BitcodeReader.cpp revision 6fa311c2338391b0f332c062b3140c6df139a949
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/AutoUpgrade.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/OperandTraits.h"
27using namespace llvm;
28
29void BitcodeReader::FreeState() {
30  delete Buffer;
31  Buffer = 0;
32  std::vector<PATypeHolder>().swap(TypeList);
33  ValueList.clear();
34
35  std::vector<AttrListPtr>().swap(MAttributes);
36  std::vector<BasicBlock*>().swap(FunctionBBs);
37  std::vector<Function*>().swap(FunctionsWithBodies);
38  DeferredFunctionInfo.clear();
39}
40
41//===----------------------------------------------------------------------===//
42//  Helper functions to implement forward reference resolution, etc.
43//===----------------------------------------------------------------------===//
44
45/// ConvertToString - Convert a string from a record into an std::string, return
46/// true on failure.
47template<typename StrTy>
48static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                            StrTy &Result) {
50  if (Idx > Record.size())
51    return true;
52
53  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54    Result += (char)Record[i];
55  return false;
56}
57
58static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59  switch (Val) {
60  default: // Map unknown/new linkages to external
61  case 0: return GlobalValue::ExternalLinkage;
62  case 1: return GlobalValue::WeakLinkage;
63  case 2: return GlobalValue::AppendingLinkage;
64  case 3: return GlobalValue::InternalLinkage;
65  case 4: return GlobalValue::LinkOnceLinkage;
66  case 5: return GlobalValue::DLLImportLinkage;
67  case 6: return GlobalValue::DLLExportLinkage;
68  case 7: return GlobalValue::ExternalWeakLinkage;
69  case 8: return GlobalValue::CommonLinkage;
70  }
71}
72
73static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
74  switch (Val) {
75  default: // Map unknown visibilities to default.
76  case 0: return GlobalValue::DefaultVisibility;
77  case 1: return GlobalValue::HiddenVisibility;
78  case 2: return GlobalValue::ProtectedVisibility;
79  }
80}
81
82static int GetDecodedCastOpcode(unsigned Val) {
83  switch (Val) {
84  default: return -1;
85  case bitc::CAST_TRUNC   : return Instruction::Trunc;
86  case bitc::CAST_ZEXT    : return Instruction::ZExt;
87  case bitc::CAST_SEXT    : return Instruction::SExt;
88  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
89  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
90  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
91  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
92  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
93  case bitc::CAST_FPEXT   : return Instruction::FPExt;
94  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
95  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
96  case bitc::CAST_BITCAST : return Instruction::BitCast;
97  }
98}
99static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
100  switch (Val) {
101  default: return -1;
102  case bitc::BINOP_ADD:  return Instruction::Add;
103  case bitc::BINOP_SUB:  return Instruction::Sub;
104  case bitc::BINOP_MUL:  return Instruction::Mul;
105  case bitc::BINOP_UDIV: return Instruction::UDiv;
106  case bitc::BINOP_SDIV:
107    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
108  case bitc::BINOP_UREM: return Instruction::URem;
109  case bitc::BINOP_SREM:
110    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
111  case bitc::BINOP_SHL:  return Instruction::Shl;
112  case bitc::BINOP_LSHR: return Instruction::LShr;
113  case bitc::BINOP_ASHR: return Instruction::AShr;
114  case bitc::BINOP_AND:  return Instruction::And;
115  case bitc::BINOP_OR:   return Instruction::Or;
116  case bitc::BINOP_XOR:  return Instruction::Xor;
117  }
118}
119
120namespace llvm {
121namespace {
122  /// @brief A class for maintaining the slot number definition
123  /// as a placeholder for the actual definition for forward constants defs.
124  class ConstantPlaceHolder : public ConstantExpr {
125    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
126    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
127  public:
128    // allocate space for exactly one operand
129    void *operator new(size_t s) {
130      return User::operator new(s, 1);
131    }
132    explicit ConstantPlaceHolder(const Type *Ty)
133      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
134      Op<0>() = UndefValue::get(Type::Int32Ty);
135    }
136
137    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
138    static inline bool classof(const ConstantPlaceHolder *) { return true; }
139    static bool classof(const Value *V) {
140      return isa<ConstantExpr>(V) &&
141             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
142    }
143
144
145    /// Provide fast operand accessors
146    DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
147  };
148}
149
150
151  // FIXME: can we inherit this from ConstantExpr?
152template <>
153struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
154};
155
156DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
157}
158
159void BitcodeReaderValueList::resize(unsigned Desired) {
160  if (Desired > Capacity) {
161    // Since we expect many values to come from the bitcode file we better
162    // allocate the double amount, so that the array size grows exponentially
163    // at each reallocation.  Also, add a small amount of 100 extra elements
164    // each time, to reallocate less frequently when the array is still small.
165    //
166    Capacity = Desired * 2 + 100;
167    Use *New = allocHungoffUses(Capacity);
168    Use *Old = OperandList;
169    unsigned Ops = getNumOperands();
170    for (int i(Ops - 1); i >= 0; --i)
171      New[i] = Old[i].get();
172    OperandList = New;
173    if (Old) Use::zap(Old, Old + Ops, true);
174  }
175}
176
177Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
178                                                    const Type *Ty) {
179  if (Idx >= size()) {
180    // Insert a bunch of null values.
181    resize(Idx + 1);
182    NumOperands = Idx+1;
183  }
184
185  if (Value *V = OperandList[Idx]) {
186    assert(Ty == V->getType() && "Type mismatch in constant table!");
187    return cast<Constant>(V);
188  }
189
190  // Create and return a placeholder, which will later be RAUW'd.
191  Constant *C = new ConstantPlaceHolder(Ty);
192  OperandList[Idx] = C;
193  return C;
194}
195
196Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
197  if (Idx >= size()) {
198    // Insert a bunch of null values.
199    resize(Idx + 1);
200    NumOperands = Idx+1;
201  }
202
203  if (Value *V = OperandList[Idx]) {
204    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
205    return V;
206  }
207
208  // No type specified, must be invalid reference.
209  if (Ty == 0) return 0;
210
211  // Create and return a placeholder, which will later be RAUW'd.
212  Value *V = new Argument(Ty);
213  OperandList[Idx] = V;
214  return V;
215}
216
217/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
218/// resolves any forward references.  The idea behind this is that we sometimes
219/// get constants (such as large arrays) which reference *many* forward ref
220/// constants.  Replacing each of these causes a lot of thrashing when
221/// building/reuniquing the constant.  Instead of doing this, we look at all the
222/// uses and rewrite all the place holders at once for any constant that uses
223/// a placeholder.
224void BitcodeReaderValueList::ResolveConstantForwardRefs() {
225  // Sort the values by-pointer so that they are efficient to look up with a
226  // binary search.
227  std::sort(ResolveConstants.begin(), ResolveConstants.end());
228
229  SmallVector<Constant*, 64> NewOps;
230
231  while (!ResolveConstants.empty()) {
232    Value *RealVal = getOperand(ResolveConstants.back().second);
233    Constant *Placeholder = ResolveConstants.back().first;
234    ResolveConstants.pop_back();
235
236    // Loop over all users of the placeholder, updating them to reference the
237    // new value.  If they reference more than one placeholder, update them all
238    // at once.
239    while (!Placeholder->use_empty()) {
240      Value::use_iterator UI = Placeholder->use_begin();
241
242      // If the using object isn't uniqued, just update the operands.  This
243      // handles instructions and initializers for global variables.
244      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
245        UI.getUse().set(RealVal);
246        continue;
247      }
248
249      // Otherwise, we have a constant that uses the placeholder.  Replace that
250      // constant with a new constant that has *all* placeholder uses updated.
251      Constant *UserC = cast<Constant>(*UI);
252      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
253           I != E; ++I) {
254        Value *NewOp;
255        if (!isa<ConstantPlaceHolder>(*I)) {
256          // Not a placeholder reference.
257          NewOp = *I;
258        } else if (*I == Placeholder) {
259          // Common case is that it just references this one placeholder.
260          NewOp = RealVal;
261        } else {
262          // Otherwise, look up the placeholder in ResolveConstants.
263          ResolveConstantsTy::iterator It =
264            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
265                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
266                                                            0));
267          assert(It != ResolveConstants.end() && It->first == *I);
268          NewOp = this->getOperand(It->second);
269        }
270
271        NewOps.push_back(cast<Constant>(NewOp));
272      }
273
274      // Make the new constant.
275      Constant *NewC;
276      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
277        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
278      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
279        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
280                                   UserCS->getType()->isPacked());
281      } else if (isa<ConstantVector>(UserC)) {
282        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
283      } else {
284        // Must be a constant expression.
285        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
286                                                          NewOps.size());
287      }
288
289      UserC->replaceAllUsesWith(NewC);
290      UserC->destroyConstant();
291      NewOps.clear();
292    }
293
294    delete Placeholder;
295  }
296}
297
298
299const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
300  // If the TypeID is in range, return it.
301  if (ID < TypeList.size())
302    return TypeList[ID].get();
303  if (!isTypeTable) return 0;
304
305  // The type table allows forward references.  Push as many Opaque types as
306  // needed to get up to ID.
307  while (TypeList.size() <= ID)
308    TypeList.push_back(OpaqueType::get());
309  return TypeList.back().get();
310}
311
312//===----------------------------------------------------------------------===//
313//  Functions for parsing blocks from the bitcode file
314//===----------------------------------------------------------------------===//
315
316bool BitcodeReader::ParseAttributeBlock() {
317  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
318    return Error("Malformed block record");
319
320  if (!MAttributes.empty())
321    return Error("Multiple PARAMATTR blocks found!");
322
323  SmallVector<uint64_t, 64> Record;
324
325  SmallVector<AttributeWithIndex, 8> Attrs;
326
327  // Read all the records.
328  while (1) {
329    unsigned Code = Stream.ReadCode();
330    if (Code == bitc::END_BLOCK) {
331      if (Stream.ReadBlockEnd())
332        return Error("Error at end of PARAMATTR block");
333      return false;
334    }
335
336    if (Code == bitc::ENTER_SUBBLOCK) {
337      // No known subblocks, always skip them.
338      Stream.ReadSubBlockID();
339      if (Stream.SkipBlock())
340        return Error("Malformed block record");
341      continue;
342    }
343
344    if (Code == bitc::DEFINE_ABBREV) {
345      Stream.ReadAbbrevRecord();
346      continue;
347    }
348
349    // Read a record.
350    Record.clear();
351    switch (Stream.ReadRecord(Code, Record)) {
352    default:  // Default behavior: ignore.
353      break;
354    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
355      if (Record.size() & 1)
356        return Error("Invalid ENTRY record");
357
358      // FIXME : Remove this autoupgrade code in LLVM 3.0.
359      // If Function attributes are using index 0 then transfer them
360      // to index ~0. Index 0 is used for return value attributes but used to be
361      // used for function attributes.
362      Attributes RetAttribute = Attribute::None;
363      Attributes FnAttribute = Attribute::None;
364      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
365        if (Record[i] == 0)
366          RetAttribute = Record[i+1];
367        else if (Record[i] == ~0U)
368          FnAttribute = Record[i+1];
369      }
370
371      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
372                              Attribute::ReadOnly|Attribute::ReadNone);
373
374      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
375          (RetAttribute & OldRetAttrs) != 0) {
376        if (FnAttribute == Attribute::None) { // add a slot so they get added.
377          Record.push_back(~0U);
378          Record.push_back(0);
379        }
380
381        FnAttribute  |= RetAttribute & OldRetAttrs;
382        RetAttribute &= ~OldRetAttrs;
383      }
384
385      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
386        if (Record[i] == 0) {
387          if (RetAttribute != Attribute::None)
388            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
389        } else if (Record[i] == ~0U) {
390          if (FnAttribute != Attribute::None)
391            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
392        } else if (Record[i+1] != Attribute::None)
393          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
394      }
395
396      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
397      Attrs.clear();
398      break;
399    }
400    }
401  }
402}
403
404
405bool BitcodeReader::ParseTypeTable() {
406  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
407    return Error("Malformed block record");
408
409  if (!TypeList.empty())
410    return Error("Multiple TYPE_BLOCKs found!");
411
412  SmallVector<uint64_t, 64> Record;
413  unsigned NumRecords = 0;
414
415  // Read all the records for this type table.
416  while (1) {
417    unsigned Code = Stream.ReadCode();
418    if (Code == bitc::END_BLOCK) {
419      if (NumRecords != TypeList.size())
420        return Error("Invalid type forward reference in TYPE_BLOCK");
421      if (Stream.ReadBlockEnd())
422        return Error("Error at end of type table block");
423      return false;
424    }
425
426    if (Code == bitc::ENTER_SUBBLOCK) {
427      // No known subblocks, always skip them.
428      Stream.ReadSubBlockID();
429      if (Stream.SkipBlock())
430        return Error("Malformed block record");
431      continue;
432    }
433
434    if (Code == bitc::DEFINE_ABBREV) {
435      Stream.ReadAbbrevRecord();
436      continue;
437    }
438
439    // Read a record.
440    Record.clear();
441    const Type *ResultTy = 0;
442    switch (Stream.ReadRecord(Code, Record)) {
443    default:  // Default behavior: unknown type.
444      ResultTy = 0;
445      break;
446    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
447      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
448      // type list.  This allows us to reserve space.
449      if (Record.size() < 1)
450        return Error("Invalid TYPE_CODE_NUMENTRY record");
451      TypeList.reserve(Record[0]);
452      continue;
453    case bitc::TYPE_CODE_VOID:      // VOID
454      ResultTy = Type::VoidTy;
455      break;
456    case bitc::TYPE_CODE_FLOAT:     // FLOAT
457      ResultTy = Type::FloatTy;
458      break;
459    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
460      ResultTy = Type::DoubleTy;
461      break;
462    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
463      ResultTy = Type::X86_FP80Ty;
464      break;
465    case bitc::TYPE_CODE_FP128:     // FP128
466      ResultTy = Type::FP128Ty;
467      break;
468    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
469      ResultTy = Type::PPC_FP128Ty;
470      break;
471    case bitc::TYPE_CODE_LABEL:     // LABEL
472      ResultTy = Type::LabelTy;
473      break;
474    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
475      ResultTy = 0;
476      break;
477    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
478      if (Record.size() < 1)
479        return Error("Invalid Integer type record");
480
481      ResultTy = IntegerType::get(Record[0]);
482      break;
483    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
484                                    //          [pointee type, address space]
485      if (Record.size() < 1)
486        return Error("Invalid POINTER type record");
487      unsigned AddressSpace = 0;
488      if (Record.size() == 2)
489        AddressSpace = Record[1];
490      ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
491      break;
492    }
493    case bitc::TYPE_CODE_FUNCTION: {
494      // FIXME: attrid is dead, remove it in LLVM 3.0
495      // FUNCTION: [vararg, attrid, retty, paramty x N]
496      if (Record.size() < 3)
497        return Error("Invalid FUNCTION type record");
498      std::vector<const Type*> ArgTys;
499      for (unsigned i = 3, e = Record.size(); i != e; ++i)
500        ArgTys.push_back(getTypeByID(Record[i], true));
501
502      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
503                                   Record[0]);
504      break;
505    }
506    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
507      if (Record.size() < 1)
508        return Error("Invalid STRUCT type record");
509      std::vector<const Type*> EltTys;
510      for (unsigned i = 1, e = Record.size(); i != e; ++i)
511        EltTys.push_back(getTypeByID(Record[i], true));
512      ResultTy = StructType::get(EltTys, Record[0]);
513      break;
514    }
515    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
516      if (Record.size() < 2)
517        return Error("Invalid ARRAY type record");
518      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
519      break;
520    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
521      if (Record.size() < 2)
522        return Error("Invalid VECTOR type record");
523      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
524      break;
525    }
526
527    if (NumRecords == TypeList.size()) {
528      // If this is a new type slot, just append it.
529      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
530      ++NumRecords;
531    } else if (ResultTy == 0) {
532      // Otherwise, this was forward referenced, so an opaque type was created,
533      // but the result type is actually just an opaque.  Leave the one we
534      // created previously.
535      ++NumRecords;
536    } else {
537      // Otherwise, this was forward referenced, so an opaque type was created.
538      // Resolve the opaque type to the real type now.
539      assert(NumRecords < TypeList.size() && "Typelist imbalance");
540      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
541
542      // Don't directly push the new type on the Tab. Instead we want to replace
543      // the opaque type we previously inserted with the new concrete value. The
544      // refinement from the abstract (opaque) type to the new type causes all
545      // uses of the abstract type to use the concrete type (NewTy). This will
546      // also cause the opaque type to be deleted.
547      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
548
549      // This should have replaced the old opaque type with the new type in the
550      // value table... or with a preexisting type that was already in the
551      // system.  Let's just make sure it did.
552      assert(TypeList[NumRecords-1].get() != OldTy &&
553             "refineAbstractType didn't work!");
554    }
555  }
556}
557
558
559bool BitcodeReader::ParseTypeSymbolTable() {
560  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
561    return Error("Malformed block record");
562
563  SmallVector<uint64_t, 64> Record;
564
565  // Read all the records for this type table.
566  std::string TypeName;
567  while (1) {
568    unsigned Code = Stream.ReadCode();
569    if (Code == bitc::END_BLOCK) {
570      if (Stream.ReadBlockEnd())
571        return Error("Error at end of type symbol table block");
572      return false;
573    }
574
575    if (Code == bitc::ENTER_SUBBLOCK) {
576      // No known subblocks, always skip them.
577      Stream.ReadSubBlockID();
578      if (Stream.SkipBlock())
579        return Error("Malformed block record");
580      continue;
581    }
582
583    if (Code == bitc::DEFINE_ABBREV) {
584      Stream.ReadAbbrevRecord();
585      continue;
586    }
587
588    // Read a record.
589    Record.clear();
590    switch (Stream.ReadRecord(Code, Record)) {
591    default:  // Default behavior: unknown type.
592      break;
593    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
594      if (ConvertToString(Record, 1, TypeName))
595        return Error("Invalid TST_ENTRY record");
596      unsigned TypeID = Record[0];
597      if (TypeID >= TypeList.size())
598        return Error("Invalid Type ID in TST_ENTRY record");
599
600      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
601      TypeName.clear();
602      break;
603    }
604  }
605}
606
607bool BitcodeReader::ParseValueSymbolTable() {
608  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
609    return Error("Malformed block record");
610
611  SmallVector<uint64_t, 64> Record;
612
613  // Read all the records for this value table.
614  SmallString<128> ValueName;
615  while (1) {
616    unsigned Code = Stream.ReadCode();
617    if (Code == bitc::END_BLOCK) {
618      if (Stream.ReadBlockEnd())
619        return Error("Error at end of value symbol table block");
620      return false;
621    }
622    if (Code == bitc::ENTER_SUBBLOCK) {
623      // No known subblocks, always skip them.
624      Stream.ReadSubBlockID();
625      if (Stream.SkipBlock())
626        return Error("Malformed block record");
627      continue;
628    }
629
630    if (Code == bitc::DEFINE_ABBREV) {
631      Stream.ReadAbbrevRecord();
632      continue;
633    }
634
635    // Read a record.
636    Record.clear();
637    switch (Stream.ReadRecord(Code, Record)) {
638    default:  // Default behavior: unknown type.
639      break;
640    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
641      if (ConvertToString(Record, 1, ValueName))
642        return Error("Invalid TST_ENTRY record");
643      unsigned ValueID = Record[0];
644      if (ValueID >= ValueList.size())
645        return Error("Invalid Value ID in VST_ENTRY record");
646      Value *V = ValueList[ValueID];
647
648      V->setName(&ValueName[0], ValueName.size());
649      ValueName.clear();
650      break;
651    }
652    case bitc::VST_CODE_BBENTRY: {
653      if (ConvertToString(Record, 1, ValueName))
654        return Error("Invalid VST_BBENTRY record");
655      BasicBlock *BB = getBasicBlock(Record[0]);
656      if (BB == 0)
657        return Error("Invalid BB ID in VST_BBENTRY record");
658
659      BB->setName(&ValueName[0], ValueName.size());
660      ValueName.clear();
661      break;
662    }
663    }
664  }
665}
666
667/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
668/// the LSB for dense VBR encoding.
669static uint64_t DecodeSignRotatedValue(uint64_t V) {
670  if ((V & 1) == 0)
671    return V >> 1;
672  if (V != 1)
673    return -(V >> 1);
674  // There is no such thing as -0 with integers.  "-0" really means MININT.
675  return 1ULL << 63;
676}
677
678/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
679/// values and aliases that we can.
680bool BitcodeReader::ResolveGlobalAndAliasInits() {
681  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
682  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
683
684  GlobalInitWorklist.swap(GlobalInits);
685  AliasInitWorklist.swap(AliasInits);
686
687  while (!GlobalInitWorklist.empty()) {
688    unsigned ValID = GlobalInitWorklist.back().second;
689    if (ValID >= ValueList.size()) {
690      // Not ready to resolve this yet, it requires something later in the file.
691      GlobalInits.push_back(GlobalInitWorklist.back());
692    } else {
693      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
694        GlobalInitWorklist.back().first->setInitializer(C);
695      else
696        return Error("Global variable initializer is not a constant!");
697    }
698    GlobalInitWorklist.pop_back();
699  }
700
701  while (!AliasInitWorklist.empty()) {
702    unsigned ValID = AliasInitWorklist.back().second;
703    if (ValID >= ValueList.size()) {
704      AliasInits.push_back(AliasInitWorklist.back());
705    } else {
706      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
707        AliasInitWorklist.back().first->setAliasee(C);
708      else
709        return Error("Alias initializer is not a constant!");
710    }
711    AliasInitWorklist.pop_back();
712  }
713  return false;
714}
715
716
717bool BitcodeReader::ParseConstants() {
718  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
719    return Error("Malformed block record");
720
721  SmallVector<uint64_t, 64> Record;
722
723  // Read all the records for this value table.
724  const Type *CurTy = Type::Int32Ty;
725  unsigned NextCstNo = ValueList.size();
726  while (1) {
727    unsigned Code = Stream.ReadCode();
728    if (Code == bitc::END_BLOCK)
729      break;
730
731    if (Code == bitc::ENTER_SUBBLOCK) {
732      // No known subblocks, always skip them.
733      Stream.ReadSubBlockID();
734      if (Stream.SkipBlock())
735        return Error("Malformed block record");
736      continue;
737    }
738
739    if (Code == bitc::DEFINE_ABBREV) {
740      Stream.ReadAbbrevRecord();
741      continue;
742    }
743
744    // Read a record.
745    Record.clear();
746    Value *V = 0;
747    switch (Stream.ReadRecord(Code, Record)) {
748    default:  // Default behavior: unknown constant
749    case bitc::CST_CODE_UNDEF:     // UNDEF
750      V = UndefValue::get(CurTy);
751      break;
752    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
753      if (Record.empty())
754        return Error("Malformed CST_SETTYPE record");
755      if (Record[0] >= TypeList.size())
756        return Error("Invalid Type ID in CST_SETTYPE record");
757      CurTy = TypeList[Record[0]];
758      continue;  // Skip the ValueList manipulation.
759    case bitc::CST_CODE_NULL:      // NULL
760      V = Constant::getNullValue(CurTy);
761      break;
762    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
763      if (!isa<IntegerType>(CurTy) || Record.empty())
764        return Error("Invalid CST_INTEGER record");
765      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
766      break;
767    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
768      if (!isa<IntegerType>(CurTy) || Record.empty())
769        return Error("Invalid WIDE_INTEGER record");
770
771      unsigned NumWords = Record.size();
772      SmallVector<uint64_t, 8> Words;
773      Words.resize(NumWords);
774      for (unsigned i = 0; i != NumWords; ++i)
775        Words[i] = DecodeSignRotatedValue(Record[i]);
776      V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
777                                 NumWords, &Words[0]));
778      break;
779    }
780    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
781      if (Record.empty())
782        return Error("Invalid FLOAT record");
783      if (CurTy == Type::FloatTy)
784        V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
785      else if (CurTy == Type::DoubleTy)
786        V = ConstantFP::get(APFloat(APInt(64, Record[0])));
787      else if (CurTy == Type::X86_FP80Ty)
788        V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
789      else if (CurTy == Type::FP128Ty)
790        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
791      else if (CurTy == Type::PPC_FP128Ty)
792        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
793      else
794        V = UndefValue::get(CurTy);
795      break;
796    }
797
798    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
799      if (Record.empty())
800        return Error("Invalid CST_AGGREGATE record");
801
802      unsigned Size = Record.size();
803      std::vector<Constant*> Elts;
804
805      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
806        for (unsigned i = 0; i != Size; ++i)
807          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
808                                                     STy->getElementType(i)));
809        V = ConstantStruct::get(STy, Elts);
810      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
811        const Type *EltTy = ATy->getElementType();
812        for (unsigned i = 0; i != Size; ++i)
813          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
814        V = ConstantArray::get(ATy, Elts);
815      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
816        const Type *EltTy = VTy->getElementType();
817        for (unsigned i = 0; i != Size; ++i)
818          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
819        V = ConstantVector::get(Elts);
820      } else {
821        V = UndefValue::get(CurTy);
822      }
823      break;
824    }
825    case bitc::CST_CODE_STRING: { // STRING: [values]
826      if (Record.empty())
827        return Error("Invalid CST_AGGREGATE record");
828
829      const ArrayType *ATy = cast<ArrayType>(CurTy);
830      const Type *EltTy = ATy->getElementType();
831
832      unsigned Size = Record.size();
833      std::vector<Constant*> Elts;
834      for (unsigned i = 0; i != Size; ++i)
835        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
836      V = ConstantArray::get(ATy, Elts);
837      break;
838    }
839    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
840      if (Record.empty())
841        return Error("Invalid CST_AGGREGATE record");
842
843      const ArrayType *ATy = cast<ArrayType>(CurTy);
844      const Type *EltTy = ATy->getElementType();
845
846      unsigned Size = Record.size();
847      std::vector<Constant*> Elts;
848      for (unsigned i = 0; i != Size; ++i)
849        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
850      Elts.push_back(Constant::getNullValue(EltTy));
851      V = ConstantArray::get(ATy, Elts);
852      break;
853    }
854    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
855      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
856      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
857      if (Opc < 0) {
858        V = UndefValue::get(CurTy);  // Unknown binop.
859      } else {
860        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
861        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
862        V = ConstantExpr::get(Opc, LHS, RHS);
863      }
864      break;
865    }
866    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
867      if (Record.size() < 3) return Error("Invalid CE_CAST record");
868      int Opc = GetDecodedCastOpcode(Record[0]);
869      if (Opc < 0) {
870        V = UndefValue::get(CurTy);  // Unknown cast.
871      } else {
872        const Type *OpTy = getTypeByID(Record[1]);
873        if (!OpTy) return Error("Invalid CE_CAST record");
874        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
875        V = ConstantExpr::getCast(Opc, Op, CurTy);
876      }
877      break;
878    }
879    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
880      if (Record.size() & 1) return Error("Invalid CE_GEP record");
881      SmallVector<Constant*, 16> Elts;
882      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
883        const Type *ElTy = getTypeByID(Record[i]);
884        if (!ElTy) return Error("Invalid CE_GEP record");
885        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
886      }
887      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
888      break;
889    }
890    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
891      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
892      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
893                                                              Type::Int1Ty),
894                                  ValueList.getConstantFwdRef(Record[1],CurTy),
895                                  ValueList.getConstantFwdRef(Record[2],CurTy));
896      break;
897    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
898      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
899      const VectorType *OpTy =
900        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
901      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
902      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
903      Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
904                                                  OpTy->getElementType());
905      V = ConstantExpr::getExtractElement(Op0, Op1);
906      break;
907    }
908    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
909      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
910      if (Record.size() < 3 || OpTy == 0)
911        return Error("Invalid CE_INSERTELT record");
912      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
913      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
914                                                  OpTy->getElementType());
915      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
916      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
917      break;
918    }
919    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
920      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
921      if (Record.size() < 3 || OpTy == 0)
922        return Error("Invalid CE_INSERTELT record");
923      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
924      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
925      const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
926      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
927      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
928      break;
929    }
930    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
931      if (Record.size() < 4) return Error("Invalid CE_CMP record");
932      const Type *OpTy = getTypeByID(Record[0]);
933      if (OpTy == 0) return Error("Invalid CE_CMP record");
934      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
935      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
936
937      if (OpTy->isFloatingPoint())
938        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
939      else if (!isa<VectorType>(OpTy))
940        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
941      else if (OpTy->isFPOrFPVector())
942        V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
943      else
944        V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
945      break;
946    }
947    case bitc::CST_CODE_INLINEASM: {
948      if (Record.size() < 2) return Error("Invalid INLINEASM record");
949      std::string AsmStr, ConstrStr;
950      bool HasSideEffects = Record[0];
951      unsigned AsmStrSize = Record[1];
952      if (2+AsmStrSize >= Record.size())
953        return Error("Invalid INLINEASM record");
954      unsigned ConstStrSize = Record[2+AsmStrSize];
955      if (3+AsmStrSize+ConstStrSize > Record.size())
956        return Error("Invalid INLINEASM record");
957
958      for (unsigned i = 0; i != AsmStrSize; ++i)
959        AsmStr += (char)Record[2+i];
960      for (unsigned i = 0; i != ConstStrSize; ++i)
961        ConstrStr += (char)Record[3+AsmStrSize+i];
962      const PointerType *PTy = cast<PointerType>(CurTy);
963      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
964                         AsmStr, ConstrStr, HasSideEffects);
965      break;
966    }
967    }
968
969    ValueList.AssignValue(V, NextCstNo);
970    ++NextCstNo;
971  }
972
973  if (NextCstNo != ValueList.size())
974    return Error("Invalid constant reference!");
975
976  if (Stream.ReadBlockEnd())
977    return Error("Error at end of constants block");
978
979  // Once all the constants have been read, go through and resolve forward
980  // references.
981  ValueList.ResolveConstantForwardRefs();
982  return false;
983}
984
985/// RememberAndSkipFunctionBody - When we see the block for a function body,
986/// remember where it is and then skip it.  This lets us lazily deserialize the
987/// functions.
988bool BitcodeReader::RememberAndSkipFunctionBody() {
989  // Get the function we are talking about.
990  if (FunctionsWithBodies.empty())
991    return Error("Insufficient function protos");
992
993  Function *Fn = FunctionsWithBodies.back();
994  FunctionsWithBodies.pop_back();
995
996  // Save the current stream state.
997  uint64_t CurBit = Stream.GetCurrentBitNo();
998  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
999
1000  // Set the functions linkage to GhostLinkage so we know it is lazily
1001  // deserialized.
1002  Fn->setLinkage(GlobalValue::GhostLinkage);
1003
1004  // Skip over the function block for now.
1005  if (Stream.SkipBlock())
1006    return Error("Malformed block record");
1007  return false;
1008}
1009
1010bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1011  // Reject multiple MODULE_BLOCK's in a single bitstream.
1012  if (TheModule)
1013    return Error("Multiple MODULE_BLOCKs in same stream");
1014
1015  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1016    return Error("Malformed block record");
1017
1018  // Otherwise, create the module.
1019  TheModule = new Module(ModuleID);
1020
1021  SmallVector<uint64_t, 64> Record;
1022  std::vector<std::string> SectionTable;
1023  std::vector<std::string> GCTable;
1024
1025  // Read all the records for this module.
1026  while (!Stream.AtEndOfStream()) {
1027    unsigned Code = Stream.ReadCode();
1028    if (Code == bitc::END_BLOCK) {
1029      if (Stream.ReadBlockEnd())
1030        return Error("Error at end of module block");
1031
1032      // Patch the initializers for globals and aliases up.
1033      ResolveGlobalAndAliasInits();
1034      if (!GlobalInits.empty() || !AliasInits.empty())
1035        return Error("Malformed global initializer set");
1036      if (!FunctionsWithBodies.empty())
1037        return Error("Too few function bodies found");
1038
1039      // Look for intrinsic functions which need to be upgraded at some point
1040      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1041           FI != FE; ++FI) {
1042        Function* NewFn;
1043        if (UpgradeIntrinsicFunction(FI, NewFn))
1044          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1045      }
1046
1047      // Force deallocation of memory for these vectors to favor the client that
1048      // want lazy deserialization.
1049      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1050      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1051      std::vector<Function*>().swap(FunctionsWithBodies);
1052      return false;
1053    }
1054
1055    if (Code == bitc::ENTER_SUBBLOCK) {
1056      switch (Stream.ReadSubBlockID()) {
1057      default:  // Skip unknown content.
1058        if (Stream.SkipBlock())
1059          return Error("Malformed block record");
1060        break;
1061      case bitc::BLOCKINFO_BLOCK_ID:
1062        if (Stream.ReadBlockInfoBlock())
1063          return Error("Malformed BlockInfoBlock");
1064        break;
1065      case bitc::PARAMATTR_BLOCK_ID:
1066        if (ParseAttributeBlock())
1067          return true;
1068        break;
1069      case bitc::TYPE_BLOCK_ID:
1070        if (ParseTypeTable())
1071          return true;
1072        break;
1073      case bitc::TYPE_SYMTAB_BLOCK_ID:
1074        if (ParseTypeSymbolTable())
1075          return true;
1076        break;
1077      case bitc::VALUE_SYMTAB_BLOCK_ID:
1078        if (ParseValueSymbolTable())
1079          return true;
1080        break;
1081      case bitc::CONSTANTS_BLOCK_ID:
1082        if (ParseConstants() || ResolveGlobalAndAliasInits())
1083          return true;
1084        break;
1085      case bitc::FUNCTION_BLOCK_ID:
1086        // If this is the first function body we've seen, reverse the
1087        // FunctionsWithBodies list.
1088        if (!HasReversedFunctionsWithBodies) {
1089          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1090          HasReversedFunctionsWithBodies = true;
1091        }
1092
1093        if (RememberAndSkipFunctionBody())
1094          return true;
1095        break;
1096      }
1097      continue;
1098    }
1099
1100    if (Code == bitc::DEFINE_ABBREV) {
1101      Stream.ReadAbbrevRecord();
1102      continue;
1103    }
1104
1105    // Read a record.
1106    switch (Stream.ReadRecord(Code, Record)) {
1107    default: break;  // Default behavior, ignore unknown content.
1108    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1109      if (Record.size() < 1)
1110        return Error("Malformed MODULE_CODE_VERSION");
1111      // Only version #0 is supported so far.
1112      if (Record[0] != 0)
1113        return Error("Unknown bitstream version!");
1114      break;
1115    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1116      std::string S;
1117      if (ConvertToString(Record, 0, S))
1118        return Error("Invalid MODULE_CODE_TRIPLE record");
1119      TheModule->setTargetTriple(S);
1120      break;
1121    }
1122    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1123      std::string S;
1124      if (ConvertToString(Record, 0, S))
1125        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1126      TheModule->setDataLayout(S);
1127      break;
1128    }
1129    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1130      std::string S;
1131      if (ConvertToString(Record, 0, S))
1132        return Error("Invalid MODULE_CODE_ASM record");
1133      TheModule->setModuleInlineAsm(S);
1134      break;
1135    }
1136    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1137      std::string S;
1138      if (ConvertToString(Record, 0, S))
1139        return Error("Invalid MODULE_CODE_DEPLIB record");
1140      TheModule->addLibrary(S);
1141      break;
1142    }
1143    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1144      std::string S;
1145      if (ConvertToString(Record, 0, S))
1146        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1147      SectionTable.push_back(S);
1148      break;
1149    }
1150    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1151      std::string S;
1152      if (ConvertToString(Record, 0, S))
1153        return Error("Invalid MODULE_CODE_GCNAME record");
1154      GCTable.push_back(S);
1155      break;
1156    }
1157    // GLOBALVAR: [pointer type, isconst, initid,
1158    //             linkage, alignment, section, visibility, threadlocal]
1159    case bitc::MODULE_CODE_GLOBALVAR: {
1160      if (Record.size() < 6)
1161        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1162      const Type *Ty = getTypeByID(Record[0]);
1163      if (!isa<PointerType>(Ty))
1164        return Error("Global not a pointer type!");
1165      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1166      Ty = cast<PointerType>(Ty)->getElementType();
1167
1168      bool isConstant = Record[1];
1169      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1170      unsigned Alignment = (1 << Record[4]) >> 1;
1171      std::string Section;
1172      if (Record[5]) {
1173        if (Record[5]-1 >= SectionTable.size())
1174          return Error("Invalid section ID");
1175        Section = SectionTable[Record[5]-1];
1176      }
1177      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1178      if (Record.size() > 6)
1179        Visibility = GetDecodedVisibility(Record[6]);
1180      bool isThreadLocal = false;
1181      if (Record.size() > 7)
1182        isThreadLocal = Record[7];
1183
1184      GlobalVariable *NewGV =
1185        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1186                           isThreadLocal, AddressSpace);
1187      NewGV->setAlignment(Alignment);
1188      if (!Section.empty())
1189        NewGV->setSection(Section);
1190      NewGV->setVisibility(Visibility);
1191      NewGV->setThreadLocal(isThreadLocal);
1192
1193      ValueList.push_back(NewGV);
1194
1195      // Remember which value to use for the global initializer.
1196      if (unsigned InitID = Record[2])
1197        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1198      break;
1199    }
1200    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1201    //             alignment, section, visibility, gc]
1202    case bitc::MODULE_CODE_FUNCTION: {
1203      if (Record.size() < 8)
1204        return Error("Invalid MODULE_CODE_FUNCTION record");
1205      const Type *Ty = getTypeByID(Record[0]);
1206      if (!isa<PointerType>(Ty))
1207        return Error("Function not a pointer type!");
1208      const FunctionType *FTy =
1209        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1210      if (!FTy)
1211        return Error("Function not a pointer to function type!");
1212
1213      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1214                                        "", TheModule);
1215
1216      Func->setCallingConv(Record[1]);
1217      bool isProto = Record[2];
1218      Func->setLinkage(GetDecodedLinkage(Record[3]));
1219      Func->setAttributes(getAttributes(Record[4]));
1220
1221      Func->setAlignment((1 << Record[5]) >> 1);
1222      if (Record[6]) {
1223        if (Record[6]-1 >= SectionTable.size())
1224          return Error("Invalid section ID");
1225        Func->setSection(SectionTable[Record[6]-1]);
1226      }
1227      Func->setVisibility(GetDecodedVisibility(Record[7]));
1228      if (Record.size() > 8 && Record[8]) {
1229        if (Record[8]-1 > GCTable.size())
1230          return Error("Invalid GC ID");
1231        Func->setGC(GCTable[Record[8]-1].c_str());
1232      }
1233      ValueList.push_back(Func);
1234
1235      // If this is a function with a body, remember the prototype we are
1236      // creating now, so that we can match up the body with them later.
1237      if (!isProto)
1238        FunctionsWithBodies.push_back(Func);
1239      break;
1240    }
1241    // ALIAS: [alias type, aliasee val#, linkage]
1242    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1243    case bitc::MODULE_CODE_ALIAS: {
1244      if (Record.size() < 3)
1245        return Error("Invalid MODULE_ALIAS record");
1246      const Type *Ty = getTypeByID(Record[0]);
1247      if (!isa<PointerType>(Ty))
1248        return Error("Function not a pointer type!");
1249
1250      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1251                                           "", 0, TheModule);
1252      // Old bitcode files didn't have visibility field.
1253      if (Record.size() > 3)
1254        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1255      ValueList.push_back(NewGA);
1256      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1257      break;
1258    }
1259    /// MODULE_CODE_PURGEVALS: [numvals]
1260    case bitc::MODULE_CODE_PURGEVALS:
1261      // Trim down the value list to the specified size.
1262      if (Record.size() < 1 || Record[0] > ValueList.size())
1263        return Error("Invalid MODULE_PURGEVALS record");
1264      ValueList.shrinkTo(Record[0]);
1265      break;
1266    }
1267    Record.clear();
1268  }
1269
1270  return Error("Premature end of bitstream");
1271}
1272
1273/// SkipWrapperHeader - Some systems wrap bc files with a special header for
1274/// padding or other reasons.  The format of this header is:
1275///
1276/// struct bc_header {
1277///   uint32_t Magic;         // 0x0B17C0DE
1278///   uint32_t Version;       // Version, currently always 0.
1279///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1280///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1281///   ... potentially other gunk ...
1282/// };
1283///
1284/// This function is called when we find a file with a matching magic number.
1285/// In this case, skip down to the subsection of the file that is actually a BC
1286/// file.
1287static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1288  enum {
1289    KnownHeaderSize = 4*4,  // Size of header we read.
1290    OffsetField = 2*4,      // Offset in bytes to Offset field.
1291    SizeField = 3*4         // Offset in bytes to Size field.
1292  };
1293
1294
1295  // Must contain the header!
1296  if (BufEnd-BufPtr < KnownHeaderSize) return true;
1297
1298  unsigned Offset = ( BufPtr[OffsetField  ]        |
1299                     (BufPtr[OffsetField+1] << 8)  |
1300                     (BufPtr[OffsetField+2] << 16) |
1301                     (BufPtr[OffsetField+3] << 24));
1302  unsigned Size   = ( BufPtr[SizeField    ]        |
1303                     (BufPtr[SizeField  +1] << 8)  |
1304                     (BufPtr[SizeField  +2] << 16) |
1305                     (BufPtr[SizeField  +3] << 24));
1306
1307  // Verify that Offset+Size fits in the file.
1308  if (Offset+Size > unsigned(BufEnd-BufPtr))
1309    return true;
1310  BufPtr += Offset;
1311  BufEnd = BufPtr+Size;
1312  return false;
1313}
1314
1315bool BitcodeReader::ParseBitcode() {
1316  TheModule = 0;
1317
1318  if (Buffer->getBufferSize() & 3)
1319    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1320
1321  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1322  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1323
1324  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1325  // The magic number is 0x0B17C0DE stored in little endian.
1326  if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1327      BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1328    if (SkipWrapperHeader(BufPtr, BufEnd))
1329      return Error("Invalid bitcode wrapper header");
1330
1331  Stream.init(BufPtr, BufEnd);
1332
1333  // Sniff for the signature.
1334  if (Stream.Read(8) != 'B' ||
1335      Stream.Read(8) != 'C' ||
1336      Stream.Read(4) != 0x0 ||
1337      Stream.Read(4) != 0xC ||
1338      Stream.Read(4) != 0xE ||
1339      Stream.Read(4) != 0xD)
1340    return Error("Invalid bitcode signature");
1341
1342  // We expect a number of well-defined blocks, though we don't necessarily
1343  // need to understand them all.
1344  while (!Stream.AtEndOfStream()) {
1345    unsigned Code = Stream.ReadCode();
1346
1347    if (Code != bitc::ENTER_SUBBLOCK)
1348      return Error("Invalid record at top-level");
1349
1350    unsigned BlockID = Stream.ReadSubBlockID();
1351
1352    // We only know the MODULE subblock ID.
1353    switch (BlockID) {
1354    case bitc::BLOCKINFO_BLOCK_ID:
1355      if (Stream.ReadBlockInfoBlock())
1356        return Error("Malformed BlockInfoBlock");
1357      break;
1358    case bitc::MODULE_BLOCK_ID:
1359      if (ParseModule(Buffer->getBufferIdentifier()))
1360        return true;
1361      break;
1362    default:
1363      if (Stream.SkipBlock())
1364        return Error("Malformed block record");
1365      break;
1366    }
1367  }
1368
1369  return false;
1370}
1371
1372
1373/// ParseFunctionBody - Lazily parse the specified function body block.
1374bool BitcodeReader::ParseFunctionBody(Function *F) {
1375  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1376    return Error("Malformed block record");
1377
1378  unsigned ModuleValueListSize = ValueList.size();
1379
1380  // Add all the function arguments to the value table.
1381  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1382    ValueList.push_back(I);
1383
1384  unsigned NextValueNo = ValueList.size();
1385  BasicBlock *CurBB = 0;
1386  unsigned CurBBNo = 0;
1387
1388  // Read all the records.
1389  SmallVector<uint64_t, 64> Record;
1390  while (1) {
1391    unsigned Code = Stream.ReadCode();
1392    if (Code == bitc::END_BLOCK) {
1393      if (Stream.ReadBlockEnd())
1394        return Error("Error at end of function block");
1395      break;
1396    }
1397
1398    if (Code == bitc::ENTER_SUBBLOCK) {
1399      switch (Stream.ReadSubBlockID()) {
1400      default:  // Skip unknown content.
1401        if (Stream.SkipBlock())
1402          return Error("Malformed block record");
1403        break;
1404      case bitc::CONSTANTS_BLOCK_ID:
1405        if (ParseConstants()) return true;
1406        NextValueNo = ValueList.size();
1407        break;
1408      case bitc::VALUE_SYMTAB_BLOCK_ID:
1409        if (ParseValueSymbolTable()) return true;
1410        break;
1411      }
1412      continue;
1413    }
1414
1415    if (Code == bitc::DEFINE_ABBREV) {
1416      Stream.ReadAbbrevRecord();
1417      continue;
1418    }
1419
1420    // Read a record.
1421    Record.clear();
1422    Instruction *I = 0;
1423    switch (Stream.ReadRecord(Code, Record)) {
1424    default: // Default behavior: reject
1425      return Error("Unknown instruction");
1426    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1427      if (Record.size() < 1 || Record[0] == 0)
1428        return Error("Invalid DECLAREBLOCKS record");
1429      // Create all the basic blocks for the function.
1430      FunctionBBs.resize(Record[0]);
1431      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1432        FunctionBBs[i] = BasicBlock::Create("", F);
1433      CurBB = FunctionBBs[0];
1434      continue;
1435
1436    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1437      unsigned OpNum = 0;
1438      Value *LHS, *RHS;
1439      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1440          getValue(Record, OpNum, LHS->getType(), RHS) ||
1441          OpNum+1 != Record.size())
1442        return Error("Invalid BINOP record");
1443
1444      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1445      if (Opc == -1) return Error("Invalid BINOP record");
1446      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1447      break;
1448    }
1449    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1450      unsigned OpNum = 0;
1451      Value *Op;
1452      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1453          OpNum+2 != Record.size())
1454        return Error("Invalid CAST record");
1455
1456      const Type *ResTy = getTypeByID(Record[OpNum]);
1457      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1458      if (Opc == -1 || ResTy == 0)
1459        return Error("Invalid CAST record");
1460      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1461      break;
1462    }
1463    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1464      unsigned OpNum = 0;
1465      Value *BasePtr;
1466      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1467        return Error("Invalid GEP record");
1468
1469      SmallVector<Value*, 16> GEPIdx;
1470      while (OpNum != Record.size()) {
1471        Value *Op;
1472        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1473          return Error("Invalid GEP record");
1474        GEPIdx.push_back(Op);
1475      }
1476
1477      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1478      break;
1479    }
1480
1481    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1482                                       // EXTRACTVAL: [opty, opval, n x indices]
1483      unsigned OpNum = 0;
1484      Value *Agg;
1485      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1486        return Error("Invalid EXTRACTVAL record");
1487
1488      SmallVector<unsigned, 4> EXTRACTVALIdx;
1489      for (unsigned RecSize = Record.size();
1490           OpNum != RecSize; ++OpNum) {
1491        uint64_t Index = Record[OpNum];
1492        if ((unsigned)Index != Index)
1493          return Error("Invalid EXTRACTVAL index");
1494        EXTRACTVALIdx.push_back((unsigned)Index);
1495      }
1496
1497      I = ExtractValueInst::Create(Agg,
1498                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1499      break;
1500    }
1501
1502    case bitc::FUNC_CODE_INST_INSERTVAL: {
1503                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1504      unsigned OpNum = 0;
1505      Value *Agg;
1506      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1507        return Error("Invalid INSERTVAL record");
1508      Value *Val;
1509      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1510        return Error("Invalid INSERTVAL record");
1511
1512      SmallVector<unsigned, 4> INSERTVALIdx;
1513      for (unsigned RecSize = Record.size();
1514           OpNum != RecSize; ++OpNum) {
1515        uint64_t Index = Record[OpNum];
1516        if ((unsigned)Index != Index)
1517          return Error("Invalid INSERTVAL index");
1518        INSERTVALIdx.push_back((unsigned)Index);
1519      }
1520
1521      I = InsertValueInst::Create(Agg, Val,
1522                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1523      break;
1524    }
1525
1526    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1527      // obsolete form of select
1528      // handles select i1 ... in old bitcode
1529      unsigned OpNum = 0;
1530      Value *TrueVal, *FalseVal, *Cond;
1531      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1532          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1533          getValue(Record, OpNum, Type::Int1Ty, Cond))
1534        return Error("Invalid SELECT record");
1535
1536      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1537      break;
1538    }
1539
1540    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1541      // new form of select
1542      // handles select i1 or select [N x i1]
1543      unsigned OpNum = 0;
1544      Value *TrueVal, *FalseVal, *Cond;
1545      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1546          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1547          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1548        return Error("Invalid SELECT record");
1549
1550      // select condition can be either i1 or [N x i1]
1551      if (const VectorType* vector_type =
1552          dyn_cast<const VectorType>(Cond->getType())) {
1553        // expect <n x i1>
1554        if (vector_type->getElementType() != Type::Int1Ty)
1555          return Error("Invalid SELECT condition type");
1556      } else {
1557        // expect i1
1558        if (Cond->getType() != Type::Int1Ty)
1559          return Error("Invalid SELECT condition type");
1560      }
1561
1562      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1563      break;
1564    }
1565
1566    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1567      unsigned OpNum = 0;
1568      Value *Vec, *Idx;
1569      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1570          getValue(Record, OpNum, Type::Int32Ty, Idx))
1571        return Error("Invalid EXTRACTELT record");
1572      I = new ExtractElementInst(Vec, Idx);
1573      break;
1574    }
1575
1576    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1577      unsigned OpNum = 0;
1578      Value *Vec, *Elt, *Idx;
1579      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1580          getValue(Record, OpNum,
1581                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1582          getValue(Record, OpNum, Type::Int32Ty, Idx))
1583        return Error("Invalid INSERTELT record");
1584      I = InsertElementInst::Create(Vec, Elt, Idx);
1585      break;
1586    }
1587
1588    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1589      unsigned OpNum = 0;
1590      Value *Vec1, *Vec2, *Mask;
1591      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1592          getValue(Record, OpNum, Vec1->getType(), Vec2))
1593        return Error("Invalid SHUFFLEVEC record");
1594
1595      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1596        return Error("Invalid SHUFFLEVEC record");
1597      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1598      break;
1599    }
1600
1601    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1602      // VFCmp/VICmp
1603      // or old form of ICmp/FCmp returning bool
1604      unsigned OpNum = 0;
1605      Value *LHS, *RHS;
1606      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1607          getValue(Record, OpNum, LHS->getType(), RHS) ||
1608          OpNum+1 != Record.size())
1609        return Error("Invalid CMP record");
1610
1611      if (LHS->getType()->isFloatingPoint())
1612        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1613      else if (!isa<VectorType>(LHS->getType()))
1614        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1615      else if (LHS->getType()->isFPOrFPVector())
1616        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1617      else
1618        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1619      break;
1620    }
1621    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1622      // Fcmp/ICmp returning bool or vector of bool
1623      unsigned OpNum = 0;
1624      Value *LHS, *RHS;
1625      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1626          getValue(Record, OpNum, LHS->getType(), RHS) ||
1627          OpNum+1 != Record.size())
1628        return Error("Invalid CMP2 record");
1629
1630      if (LHS->getType()->isFPOrFPVector())
1631        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1632      else
1633        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1634      break;
1635    }
1636    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1637      if (Record.size() != 2)
1638        return Error("Invalid GETRESULT record");
1639      unsigned OpNum = 0;
1640      Value *Op;
1641      getValueTypePair(Record, OpNum, NextValueNo, Op);
1642      unsigned Index = Record[1];
1643      I = ExtractValueInst::Create(Op, Index);
1644      break;
1645    }
1646
1647    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1648      {
1649        unsigned Size = Record.size();
1650        if (Size == 0) {
1651          I = ReturnInst::Create();
1652          break;
1653        }
1654
1655        unsigned OpNum = 0;
1656        SmallVector<Value *,4> Vs;
1657        do {
1658          Value *Op = NULL;
1659          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1660            return Error("Invalid RET record");
1661          Vs.push_back(Op);
1662        } while(OpNum != Record.size());
1663
1664        const Type *ReturnType = F->getReturnType();
1665        if (Vs.size() > 1 ||
1666            (isa<StructType>(ReturnType) &&
1667             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1668          Value *RV = UndefValue::get(ReturnType);
1669          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1670            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1671            CurBB->getInstList().push_back(I);
1672            ValueList.AssignValue(I, NextValueNo++);
1673            RV = I;
1674          }
1675          I = ReturnInst::Create(RV);
1676          break;
1677        }
1678
1679        I = ReturnInst::Create(Vs[0]);
1680        break;
1681      }
1682    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1683      if (Record.size() != 1 && Record.size() != 3)
1684        return Error("Invalid BR record");
1685      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1686      if (TrueDest == 0)
1687        return Error("Invalid BR record");
1688
1689      if (Record.size() == 1)
1690        I = BranchInst::Create(TrueDest);
1691      else {
1692        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1693        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1694        if (FalseDest == 0 || Cond == 0)
1695          return Error("Invalid BR record");
1696        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1697      }
1698      break;
1699    }
1700    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1701      if (Record.size() < 3 || (Record.size() & 1) == 0)
1702        return Error("Invalid SWITCH record");
1703      const Type *OpTy = getTypeByID(Record[0]);
1704      Value *Cond = getFnValueByID(Record[1], OpTy);
1705      BasicBlock *Default = getBasicBlock(Record[2]);
1706      if (OpTy == 0 || Cond == 0 || Default == 0)
1707        return Error("Invalid SWITCH record");
1708      unsigned NumCases = (Record.size()-3)/2;
1709      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1710      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1711        ConstantInt *CaseVal =
1712          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1713        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1714        if (CaseVal == 0 || DestBB == 0) {
1715          delete SI;
1716          return Error("Invalid SWITCH record!");
1717        }
1718        SI->addCase(CaseVal, DestBB);
1719      }
1720      I = SI;
1721      break;
1722    }
1723
1724    case bitc::FUNC_CODE_INST_INVOKE: {
1725      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1726      if (Record.size() < 4) return Error("Invalid INVOKE record");
1727      AttrListPtr PAL = getAttributes(Record[0]);
1728      unsigned CCInfo = Record[1];
1729      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1730      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1731
1732      unsigned OpNum = 4;
1733      Value *Callee;
1734      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1735        return Error("Invalid INVOKE record");
1736
1737      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1738      const FunctionType *FTy = !CalleeTy ? 0 :
1739        dyn_cast<FunctionType>(CalleeTy->getElementType());
1740
1741      // Check that the right number of fixed parameters are here.
1742      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1743          Record.size() < OpNum+FTy->getNumParams())
1744        return Error("Invalid INVOKE record");
1745
1746      SmallVector<Value*, 16> Ops;
1747      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1748        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1749        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1750      }
1751
1752      if (!FTy->isVarArg()) {
1753        if (Record.size() != OpNum)
1754          return Error("Invalid INVOKE record");
1755      } else {
1756        // Read type/value pairs for varargs params.
1757        while (OpNum != Record.size()) {
1758          Value *Op;
1759          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1760            return Error("Invalid INVOKE record");
1761          Ops.push_back(Op);
1762        }
1763      }
1764
1765      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1766                             Ops.begin(), Ops.end());
1767      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1768      cast<InvokeInst>(I)->setAttributes(PAL);
1769      break;
1770    }
1771    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1772      I = new UnwindInst();
1773      break;
1774    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1775      I = new UnreachableInst();
1776      break;
1777    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1778      if (Record.size() < 1 || ((Record.size()-1)&1))
1779        return Error("Invalid PHI record");
1780      const Type *Ty = getTypeByID(Record[0]);
1781      if (!Ty) return Error("Invalid PHI record");
1782
1783      PHINode *PN = PHINode::Create(Ty);
1784      PN->reserveOperandSpace((Record.size()-1)/2);
1785
1786      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1787        Value *V = getFnValueByID(Record[1+i], Ty);
1788        BasicBlock *BB = getBasicBlock(Record[2+i]);
1789        if (!V || !BB) return Error("Invalid PHI record");
1790        PN->addIncoming(V, BB);
1791      }
1792      I = PN;
1793      break;
1794    }
1795
1796    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1797      if (Record.size() < 3)
1798        return Error("Invalid MALLOC record");
1799      const PointerType *Ty =
1800        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1801      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1802      unsigned Align = Record[2];
1803      if (!Ty || !Size) return Error("Invalid MALLOC record");
1804      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1805      break;
1806    }
1807    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1808      unsigned OpNum = 0;
1809      Value *Op;
1810      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1811          OpNum != Record.size())
1812        return Error("Invalid FREE record");
1813      I = new FreeInst(Op);
1814      break;
1815    }
1816    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1817      if (Record.size() < 3)
1818        return Error("Invalid ALLOCA record");
1819      const PointerType *Ty =
1820        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1821      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1822      unsigned Align = Record[2];
1823      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1824      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1825      break;
1826    }
1827    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1828      unsigned OpNum = 0;
1829      Value *Op;
1830      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1831          OpNum+2 != Record.size())
1832        return Error("Invalid LOAD record");
1833
1834      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1835      break;
1836    }
1837    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1838      unsigned OpNum = 0;
1839      Value *Val, *Ptr;
1840      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1841          getValue(Record, OpNum,
1842                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1843          OpNum+2 != Record.size())
1844        return Error("Invalid STORE record");
1845
1846      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1847      break;
1848    }
1849    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1850      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1851      unsigned OpNum = 0;
1852      Value *Val, *Ptr;
1853      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1854          getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1855          OpNum+2 != Record.size())
1856        return Error("Invalid STORE record");
1857
1858      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1859      break;
1860    }
1861    case bitc::FUNC_CODE_INST_CALL: {
1862      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1863      if (Record.size() < 3)
1864        return Error("Invalid CALL record");
1865
1866      AttrListPtr PAL = getAttributes(Record[0]);
1867      unsigned CCInfo = Record[1];
1868
1869      unsigned OpNum = 2;
1870      Value *Callee;
1871      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1872        return Error("Invalid CALL record");
1873
1874      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1875      const FunctionType *FTy = 0;
1876      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1877      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1878        return Error("Invalid CALL record");
1879
1880      SmallVector<Value*, 16> Args;
1881      // Read the fixed params.
1882      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1883        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1884          Args.push_back(getBasicBlock(Record[OpNum]));
1885        else
1886          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1887        if (Args.back() == 0) return Error("Invalid CALL record");
1888      }
1889
1890      // Read type/value pairs for varargs params.
1891      if (!FTy->isVarArg()) {
1892        if (OpNum != Record.size())
1893          return Error("Invalid CALL record");
1894      } else {
1895        while (OpNum != Record.size()) {
1896          Value *Op;
1897          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1898            return Error("Invalid CALL record");
1899          Args.push_back(Op);
1900        }
1901      }
1902
1903      I = CallInst::Create(Callee, Args.begin(), Args.end());
1904      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1905      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1906      cast<CallInst>(I)->setAttributes(PAL);
1907      break;
1908    }
1909    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1910      if (Record.size() < 3)
1911        return Error("Invalid VAARG record");
1912      const Type *OpTy = getTypeByID(Record[0]);
1913      Value *Op = getFnValueByID(Record[1], OpTy);
1914      const Type *ResTy = getTypeByID(Record[2]);
1915      if (!OpTy || !Op || !ResTy)
1916        return Error("Invalid VAARG record");
1917      I = new VAArgInst(Op, ResTy);
1918      break;
1919    }
1920    }
1921
1922    // Add instruction to end of current BB.  If there is no current BB, reject
1923    // this file.
1924    if (CurBB == 0) {
1925      delete I;
1926      return Error("Invalid instruction with no BB");
1927    }
1928    CurBB->getInstList().push_back(I);
1929
1930    // If this was a terminator instruction, move to the next block.
1931    if (isa<TerminatorInst>(I)) {
1932      ++CurBBNo;
1933      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1934    }
1935
1936    // Non-void values get registered in the value table for future use.
1937    if (I && I->getType() != Type::VoidTy)
1938      ValueList.AssignValue(I, NextValueNo++);
1939  }
1940
1941  // Check the function list for unresolved values.
1942  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1943    if (A->getParent() == 0) {
1944      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1945      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1946        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1947          A->replaceAllUsesWith(UndefValue::get(A->getType()));
1948          delete A;
1949        }
1950      }
1951      return Error("Never resolved value found in function!");
1952    }
1953  }
1954
1955  // Trim the value list down to the size it was before we parsed this function.
1956  ValueList.shrinkTo(ModuleValueListSize);
1957  std::vector<BasicBlock*>().swap(FunctionBBs);
1958
1959  return false;
1960}
1961
1962//===----------------------------------------------------------------------===//
1963// ModuleProvider implementation
1964//===----------------------------------------------------------------------===//
1965
1966
1967bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1968  // If it already is material, ignore the request.
1969  if (!F->hasNotBeenReadFromBitcode()) return false;
1970
1971  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1972    DeferredFunctionInfo.find(F);
1973  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1974
1975  // Move the bit stream to the saved position of the deferred function body and
1976  // restore the real linkage type for the function.
1977  Stream.JumpToBit(DFII->second.first);
1978  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
1979
1980  if (ParseFunctionBody(F)) {
1981    if (ErrInfo) *ErrInfo = ErrorString;
1982    return true;
1983  }
1984
1985  // Upgrade any old intrinsic calls in the function.
1986  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
1987       E = UpgradedIntrinsics.end(); I != E; ++I) {
1988    if (I->first != I->second) {
1989      for (Value::use_iterator UI = I->first->use_begin(),
1990           UE = I->first->use_end(); UI != UE; ) {
1991        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
1992          UpgradeIntrinsicCall(CI, I->second);
1993      }
1994    }
1995  }
1996
1997  return false;
1998}
1999
2000void BitcodeReader::dematerializeFunction(Function *F) {
2001  // If this function isn't materialized, or if it is a proto, this is a noop.
2002  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2003    return;
2004
2005  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2006
2007  // Just forget the function body, we can remat it later.
2008  F->deleteBody();
2009  F->setLinkage(GlobalValue::GhostLinkage);
2010}
2011
2012
2013Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2014  for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2015       DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2016       ++I) {
2017    Function *F = I->first;
2018    if (F->hasNotBeenReadFromBitcode() &&
2019        materializeFunction(F, ErrInfo))
2020      return 0;
2021  }
2022
2023  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2024  // delete the old functions to clean up. We can't do this unless the entire
2025  // module is materialized because there could always be another function body
2026  // with calls to the old function.
2027  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2028       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2029    if (I->first != I->second) {
2030      for (Value::use_iterator UI = I->first->use_begin(),
2031           UE = I->first->use_end(); UI != UE; ) {
2032        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2033          UpgradeIntrinsicCall(CI, I->second);
2034      }
2035      ValueList.replaceUsesOfWith(I->first, I->second);
2036      I->first->eraseFromParent();
2037    }
2038  }
2039  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2040
2041  return TheModule;
2042}
2043
2044
2045/// This method is provided by the parent ModuleProvde class and overriden
2046/// here. It simply releases the module from its provided and frees up our
2047/// state.
2048/// @brief Release our hold on the generated module
2049Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2050  // Since we're losing control of this Module, we must hand it back complete
2051  Module *M = ModuleProvider::releaseModule(ErrInfo);
2052  FreeState();
2053  return M;
2054}
2055
2056
2057//===----------------------------------------------------------------------===//
2058// External interface
2059//===----------------------------------------------------------------------===//
2060
2061/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2062///
2063ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2064                                               std::string *ErrMsg) {
2065  BitcodeReader *R = new BitcodeReader(Buffer);
2066  if (R->ParseBitcode()) {
2067    if (ErrMsg)
2068      *ErrMsg = R->getErrorString();
2069
2070    // Don't let the BitcodeReader dtor delete 'Buffer'.
2071    R->releaseMemoryBuffer();
2072    delete R;
2073    return 0;
2074  }
2075  return R;
2076}
2077
2078/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2079/// If an error occurs, return null and fill in *ErrMsg if non-null.
2080Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2081  BitcodeReader *R;
2082  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2083  if (!R) return 0;
2084
2085  // Read in the entire module.
2086  Module *M = R->materializeModule(ErrMsg);
2087
2088  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2089  // there was an error.
2090  R->releaseMemoryBuffer();
2091
2092  // If there was no error, tell ModuleProvider not to delete it when its dtor
2093  // is run.
2094  if (M)
2095    M = R->releaseModule(ErrMsg);
2096
2097  delete R;
2098  return M;
2099}
2100