1527  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1528  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1529
1530  if (Buffer->getBufferSize() & 3) {
1531    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1532      return Error("Invalid bitcode signature");
1533    else
1534      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1535  }
1536
1537  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1538  // The magic number is 0x0B17C0DE stored in little endian.
1539  if (isBitcodeWrapper(BufPtr, BufEnd))
1540    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1541      return Error("Invalid bitcode wrapper header");
1542
1543  StreamFile.init(BufPtr, BufEnd);
1544  Stream.init(StreamFile);
1545
1546  // Sniff for the signature.
1547  if (Stream.Read(8) != 'B' ||
1548      Stream.Read(8) != 'C' ||
1549      Stream.Read(4) != 0x0 ||
1550      Stream.Read(4) != 0xC ||
1551      Stream.Read(4) != 0xE ||
1552      Stream.Read(4) != 0xD)
1553    return Error("Invalid bitcode signature");
1554
1555  // We expect a number of well-defined blocks, though we don't necessarily
1556  // need to understand them all.
1557  while (!Stream.AtEndOfStream()) {
1558    unsigned Code = Stream.ReadCode();
1559
1560    if (Code != bitc::ENTER_SUBBLOCK)
1561      return Error("Invalid record at top-level");
1562
1563    unsigned BlockID = Stream.ReadSubBlockID();
1564
1565    // We only know the MODULE subblock ID.
1566    switch (BlockID) {
1567    case bitc::BLOCKINFO_BLOCK_ID:
1568      if (Stream.ReadBlockInfoBlock())
1569        return Error("Malformed BlockInfoBlock");
1570      break;
1571    case bitc::MODULE_BLOCK_ID:
1572      // Reject multiple MODULE_BLOCK's in a single bitstream.
1573      if (TheModule)
1574        return Error("Multiple MODULE_BLOCKs in same stream");
1575      TheModule = M;
1576      if (ParseModule())
1577        return true;
1578      break;
1579    default:
1580      if (Stream.SkipBlock())
1581        return Error("Malformed block record");
1582      break;
1583    }
1584  }
1585
1586  return false;
1587}
1588
1589/// ParseMetadataAttachment - Parse metadata attachments.
1590bool BitcodeReader::ParseMetadataAttachment() {
1591  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1592    return Error("Malformed block record");
1593
1594  SmallVector<uint64_t, 64> Record;
1595  while(1) {
1596    unsigned Code = Stream.ReadCode();
1597    if (Code == bitc::END_BLOCK) {
1598      if (Stream.ReadBlockEnd())
1599        return Error("Error at end of PARAMATTR block");
1600      break;
1601    }
1602    if (Code == bitc::DEFINE_ABBREV) {
1603      Stream.ReadAbbrevRecord();
1604      continue;
1605    }
1606    // Read a metadata attachment record.
1607    Record.clear();
1608    switch (Stream.ReadRecord(Code, Record)) {
1609    default:  // Default behavior: ignore.
1610      break;
1611    case bitc::METADATA_ATTACHMENT: {
1612      unsigned RecordLength = Record.size();
1613      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1614        return Error ("Invalid METADATA_ATTACHMENT reader!");
1615      Instruction *Inst = InstructionList[Record[0]];
1616      for (unsigned i = 1; i != RecordLength; i = i+2) {
1617        unsigned Kind = Record[i];
1618        DenseMap<unsigned, unsigned>::iterator I =
1619          MDKindMap.find(Kind);
1620        if (I == MDKindMap.end())
1621          return Error("Invalid metadata kind ID");
1622        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1623        Inst->setMetadata(I->second, cast<MDNode>(Node));
1624      }
1625      break;
1626    }
1627    }
1628  }
1629  return false;
1630}
1631
1632/// ParseFunctionBody - Lazily parse the specified function body block.
1633bool BitcodeReader::ParseFunctionBody(Function *F) {
1634  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1635    return Error("Malformed block record");
1636
1637  InstructionList.clear();
1638  unsigned ModuleValueListSize = ValueList.size();
1639
1640  // Add all the function arguments to the value table.
1641  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1642    ValueList.push_back(I);
1643
1644  unsigned NextValueNo = ValueList.size();
1645  BasicBlock *CurBB = 0;
1646  unsigned CurBBNo = 0;
1647
1648  DebugLoc LastLoc;
1649
1650  // Read all the records.
1651  SmallVector<uint64_t, 64> Record;
1652  while (1) {
1653    unsigned Code = Stream.ReadCode();
1654    if (Code == bitc::END_BLOCK) {
1655      if (Stream.ReadBlockEnd())
1656        return Error("Error at end of function block");
1657      break;
1658    }
1659
1660    if (Code == bitc::ENTER_SUBBLOCK) {
1661      switch (Stream.ReadSubBlockID()) {
1662      default:  // Skip unknown content.
1663        if (Stream.SkipBlock())
1664          return Error("Malformed block record");
1665        break;
1666      case bitc::CONSTANTS_BLOCK_ID:
1667        if (ParseConstants()) return true;
1668        NextValueNo = ValueList.size();
1669        break;
1670      case bitc::VALUE_SYMTAB_BLOCK_ID:
1671        if (ParseValueSymbolTable()) return true;
1672        break;
1673      case bitc::METADATA_ATTACHMENT_ID:
1674        if (ParseMetadataAttachment()) return true;
1675        break;
1676      case bitc::METADATA_BLOCK_ID:
1677        if (ParseMetadata()) return true;
1678        break;
1679      }
1680      continue;
1681    }
1682
1683    if (Code == bitc::DEFINE_ABBREV) {
1684      Stream.ReadAbbrevRecord();
1685      continue;
1686    }
1687
1688    // Read a record.
1689    Record.clear();
1690    Instruction *I = 0;
1691    unsigned BitCode = Stream.ReadRecord(Code, Record);
1692    switch (BitCode) {
1693    default: // Default behavior: reject
1694      return Error("Unknown instruction");
1695    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1696      if (Record.size() < 1 || Record[0] == 0)
1697        return Error("Invalid DECLAREBLOCKS record");
1698      // Create all the basic blocks for the function.
1699      FunctionBBs.resize(Record[0]);
1700      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1701        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1702      CurBB = FunctionBBs[0];
1703      continue;
1704
1705
1706    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1707      // This record indicates that the last instruction is at the same
1708      // location as the previous instruction with a location.
1709      I = 0;
1710
1711      // Get the last instruction emitted.
1712      if (CurBB && !CurBB->empty())
1713        I = &CurBB->back();
1714      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1715               !FunctionBBs[CurBBNo-1]->empty())
1716        I = &FunctionBBs[CurBBNo-1]->back();
1717
1718      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1719      I->setDebugLoc(LastLoc);
1720      I = 0;
1721      continue;
1722
1723    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1724      I = 0;     // Get the last instruction emitted.
1725      if (CurBB && !CurBB->empty())
1726        I = &CurBB->back();
1727      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1728               !FunctionBBs[CurBBNo-1]->empty())
1729        I = &FunctionBBs[CurBBNo-1]->back();
1730      if (I == 0 || Record.size() < 4)
1731        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1732
1733      unsigned Line = Record[0], Col = Record[1];
1734      unsigned ScopeID = Record[2], IAID = Record[3];
1735
1736      MDNode *Scope = 0, *IA = 0;
1737      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1738      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1739      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1740      I->setDebugLoc(LastLoc);
1741      I = 0;
1742      continue;
1743    }
1744
1745    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1746      unsigned OpNum = 0;
1747      Value *LHS, *RHS;
1748      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1749          getValue(Record, OpNum, LHS->getType(), RHS) ||
1750          OpNum+1 > Record.size())
1751        return Error("Invalid BINOP record");
1752
1753      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1754      if (Opc == -1) return Error("Invalid BINOP record");
1755      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1756      InstructionList.push_back(I);
1757      if (OpNum < Record.size()) {
1758        if (Opc == Instruction::Add ||
1759            Opc == Instruction::Sub ||
1760            Opc == Instruction::Mul) {
1761          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1762            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1763          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1764            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1765        } else if (Opc == Instruction::SDiv) {
1766          if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1767            cast<BinaryOperator>(I)->setIsExact(true);
1768        }
1769      }
1770      break;
1771    }
1772    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1773      unsigned OpNum = 0;
1774      Value *Op;
1775      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1776          OpNum+2 != Record.size())
1777        return Error("Invalid CAST record");
1778
1779      const Type *ResTy = getTypeByID(Record[OpNum]);
1780      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1781      if (Opc == -1 || ResTy == 0)
1782        return Error("Invalid CAST record");
1783      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1784      InstructionList.push_back(I);
1785      break;
1786    }
1787    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1788    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1789      unsigned OpNum = 0;
1790      Value *BasePtr;
1791      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1792        return Error("Invalid GEP record");
1793
1794      SmallVector<Value*, 16> GEPIdx;
1795      while (OpNum != Record.size()) {
1796        Value *Op;
1797        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1798          return Error("Invalid GEP record");
1799        GEPIdx.push_back(Op);
1800      }
1801
1802      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1803      InstructionList.push_back(I);
1804      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1805        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1806      break;
1807    }
1808
1809    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1810                                       // EXTRACTVAL: [opty, opval, n x indices]
1811      unsigned OpNum = 0;
1812      Value *Agg;
1813      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1814        return Error("Invalid EXTRACTVAL record");
1815
1816      SmallVector<unsigned, 4> EXTRACTVALIdx;
1817      for (unsigned RecSize = Record.size();
1818           OpNum != RecSize; ++OpNum) {
1819        uint64_t Index = Record[OpNum];
1820        if ((unsigned)Index != Index)
1821          return Error("Invalid EXTRACTVAL index");
1822        EXTRACTVALIdx.push_back((unsigned)Index);
1823      }
1824
1825      I = ExtractValueInst::Create(Agg,
1826                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1827      InstructionList.push_back(I);
1828      break;
1829    }
1830
1831    case bitc::FUNC_CODE_INST_INSERTVAL: {
1832                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1833      unsigned OpNum = 0;
1834      Value *Agg;
1835      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1836        return Error("Invalid INSERTVAL record");
1837      Value *Val;
1838      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1839        return Error("Invalid INSERTVAL record");
1840
1841      SmallVector<unsigned, 4> INSERTVALIdx;
1842      for (unsigned RecSize = Record.size();
1843           OpNum != RecSize; ++OpNum) {
1844        uint64_t Index = Record[OpNum];
1845        if ((unsigned)Index != Index)
1846          return Error("Invalid INSERTVAL index");
1847        INSERTVALIdx.push_back((unsigned)Index);
1848      }
1849
1850      I = InsertValueInst::Create(Agg, Val,
1851                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1852      InstructionList.push_back(I);
1853      break;
1854    }
1855
1856    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1857      // obsolete form of select
1858      // handles select i1 ... in old bitcode
1859      unsigned OpNum = 0;
1860      Value *TrueVal, *FalseVal, *Cond;
1861      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1862          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1863          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1864        return Error("Invalid SELECT record");
1865
1866      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1867      InstructionList.push_back(I);
1868      break;
1869    }
1870
1871    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1872      // new form of select
1873      // handles select i1 or select [N x i1]
1874      unsigned OpNum = 0;
1875      Value *TrueVal, *FalseVal, *Cond;
1876      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1877          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1878          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1879        return Error("Invalid SELECT record");
1880
1881      // select condition can be either i1 or [N x i1]
1882      if (const VectorType* vector_type =
1883          dyn_cast<const VectorType>(Cond->getType())) {
1884        // expect <n x i1>
1885        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1886          return Error("Invalid SELECT condition type");
1887      } else {
1888        // expect i1
1889        if (Cond->getType() != Type::getInt1Ty(Context))
1890          return Error("Invalid SELECT condition type");
1891      }
1892
1893      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1894      InstructionList.push_back(I);
1895      break;
1896    }
1897
1898    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1899      unsigned OpNum = 0;
1900      Value *Vec, *Idx;
1901      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1902          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1903        return Error("Invalid EXTRACTELT record");
1904      I = ExtractElementInst::Create(Vec, Idx);
1905      InstructionList.push_back(I);
1906      break;
1907    }
1908
1909    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1910      unsigned OpNum = 0;
1911      Value *Vec, *Elt, *Idx;
1912      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1913          getValue(Record, OpNum,
1914                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1915          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1916        return Error("Invalid INSERTELT record");
1917      I = InsertElementInst::Create(Vec, Elt, Idx);
1918      InstructionList.push_back(I);
1919      break;
1920    }
1921
1922    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1923      unsigned OpNum = 0;
1924      Value *Vec1, *Vec2, *Mask;
1925      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1926          getValue(Record, OpNum, Vec1->getType(), Vec2))
1927        return Error("Invalid SHUFFLEVEC record");
1928
1929      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1930        return Error("Invalid SHUFFLEVEC record");
1931      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1932      InstructionList.push_back(I);
1933      break;
1934    }
1935
1936    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1937      // Old form of ICmp/FCmp returning bool
1938      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1939      // both legal on vectors but had different behaviour.
1940    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1941      // FCmp/ICmp returning bool or vector of bool
1942
1943      unsigned OpNum = 0;
1944      Value *LHS, *RHS;
1945      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1946          getValue(Record, OpNum, LHS->getType(), RHS) ||
1947          OpNum+1 != Record.size())
1948        return Error("Invalid CMP record");
1949
1950      if (LHS->getType()->isFPOrFPVectorTy())
1951        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1952      else
1953        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1954      InstructionList.push_back(I);
1955      break;
1956    }
1957
1958    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1959      if (Record.size() != 2)
1960        return Error("Invalid GETRESULT record");
1961      unsigned OpNum = 0;
1962      Value *Op;
1963      getValueTypePair(Record, OpNum, NextValueNo, Op);
1964      unsigned Index = Record[1];
1965      I = ExtractValueInst::Create(Op, Index);
1966      InstructionList.push_back(I);
1967      break;
1968    }
1969
1970    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1971      {
1972        unsigned Size = Record.size();
1973        if (Size == 0) {
1974          I = ReturnInst::Create(Context);
1975          InstructionList.push_back(I);
1976          break;
1977        }
1978
1979        unsigned OpNum = 0;
1980        SmallVector<Value *,4> Vs;
1981        do {
1982          Value *Op = NULL;
1983          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1984            return Error("Invalid RET record");
1985          Vs.push_back(Op);
1986        } while(OpNum != Record.size());
1987
1988        const Type *ReturnType = F->getReturnType();
1989        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
1990        if (Vs.size() > 1 ||
1991            (ReturnType->isStructTy() &&
1992             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1993          Value *RV = UndefValue::get(ReturnType);
1994          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1995            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1996            InstructionList.push_back(I);
1997            CurBB->getInstList().push_back(I);
1998            ValueList.AssignValue(I, NextValueNo++);
1999            RV = I;
2000          }
2001          I = ReturnInst::Create(Context, RV);
2002          InstructionList.push_back(I);
2003          break;
2004        }
2005
2006        I = ReturnInst::Create(Context, Vs[0]);
2007        InstructionList.push_back(I);
2008        break;
2009      }
2010    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2011      if (Record.size() != 1 && Record.size() != 3)
2012        return Error("Invalid BR record");
2013      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2014      if (TrueDest == 0)
2015        return Error("Invalid BR record");
2016
2017      if (Record.size() == 1) {
2018        I = BranchInst::Create(TrueDest);
2019        InstructionList.push_back(I);
2020      }
2021      else {
2022        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2023        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2024        if (FalseDest == 0 || Cond == 0)
2025          return Error("Invalid BR record");
2026        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2027        InstructionList.push_back(I);
2028      }
2029      break;
2030    }
2031    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2032      if (Record.size() < 3 || (Record.size() & 1) == 0)
2033        return Error("Invalid SWITCH record");
2034      const Type *OpTy = getTypeByID(Record[0]);
2035      Value *Cond = getFnValueByID(Record[1], OpTy);
2036      BasicBlock *Default = getBasicBlock(Record[2]);
2037      if (OpTy == 0 || Cond == 0 || Default == 0)
2038        return Error("Invalid SWITCH record");
2039      unsigned NumCases = (Record.size()-3)/2;
2040      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2041      InstructionList.push_back(SI);
2042      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2043        ConstantInt *CaseVal =
2044          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2045        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2046        if (CaseVal == 0 || DestBB == 0) {
2047          delete SI;
2048          return Error("Invalid SWITCH record!");
2049        }
2050        SI->addCase(CaseVal, DestBB);
2051      }
2052      I = SI;
2053      break;
2054    }
2055    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2056      if (Record.size() < 2)
2057        return Error("Invalid INDIRECTBR record");
2058      const Type *OpTy = getTypeByID(Record[0]);
2059      Value *Address = getFnValueByID(Record[1], OpTy);
2060      if (OpTy == 0 || Address == 0)
2061        return Error("Invalid INDIRECTBR record");
2062      unsigned NumDests = Record.size()-2;
2063      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2064      InstructionList.push_back(IBI);
2065      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2066        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2067          IBI->addDestination(DestBB);
2068        } else {
2069          delete IBI;
2070          return Error("Invalid INDIRECTBR record!");
2071        }
2072      }
2073      I = IBI;
2074      break;
2075    }
2076
2077    case bitc::FUNC_CODE_INST_INVOKE: {
2078      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2079      if (Record.size() < 4) return Error("Invalid INVOKE record");
2080      AttrListPtr PAL = getAttributes(Record[0]);
2081      unsigned CCInfo = Record[1];
2082      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2083      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2084
2085      unsigned OpNum = 4;
2086      Value *Callee;
2087      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2088        return Error("Invalid INVOKE record");
2089
2090      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2091      const FunctionType *FTy = !CalleeTy ? 0 :
2092        dyn_cast<FunctionType>(CalleeTy->getElementType());
2093
2094      // Check that the right number of fixed parameters are here.
2095      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2096          Record.size() < OpNum+FTy->getNumParams())
2097        return Error("Invalid INVOKE record");
2098
2099      SmallVector<Value*, 16> Ops;
2100      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2101        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2102        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2103      }
2104
2105      if (!FTy->isVarArg()) {
2106        if (Record.size() != OpNum)
2107          return Error("Invalid INVOKE record");
2108      } else {
2109        // Read type/value pairs for varargs params.
2110        while (OpNum != Record.size()) {
2111          Value *Op;
2112          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2113            return Error("Invalid INVOKE record");
2114          Ops.push_back(Op);
2115        }
2116      }
2117
2118      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2119                             Ops.begin(), Ops.end());
2120      InstructionList.push_back(I);
2121      cast<InvokeInst>(I)->setCallingConv(
2122        static_cast<CallingConv::ID>(CCInfo));
2123      cast<InvokeInst>(I)->setAttributes(PAL);
2124      break;
2125    }
2126    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2127      I = new UnwindInst(Context);
2128      InstructionList.push_back(I);
2129      break;
2130    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2131      I = new UnreachableInst(Context);
2132      InstructionList.push_back(I);
2133      break;
2134    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2135      if (Record.size() < 1 || ((Record.size()-1)&1))
2136        return Error("Invalid PHI record");
2137      const Type *Ty = getTypeByID(Record[0]);
2138      if (!Ty) return Error("Invalid PHI record");
2139
2140      PHINode *PN = PHINode::Create(Ty);
2141      InstructionList.push_back(PN);
2142      PN->reserveOperandSpace((Record.size()-1)/2);
2143
2144      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2145        Value *V = getFnValueByID(Record[1+i], Ty);
2146        BasicBlock *BB = getBasicBlock(Record[2+i]);
2147        if (!V || !BB) return Error("Invalid PHI record");
2148        PN->addIncoming(V, BB);
2149      }
2150      I = PN;
2151      break;
2152    }
2153
2154    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2155      // Autoupgrade malloc instruction to malloc call.
2156      // FIXME: Remove in LLVM 3.0.
2157      if (Record.size() < 3)
2158        return Error("Invalid MALLOC record");
2159      const PointerType *Ty =
2160        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2161      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2162      if (!Ty || !Size) return Error("Invalid MALLOC record");
2163      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2164      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2165      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2166      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2167      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2168                                 AllocSize, Size, NULL);
2169      InstructionList.push_back(I);
2170      break;
2171    }
2172    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2173      unsigned OpNum = 0;
2174      Value *Op;
2175      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2176          OpNum != Record.size())
2177        return Error("Invalid FREE record");
2178      if (!CurBB) return Error("Invalid free instruction with no BB");
2179      I = CallInst::CreateFree(Op, CurBB);
2180      InstructionList.push_back(I);
2181      break;
2182    }
2183    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2184      // For backward compatibility, tolerate a lack of an opty, and use i32.
2185      // LLVM 3.0: Remove this.
2186      if (Record.size() < 3 || Record.size() > 4)
2187        return Error("Invalid ALLOCA record");
2188      unsigned OpNum = 0;
2189      const PointerType *Ty =
2190        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2191      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2192                                              Type::getInt32Ty(Context);
2193      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2194      unsigned Align = Record[OpNum++];
2195      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2196      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2197      InstructionList.push_back(I);
2198      break;
2199    }
2200    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2201      unsigned OpNum = 0;
2202      Value *Op;
2203      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2204          OpNum+2 != Record.size())
2205        return Error("Invalid LOAD record");
2206
2207      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2208      InstructionList.push_back(I);
2209      break;
2210    }
2211    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2212      unsigned OpNum = 0;
2213      Value *Val, *Ptr;
2214      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2215          getValue(Record, OpNum,
2216                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2217          OpNum+2 != Record.size())
2218        return Error("Invalid STORE record");
2219
2220      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2221      InstructionList.push_back(I);
2222      break;
2223    }
2224    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2225      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2226      unsigned OpNum = 0;
2227      Value *Val, *Ptr;
2228      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2229          getValue(Record, OpNum,
2230                   PointerType::getUnqual(Val->getType()), Ptr)||
2231          OpNum+2 != Record.size())
2232        return Error("Invalid STORE record");
2233
2234      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2235      InstructionList.push_back(I);
2236      break;
2237    }
2238    case bitc::FUNC_CODE_INST_CALL: {
2239      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2240      if (Record.size() < 3)
2241        return Error("Invalid CALL record");
2242
2243      AttrListPtr PAL = getAttributes(Record[0]);
2244      unsigned CCInfo = Record[1];
2245
2246      unsigned OpNum = 2;
2247      Value *Callee;
2248      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2249        return Error("Invalid CALL record");
2250
2251      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2252      const FunctionType *FTy = 0;
2253      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2254      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2255        return Error("Invalid CALL record");
2256
2257      SmallVector<Value*, 16> Args;
2258      // Read the fixed params.
2259      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2260        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2261          Args.push_back(getBasicBlock(Record[OpNum]));
2262        else
2263          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2264        if (Args.back() == 0) return Error("Invalid CALL record");
2265      }
2266
2267      // Read type/value pairs for varargs params.
2268      if (!FTy->isVarArg()) {
2269        if (OpNum != Record.size())
2270          return Error("Invalid CALL record");
2271      } else {
2272        while (OpNum != Record.size()) {
2273          Value *Op;
2274          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2275            return Error("Invalid CALL record");
2276          Args.push_back(Op);
2277        }
2278      }
2279
2280      I = CallInst::Create(Callee, Args.begin(), Args.end());
2281      InstructionList.push_back(I);
2282      cast<CallInst>(I)->setCallingConv(
2283        static_cast<CallingConv::ID>(CCInfo>>1));
2284      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2285      cast<CallInst>(I)->setAttributes(PAL);
2286      break;
2287    }
2288    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2289      if (Record.size() < 3)
2290        return Error("Invalid VAARG record");
2291      const Type *OpTy = getTypeByID(Record[0]);
2292      Value *Op = getFnValueByID(Record[1], OpTy);
2293      const Type *ResTy = getTypeByID(Record[2]);
2294      if (!OpTy || !Op || !ResTy)
2295        return Error("Invalid VAARG record");
2296      I = new VAArgInst(Op, ResTy);
2297      InstructionList.push_back(I);
2298      break;
2299    }
2300    }
2301
2302    // Add instruction to end of current BB.  If there is no current BB, reject
2303    // this file.
2304    if (CurBB == 0) {
2305      delete I;
2306      return Error("Invalid instruction with no BB");
2307    }
2308    CurBB->getInstList().push_back(I);
2309
2310    // If this was a terminator instruction, move to the next block.
2311    if (isa<TerminatorInst>(I)) {
2312      ++CurBBNo;
2313      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2314    }
2315
2316    // Non-void values get registered in the value table for future use.
2317    if (I && !I->getType()->isVoidTy())
2318      ValueList.AssignValue(I, NextValueNo++);
2319  }
2320
2321  // Check the function list for unresolved values.
2322  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2323    if (A->getParent() == 0) {
2324      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2325      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2326        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2327          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2328          delete A;
2329        }
2330      }
2331      return Error("Never resolved value found in function!");
2332    }
2333  }
2334
2335  // See if anything took the address of blocks in this function.  If so,
2336  // resolve them now.
2337  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2338    BlockAddrFwdRefs.find(F);
2339  if (BAFRI != BlockAddrFwdRefs.end()) {
2340    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2341    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2342      unsigned BlockIdx = RefList[i].first;
2343      if (BlockIdx >= FunctionBBs.size())
2344        return Error("Invalid blockaddress block #");
2345
2346      GlobalVariable *FwdRef = RefList[i].second;
2347      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2348      FwdRef->eraseFromParent();
2349    }
2350
2351    BlockAddrFwdRefs.erase(BAFRI);
2352  }
2353
2354  // Trim the value list down to the size it was before we parsed this function.
2355  ValueList.shrinkTo(ModuleValueListSize);
2356  std::vector<BasicBlock*>().swap(FunctionBBs);
2357
2358  return false;
2359}
2360
2361//===----------------------------------------------------------------------===//
2362// GVMaterializer implementation
2363//===----------------------------------------------------------------------===//
2364
2365
2366bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2367  if (const Function *F = dyn_cast<Function>(GV)) {
2368    return F->isDeclaration() &&
2369      DeferredFunctionInfo.count(const_cast<Function*>(F));
2370  }
2371  return false;
2372}
2373
2374bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2375  Function *F = dyn_cast<Function>(GV);
2376  // If it's not a function or is already material, ignore the request.
2377  if (!F || !F->isMaterializable()) return false;
2378
2379  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2380  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2381
2382  // Move the bit stream to the saved position of the deferred function body.
2383  Stream.JumpToBit(DFII->second);
2384
2385  if (ParseFunctionBody(F)) {
2386    if (ErrInfo) *ErrInfo = ErrorString;
2387    return true;
2388  }
2389
2390  // Upgrade any old intrinsic calls in the function.
2391  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2392       E = UpgradedIntrinsics.end(); I != E; ++I) {
2393    if (I->first != I->second) {
2394      for (Value::use_iterator UI = I->first->use_begin(),
2395           UE = I->first->use_end(); UI != UE; ) {
2396        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2397          UpgradeIntrinsicCall(CI, I->second);
2398      }
2399    }
2400  }
2401
2402  return false;
2403}
2404
2405bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2406  const Function *F = dyn_cast<Function>(GV);
2407  if (!F || F->isDeclaration())
2408    return false;
2409  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2410}
2411
2412void BitcodeReader::Dematerialize(GlobalValue *GV) {
2413  Function *F = dyn_cast<Function>(GV);
2414  // If this function isn't dematerializable, this is a noop.
2415  if (!F || !isDematerializable(F))
2416    return;
2417
2418  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2419
2420  // Just forget the function body, we can remat it later.
2421  F->deleteBody();
2422}
2423
2424
2425bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2426  assert(M == TheModule &&
2427         "Can only Materialize the Module this BitcodeReader is attached to.");
2428  // Iterate over the module, deserializing any functions that are still on
2429  // disk.
2430  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2431       F != E; ++F)
2432    if (F->isMaterializable() &&
2433        Materialize(F, ErrInfo))
2434      return true;
2435
2436  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2437  // delete the old functions to clean up. We can't do this unless the entire
2438  // module is materialized because there could always be another function body
2439  // with calls to the old function.
2440  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2441       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2442    if (I->first != I->second) {
2443      for (Value::use_iterator UI = I->first->use_begin(),
2444           UE = I->first->use_end(); UI != UE; ) {
2445        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2446          UpgradeIntrinsicCall(CI, I->second);
2447      }
2448      if (!I->first->use_empty())
2449        I->first->replaceAllUsesWith(I->second);
2450      I->first->eraseFromParent();
2451    }
2452  }
2453  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2454
2455  // Check debug info intrinsics.
2456  CheckDebugInfoIntrinsics(TheModule);
2457
2458  return false;
2459}
2460
2461
2462//===----------------------------------------------------------------------===//
2463// External interface
2464//===----------------------------------------------------------------------===//
2465
2466/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2467///
2468Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2469                                   LLVMContext& Context,
2470                                   std::string *ErrMsg) {
2471  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2472  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2473  M->setMaterializer(R);
2474  if (R->ParseBitcodeInto(M)) {
2475    if (ErrMsg)
2476      *ErrMsg = R->getErrorString();
2477
2478    delete M;  // Also deletes R.
2479    return 0;
2480  }
2481  // Have the BitcodeReader dtor delete 'Buffer'.
2482  R->setBufferOwned(true);
2483  return M;
2484}
2485
2486/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2487/// If an error occurs, return null and fill in *ErrMsg if non-null.
2488Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2489                               std::string *ErrMsg){
2490  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2491  if (!M) return 0;
2492
2493  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2494  // there was an error.
2495  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2496
2497  // Read in the entire module, and destroy the BitcodeReader.
2498  if (M->MaterializeAllPermanently(ErrMsg)) {
2499    delete M;
2500    return NULL;
2501  }
2502  return M;
2503}
2504