BitcodeReader.cpp revision 6f83c9c6ef0e7f79825a0a8f22941815e4b684c7
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42}
43
44//===----------------------------------------------------------------------===//
45//  Helper functions to implement forward reference resolution, etc.
46//===----------------------------------------------------------------------===//
47
48/// ConvertToString - Convert a string from a record into an std::string, return
49/// true on failure.
50template<typename StrTy>
51static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                            StrTy &Result) {
53  if (Idx > Record.size())
54    return true;
55
56  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57    Result += (char)Record[i];
58  return false;
59}
60
61static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62  switch (Val) {
63  default: // Map unknown/new linkages to external
64  case 0:  return GlobalValue::ExternalLinkage;
65  case 1:  return GlobalValue::WeakAnyLinkage;
66  case 2:  return GlobalValue::AppendingLinkage;
67  case 3:  return GlobalValue::InternalLinkage;
68  case 4:  return GlobalValue::LinkOnceAnyLinkage;
69  case 5:  return GlobalValue::DLLImportLinkage;
70  case 6:  return GlobalValue::DLLExportLinkage;
71  case 7:  return GlobalValue::ExternalWeakLinkage;
72  case 8:  return GlobalValue::CommonLinkage;
73  case 9:  return GlobalValue::PrivateLinkage;
74  case 10: return GlobalValue::WeakODRLinkage;
75  case 11: return GlobalValue::LinkOnceODRLinkage;
76  case 12: return GlobalValue::AvailableExternallyLinkage;
77  case 13: return GlobalValue::LinkerPrivateLinkage;
78  }
79}
80
81static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
82  switch (Val) {
83  default: // Map unknown visibilities to default.
84  case 0: return GlobalValue::DefaultVisibility;
85  case 1: return GlobalValue::HiddenVisibility;
86  case 2: return GlobalValue::ProtectedVisibility;
87  }
88}
89
90static int GetDecodedCastOpcode(unsigned Val) {
91  switch (Val) {
92  default: return -1;
93  case bitc::CAST_TRUNC   : return Instruction::Trunc;
94  case bitc::CAST_ZEXT    : return Instruction::ZExt;
95  case bitc::CAST_SEXT    : return Instruction::SExt;
96  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
97  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
98  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
99  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
100  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
101  case bitc::CAST_FPEXT   : return Instruction::FPExt;
102  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
103  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
104  case bitc::CAST_BITCAST : return Instruction::BitCast;
105  }
106}
107static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
108  switch (Val) {
109  default: return -1;
110  case bitc::BINOP_ADD:
111    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
112  case bitc::BINOP_SUB:
113    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
114  case bitc::BINOP_MUL:
115    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
116  case bitc::BINOP_UDIV: return Instruction::UDiv;
117  case bitc::BINOP_SDIV:
118    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
119  case bitc::BINOP_UREM: return Instruction::URem;
120  case bitc::BINOP_SREM:
121    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
122  case bitc::BINOP_SHL:  return Instruction::Shl;
123  case bitc::BINOP_LSHR: return Instruction::LShr;
124  case bitc::BINOP_ASHR: return Instruction::AShr;
125  case bitc::BINOP_AND:  return Instruction::And;
126  case bitc::BINOP_OR:   return Instruction::Or;
127  case bitc::BINOP_XOR:  return Instruction::Xor;
128  }
129}
130
131namespace llvm {
132namespace {
133  /// @brief A class for maintaining the slot number definition
134  /// as a placeholder for the actual definition for forward constants defs.
135  class ConstantPlaceHolder : public ConstantExpr {
136    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
137    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
138  public:
139    // allocate space for exactly one operand
140    void *operator new(size_t s) {
141      return User::operator new(s, 1);
142    }
143    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
144      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
145      Op<0>() = Context.getUndef(Type::Int32Ty);
146    }
147
148    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
149    static inline bool classof(const ConstantPlaceHolder *) { return true; }
150    static bool classof(const Value *V) {
151      return isa<ConstantExpr>(V) &&
152             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
153    }
154
155
156    /// Provide fast operand accessors
157    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
158  };
159}
160
161// FIXME: can we inherit this from ConstantExpr?
162template <>
163struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
164};
165}
166
167
168void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
169  if (Idx == size()) {
170    push_back(V);
171    return;
172  }
173
174  if (Idx >= size())
175    resize(Idx+1);
176
177  WeakVH &OldV = ValuePtrs[Idx];
178  if (OldV == 0) {
179    OldV = V;
180    return;
181  }
182
183  // Handle constants and non-constants (e.g. instrs) differently for
184  // efficiency.
185  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
186    ResolveConstants.push_back(std::make_pair(PHC, Idx));
187    OldV = V;
188  } else {
189    // If there was a forward reference to this value, replace it.
190    Value *PrevVal = OldV;
191    OldV->replaceAllUsesWith(V);
192    delete PrevVal;
193  }
194}
195
196
197Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
198                                                    const Type *Ty) {
199  if (Idx >= size())
200    resize(Idx + 1);
201
202  if (Value *V = ValuePtrs[Idx]) {
203    assert(Ty == V->getType() && "Type mismatch in constant table!");
204    return cast<Constant>(V);
205  }
206
207  // Create and return a placeholder, which will later be RAUW'd.
208  Constant *C = new ConstantPlaceHolder(Ty, Context);
209  ValuePtrs[Idx] = C;
210  return C;
211}
212
213Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
214  if (Idx >= size())
215    resize(Idx + 1);
216
217  if (Value *V = ValuePtrs[Idx]) {
218    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
219    return V;
220  }
221
222  // No type specified, must be invalid reference.
223  if (Ty == 0) return 0;
224
225  // Create and return a placeholder, which will later be RAUW'd.
226  Value *V = new Argument(Ty);
227  ValuePtrs[Idx] = V;
228  return V;
229}
230
231/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
232/// resolves any forward references.  The idea behind this is that we sometimes
233/// get constants (such as large arrays) which reference *many* forward ref
234/// constants.  Replacing each of these causes a lot of thrashing when
235/// building/reuniquing the constant.  Instead of doing this, we look at all the
236/// uses and rewrite all the place holders at once for any constant that uses
237/// a placeholder.
238void BitcodeReaderValueList::ResolveConstantForwardRefs() {
239  // Sort the values by-pointer so that they are efficient to look up with a
240  // binary search.
241  std::sort(ResolveConstants.begin(), ResolveConstants.end());
242
243  SmallVector<Constant*, 64> NewOps;
244
245  while (!ResolveConstants.empty()) {
246    Value *RealVal = operator[](ResolveConstants.back().second);
247    Constant *Placeholder = ResolveConstants.back().first;
248    ResolveConstants.pop_back();
249
250    // Loop over all users of the placeholder, updating them to reference the
251    // new value.  If they reference more than one placeholder, update them all
252    // at once.
253    while (!Placeholder->use_empty()) {
254      Value::use_iterator UI = Placeholder->use_begin();
255
256      // If the using object isn't uniqued, just update the operands.  This
257      // handles instructions and initializers for global variables.
258      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
259        UI.getUse().set(RealVal);
260        continue;
261      }
262
263      // Otherwise, we have a constant that uses the placeholder.  Replace that
264      // constant with a new constant that has *all* placeholder uses updated.
265      Constant *UserC = cast<Constant>(*UI);
266      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
267           I != E; ++I) {
268        Value *NewOp;
269        if (!isa<ConstantPlaceHolder>(*I)) {
270          // Not a placeholder reference.
271          NewOp = *I;
272        } else if (*I == Placeholder) {
273          // Common case is that it just references this one placeholder.
274          NewOp = RealVal;
275        } else {
276          // Otherwise, look up the placeholder in ResolveConstants.
277          ResolveConstantsTy::iterator It =
278            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
279                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
280                                                            0));
281          assert(It != ResolveConstants.end() && It->first == *I);
282          NewOp = operator[](It->second);
283        }
284
285        NewOps.push_back(cast<Constant>(NewOp));
286      }
287
288      // Make the new constant.
289      Constant *NewC;
290      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
291        NewC = Context.getConstantArray(UserCA->getType(), &NewOps[0],
292                                        NewOps.size());
293      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
294        NewC = Context.getConstantStruct(&NewOps[0], NewOps.size(),
295                                         UserCS->getType()->isPacked());
296      } else if (isa<ConstantVector>(UserC)) {
297        NewC = Context.getConstantVector(&NewOps[0], NewOps.size());
298      } else {
299        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
300        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
301                                                          NewOps.size());
302      }
303
304      UserC->replaceAllUsesWith(NewC);
305      UserC->destroyConstant();
306      NewOps.clear();
307    }
308
309    // Update all ValueHandles, they should be the only users at this point.
310    Placeholder->replaceAllUsesWith(RealVal);
311    delete Placeholder;
312  }
313}
314
315
316const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
317  // If the TypeID is in range, return it.
318  if (ID < TypeList.size())
319    return TypeList[ID].get();
320  if (!isTypeTable) return 0;
321
322  // The type table allows forward references.  Push as many Opaque types as
323  // needed to get up to ID.
324  while (TypeList.size() <= ID)
325    TypeList.push_back(Context.getOpaqueType());
326  return TypeList.back().get();
327}
328
329//===----------------------------------------------------------------------===//
330//  Functions for parsing blocks from the bitcode file
331//===----------------------------------------------------------------------===//
332
333bool BitcodeReader::ParseAttributeBlock() {
334  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
335    return Error("Malformed block record");
336
337  if (!MAttributes.empty())
338    return Error("Multiple PARAMATTR blocks found!");
339
340  SmallVector<uint64_t, 64> Record;
341
342  SmallVector<AttributeWithIndex, 8> Attrs;
343
344  // Read all the records.
345  while (1) {
346    unsigned Code = Stream.ReadCode();
347    if (Code == bitc::END_BLOCK) {
348      if (Stream.ReadBlockEnd())
349        return Error("Error at end of PARAMATTR block");
350      return false;
351    }
352
353    if (Code == bitc::ENTER_SUBBLOCK) {
354      // No known subblocks, always skip them.
355      Stream.ReadSubBlockID();
356      if (Stream.SkipBlock())
357        return Error("Malformed block record");
358      continue;
359    }
360
361    if (Code == bitc::DEFINE_ABBREV) {
362      Stream.ReadAbbrevRecord();
363      continue;
364    }
365
366    // Read a record.
367    Record.clear();
368    switch (Stream.ReadRecord(Code, Record)) {
369    default:  // Default behavior: ignore.
370      break;
371    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
372      if (Record.size() & 1)
373        return Error("Invalid ENTRY record");
374
375      // FIXME : Remove this autoupgrade code in LLVM 3.0.
376      // If Function attributes are using index 0 then transfer them
377      // to index ~0. Index 0 is used for return value attributes but used to be
378      // used for function attributes.
379      Attributes RetAttribute = Attribute::None;
380      Attributes FnAttribute = Attribute::None;
381      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
382        // FIXME: remove in LLVM 3.0
383        // The alignment is stored as a 16-bit raw value from bits 31--16.
384        // We shift the bits above 31 down by 11 bits.
385
386        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
387        if (Alignment && !isPowerOf2_32(Alignment))
388          return Error("Alignment is not a power of two.");
389
390        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
391        if (Alignment)
392          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
393        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
394        Record[i+1] = ReconstitutedAttr;
395
396        if (Record[i] == 0)
397          RetAttribute = Record[i+1];
398        else if (Record[i] == ~0U)
399          FnAttribute = Record[i+1];
400      }
401
402      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
403                              Attribute::ReadOnly|Attribute::ReadNone);
404
405      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
406          (RetAttribute & OldRetAttrs) != 0) {
407        if (FnAttribute == Attribute::None) { // add a slot so they get added.
408          Record.push_back(~0U);
409          Record.push_back(0);
410        }
411
412        FnAttribute  |= RetAttribute & OldRetAttrs;
413        RetAttribute &= ~OldRetAttrs;
414      }
415
416      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
417        if (Record[i] == 0) {
418          if (RetAttribute != Attribute::None)
419            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
420        } else if (Record[i] == ~0U) {
421          if (FnAttribute != Attribute::None)
422            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
423        } else if (Record[i+1] != Attribute::None)
424          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
425      }
426
427      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
428      Attrs.clear();
429      break;
430    }
431    }
432  }
433}
434
435
436bool BitcodeReader::ParseTypeTable() {
437  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
438    return Error("Malformed block record");
439
440  if (!TypeList.empty())
441    return Error("Multiple TYPE_BLOCKs found!");
442
443  SmallVector<uint64_t, 64> Record;
444  unsigned NumRecords = 0;
445
446  // Read all the records for this type table.
447  while (1) {
448    unsigned Code = Stream.ReadCode();
449    if (Code == bitc::END_BLOCK) {
450      if (NumRecords != TypeList.size())
451        return Error("Invalid type forward reference in TYPE_BLOCK");
452      if (Stream.ReadBlockEnd())
453        return Error("Error at end of type table block");
454      return false;
455    }
456
457    if (Code == bitc::ENTER_SUBBLOCK) {
458      // No known subblocks, always skip them.
459      Stream.ReadSubBlockID();
460      if (Stream.SkipBlock())
461        return Error("Malformed block record");
462      continue;
463    }
464
465    if (Code == bitc::DEFINE_ABBREV) {
466      Stream.ReadAbbrevRecord();
467      continue;
468    }
469
470    // Read a record.
471    Record.clear();
472    const Type *ResultTy = 0;
473    switch (Stream.ReadRecord(Code, Record)) {
474    default:  // Default behavior: unknown type.
475      ResultTy = 0;
476      break;
477    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
478      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
479      // type list.  This allows us to reserve space.
480      if (Record.size() < 1)
481        return Error("Invalid TYPE_CODE_NUMENTRY record");
482      TypeList.reserve(Record[0]);
483      continue;
484    case bitc::TYPE_CODE_VOID:      // VOID
485      ResultTy = Type::VoidTy;
486      break;
487    case bitc::TYPE_CODE_FLOAT:     // FLOAT
488      ResultTy = Type::FloatTy;
489      break;
490    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
491      ResultTy = Type::DoubleTy;
492      break;
493    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
494      ResultTy = Type::X86_FP80Ty;
495      break;
496    case bitc::TYPE_CODE_FP128:     // FP128
497      ResultTy = Type::FP128Ty;
498      break;
499    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
500      ResultTy = Type::PPC_FP128Ty;
501      break;
502    case bitc::TYPE_CODE_LABEL:     // LABEL
503      ResultTy = Type::LabelTy;
504      break;
505    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
506      ResultTy = 0;
507      break;
508    case bitc::TYPE_CODE_METADATA:  // METADATA
509      ResultTy = Type::MetadataTy;
510      break;
511    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
512      if (Record.size() < 1)
513        return Error("Invalid Integer type record");
514
515      ResultTy = Context.getIntegerType(Record[0]);
516      break;
517    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
518                                    //          [pointee type, address space]
519      if (Record.size() < 1)
520        return Error("Invalid POINTER type record");
521      unsigned AddressSpace = 0;
522      if (Record.size() == 2)
523        AddressSpace = Record[1];
524      ResultTy = Context.getPointerType(getTypeByID(Record[0], true),
525                                        AddressSpace);
526      break;
527    }
528    case bitc::TYPE_CODE_FUNCTION: {
529      // FIXME: attrid is dead, remove it in LLVM 3.0
530      // FUNCTION: [vararg, attrid, retty, paramty x N]
531      if (Record.size() < 3)
532        return Error("Invalid FUNCTION type record");
533      std::vector<const Type*> ArgTys;
534      for (unsigned i = 3, e = Record.size(); i != e; ++i)
535        ArgTys.push_back(getTypeByID(Record[i], true));
536
537      ResultTy = Context.getFunctionType(getTypeByID(Record[2], true), ArgTys,
538                                   Record[0]);
539      break;
540    }
541    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
542      if (Record.size() < 1)
543        return Error("Invalid STRUCT type record");
544      std::vector<const Type*> EltTys;
545      for (unsigned i = 1, e = Record.size(); i != e; ++i)
546        EltTys.push_back(getTypeByID(Record[i], true));
547      ResultTy = Context.getStructType(EltTys, Record[0]);
548      break;
549    }
550    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
551      if (Record.size() < 2)
552        return Error("Invalid ARRAY type record");
553      ResultTy = Context.getArrayType(getTypeByID(Record[1], true), Record[0]);
554      break;
555    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
556      if (Record.size() < 2)
557        return Error("Invalid VECTOR type record");
558      ResultTy = Context.getVectorType(getTypeByID(Record[1], true), Record[0]);
559      break;
560    }
561
562    if (NumRecords == TypeList.size()) {
563      // If this is a new type slot, just append it.
564      TypeList.push_back(ResultTy ? ResultTy : Context.getOpaqueType());
565      ++NumRecords;
566    } else if (ResultTy == 0) {
567      // Otherwise, this was forward referenced, so an opaque type was created,
568      // but the result type is actually just an opaque.  Leave the one we
569      // created previously.
570      ++NumRecords;
571    } else {
572      // Otherwise, this was forward referenced, so an opaque type was created.
573      // Resolve the opaque type to the real type now.
574      assert(NumRecords < TypeList.size() && "Typelist imbalance");
575      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
576
577      // Don't directly push the new type on the Tab. Instead we want to replace
578      // the opaque type we previously inserted with the new concrete value. The
579      // refinement from the abstract (opaque) type to the new type causes all
580      // uses of the abstract type to use the concrete type (NewTy). This will
581      // also cause the opaque type to be deleted.
582      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
583
584      // This should have replaced the old opaque type with the new type in the
585      // value table... or with a preexisting type that was already in the
586      // system.  Let's just make sure it did.
587      assert(TypeList[NumRecords-1].get() != OldTy &&
588             "refineAbstractType didn't work!");
589    }
590  }
591}
592
593
594bool BitcodeReader::ParseTypeSymbolTable() {
595  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
596    return Error("Malformed block record");
597
598  SmallVector<uint64_t, 64> Record;
599
600  // Read all the records for this type table.
601  std::string TypeName;
602  while (1) {
603    unsigned Code = Stream.ReadCode();
604    if (Code == bitc::END_BLOCK) {
605      if (Stream.ReadBlockEnd())
606        return Error("Error at end of type symbol table block");
607      return false;
608    }
609
610    if (Code == bitc::ENTER_SUBBLOCK) {
611      // No known subblocks, always skip them.
612      Stream.ReadSubBlockID();
613      if (Stream.SkipBlock())
614        return Error("Malformed block record");
615      continue;
616    }
617
618    if (Code == bitc::DEFINE_ABBREV) {
619      Stream.ReadAbbrevRecord();
620      continue;
621    }
622
623    // Read a record.
624    Record.clear();
625    switch (Stream.ReadRecord(Code, Record)) {
626    default:  // Default behavior: unknown type.
627      break;
628    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
629      if (ConvertToString(Record, 1, TypeName))
630        return Error("Invalid TST_ENTRY record");
631      unsigned TypeID = Record[0];
632      if (TypeID >= TypeList.size())
633        return Error("Invalid Type ID in TST_ENTRY record");
634
635      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
636      TypeName.clear();
637      break;
638    }
639  }
640}
641
642bool BitcodeReader::ParseValueSymbolTable() {
643  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
644    return Error("Malformed block record");
645
646  SmallVector<uint64_t, 64> Record;
647
648  // Read all the records for this value table.
649  SmallString<128> ValueName;
650  while (1) {
651    unsigned Code = Stream.ReadCode();
652    if (Code == bitc::END_BLOCK) {
653      if (Stream.ReadBlockEnd())
654        return Error("Error at end of value symbol table block");
655      return false;
656    }
657    if (Code == bitc::ENTER_SUBBLOCK) {
658      // No known subblocks, always skip them.
659      Stream.ReadSubBlockID();
660      if (Stream.SkipBlock())
661        return Error("Malformed block record");
662      continue;
663    }
664
665    if (Code == bitc::DEFINE_ABBREV) {
666      Stream.ReadAbbrevRecord();
667      continue;
668    }
669
670    // Read a record.
671    Record.clear();
672    switch (Stream.ReadRecord(Code, Record)) {
673    default:  // Default behavior: unknown type.
674      break;
675    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
676      if (ConvertToString(Record, 1, ValueName))
677        return Error("Invalid VST_ENTRY record");
678      unsigned ValueID = Record[0];
679      if (ValueID >= ValueList.size())
680        return Error("Invalid Value ID in VST_ENTRY record");
681      Value *V = ValueList[ValueID];
682
683      V->setName(StringRef(ValueName.data(), ValueName.size()));
684      ValueName.clear();
685      break;
686    }
687    case bitc::VST_CODE_BBENTRY: {
688      if (ConvertToString(Record, 1, ValueName))
689        return Error("Invalid VST_BBENTRY record");
690      BasicBlock *BB = getBasicBlock(Record[0]);
691      if (BB == 0)
692        return Error("Invalid BB ID in VST_BBENTRY record");
693
694      BB->setName(StringRef(ValueName.data(), ValueName.size()));
695      ValueName.clear();
696      break;
697    }
698    }
699  }
700}
701
702bool BitcodeReader::ParseMetadata() {
703  unsigned NextValueNo = ValueList.size();
704
705  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
706    return Error("Malformed block record");
707
708  SmallVector<uint64_t, 64> Record;
709
710  // Read all the records.
711  while (1) {
712    unsigned Code = Stream.ReadCode();
713    if (Code == bitc::END_BLOCK) {
714      if (Stream.ReadBlockEnd())
715        return Error("Error at end of PARAMATTR block");
716      return false;
717    }
718
719    if (Code == bitc::ENTER_SUBBLOCK) {
720      // No known subblocks, always skip them.
721      Stream.ReadSubBlockID();
722      if (Stream.SkipBlock())
723        return Error("Malformed block record");
724      continue;
725    }
726
727    if (Code == bitc::DEFINE_ABBREV) {
728      Stream.ReadAbbrevRecord();
729      continue;
730    }
731
732    // Read a record.
733    Record.clear();
734    switch (Stream.ReadRecord(Code, Record)) {
735    default:  // Default behavior: ignore.
736      break;
737    case bitc::METADATA_NODE: {
738      if (Record.empty() || Record.size() % 2 == 1)
739        return Error("Invalid METADATA_NODE record");
740
741      unsigned Size = Record.size();
742      SmallVector<Value*, 8> Elts;
743      for (unsigned i = 0; i != Size; i += 2) {
744        const Type *Ty = getTypeByID(Record[i], false);
745        if (Ty != Type::VoidTy)
746          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
747        else
748          Elts.push_back(NULL);
749      }
750      Value *V = Context.getMDNode(&Elts[0], Elts.size());
751      ValueList.AssignValue(V, NextValueNo++);
752      break;
753    }
754    case bitc::METADATA_STRING: {
755      unsigned MDStringLength = Record.size();
756      SmallString<8> String;
757      String.resize(MDStringLength);
758      for (unsigned i = 0; i != MDStringLength; ++i)
759        String[i] = Record[i];
760      Value *V = Context.getMDString(StringRef(String.data(), String.size()));
761      ValueList.AssignValue(V, NextValueNo++);
762      break;
763    }
764    }
765  }
766}
767
768/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
769/// the LSB for dense VBR encoding.
770static uint64_t DecodeSignRotatedValue(uint64_t V) {
771  if ((V & 1) == 0)
772    return V >> 1;
773  if (V != 1)
774    return -(V >> 1);
775  // There is no such thing as -0 with integers.  "-0" really means MININT.
776  return 1ULL << 63;
777}
778
779/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
780/// values and aliases that we can.
781bool BitcodeReader::ResolveGlobalAndAliasInits() {
782  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
783  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
784
785  GlobalInitWorklist.swap(GlobalInits);
786  AliasInitWorklist.swap(AliasInits);
787
788  while (!GlobalInitWorklist.empty()) {
789    unsigned ValID = GlobalInitWorklist.back().second;
790    if (ValID >= ValueList.size()) {
791      // Not ready to resolve this yet, it requires something later in the file.
792      GlobalInits.push_back(GlobalInitWorklist.back());
793    } else {
794      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
795        GlobalInitWorklist.back().first->setInitializer(C);
796      else
797        return Error("Global variable initializer is not a constant!");
798    }
799    GlobalInitWorklist.pop_back();
800  }
801
802  while (!AliasInitWorklist.empty()) {
803    unsigned ValID = AliasInitWorklist.back().second;
804    if (ValID >= ValueList.size()) {
805      AliasInits.push_back(AliasInitWorklist.back());
806    } else {
807      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
808        AliasInitWorklist.back().first->setAliasee(C);
809      else
810        return Error("Alias initializer is not a constant!");
811    }
812    AliasInitWorklist.pop_back();
813  }
814  return false;
815}
816
817static void SetOptimizationFlags(Value *V, uint64_t Flags) {
818  if (OverflowingBinaryOperator *OBO =
819        dyn_cast<OverflowingBinaryOperator>(V)) {
820    if (Flags & (1 << bitc::OBO_NO_SIGNED_OVERFLOW))
821      OBO->setHasNoSignedOverflow(true);
822    if (Flags & (1 << bitc::OBO_NO_UNSIGNED_OVERFLOW))
823      OBO->setHasNoUnsignedOverflow(true);
824  } else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
825    if (Flags & (1 << bitc::SDIV_EXACT))
826      Div->setIsExact(true);
827  }
828}
829
830bool BitcodeReader::ParseConstants() {
831  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
832    return Error("Malformed block record");
833
834  SmallVector<uint64_t, 64> Record;
835
836  // Read all the records for this value table.
837  const Type *CurTy = Type::Int32Ty;
838  unsigned NextCstNo = ValueList.size();
839  while (1) {
840    unsigned Code = Stream.ReadCode();
841    if (Code == bitc::END_BLOCK)
842      break;
843
844    if (Code == bitc::ENTER_SUBBLOCK) {
845      // No known subblocks, always skip them.
846      Stream.ReadSubBlockID();
847      if (Stream.SkipBlock())
848        return Error("Malformed block record");
849      continue;
850    }
851
852    if (Code == bitc::DEFINE_ABBREV) {
853      Stream.ReadAbbrevRecord();
854      continue;
855    }
856
857    // Read a record.
858    Record.clear();
859    Value *V = 0;
860    unsigned BitCode = Stream.ReadRecord(Code, Record);
861    switch (BitCode) {
862    default:  // Default behavior: unknown constant
863    case bitc::CST_CODE_UNDEF:     // UNDEF
864      V = Context.getUndef(CurTy);
865      break;
866    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
867      if (Record.empty())
868        return Error("Malformed CST_SETTYPE record");
869      if (Record[0] >= TypeList.size())
870        return Error("Invalid Type ID in CST_SETTYPE record");
871      CurTy = TypeList[Record[0]];
872      continue;  // Skip the ValueList manipulation.
873    case bitc::CST_CODE_NULL:      // NULL
874      V = Context.getNullValue(CurTy);
875      break;
876    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
877      if (!isa<IntegerType>(CurTy) || Record.empty())
878        return Error("Invalid CST_INTEGER record");
879      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
880      break;
881    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
882      if (!isa<IntegerType>(CurTy) || Record.empty())
883        return Error("Invalid WIDE_INTEGER record");
884
885      unsigned NumWords = Record.size();
886      SmallVector<uint64_t, 8> Words;
887      Words.resize(NumWords);
888      for (unsigned i = 0; i != NumWords; ++i)
889        Words[i] = DecodeSignRotatedValue(Record[i]);
890      V = ConstantInt::get(Context,
891                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
892                           NumWords, &Words[0]));
893      break;
894    }
895    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
896      if (Record.empty())
897        return Error("Invalid FLOAT record");
898      if (CurTy == Type::FloatTy)
899        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
900      else if (CurTy == Type::DoubleTy)
901        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
902      else if (CurTy == Type::X86_FP80Ty) {
903        // Bits are not stored the same way as a normal i80 APInt, compensate.
904        uint64_t Rearrange[2];
905        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
906        Rearrange[1] = Record[0] >> 48;
907        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
908      } else if (CurTy == Type::FP128Ty)
909        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
910      else if (CurTy == Type::PPC_FP128Ty)
911        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
912      else
913        V = Context.getUndef(CurTy);
914      break;
915    }
916
917    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
918      if (Record.empty())
919        return Error("Invalid CST_AGGREGATE record");
920
921      unsigned Size = Record.size();
922      std::vector<Constant*> Elts;
923
924      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
925        for (unsigned i = 0; i != Size; ++i)
926          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
927                                                     STy->getElementType(i)));
928        V = Context.getConstantStruct(STy, Elts);
929      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
930        const Type *EltTy = ATy->getElementType();
931        for (unsigned i = 0; i != Size; ++i)
932          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
933        V = Context.getConstantArray(ATy, Elts);
934      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
935        const Type *EltTy = VTy->getElementType();
936        for (unsigned i = 0; i != Size; ++i)
937          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
938        V = Context.getConstantVector(Elts);
939      } else {
940        V = Context.getUndef(CurTy);
941      }
942      break;
943    }
944    case bitc::CST_CODE_STRING: { // STRING: [values]
945      if (Record.empty())
946        return Error("Invalid CST_AGGREGATE record");
947
948      const ArrayType *ATy = cast<ArrayType>(CurTy);
949      const Type *EltTy = ATy->getElementType();
950
951      unsigned Size = Record.size();
952      std::vector<Constant*> Elts;
953      for (unsigned i = 0; i != Size; ++i)
954        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
955      V = Context.getConstantArray(ATy, Elts);
956      break;
957    }
958    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
959      if (Record.empty())
960        return Error("Invalid CST_AGGREGATE record");
961
962      const ArrayType *ATy = cast<ArrayType>(CurTy);
963      const Type *EltTy = ATy->getElementType();
964
965      unsigned Size = Record.size();
966      std::vector<Constant*> Elts;
967      for (unsigned i = 0; i != Size; ++i)
968        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
969      Elts.push_back(Context.getNullValue(EltTy));
970      V = Context.getConstantArray(ATy, Elts);
971      break;
972    }
973    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
974      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
975      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
976      if (Opc < 0) {
977        V = Context.getUndef(CurTy);  // Unknown binop.
978      } else {
979        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
980        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
981        V = Context.getConstantExpr(Opc, LHS, RHS);
982      }
983      if (Record.size() >= 4)
984        SetOptimizationFlags(V, Record[3]);
985      break;
986    }
987    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
988      if (Record.size() < 3) return Error("Invalid CE_CAST record");
989      int Opc = GetDecodedCastOpcode(Record[0]);
990      if (Opc < 0) {
991        V = Context.getUndef(CurTy);  // Unknown cast.
992      } else {
993        const Type *OpTy = getTypeByID(Record[1]);
994        if (!OpTy) return Error("Invalid CE_CAST record");
995        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
996        V = Context.getConstantExprCast(Opc, Op, CurTy);
997      }
998      break;
999    }
1000    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1001      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1002      SmallVector<Constant*, 16> Elts;
1003      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1004        const Type *ElTy = getTypeByID(Record[i]);
1005        if (!ElTy) return Error("Invalid CE_GEP record");
1006        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1007      }
1008      V = Context.getConstantExprGetElementPtr(Elts[0], &Elts[1],
1009                                               Elts.size()-1);
1010      break;
1011    }
1012    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1013      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1014      V = Context.getConstantExprSelect(ValueList.getConstantFwdRef(Record[0],
1015                                                              Type::Int1Ty),
1016                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1017                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1018      break;
1019    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1020      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1021      const VectorType *OpTy =
1022        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1023      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1024      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1025      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1026      V = Context.getConstantExprExtractElement(Op0, Op1);
1027      break;
1028    }
1029    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1030      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1031      if (Record.size() < 3 || OpTy == 0)
1032        return Error("Invalid CE_INSERTELT record");
1033      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1034      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1035                                                  OpTy->getElementType());
1036      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1037      V = Context.getConstantExprInsertElement(Op0, Op1, Op2);
1038      break;
1039    }
1040    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1041      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1042      if (Record.size() < 3 || OpTy == 0)
1043        return Error("Invalid CE_SHUFFLEVEC record");
1044      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1045      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1046      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1047                                                 OpTy->getNumElements());
1048      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1049      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1050      break;
1051    }
1052    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1053      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1054      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1055      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1056        return Error("Invalid CE_SHUFVEC_EX record");
1057      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1058      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1059      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1060                                                 RTy->getNumElements());
1061      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1062      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1063      break;
1064    }
1065    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1066      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1067      const Type *OpTy = getTypeByID(Record[0]);
1068      if (OpTy == 0) return Error("Invalid CE_CMP record");
1069      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1070      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1071
1072      if (OpTy->isFloatingPoint())
1073        V = Context.getConstantExprFCmp(Record[3], Op0, Op1);
1074      else
1075        V = Context.getConstantExprICmp(Record[3], Op0, Op1);
1076      break;
1077    }
1078    case bitc::CST_CODE_INLINEASM: {
1079      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1080      std::string AsmStr, ConstrStr;
1081      bool HasSideEffects = Record[0];
1082      unsigned AsmStrSize = Record[1];
1083      if (2+AsmStrSize >= Record.size())
1084        return Error("Invalid INLINEASM record");
1085      unsigned ConstStrSize = Record[2+AsmStrSize];
1086      if (3+AsmStrSize+ConstStrSize > Record.size())
1087        return Error("Invalid INLINEASM record");
1088
1089      for (unsigned i = 0; i != AsmStrSize; ++i)
1090        AsmStr += (char)Record[2+i];
1091      for (unsigned i = 0; i != ConstStrSize; ++i)
1092        ConstrStr += (char)Record[3+AsmStrSize+i];
1093      const PointerType *PTy = cast<PointerType>(CurTy);
1094      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1095                         AsmStr, ConstrStr, HasSideEffects);
1096      break;
1097    }
1098    }
1099
1100    ValueList.AssignValue(V, NextCstNo);
1101    ++NextCstNo;
1102  }
1103
1104  if (NextCstNo != ValueList.size())
1105    return Error("Invalid constant reference!");
1106
1107  if (Stream.ReadBlockEnd())
1108    return Error("Error at end of constants block");
1109
1110  // Once all the constants have been read, go through and resolve forward
1111  // references.
1112  ValueList.ResolveConstantForwardRefs();
1113  return false;
1114}
1115
1116/// RememberAndSkipFunctionBody - When we see the block for a function body,
1117/// remember where it is and then skip it.  This lets us lazily deserialize the
1118/// functions.
1119bool BitcodeReader::RememberAndSkipFunctionBody() {
1120  // Get the function we are talking about.
1121  if (FunctionsWithBodies.empty())
1122    return Error("Insufficient function protos");
1123
1124  Function *Fn = FunctionsWithBodies.back();
1125  FunctionsWithBodies.pop_back();
1126
1127  // Save the current stream state.
1128  uint64_t CurBit = Stream.GetCurrentBitNo();
1129  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1130
1131  // Set the functions linkage to GhostLinkage so we know it is lazily
1132  // deserialized.
1133  Fn->setLinkage(GlobalValue::GhostLinkage);
1134
1135  // Skip over the function block for now.
1136  if (Stream.SkipBlock())
1137    return Error("Malformed block record");
1138  return false;
1139}
1140
1141bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1142  // Reject multiple MODULE_BLOCK's in a single bitstream.
1143  if (TheModule)
1144    return Error("Multiple MODULE_BLOCKs in same stream");
1145
1146  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1147    return Error("Malformed block record");
1148
1149  // Otherwise, create the module.
1150  TheModule = new Module(ModuleID, Context);
1151
1152  SmallVector<uint64_t, 64> Record;
1153  std::vector<std::string> SectionTable;
1154  std::vector<std::string> GCTable;
1155
1156  // Read all the records for this module.
1157  while (!Stream.AtEndOfStream()) {
1158    unsigned Code = Stream.ReadCode();
1159    if (Code == bitc::END_BLOCK) {
1160      if (Stream.ReadBlockEnd())
1161        return Error("Error at end of module block");
1162
1163      // Patch the initializers for globals and aliases up.
1164      ResolveGlobalAndAliasInits();
1165      if (!GlobalInits.empty() || !AliasInits.empty())
1166        return Error("Malformed global initializer set");
1167      if (!FunctionsWithBodies.empty())
1168        return Error("Too few function bodies found");
1169
1170      // Look for intrinsic functions which need to be upgraded at some point
1171      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1172           FI != FE; ++FI) {
1173        Function* NewFn;
1174        if (UpgradeIntrinsicFunction(FI, NewFn))
1175          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1176      }
1177
1178      // Force deallocation of memory for these vectors to favor the client that
1179      // want lazy deserialization.
1180      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1181      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1182      std::vector<Function*>().swap(FunctionsWithBodies);
1183      return false;
1184    }
1185
1186    if (Code == bitc::ENTER_SUBBLOCK) {
1187      switch (Stream.ReadSubBlockID()) {
1188      default:  // Skip unknown content.
1189        if (Stream.SkipBlock())
1190          return Error("Malformed block record");
1191        break;
1192      case bitc::BLOCKINFO_BLOCK_ID:
1193        if (Stream.ReadBlockInfoBlock())
1194          return Error("Malformed BlockInfoBlock");
1195        break;
1196      case bitc::PARAMATTR_BLOCK_ID:
1197        if (ParseAttributeBlock())
1198          return true;
1199        break;
1200      case bitc::TYPE_BLOCK_ID:
1201        if (ParseTypeTable())
1202          return true;
1203        break;
1204      case bitc::TYPE_SYMTAB_BLOCK_ID:
1205        if (ParseTypeSymbolTable())
1206          return true;
1207        break;
1208      case bitc::VALUE_SYMTAB_BLOCK_ID:
1209        if (ParseValueSymbolTable())
1210          return true;
1211        break;
1212      case bitc::CONSTANTS_BLOCK_ID:
1213        if (ParseConstants() || ResolveGlobalAndAliasInits())
1214          return true;
1215        break;
1216      case bitc::METADATA_BLOCK_ID:
1217        if (ParseMetadata())
1218          return true;
1219        break;
1220      case bitc::FUNCTION_BLOCK_ID:
1221        // If this is the first function body we've seen, reverse the
1222        // FunctionsWithBodies list.
1223        if (!HasReversedFunctionsWithBodies) {
1224          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1225          HasReversedFunctionsWithBodies = true;
1226        }
1227
1228        if (RememberAndSkipFunctionBody())
1229          return true;
1230        break;
1231      }
1232      continue;
1233    }
1234
1235    if (Code == bitc::DEFINE_ABBREV) {
1236      Stream.ReadAbbrevRecord();
1237      continue;
1238    }
1239
1240    // Read a record.
1241    switch (Stream.ReadRecord(Code, Record)) {
1242    default: break;  // Default behavior, ignore unknown content.
1243    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1244      if (Record.size() < 1)
1245        return Error("Malformed MODULE_CODE_VERSION");
1246      // Only version #0 is supported so far.
1247      if (Record[0] != 0)
1248        return Error("Unknown bitstream version!");
1249      break;
1250    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1251      std::string S;
1252      if (ConvertToString(Record, 0, S))
1253        return Error("Invalid MODULE_CODE_TRIPLE record");
1254      TheModule->setTargetTriple(S);
1255      break;
1256    }
1257    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1258      std::string S;
1259      if (ConvertToString(Record, 0, S))
1260        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1261      TheModule->setDataLayout(S);
1262      break;
1263    }
1264    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1265      std::string S;
1266      if (ConvertToString(Record, 0, S))
1267        return Error("Invalid MODULE_CODE_ASM record");
1268      TheModule->setModuleInlineAsm(S);
1269      break;
1270    }
1271    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1272      std::string S;
1273      if (ConvertToString(Record, 0, S))
1274        return Error("Invalid MODULE_CODE_DEPLIB record");
1275      TheModule->addLibrary(S);
1276      break;
1277    }
1278    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1279      std::string S;
1280      if (ConvertToString(Record, 0, S))
1281        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1282      SectionTable.push_back(S);
1283      break;
1284    }
1285    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1286      std::string S;
1287      if (ConvertToString(Record, 0, S))
1288        return Error("Invalid MODULE_CODE_GCNAME record");
1289      GCTable.push_back(S);
1290      break;
1291    }
1292    // GLOBALVAR: [pointer type, isconst, initid,
1293    //             linkage, alignment, section, visibility, threadlocal]
1294    case bitc::MODULE_CODE_GLOBALVAR: {
1295      if (Record.size() < 6)
1296        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1297      const Type *Ty = getTypeByID(Record[0]);
1298      if (!isa<PointerType>(Ty))
1299        return Error("Global not a pointer type!");
1300      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1301      Ty = cast<PointerType>(Ty)->getElementType();
1302
1303      bool isConstant = Record[1];
1304      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1305      unsigned Alignment = (1 << Record[4]) >> 1;
1306      std::string Section;
1307      if (Record[5]) {
1308        if (Record[5]-1 >= SectionTable.size())
1309          return Error("Invalid section ID");
1310        Section = SectionTable[Record[5]-1];
1311      }
1312      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1313      if (Record.size() > 6)
1314        Visibility = GetDecodedVisibility(Record[6]);
1315      bool isThreadLocal = false;
1316      if (Record.size() > 7)
1317        isThreadLocal = Record[7];
1318
1319      GlobalVariable *NewGV =
1320        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1321                           isThreadLocal, AddressSpace);
1322      NewGV->setAlignment(Alignment);
1323      if (!Section.empty())
1324        NewGV->setSection(Section);
1325      NewGV->setVisibility(Visibility);
1326      NewGV->setThreadLocal(isThreadLocal);
1327
1328      ValueList.push_back(NewGV);
1329
1330      // Remember which value to use for the global initializer.
1331      if (unsigned InitID = Record[2])
1332        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1333      break;
1334    }
1335    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1336    //             alignment, section, visibility, gc]
1337    case bitc::MODULE_CODE_FUNCTION: {
1338      if (Record.size() < 8)
1339        return Error("Invalid MODULE_CODE_FUNCTION record");
1340      const Type *Ty = getTypeByID(Record[0]);
1341      if (!isa<PointerType>(Ty))
1342        return Error("Function not a pointer type!");
1343      const FunctionType *FTy =
1344        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1345      if (!FTy)
1346        return Error("Function not a pointer to function type!");
1347
1348      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1349                                        "", TheModule);
1350
1351      Func->setCallingConv(Record[1]);
1352      bool isProto = Record[2];
1353      Func->setLinkage(GetDecodedLinkage(Record[3]));
1354      Func->setAttributes(getAttributes(Record[4]));
1355
1356      Func->setAlignment((1 << Record[5]) >> 1);
1357      if (Record[6]) {
1358        if (Record[6]-1 >= SectionTable.size())
1359          return Error("Invalid section ID");
1360        Func->setSection(SectionTable[Record[6]-1]);
1361      }
1362      Func->setVisibility(GetDecodedVisibility(Record[7]));
1363      if (Record.size() > 8 && Record[8]) {
1364        if (Record[8]-1 > GCTable.size())
1365          return Error("Invalid GC ID");
1366        Func->setGC(GCTable[Record[8]-1].c_str());
1367      }
1368      ValueList.push_back(Func);
1369
1370      // If this is a function with a body, remember the prototype we are
1371      // creating now, so that we can match up the body with them later.
1372      if (!isProto)
1373        FunctionsWithBodies.push_back(Func);
1374      break;
1375    }
1376    // ALIAS: [alias type, aliasee val#, linkage]
1377    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1378    case bitc::MODULE_CODE_ALIAS: {
1379      if (Record.size() < 3)
1380        return Error("Invalid MODULE_ALIAS record");
1381      const Type *Ty = getTypeByID(Record[0]);
1382      if (!isa<PointerType>(Ty))
1383        return Error("Function not a pointer type!");
1384
1385      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1386                                           "", 0, TheModule);
1387      // Old bitcode files didn't have visibility field.
1388      if (Record.size() > 3)
1389        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1390      ValueList.push_back(NewGA);
1391      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1392      break;
1393    }
1394    /// MODULE_CODE_PURGEVALS: [numvals]
1395    case bitc::MODULE_CODE_PURGEVALS:
1396      // Trim down the value list to the specified size.
1397      if (Record.size() < 1 || Record[0] > ValueList.size())
1398        return Error("Invalid MODULE_PURGEVALS record");
1399      ValueList.shrinkTo(Record[0]);
1400      break;
1401    }
1402    Record.clear();
1403  }
1404
1405  return Error("Premature end of bitstream");
1406}
1407
1408bool BitcodeReader::ParseBitcode() {
1409  TheModule = 0;
1410
1411  if (Buffer->getBufferSize() & 3)
1412    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1413
1414  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1415  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1416
1417  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1418  // The magic number is 0x0B17C0DE stored in little endian.
1419  if (isBitcodeWrapper(BufPtr, BufEnd))
1420    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1421      return Error("Invalid bitcode wrapper header");
1422
1423  StreamFile.init(BufPtr, BufEnd);
1424  Stream.init(StreamFile);
1425
1426  // Sniff for the signature.
1427  if (Stream.Read(8) != 'B' ||
1428      Stream.Read(8) != 'C' ||
1429      Stream.Read(4) != 0x0 ||
1430      Stream.Read(4) != 0xC ||
1431      Stream.Read(4) != 0xE ||
1432      Stream.Read(4) != 0xD)
1433    return Error("Invalid bitcode signature");
1434
1435  // We expect a number of well-defined blocks, though we don't necessarily
1436  // need to understand them all.
1437  while (!Stream.AtEndOfStream()) {
1438    unsigned Code = Stream.ReadCode();
1439
1440    if (Code != bitc::ENTER_SUBBLOCK)
1441      return Error("Invalid record at top-level");
1442
1443    unsigned BlockID = Stream.ReadSubBlockID();
1444
1445    // We only know the MODULE subblock ID.
1446    switch (BlockID) {
1447    case bitc::BLOCKINFO_BLOCK_ID:
1448      if (Stream.ReadBlockInfoBlock())
1449        return Error("Malformed BlockInfoBlock");
1450      break;
1451    case bitc::MODULE_BLOCK_ID:
1452      if (ParseModule(Buffer->getBufferIdentifier()))
1453        return true;
1454      break;
1455    default:
1456      if (Stream.SkipBlock())
1457        return Error("Malformed block record");
1458      break;
1459    }
1460  }
1461
1462  return false;
1463}
1464
1465
1466/// ParseFunctionBody - Lazily parse the specified function body block.
1467bool BitcodeReader::ParseFunctionBody(Function *F) {
1468  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1469    return Error("Malformed block record");
1470
1471  unsigned ModuleValueListSize = ValueList.size();
1472
1473  // Add all the function arguments to the value table.
1474  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1475    ValueList.push_back(I);
1476
1477  unsigned NextValueNo = ValueList.size();
1478  BasicBlock *CurBB = 0;
1479  unsigned CurBBNo = 0;
1480
1481  // Read all the records.
1482  SmallVector<uint64_t, 64> Record;
1483  while (1) {
1484    unsigned Code = Stream.ReadCode();
1485    if (Code == bitc::END_BLOCK) {
1486      if (Stream.ReadBlockEnd())
1487        return Error("Error at end of function block");
1488      break;
1489    }
1490
1491    if (Code == bitc::ENTER_SUBBLOCK) {
1492      switch (Stream.ReadSubBlockID()) {
1493      default:  // Skip unknown content.
1494        if (Stream.SkipBlock())
1495          return Error("Malformed block record");
1496        break;
1497      case bitc::CONSTANTS_BLOCK_ID:
1498        if (ParseConstants()) return true;
1499        NextValueNo = ValueList.size();
1500        break;
1501      case bitc::VALUE_SYMTAB_BLOCK_ID:
1502        if (ParseValueSymbolTable()) return true;
1503        break;
1504      }
1505      continue;
1506    }
1507
1508    if (Code == bitc::DEFINE_ABBREV) {
1509      Stream.ReadAbbrevRecord();
1510      continue;
1511    }
1512
1513    // Read a record.
1514    Record.clear();
1515    Instruction *I = 0;
1516    unsigned BitCode = Stream.ReadRecord(Code, Record);
1517    switch (BitCode) {
1518    default: // Default behavior: reject
1519      return Error("Unknown instruction");
1520    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1521      if (Record.size() < 1 || Record[0] == 0)
1522        return Error("Invalid DECLAREBLOCKS record");
1523      // Create all the basic blocks for the function.
1524      FunctionBBs.resize(Record[0]);
1525      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1526        FunctionBBs[i] = BasicBlock::Create("", F);
1527      CurBB = FunctionBBs[0];
1528      continue;
1529
1530    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1531      unsigned OpNum = 0;
1532      Value *LHS, *RHS;
1533      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1534          getValue(Record, OpNum, LHS->getType(), RHS) ||
1535          OpNum+1 > Record.size())
1536        return Error("Invalid BINOP record");
1537
1538      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1539      if (Opc == -1) return Error("Invalid BINOP record");
1540      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1541      if (OpNum < Record.size())
1542        SetOptimizationFlags(I, Record[3]);
1543      break;
1544    }
1545    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1546      unsigned OpNum = 0;
1547      Value *Op;
1548      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1549          OpNum+2 != Record.size())
1550        return Error("Invalid CAST record");
1551
1552      const Type *ResTy = getTypeByID(Record[OpNum]);
1553      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1554      if (Opc == -1 || ResTy == 0)
1555        return Error("Invalid CAST record");
1556      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1557      break;
1558    }
1559    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1560      unsigned OpNum = 0;
1561      Value *BasePtr;
1562      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1563        return Error("Invalid GEP record");
1564
1565      SmallVector<Value*, 16> GEPIdx;
1566      while (OpNum != Record.size()) {
1567        Value *Op;
1568        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1569          return Error("Invalid GEP record");
1570        GEPIdx.push_back(Op);
1571      }
1572
1573      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1574      break;
1575    }
1576
1577    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1578                                       // EXTRACTVAL: [opty, opval, n x indices]
1579      unsigned OpNum = 0;
1580      Value *Agg;
1581      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1582        return Error("Invalid EXTRACTVAL record");
1583
1584      SmallVector<unsigned, 4> EXTRACTVALIdx;
1585      for (unsigned RecSize = Record.size();
1586           OpNum != RecSize; ++OpNum) {
1587        uint64_t Index = Record[OpNum];
1588        if ((unsigned)Index != Index)
1589          return Error("Invalid EXTRACTVAL index");
1590        EXTRACTVALIdx.push_back((unsigned)Index);
1591      }
1592
1593      I = ExtractValueInst::Create(Agg,
1594                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1595      break;
1596    }
1597
1598    case bitc::FUNC_CODE_INST_INSERTVAL: {
1599                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1600      unsigned OpNum = 0;
1601      Value *Agg;
1602      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1603        return Error("Invalid INSERTVAL record");
1604      Value *Val;
1605      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1606        return Error("Invalid INSERTVAL record");
1607
1608      SmallVector<unsigned, 4> INSERTVALIdx;
1609      for (unsigned RecSize = Record.size();
1610           OpNum != RecSize; ++OpNum) {
1611        uint64_t Index = Record[OpNum];
1612        if ((unsigned)Index != Index)
1613          return Error("Invalid INSERTVAL index");
1614        INSERTVALIdx.push_back((unsigned)Index);
1615      }
1616
1617      I = InsertValueInst::Create(Agg, Val,
1618                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1619      break;
1620    }
1621
1622    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1623      // obsolete form of select
1624      // handles select i1 ... in old bitcode
1625      unsigned OpNum = 0;
1626      Value *TrueVal, *FalseVal, *Cond;
1627      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1628          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1629          getValue(Record, OpNum, Type::Int1Ty, Cond))
1630        return Error("Invalid SELECT record");
1631
1632      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1633      break;
1634    }
1635
1636    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1637      // new form of select
1638      // handles select i1 or select [N x i1]
1639      unsigned OpNum = 0;
1640      Value *TrueVal, *FalseVal, *Cond;
1641      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1642          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1643          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1644        return Error("Invalid SELECT record");
1645
1646      // select condition can be either i1 or [N x i1]
1647      if (const VectorType* vector_type =
1648          dyn_cast<const VectorType>(Cond->getType())) {
1649        // expect <n x i1>
1650        if (vector_type->getElementType() != Type::Int1Ty)
1651          return Error("Invalid SELECT condition type");
1652      } else {
1653        // expect i1
1654        if (Cond->getType() != Type::Int1Ty)
1655          return Error("Invalid SELECT condition type");
1656      }
1657
1658      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1659      break;
1660    }
1661
1662    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1663      unsigned OpNum = 0;
1664      Value *Vec, *Idx;
1665      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1666          getValue(Record, OpNum, Type::Int32Ty, Idx))
1667        return Error("Invalid EXTRACTELT record");
1668      I = ExtractElementInst::Create(Vec, Idx);
1669      break;
1670    }
1671
1672    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1673      unsigned OpNum = 0;
1674      Value *Vec, *Elt, *Idx;
1675      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1676          getValue(Record, OpNum,
1677                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1678          getValue(Record, OpNum, Type::Int32Ty, Idx))
1679        return Error("Invalid INSERTELT record");
1680      I = InsertElementInst::Create(Vec, Elt, Idx);
1681      break;
1682    }
1683
1684    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1685      unsigned OpNum = 0;
1686      Value *Vec1, *Vec2, *Mask;
1687      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1688          getValue(Record, OpNum, Vec1->getType(), Vec2))
1689        return Error("Invalid SHUFFLEVEC record");
1690
1691      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1692        return Error("Invalid SHUFFLEVEC record");
1693      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1694      break;
1695    }
1696
1697    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1698      // Old form of ICmp/FCmp returning bool
1699      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1700      // both legal on vectors but had different behaviour.
1701    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1702      // FCmp/ICmp returning bool or vector of bool
1703
1704      unsigned OpNum = 0;
1705      Value *LHS, *RHS;
1706      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1707          getValue(Record, OpNum, LHS->getType(), RHS) ||
1708          OpNum+1 != Record.size())
1709        return Error("Invalid CMP record");
1710
1711      if (LHS->getType()->isFPOrFPVector())
1712        I = new FCmpInst(Context, (FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1713      else
1714        I = new ICmpInst(Context, (ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1715      break;
1716    }
1717
1718    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1719      if (Record.size() != 2)
1720        return Error("Invalid GETRESULT record");
1721      unsigned OpNum = 0;
1722      Value *Op;
1723      getValueTypePair(Record, OpNum, NextValueNo, Op);
1724      unsigned Index = Record[1];
1725      I = ExtractValueInst::Create(Op, Index);
1726      break;
1727    }
1728
1729    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1730      {
1731        unsigned Size = Record.size();
1732        if (Size == 0) {
1733          I = ReturnInst::Create();
1734          break;
1735        }
1736
1737        unsigned OpNum = 0;
1738        SmallVector<Value *,4> Vs;
1739        do {
1740          Value *Op = NULL;
1741          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1742            return Error("Invalid RET record");
1743          Vs.push_back(Op);
1744        } while(OpNum != Record.size());
1745
1746        const Type *ReturnType = F->getReturnType();
1747        if (Vs.size() > 1 ||
1748            (isa<StructType>(ReturnType) &&
1749             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1750          Value *RV = Context.getUndef(ReturnType);
1751          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1752            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1753            CurBB->getInstList().push_back(I);
1754            ValueList.AssignValue(I, NextValueNo++);
1755            RV = I;
1756          }
1757          I = ReturnInst::Create(RV);
1758          break;
1759        }
1760
1761        I = ReturnInst::Create(Vs[0]);
1762        break;
1763      }
1764    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1765      if (Record.size() != 1 && Record.size() != 3)
1766        return Error("Invalid BR record");
1767      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1768      if (TrueDest == 0)
1769        return Error("Invalid BR record");
1770
1771      if (Record.size() == 1)
1772        I = BranchInst::Create(TrueDest);
1773      else {
1774        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1775        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1776        if (FalseDest == 0 || Cond == 0)
1777          return Error("Invalid BR record");
1778        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1779      }
1780      break;
1781    }
1782    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1783      if (Record.size() < 3 || (Record.size() & 1) == 0)
1784        return Error("Invalid SWITCH record");
1785      const Type *OpTy = getTypeByID(Record[0]);
1786      Value *Cond = getFnValueByID(Record[1], OpTy);
1787      BasicBlock *Default = getBasicBlock(Record[2]);
1788      if (OpTy == 0 || Cond == 0 || Default == 0)
1789        return Error("Invalid SWITCH record");
1790      unsigned NumCases = (Record.size()-3)/2;
1791      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1792      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1793        ConstantInt *CaseVal =
1794          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1795        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1796        if (CaseVal == 0 || DestBB == 0) {
1797          delete SI;
1798          return Error("Invalid SWITCH record!");
1799        }
1800        SI->addCase(CaseVal, DestBB);
1801      }
1802      I = SI;
1803      break;
1804    }
1805
1806    case bitc::FUNC_CODE_INST_INVOKE: {
1807      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1808      if (Record.size() < 4) return Error("Invalid INVOKE record");
1809      AttrListPtr PAL = getAttributes(Record[0]);
1810      unsigned CCInfo = Record[1];
1811      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1812      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1813
1814      unsigned OpNum = 4;
1815      Value *Callee;
1816      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1817        return Error("Invalid INVOKE record");
1818
1819      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1820      const FunctionType *FTy = !CalleeTy ? 0 :
1821        dyn_cast<FunctionType>(CalleeTy->getElementType());
1822
1823      // Check that the right number of fixed parameters are here.
1824      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1825          Record.size() < OpNum+FTy->getNumParams())
1826        return Error("Invalid INVOKE record");
1827
1828      SmallVector<Value*, 16> Ops;
1829      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1830        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1831        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1832      }
1833
1834      if (!FTy->isVarArg()) {
1835        if (Record.size() != OpNum)
1836          return Error("Invalid INVOKE record");
1837      } else {
1838        // Read type/value pairs for varargs params.
1839        while (OpNum != Record.size()) {
1840          Value *Op;
1841          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1842            return Error("Invalid INVOKE record");
1843          Ops.push_back(Op);
1844        }
1845      }
1846
1847      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1848                             Ops.begin(), Ops.end());
1849      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1850      cast<InvokeInst>(I)->setAttributes(PAL);
1851      break;
1852    }
1853    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1854      I = new UnwindInst();
1855      break;
1856    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1857      I = new UnreachableInst();
1858      break;
1859    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1860      if (Record.size() < 1 || ((Record.size()-1)&1))
1861        return Error("Invalid PHI record");
1862      const Type *Ty = getTypeByID(Record[0]);
1863      if (!Ty) return Error("Invalid PHI record");
1864
1865      PHINode *PN = PHINode::Create(Ty);
1866      PN->reserveOperandSpace((Record.size()-1)/2);
1867
1868      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1869        Value *V = getFnValueByID(Record[1+i], Ty);
1870        BasicBlock *BB = getBasicBlock(Record[2+i]);
1871        if (!V || !BB) return Error("Invalid PHI record");
1872        PN->addIncoming(V, BB);
1873      }
1874      I = PN;
1875      break;
1876    }
1877
1878    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1879      if (Record.size() < 3)
1880        return Error("Invalid MALLOC record");
1881      const PointerType *Ty =
1882        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1883      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1884      unsigned Align = Record[2];
1885      if (!Ty || !Size) return Error("Invalid MALLOC record");
1886      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1887      break;
1888    }
1889    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1890      unsigned OpNum = 0;
1891      Value *Op;
1892      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1893          OpNum != Record.size())
1894        return Error("Invalid FREE record");
1895      I = new FreeInst(Op);
1896      break;
1897    }
1898    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1899      if (Record.size() < 3)
1900        return Error("Invalid ALLOCA record");
1901      const PointerType *Ty =
1902        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1903      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1904      unsigned Align = Record[2];
1905      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1906      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1907      break;
1908    }
1909    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1910      unsigned OpNum = 0;
1911      Value *Op;
1912      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1913          OpNum+2 != Record.size())
1914        return Error("Invalid LOAD record");
1915
1916      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1917      break;
1918    }
1919    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1920      unsigned OpNum = 0;
1921      Value *Val, *Ptr;
1922      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1923          getValue(Record, OpNum,
1924                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1925          OpNum+2 != Record.size())
1926        return Error("Invalid STORE record");
1927
1928      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1929      break;
1930    }
1931    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1932      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1933      unsigned OpNum = 0;
1934      Value *Val, *Ptr;
1935      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1936          getValue(Record, OpNum,
1937                   Context.getPointerTypeUnqual(Val->getType()), Ptr)||
1938          OpNum+2 != Record.size())
1939        return Error("Invalid STORE record");
1940
1941      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1942      break;
1943    }
1944    case bitc::FUNC_CODE_INST_CALL: {
1945      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1946      if (Record.size() < 3)
1947        return Error("Invalid CALL record");
1948
1949      AttrListPtr PAL = getAttributes(Record[0]);
1950      unsigned CCInfo = Record[1];
1951
1952      unsigned OpNum = 2;
1953      Value *Callee;
1954      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1955        return Error("Invalid CALL record");
1956
1957      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1958      const FunctionType *FTy = 0;
1959      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1960      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1961        return Error("Invalid CALL record");
1962
1963      SmallVector<Value*, 16> Args;
1964      // Read the fixed params.
1965      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1966        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1967          Args.push_back(getBasicBlock(Record[OpNum]));
1968        else
1969          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1970        if (Args.back() == 0) return Error("Invalid CALL record");
1971      }
1972
1973      // Read type/value pairs for varargs params.
1974      if (!FTy->isVarArg()) {
1975        if (OpNum != Record.size())
1976          return Error("Invalid CALL record");
1977      } else {
1978        while (OpNum != Record.size()) {
1979          Value *Op;
1980          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1981            return Error("Invalid CALL record");
1982          Args.push_back(Op);
1983        }
1984      }
1985
1986      I = CallInst::Create(Callee, Args.begin(), Args.end());
1987      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1988      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1989      cast<CallInst>(I)->setAttributes(PAL);
1990      break;
1991    }
1992    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1993      if (Record.size() < 3)
1994        return Error("Invalid VAARG record");
1995      const Type *OpTy = getTypeByID(Record[0]);
1996      Value *Op = getFnValueByID(Record[1], OpTy);
1997      const Type *ResTy = getTypeByID(Record[2]);
1998      if (!OpTy || !Op || !ResTy)
1999        return Error("Invalid VAARG record");
2000      I = new VAArgInst(Op, ResTy);
2001      break;
2002    }
2003    }
2004
2005    // Add instruction to end of current BB.  If there is no current BB, reject
2006    // this file.
2007    if (CurBB == 0) {
2008      delete I;
2009      return Error("Invalid instruction with no BB");
2010    }
2011    CurBB->getInstList().push_back(I);
2012
2013    // If this was a terminator instruction, move to the next block.
2014    if (isa<TerminatorInst>(I)) {
2015      ++CurBBNo;
2016      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2017    }
2018
2019    // Non-void values get registered in the value table for future use.
2020    if (I && I->getType() != Type::VoidTy)
2021      ValueList.AssignValue(I, NextValueNo++);
2022  }
2023
2024  // Check the function list for unresolved values.
2025  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2026    if (A->getParent() == 0) {
2027      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2028      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2029        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2030          A->replaceAllUsesWith(Context.getUndef(A->getType()));
2031          delete A;
2032        }
2033      }
2034      return Error("Never resolved value found in function!");
2035    }
2036  }
2037
2038  // Trim the value list down to the size it was before we parsed this function.
2039  ValueList.shrinkTo(ModuleValueListSize);
2040  std::vector<BasicBlock*>().swap(FunctionBBs);
2041
2042  return false;
2043}
2044
2045//===----------------------------------------------------------------------===//
2046// ModuleProvider implementation
2047//===----------------------------------------------------------------------===//
2048
2049
2050bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2051  // If it already is material, ignore the request.
2052  if (!F->hasNotBeenReadFromBitcode()) return false;
2053
2054  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2055    DeferredFunctionInfo.find(F);
2056  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2057
2058  // Move the bit stream to the saved position of the deferred function body and
2059  // restore the real linkage type for the function.
2060  Stream.JumpToBit(DFII->second.first);
2061  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2062
2063  if (ParseFunctionBody(F)) {
2064    if (ErrInfo) *ErrInfo = ErrorString;
2065    return true;
2066  }
2067
2068  // Upgrade any old intrinsic calls in the function.
2069  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2070       E = UpgradedIntrinsics.end(); I != E; ++I) {
2071    if (I->first != I->second) {
2072      for (Value::use_iterator UI = I->first->use_begin(),
2073           UE = I->first->use_end(); UI != UE; ) {
2074        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2075          UpgradeIntrinsicCall(CI, I->second);
2076      }
2077    }
2078  }
2079
2080  return false;
2081}
2082
2083void BitcodeReader::dematerializeFunction(Function *F) {
2084  // If this function isn't materialized, or if it is a proto, this is a noop.
2085  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2086    return;
2087
2088  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2089
2090  // Just forget the function body, we can remat it later.
2091  F->deleteBody();
2092  F->setLinkage(GlobalValue::GhostLinkage);
2093}
2094
2095
2096Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2097  // Iterate over the module, deserializing any functions that are still on
2098  // disk.
2099  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2100       F != E; ++F)
2101    if (F->hasNotBeenReadFromBitcode() &&
2102        materializeFunction(F, ErrInfo))
2103      return 0;
2104
2105  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2106  // delete the old functions to clean up. We can't do this unless the entire
2107  // module is materialized because there could always be another function body
2108  // with calls to the old function.
2109  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2110       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2111    if (I->first != I->second) {
2112      for (Value::use_iterator UI = I->first->use_begin(),
2113           UE = I->first->use_end(); UI != UE; ) {
2114        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2115          UpgradeIntrinsicCall(CI, I->second);
2116      }
2117      if (!I->first->use_empty())
2118        I->first->replaceAllUsesWith(I->second);
2119      I->first->eraseFromParent();
2120    }
2121  }
2122  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2123
2124  return TheModule;
2125}
2126
2127
2128/// This method is provided by the parent ModuleProvde class and overriden
2129/// here. It simply releases the module from its provided and frees up our
2130/// state.
2131/// @brief Release our hold on the generated module
2132Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2133  // Since we're losing control of this Module, we must hand it back complete
2134  Module *M = ModuleProvider::releaseModule(ErrInfo);
2135  FreeState();
2136  return M;
2137}
2138
2139
2140//===----------------------------------------------------------------------===//
2141// External interface
2142//===----------------------------------------------------------------------===//
2143
2144/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2145///
2146ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2147                                               LLVMContext& Context,
2148                                               std::string *ErrMsg) {
2149  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2150  if (R->ParseBitcode()) {
2151    if (ErrMsg)
2152      *ErrMsg = R->getErrorString();
2153
2154    // Don't let the BitcodeReader dtor delete 'Buffer'.
2155    R->releaseMemoryBuffer();
2156    delete R;
2157    return 0;
2158  }
2159  return R;
2160}
2161
2162/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2163/// If an error occurs, return null and fill in *ErrMsg if non-null.
2164Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2165                               std::string *ErrMsg){
2166  BitcodeReader *R;
2167  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2168                                                           ErrMsg));
2169  if (!R) return 0;
2170
2171  // Read in the entire module.
2172  Module *M = R->materializeModule(ErrMsg);
2173
2174  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2175  // there was an error.
2176  R->releaseMemoryBuffer();
2177
2178  // If there was no error, tell ModuleProvider not to delete it when its dtor
2179  // is run.
2180  if (M)
2181    M = R->releaseModule(ErrMsg);
2182
2183  delete R;
2184  return M;
2185}
2186