BitcodeReader.cpp revision 70644e92d810f36710bc289cda11e982b399fc88
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  delete Buffer;
32  Buffer = 0;
33  std::vector<PATypeHolder>().swap(TypeList);
34  ValueList.clear();
35  MDValueList.clear();
36
37  std::vector<AttrListPtr>().swap(MAttributes);
38  std::vector<BasicBlock*>().swap(FunctionBBs);
39  std::vector<Function*>().swap(FunctionsWithBodies);
40  DeferredFunctionInfo.clear();
41}
42
43//===----------------------------------------------------------------------===//
44//  Helper functions to implement forward reference resolution, etc.
45//===----------------------------------------------------------------------===//
46
47/// ConvertToString - Convert a string from a record into an std::string, return
48/// true on failure.
49template<typename StrTy>
50static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                            StrTy &Result) {
52  if (Idx > Record.size())
53    return true;
54
55  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56    Result += (char)Record[i];
57  return false;
58}
59
60static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61  switch (Val) {
62  default: // Map unknown/new linkages to external
63  case 0:  return GlobalValue::ExternalLinkage;
64  case 1:  return GlobalValue::WeakAnyLinkage;
65  case 2:  return GlobalValue::AppendingLinkage;
66  case 3:  return GlobalValue::InternalLinkage;
67  case 4:  return GlobalValue::LinkOnceAnyLinkage;
68  case 5:  return GlobalValue::DLLImportLinkage;
69  case 6:  return GlobalValue::DLLExportLinkage;
70  case 7:  return GlobalValue::ExternalWeakLinkage;
71  case 8:  return GlobalValue::CommonLinkage;
72  case 9:  return GlobalValue::PrivateLinkage;
73  case 10: return GlobalValue::WeakODRLinkage;
74  case 11: return GlobalValue::LinkOnceODRLinkage;
75  case 12: return GlobalValue::AvailableExternallyLinkage;
76  case 13: return GlobalValue::LinkerPrivateLinkage;
77  }
78}
79
80static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
81  switch (Val) {
82  default: // Map unknown visibilities to default.
83  case 0: return GlobalValue::DefaultVisibility;
84  case 1: return GlobalValue::HiddenVisibility;
85  case 2: return GlobalValue::ProtectedVisibility;
86  }
87}
88
89static int GetDecodedCastOpcode(unsigned Val) {
90  switch (Val) {
91  default: return -1;
92  case bitc::CAST_TRUNC   : return Instruction::Trunc;
93  case bitc::CAST_ZEXT    : return Instruction::ZExt;
94  case bitc::CAST_SEXT    : return Instruction::SExt;
95  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
96  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
97  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
98  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
99  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
100  case bitc::CAST_FPEXT   : return Instruction::FPExt;
101  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
102  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
103  case bitc::CAST_BITCAST : return Instruction::BitCast;
104  }
105}
106static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
107  switch (Val) {
108  default: return -1;
109  case bitc::BINOP_ADD:
110    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
111  case bitc::BINOP_SUB:
112    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
113  case bitc::BINOP_MUL:
114    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
115  case bitc::BINOP_UDIV: return Instruction::UDiv;
116  case bitc::BINOP_SDIV:
117    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
118  case bitc::BINOP_UREM: return Instruction::URem;
119  case bitc::BINOP_SREM:
120    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
121  case bitc::BINOP_SHL:  return Instruction::Shl;
122  case bitc::BINOP_LSHR: return Instruction::LShr;
123  case bitc::BINOP_ASHR: return Instruction::AShr;
124  case bitc::BINOP_AND:  return Instruction::And;
125  case bitc::BINOP_OR:   return Instruction::Or;
126  case bitc::BINOP_XOR:  return Instruction::Xor;
127  }
128}
129
130namespace llvm {
131namespace {
132  /// @brief A class for maintaining the slot number definition
133  /// as a placeholder for the actual definition for forward constants defs.
134  class ConstantPlaceHolder : public ConstantExpr {
135    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
136    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
137  public:
138    // allocate space for exactly one operand
139    void *operator new(size_t s) {
140      return User::operator new(s, 1);
141    }
142    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
143      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
144      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
145    }
146
147    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
148    static inline bool classof(const ConstantPlaceHolder *) { return true; }
149    static bool classof(const Value *V) {
150      return isa<ConstantExpr>(V) &&
151             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
152    }
153
154
155    /// Provide fast operand accessors
156    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
157  };
158}
159
160// FIXME: can we inherit this from ConstantExpr?
161template <>
162struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
163};
164}
165
166
167void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
168  if (Idx == size()) {
169    push_back(V);
170    return;
171  }
172
173  if (Idx >= size())
174    resize(Idx+1);
175
176  WeakVH &OldV = ValuePtrs[Idx];
177  if (OldV == 0) {
178    OldV = V;
179    return;
180  }
181
182  // Handle constants and non-constants (e.g. instrs) differently for
183  // efficiency.
184  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
185    ResolveConstants.push_back(std::make_pair(PHC, Idx));
186    OldV = V;
187  } else {
188    // If there was a forward reference to this value, replace it.
189    Value *PrevVal = OldV;
190    OldV->replaceAllUsesWith(V);
191    delete PrevVal;
192  }
193}
194
195
196Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
197                                                    const Type *Ty) {
198  if (Idx >= size())
199    resize(Idx + 1);
200
201  if (Value *V = ValuePtrs[Idx]) {
202    assert(Ty == V->getType() && "Type mismatch in constant table!");
203    return cast<Constant>(V);
204  }
205
206  // Create and return a placeholder, which will later be RAUW'd.
207  Constant *C = new ConstantPlaceHolder(Ty, Context);
208  ValuePtrs[Idx] = C;
209  return C;
210}
211
212Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
213  if (Idx >= size())
214    resize(Idx + 1);
215
216  if (Value *V = ValuePtrs[Idx]) {
217    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
218    return V;
219  }
220
221  // No type specified, must be invalid reference.
222  if (Ty == 0) return 0;
223
224  // Create and return a placeholder, which will later be RAUW'd.
225  Value *V = new Argument(Ty);
226  ValuePtrs[Idx] = V;
227  return V;
228}
229
230/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
231/// resolves any forward references.  The idea behind this is that we sometimes
232/// get constants (such as large arrays) which reference *many* forward ref
233/// constants.  Replacing each of these causes a lot of thrashing when
234/// building/reuniquing the constant.  Instead of doing this, we look at all the
235/// uses and rewrite all the place holders at once for any constant that uses
236/// a placeholder.
237void BitcodeReaderValueList::ResolveConstantForwardRefs() {
238  // Sort the values by-pointer so that they are efficient to look up with a
239  // binary search.
240  std::sort(ResolveConstants.begin(), ResolveConstants.end());
241
242  SmallVector<Constant*, 64> NewOps;
243
244  while (!ResolveConstants.empty()) {
245    Value *RealVal = operator[](ResolveConstants.back().second);
246    Constant *Placeholder = ResolveConstants.back().first;
247    ResolveConstants.pop_back();
248
249    // Loop over all users of the placeholder, updating them to reference the
250    // new value.  If they reference more than one placeholder, update them all
251    // at once.
252    while (!Placeholder->use_empty()) {
253      Value::use_iterator UI = Placeholder->use_begin();
254
255      // If the using object isn't uniqued, just update the operands.  This
256      // handles instructions and initializers for global variables.
257      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
258        UI.getUse().set(RealVal);
259        continue;
260      }
261
262      // Otherwise, we have a constant that uses the placeholder.  Replace that
263      // constant with a new constant that has *all* placeholder uses updated.
264      Constant *UserC = cast<Constant>(*UI);
265      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
266           I != E; ++I) {
267        Value *NewOp;
268        if (!isa<ConstantPlaceHolder>(*I)) {
269          // Not a placeholder reference.
270          NewOp = *I;
271        } else if (*I == Placeholder) {
272          // Common case is that it just references this one placeholder.
273          NewOp = RealVal;
274        } else {
275          // Otherwise, look up the placeholder in ResolveConstants.
276          ResolveConstantsTy::iterator It =
277            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
278                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
279                                                            0));
280          assert(It != ResolveConstants.end() && It->first == *I);
281          NewOp = operator[](It->second);
282        }
283
284        NewOps.push_back(cast<Constant>(NewOp));
285      }
286
287      // Make the new constant.
288      Constant *NewC;
289      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
290        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
291                                        NewOps.size());
292      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
293        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
294                                         UserCS->getType()->isPacked());
295      } else if (isa<ConstantVector>(UserC)) {
296        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
297      } else {
298        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
299        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
300                                                          NewOps.size());
301      }
302
303      UserC->replaceAllUsesWith(NewC);
304      UserC->destroyConstant();
305      NewOps.clear();
306    }
307
308    // Update all ValueHandles, they should be the only users at this point.
309    Placeholder->replaceAllUsesWith(RealVal);
310    delete Placeholder;
311  }
312}
313
314void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
315  if (Idx == size()) {
316    push_back(V);
317    return;
318  }
319
320  if (Idx >= size())
321    resize(Idx+1);
322
323  WeakVH &OldV = MDValuePtrs[Idx];
324  if (OldV == 0) {
325    OldV = V;
326    return;
327  }
328
329  // If there was a forward reference to this value, replace it.
330  Value *PrevVal = OldV;
331  OldV->replaceAllUsesWith(V);
332  delete PrevVal;
333  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
334  // value for Idx.
335  MDValuePtrs[Idx] = V;
336}
337
338Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
339  if (Idx >= size())
340    resize(Idx + 1);
341
342  if (Value *V = MDValuePtrs[Idx]) {
343    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
344    return V;
345  }
346
347  // Create and return a placeholder, which will later be RAUW'd.
348  Value *V = new Argument(Type::getMetadataTy(Context));
349  MDValuePtrs[Idx] = V;
350  return V;
351}
352
353const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
354  // If the TypeID is in range, return it.
355  if (ID < TypeList.size())
356    return TypeList[ID].get();
357  if (!isTypeTable) return 0;
358
359  // The type table allows forward references.  Push as many Opaque types as
360  // needed to get up to ID.
361  while (TypeList.size() <= ID)
362    TypeList.push_back(OpaqueType::get(Context));
363  return TypeList.back().get();
364}
365
366//===----------------------------------------------------------------------===//
367//  Functions for parsing blocks from the bitcode file
368//===----------------------------------------------------------------------===//
369
370bool BitcodeReader::ParseAttributeBlock() {
371  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
372    return Error("Malformed block record");
373
374  if (!MAttributes.empty())
375    return Error("Multiple PARAMATTR blocks found!");
376
377  SmallVector<uint64_t, 64> Record;
378
379  SmallVector<AttributeWithIndex, 8> Attrs;
380
381  // Read all the records.
382  while (1) {
383    unsigned Code = Stream.ReadCode();
384    if (Code == bitc::END_BLOCK) {
385      if (Stream.ReadBlockEnd())
386        return Error("Error at end of PARAMATTR block");
387      return false;
388    }
389
390    if (Code == bitc::ENTER_SUBBLOCK) {
391      // No known subblocks, always skip them.
392      Stream.ReadSubBlockID();
393      if (Stream.SkipBlock())
394        return Error("Malformed block record");
395      continue;
396    }
397
398    if (Code == bitc::DEFINE_ABBREV) {
399      Stream.ReadAbbrevRecord();
400      continue;
401    }
402
403    // Read a record.
404    Record.clear();
405    switch (Stream.ReadRecord(Code, Record)) {
406    default:  // Default behavior: ignore.
407      break;
408    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
409      if (Record.size() & 1)
410        return Error("Invalid ENTRY record");
411
412      // FIXME : Remove this autoupgrade code in LLVM 3.0.
413      // If Function attributes are using index 0 then transfer them
414      // to index ~0. Index 0 is used for return value attributes but used to be
415      // used for function attributes.
416      Attributes RetAttribute = Attribute::None;
417      Attributes FnAttribute = Attribute::None;
418      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
419        // FIXME: remove in LLVM 3.0
420        // The alignment is stored as a 16-bit raw value from bits 31--16.
421        // We shift the bits above 31 down by 11 bits.
422
423        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
424        if (Alignment && !isPowerOf2_32(Alignment))
425          return Error("Alignment is not a power of two.");
426
427        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
428        if (Alignment)
429          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
430        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
431        Record[i+1] = ReconstitutedAttr;
432
433        if (Record[i] == 0)
434          RetAttribute = Record[i+1];
435        else if (Record[i] == ~0U)
436          FnAttribute = Record[i+1];
437      }
438
439      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
440                              Attribute::ReadOnly|Attribute::ReadNone);
441
442      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
443          (RetAttribute & OldRetAttrs) != 0) {
444        if (FnAttribute == Attribute::None) { // add a slot so they get added.
445          Record.push_back(~0U);
446          Record.push_back(0);
447        }
448
449        FnAttribute  |= RetAttribute & OldRetAttrs;
450        RetAttribute &= ~OldRetAttrs;
451      }
452
453      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
454        if (Record[i] == 0) {
455          if (RetAttribute != Attribute::None)
456            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
457        } else if (Record[i] == ~0U) {
458          if (FnAttribute != Attribute::None)
459            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
460        } else if (Record[i+1] != Attribute::None)
461          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
462      }
463
464      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
465      Attrs.clear();
466      break;
467    }
468    }
469  }
470}
471
472
473bool BitcodeReader::ParseTypeTable() {
474  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
475    return Error("Malformed block record");
476
477  if (!TypeList.empty())
478    return Error("Multiple TYPE_BLOCKs found!");
479
480  SmallVector<uint64_t, 64> Record;
481  unsigned NumRecords = 0;
482
483  // Read all the records for this type table.
484  while (1) {
485    unsigned Code = Stream.ReadCode();
486    if (Code == bitc::END_BLOCK) {
487      if (NumRecords != TypeList.size())
488        return Error("Invalid type forward reference in TYPE_BLOCK");
489      if (Stream.ReadBlockEnd())
490        return Error("Error at end of type table block");
491      return false;
492    }
493
494    if (Code == bitc::ENTER_SUBBLOCK) {
495      // No known subblocks, always skip them.
496      Stream.ReadSubBlockID();
497      if (Stream.SkipBlock())
498        return Error("Malformed block record");
499      continue;
500    }
501
502    if (Code == bitc::DEFINE_ABBREV) {
503      Stream.ReadAbbrevRecord();
504      continue;
505    }
506
507    // Read a record.
508    Record.clear();
509    const Type *ResultTy = 0;
510    switch (Stream.ReadRecord(Code, Record)) {
511    default:  // Default behavior: unknown type.
512      ResultTy = 0;
513      break;
514    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
515      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
516      // type list.  This allows us to reserve space.
517      if (Record.size() < 1)
518        return Error("Invalid TYPE_CODE_NUMENTRY record");
519      TypeList.reserve(Record[0]);
520      continue;
521    case bitc::TYPE_CODE_VOID:      // VOID
522      ResultTy = Type::getVoidTy(Context);
523      break;
524    case bitc::TYPE_CODE_FLOAT:     // FLOAT
525      ResultTy = Type::getFloatTy(Context);
526      break;
527    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
528      ResultTy = Type::getDoubleTy(Context);
529      break;
530    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
531      ResultTy = Type::getX86_FP80Ty(Context);
532      break;
533    case bitc::TYPE_CODE_FP128:     // FP128
534      ResultTy = Type::getFP128Ty(Context);
535      break;
536    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
537      ResultTy = Type::getPPC_FP128Ty(Context);
538      break;
539    case bitc::TYPE_CODE_LABEL:     // LABEL
540      ResultTy = Type::getLabelTy(Context);
541      break;
542    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
543      ResultTy = 0;
544      break;
545    case bitc::TYPE_CODE_METADATA:  // METADATA
546      ResultTy = Type::getMetadataTy(Context);
547      break;
548    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
549      if (Record.size() < 1)
550        return Error("Invalid Integer type record");
551
552      ResultTy = IntegerType::get(Context, Record[0]);
553      break;
554    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
555                                    //          [pointee type, address space]
556      if (Record.size() < 1)
557        return Error("Invalid POINTER type record");
558      unsigned AddressSpace = 0;
559      if (Record.size() == 2)
560        AddressSpace = Record[1];
561      ResultTy = PointerType::get(getTypeByID(Record[0], true),
562                                        AddressSpace);
563      break;
564    }
565    case bitc::TYPE_CODE_FUNCTION: {
566      // FIXME: attrid is dead, remove it in LLVM 3.0
567      // FUNCTION: [vararg, attrid, retty, paramty x N]
568      if (Record.size() < 3)
569        return Error("Invalid FUNCTION type record");
570      std::vector<const Type*> ArgTys;
571      for (unsigned i = 3, e = Record.size(); i != e; ++i)
572        ArgTys.push_back(getTypeByID(Record[i], true));
573
574      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
575                                   Record[0]);
576      break;
577    }
578    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
579      if (Record.size() < 1)
580        return Error("Invalid STRUCT type record");
581      std::vector<const Type*> EltTys;
582      for (unsigned i = 1, e = Record.size(); i != e; ++i)
583        EltTys.push_back(getTypeByID(Record[i], true));
584      ResultTy = StructType::get(Context, EltTys, Record[0]);
585      break;
586    }
587    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
588      if (Record.size() < 2)
589        return Error("Invalid ARRAY type record");
590      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
591      break;
592    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
593      if (Record.size() < 2)
594        return Error("Invalid VECTOR type record");
595      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
596      break;
597    }
598
599    if (NumRecords == TypeList.size()) {
600      // If this is a new type slot, just append it.
601      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
602      ++NumRecords;
603    } else if (ResultTy == 0) {
604      // Otherwise, this was forward referenced, so an opaque type was created,
605      // but the result type is actually just an opaque.  Leave the one we
606      // created previously.
607      ++NumRecords;
608    } else {
609      // Otherwise, this was forward referenced, so an opaque type was created.
610      // Resolve the opaque type to the real type now.
611      assert(NumRecords < TypeList.size() && "Typelist imbalance");
612      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
613
614      // Don't directly push the new type on the Tab. Instead we want to replace
615      // the opaque type we previously inserted with the new concrete value. The
616      // refinement from the abstract (opaque) type to the new type causes all
617      // uses of the abstract type to use the concrete type (NewTy). This will
618      // also cause the opaque type to be deleted.
619      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
620
621      // This should have replaced the old opaque type with the new type in the
622      // value table... or with a preexisting type that was already in the
623      // system.  Let's just make sure it did.
624      assert(TypeList[NumRecords-1].get() != OldTy &&
625             "refineAbstractType didn't work!");
626    }
627  }
628}
629
630
631bool BitcodeReader::ParseTypeSymbolTable() {
632  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
633    return Error("Malformed block record");
634
635  SmallVector<uint64_t, 64> Record;
636
637  // Read all the records for this type table.
638  std::string TypeName;
639  while (1) {
640    unsigned Code = Stream.ReadCode();
641    if (Code == bitc::END_BLOCK) {
642      if (Stream.ReadBlockEnd())
643        return Error("Error at end of type symbol table block");
644      return false;
645    }
646
647    if (Code == bitc::ENTER_SUBBLOCK) {
648      // No known subblocks, always skip them.
649      Stream.ReadSubBlockID();
650      if (Stream.SkipBlock())
651        return Error("Malformed block record");
652      continue;
653    }
654
655    if (Code == bitc::DEFINE_ABBREV) {
656      Stream.ReadAbbrevRecord();
657      continue;
658    }
659
660    // Read a record.
661    Record.clear();
662    switch (Stream.ReadRecord(Code, Record)) {
663    default:  // Default behavior: unknown type.
664      break;
665    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
666      if (ConvertToString(Record, 1, TypeName))
667        return Error("Invalid TST_ENTRY record");
668      unsigned TypeID = Record[0];
669      if (TypeID >= TypeList.size())
670        return Error("Invalid Type ID in TST_ENTRY record");
671
672      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
673      TypeName.clear();
674      break;
675    }
676  }
677}
678
679bool BitcodeReader::ParseValueSymbolTable() {
680  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
681    return Error("Malformed block record");
682
683  SmallVector<uint64_t, 64> Record;
684
685  // Read all the records for this value table.
686  SmallString<128> ValueName;
687  while (1) {
688    unsigned Code = Stream.ReadCode();
689    if (Code == bitc::END_BLOCK) {
690      if (Stream.ReadBlockEnd())
691        return Error("Error at end of value symbol table block");
692      return false;
693    }
694    if (Code == bitc::ENTER_SUBBLOCK) {
695      // No known subblocks, always skip them.
696      Stream.ReadSubBlockID();
697      if (Stream.SkipBlock())
698        return Error("Malformed block record");
699      continue;
700    }
701
702    if (Code == bitc::DEFINE_ABBREV) {
703      Stream.ReadAbbrevRecord();
704      continue;
705    }
706
707    // Read a record.
708    Record.clear();
709    switch (Stream.ReadRecord(Code, Record)) {
710    default:  // Default behavior: unknown type.
711      break;
712    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
713      if (ConvertToString(Record, 1, ValueName))
714        return Error("Invalid VST_ENTRY record");
715      unsigned ValueID = Record[0];
716      if (ValueID >= ValueList.size())
717        return Error("Invalid Value ID in VST_ENTRY record");
718      Value *V = ValueList[ValueID];
719
720      V->setName(StringRef(ValueName.data(), ValueName.size()));
721      ValueName.clear();
722      break;
723    }
724    case bitc::VST_CODE_BBENTRY: {
725      if (ConvertToString(Record, 1, ValueName))
726        return Error("Invalid VST_BBENTRY record");
727      BasicBlock *BB = getBasicBlock(Record[0]);
728      if (BB == 0)
729        return Error("Invalid BB ID in VST_BBENTRY record");
730
731      BB->setName(StringRef(ValueName.data(), ValueName.size()));
732      ValueName.clear();
733      break;
734    }
735    }
736  }
737}
738
739bool BitcodeReader::ParseMetadata() {
740  unsigned NextValueNo = MDValueList.size();
741
742  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
743    return Error("Malformed block record");
744
745  SmallVector<uint64_t, 64> Record;
746
747  // Read all the records.
748  while (1) {
749    unsigned Code = Stream.ReadCode();
750    if (Code == bitc::END_BLOCK) {
751      if (Stream.ReadBlockEnd())
752        return Error("Error at end of PARAMATTR block");
753      return false;
754    }
755
756    if (Code == bitc::ENTER_SUBBLOCK) {
757      // No known subblocks, always skip them.
758      Stream.ReadSubBlockID();
759      if (Stream.SkipBlock())
760        return Error("Malformed block record");
761      continue;
762    }
763
764    if (Code == bitc::DEFINE_ABBREV) {
765      Stream.ReadAbbrevRecord();
766      continue;
767    }
768
769    // Read a record.
770    Record.clear();
771    switch (Stream.ReadRecord(Code, Record)) {
772    default:  // Default behavior: ignore.
773      break;
774    case bitc::METADATA_NAME: {
775      // Read named of the named metadata.
776      unsigned NameLength = Record.size();
777      SmallString<8> Name;
778      Name.resize(NameLength);
779      for (unsigned i = 0; i != NameLength; ++i)
780        Name[i] = Record[i];
781      Record.clear();
782      Code = Stream.ReadCode();
783
784      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
785      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
786        assert ( 0 && "Inavlid Named Metadata record");
787
788      // Read named metadata elements.
789      unsigned Size = Record.size();
790      SmallVector<MDNode *, 8> Elts;
791      for (unsigned i = 0; i != Size; ++i) {
792        if (Record[i] == ~0U) {
793          Elts.push_back(NULL);
794          continue;
795        }
796        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
797        if (MD == 0)
798          return Error("Malformed metadata record");
799        Elts.push_back(MD);
800      }
801      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
802                                     Elts.size(), TheModule);
803      // FIXME: This shouldn't poke NextValueNo?
804      MDValueList.AssignValue(V, NextValueNo++);
805      break;
806    }
807    case bitc::METADATA_NODE: {
808      if (Record.empty() || Record.size() % 2 == 1)
809        return Error("Invalid METADATA_NODE record");
810
811      unsigned Size = Record.size();
812      SmallVector<Value*, 8> Elts;
813      for (unsigned i = 0; i != Size; i += 2) {
814        const Type *Ty = getTypeByID(Record[i], false);
815        if (Ty->isMetadataTy())
816          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
817        else if (!Ty->isVoidTy())
818          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
819        else
820          Elts.push_back(NULL);
821      }
822      Value *V = MDNode::get(Context, &Elts[0], Elts.size());
823      MDValueList.AssignValue(V, NextValueNo++);
824      break;
825    }
826    case bitc::METADATA_STRING: {
827      unsigned MDStringLength = Record.size();
828      SmallString<8> String;
829      String.resize(MDStringLength);
830      for (unsigned i = 0; i != MDStringLength; ++i)
831        String[i] = Record[i];
832      Value *V = MDString::get(Context,
833                               StringRef(String.data(), String.size()));
834      MDValueList.AssignValue(V, NextValueNo++);
835      break;
836    }
837    case bitc::METADATA_KIND: {
838      unsigned RecordLength = Record.size();
839      if (Record.empty() || RecordLength < 2)
840        return Error("Invalid METADATA_KIND record");
841      SmallString<8> Name;
842      Name.resize(RecordLength-1);
843      unsigned Kind = Record[0];
844      (void) Kind;
845      for (unsigned i = 1; i != RecordLength; ++i)
846        Name[i-1] = Record[i];
847
848      unsigned NewKind = TheModule->getMDKindID(Name.str());
849      assert(Kind == NewKind &&
850             "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
851      break;
852    }
853    }
854  }
855}
856
857/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
858/// the LSB for dense VBR encoding.
859static uint64_t DecodeSignRotatedValue(uint64_t V) {
860  if ((V & 1) == 0)
861    return V >> 1;
862  if (V != 1)
863    return -(V >> 1);
864  // There is no such thing as -0 with integers.  "-0" really means MININT.
865  return 1ULL << 63;
866}
867
868/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
869/// values and aliases that we can.
870bool BitcodeReader::ResolveGlobalAndAliasInits() {
871  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
872  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
873
874  GlobalInitWorklist.swap(GlobalInits);
875  AliasInitWorklist.swap(AliasInits);
876
877  while (!GlobalInitWorklist.empty()) {
878    unsigned ValID = GlobalInitWorklist.back().second;
879    if (ValID >= ValueList.size()) {
880      // Not ready to resolve this yet, it requires something later in the file.
881      GlobalInits.push_back(GlobalInitWorklist.back());
882    } else {
883      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
884        GlobalInitWorklist.back().first->setInitializer(C);
885      else
886        return Error("Global variable initializer is not a constant!");
887    }
888    GlobalInitWorklist.pop_back();
889  }
890
891  while (!AliasInitWorklist.empty()) {
892    unsigned ValID = AliasInitWorklist.back().second;
893    if (ValID >= ValueList.size()) {
894      AliasInits.push_back(AliasInitWorklist.back());
895    } else {
896      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
897        AliasInitWorklist.back().first->setAliasee(C);
898      else
899        return Error("Alias initializer is not a constant!");
900    }
901    AliasInitWorklist.pop_back();
902  }
903  return false;
904}
905
906bool BitcodeReader::ParseConstants() {
907  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
908    return Error("Malformed block record");
909
910  SmallVector<uint64_t, 64> Record;
911
912  // Read all the records for this value table.
913  const Type *CurTy = Type::getInt32Ty(Context);
914  unsigned NextCstNo = ValueList.size();
915  while (1) {
916    unsigned Code = Stream.ReadCode();
917    if (Code == bitc::END_BLOCK)
918      break;
919
920    if (Code == bitc::ENTER_SUBBLOCK) {
921      // No known subblocks, always skip them.
922      Stream.ReadSubBlockID();
923      if (Stream.SkipBlock())
924        return Error("Malformed block record");
925      continue;
926    }
927
928    if (Code == bitc::DEFINE_ABBREV) {
929      Stream.ReadAbbrevRecord();
930      continue;
931    }
932
933    // Read a record.
934    Record.clear();
935    Value *V = 0;
936    unsigned BitCode = Stream.ReadRecord(Code, Record);
937    switch (BitCode) {
938    default:  // Default behavior: unknown constant
939    case bitc::CST_CODE_UNDEF:     // UNDEF
940      V = UndefValue::get(CurTy);
941      break;
942    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
943      if (Record.empty())
944        return Error("Malformed CST_SETTYPE record");
945      if (Record[0] >= TypeList.size())
946        return Error("Invalid Type ID in CST_SETTYPE record");
947      CurTy = TypeList[Record[0]];
948      continue;  // Skip the ValueList manipulation.
949    case bitc::CST_CODE_NULL:      // NULL
950      V = Constant::getNullValue(CurTy);
951      break;
952    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
953      if (!isa<IntegerType>(CurTy) || Record.empty())
954        return Error("Invalid CST_INTEGER record");
955      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
956      break;
957    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
958      if (!isa<IntegerType>(CurTy) || Record.empty())
959        return Error("Invalid WIDE_INTEGER record");
960
961      unsigned NumWords = Record.size();
962      SmallVector<uint64_t, 8> Words;
963      Words.resize(NumWords);
964      for (unsigned i = 0; i != NumWords; ++i)
965        Words[i] = DecodeSignRotatedValue(Record[i]);
966      V = ConstantInt::get(Context,
967                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
968                           NumWords, &Words[0]));
969      break;
970    }
971    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
972      if (Record.empty())
973        return Error("Invalid FLOAT record");
974      if (CurTy->isFloatTy())
975        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
976      else if (CurTy->isDoubleTy())
977        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
978      else if (CurTy->isX86_FP80Ty()) {
979        // Bits are not stored the same way as a normal i80 APInt, compensate.
980        uint64_t Rearrange[2];
981        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
982        Rearrange[1] = Record[0] >> 48;
983        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
984      } else if (CurTy->isFP128Ty())
985        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
986      else if (CurTy->isPPC_FP128Ty())
987        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
988      else
989        V = UndefValue::get(CurTy);
990      break;
991    }
992
993    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
994      if (Record.empty())
995        return Error("Invalid CST_AGGREGATE record");
996
997      unsigned Size = Record.size();
998      std::vector<Constant*> Elts;
999
1000      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1001        for (unsigned i = 0; i != Size; ++i)
1002          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1003                                                     STy->getElementType(i)));
1004        V = ConstantStruct::get(STy, Elts);
1005      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1006        const Type *EltTy = ATy->getElementType();
1007        for (unsigned i = 0; i != Size; ++i)
1008          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1009        V = ConstantArray::get(ATy, Elts);
1010      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1011        const Type *EltTy = VTy->getElementType();
1012        for (unsigned i = 0; i != Size; ++i)
1013          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1014        V = ConstantVector::get(Elts);
1015      } else {
1016        V = UndefValue::get(CurTy);
1017      }
1018      break;
1019    }
1020    case bitc::CST_CODE_STRING: { // STRING: [values]
1021      if (Record.empty())
1022        return Error("Invalid CST_AGGREGATE record");
1023
1024      const ArrayType *ATy = cast<ArrayType>(CurTy);
1025      const Type *EltTy = ATy->getElementType();
1026
1027      unsigned Size = Record.size();
1028      std::vector<Constant*> Elts;
1029      for (unsigned i = 0; i != Size; ++i)
1030        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1031      V = ConstantArray::get(ATy, Elts);
1032      break;
1033    }
1034    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1035      if (Record.empty())
1036        return Error("Invalid CST_AGGREGATE record");
1037
1038      const ArrayType *ATy = cast<ArrayType>(CurTy);
1039      const Type *EltTy = ATy->getElementType();
1040
1041      unsigned Size = Record.size();
1042      std::vector<Constant*> Elts;
1043      for (unsigned i = 0; i != Size; ++i)
1044        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1045      Elts.push_back(Constant::getNullValue(EltTy));
1046      V = ConstantArray::get(ATy, Elts);
1047      break;
1048    }
1049    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1050      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1051      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1052      if (Opc < 0) {
1053        V = UndefValue::get(CurTy);  // Unknown binop.
1054      } else {
1055        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1056        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1057        unsigned Flags = 0;
1058        if (Record.size() >= 4) {
1059          if (Opc == Instruction::Add ||
1060              Opc == Instruction::Sub ||
1061              Opc == Instruction::Mul) {
1062            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1063              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1064            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1065              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1066          } else if (Opc == Instruction::SDiv) {
1067            if (Record[3] & (1 << bitc::SDIV_EXACT))
1068              Flags |= SDivOperator::IsExact;
1069          }
1070        }
1071        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1072      }
1073      break;
1074    }
1075    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1076      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1077      int Opc = GetDecodedCastOpcode(Record[0]);
1078      if (Opc < 0) {
1079        V = UndefValue::get(CurTy);  // Unknown cast.
1080      } else {
1081        const Type *OpTy = getTypeByID(Record[1]);
1082        if (!OpTy) return Error("Invalid CE_CAST record");
1083        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1084        V = ConstantExpr::getCast(Opc, Op, CurTy);
1085      }
1086      break;
1087    }
1088    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1089    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1090      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1091      SmallVector<Constant*, 16> Elts;
1092      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1093        const Type *ElTy = getTypeByID(Record[i]);
1094        if (!ElTy) return Error("Invalid CE_GEP record");
1095        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1096      }
1097      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1098        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1099                                                   Elts.size()-1);
1100      else
1101        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1102                                           Elts.size()-1);
1103      break;
1104    }
1105    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1106      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1107      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1108                                                              Type::getInt1Ty(Context)),
1109                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1110                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1111      break;
1112    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1113      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1114      const VectorType *OpTy =
1115        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1116      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1117      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1118      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1119      V = ConstantExpr::getExtractElement(Op0, Op1);
1120      break;
1121    }
1122    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1123      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1124      if (Record.size() < 3 || OpTy == 0)
1125        return Error("Invalid CE_INSERTELT record");
1126      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1127      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1128                                                  OpTy->getElementType());
1129      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1130      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1131      break;
1132    }
1133    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1134      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1135      if (Record.size() < 3 || OpTy == 0)
1136        return Error("Invalid CE_SHUFFLEVEC record");
1137      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1138      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1139      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1140                                                 OpTy->getNumElements());
1141      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1142      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1143      break;
1144    }
1145    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1146      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1147      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1148      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1149        return Error("Invalid CE_SHUFVEC_EX record");
1150      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1151      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1152      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1153                                                 RTy->getNumElements());
1154      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1155      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1156      break;
1157    }
1158    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1159      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1160      const Type *OpTy = getTypeByID(Record[0]);
1161      if (OpTy == 0) return Error("Invalid CE_CMP record");
1162      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1163      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1164
1165      if (OpTy->isFloatingPoint())
1166        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1167      else
1168        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1169      break;
1170    }
1171    case bitc::CST_CODE_INLINEASM: {
1172      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1173      std::string AsmStr, ConstrStr;
1174      bool HasSideEffects = Record[0] & 1;
1175      bool IsAlignStack = Record[0] >> 1;
1176      unsigned AsmStrSize = Record[1];
1177      if (2+AsmStrSize >= Record.size())
1178        return Error("Invalid INLINEASM record");
1179      unsigned ConstStrSize = Record[2+AsmStrSize];
1180      if (3+AsmStrSize+ConstStrSize > Record.size())
1181        return Error("Invalid INLINEASM record");
1182
1183      for (unsigned i = 0; i != AsmStrSize; ++i)
1184        AsmStr += (char)Record[2+i];
1185      for (unsigned i = 0; i != ConstStrSize; ++i)
1186        ConstrStr += (char)Record[3+AsmStrSize+i];
1187      const PointerType *PTy = cast<PointerType>(CurTy);
1188      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1189                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1190      break;
1191    }
1192    case bitc::CST_CODE_BLOCKADDRESS:{
1193      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1194      const Type *FnTy = getTypeByID(Record[0]);
1195      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1196      Function *Fn =
1197        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1198      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1199
1200      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1201                                                  Type::getInt8Ty(Context),
1202                                            false, GlobalValue::InternalLinkage,
1203                                                  0, "");
1204      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1205      V = FwdRef;
1206      break;
1207    }
1208    }
1209
1210    ValueList.AssignValue(V, NextCstNo);
1211    ++NextCstNo;
1212  }
1213
1214  if (NextCstNo != ValueList.size())
1215    return Error("Invalid constant reference!");
1216
1217  if (Stream.ReadBlockEnd())
1218    return Error("Error at end of constants block");
1219
1220  // Once all the constants have been read, go through and resolve forward
1221  // references.
1222  ValueList.ResolveConstantForwardRefs();
1223  return false;
1224}
1225
1226/// RememberAndSkipFunctionBody - When we see the block for a function body,
1227/// remember where it is and then skip it.  This lets us lazily deserialize the
1228/// functions.
1229bool BitcodeReader::RememberAndSkipFunctionBody() {
1230  // Get the function we are talking about.
1231  if (FunctionsWithBodies.empty())
1232    return Error("Insufficient function protos");
1233
1234  Function *Fn = FunctionsWithBodies.back();
1235  FunctionsWithBodies.pop_back();
1236
1237  // Save the current stream state.
1238  uint64_t CurBit = Stream.GetCurrentBitNo();
1239  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1240
1241  // Set the functions linkage to GhostLinkage so we know it is lazily
1242  // deserialized.
1243  Fn->setLinkage(GlobalValue::GhostLinkage);
1244
1245  // Skip over the function block for now.
1246  if (Stream.SkipBlock())
1247    return Error("Malformed block record");
1248  return false;
1249}
1250
1251bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1252  // Reject multiple MODULE_BLOCK's in a single bitstream.
1253  if (TheModule)
1254    return Error("Multiple MODULE_BLOCKs in same stream");
1255
1256  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1257    return Error("Malformed block record");
1258
1259  // Otherwise, create the module.
1260  TheModule = new Module(ModuleID, Context);
1261
1262  SmallVector<uint64_t, 64> Record;
1263  std::vector<std::string> SectionTable;
1264  std::vector<std::string> GCTable;
1265
1266  // Read all the records for this module.
1267  while (!Stream.AtEndOfStream()) {
1268    unsigned Code = Stream.ReadCode();
1269    if (Code == bitc::END_BLOCK) {
1270      if (Stream.ReadBlockEnd())
1271        return Error("Error at end of module block");
1272
1273      // Patch the initializers for globals and aliases up.
1274      ResolveGlobalAndAliasInits();
1275      if (!GlobalInits.empty() || !AliasInits.empty())
1276        return Error("Malformed global initializer set");
1277      if (!FunctionsWithBodies.empty())
1278        return Error("Too few function bodies found");
1279
1280      // Look for intrinsic functions which need to be upgraded at some point
1281      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1282           FI != FE; ++FI) {
1283        Function* NewFn;
1284        if (UpgradeIntrinsicFunction(FI, NewFn))
1285          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1286      }
1287
1288      // Force deallocation of memory for these vectors to favor the client that
1289      // want lazy deserialization.
1290      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1291      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1292      std::vector<Function*>().swap(FunctionsWithBodies);
1293      return false;
1294    }
1295
1296    if (Code == bitc::ENTER_SUBBLOCK) {
1297      switch (Stream.ReadSubBlockID()) {
1298      default:  // Skip unknown content.
1299        if (Stream.SkipBlock())
1300          return Error("Malformed block record");
1301        break;
1302      case bitc::BLOCKINFO_BLOCK_ID:
1303        if (Stream.ReadBlockInfoBlock())
1304          return Error("Malformed BlockInfoBlock");
1305        break;
1306      case bitc::PARAMATTR_BLOCK_ID:
1307        if (ParseAttributeBlock())
1308          return true;
1309        break;
1310      case bitc::TYPE_BLOCK_ID:
1311        if (ParseTypeTable())
1312          return true;
1313        break;
1314      case bitc::TYPE_SYMTAB_BLOCK_ID:
1315        if (ParseTypeSymbolTable())
1316          return true;
1317        break;
1318      case bitc::VALUE_SYMTAB_BLOCK_ID:
1319        if (ParseValueSymbolTable())
1320          return true;
1321        break;
1322      case bitc::CONSTANTS_BLOCK_ID:
1323        if (ParseConstants() || ResolveGlobalAndAliasInits())
1324          return true;
1325        break;
1326      case bitc::METADATA_BLOCK_ID:
1327        if (ParseMetadata())
1328          return true;
1329        break;
1330      case bitc::FUNCTION_BLOCK_ID:
1331        // If this is the first function body we've seen, reverse the
1332        // FunctionsWithBodies list.
1333        if (!HasReversedFunctionsWithBodies) {
1334          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1335          HasReversedFunctionsWithBodies = true;
1336        }
1337
1338        if (RememberAndSkipFunctionBody())
1339          return true;
1340        break;
1341      }
1342      continue;
1343    }
1344
1345    if (Code == bitc::DEFINE_ABBREV) {
1346      Stream.ReadAbbrevRecord();
1347      continue;
1348    }
1349
1350    // Read a record.
1351    switch (Stream.ReadRecord(Code, Record)) {
1352    default: break;  // Default behavior, ignore unknown content.
1353    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1354      if (Record.size() < 1)
1355        return Error("Malformed MODULE_CODE_VERSION");
1356      // Only version #0 is supported so far.
1357      if (Record[0] != 0)
1358        return Error("Unknown bitstream version!");
1359      break;
1360    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1361      std::string S;
1362      if (ConvertToString(Record, 0, S))
1363        return Error("Invalid MODULE_CODE_TRIPLE record");
1364      TheModule->setTargetTriple(S);
1365      break;
1366    }
1367    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1368      std::string S;
1369      if (ConvertToString(Record, 0, S))
1370        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1371      TheModule->setDataLayout(S);
1372      break;
1373    }
1374    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1375      std::string S;
1376      if (ConvertToString(Record, 0, S))
1377        return Error("Invalid MODULE_CODE_ASM record");
1378      TheModule->setModuleInlineAsm(S);
1379      break;
1380    }
1381    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1382      std::string S;
1383      if (ConvertToString(Record, 0, S))
1384        return Error("Invalid MODULE_CODE_DEPLIB record");
1385      TheModule->addLibrary(S);
1386      break;
1387    }
1388    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1389      std::string S;
1390      if (ConvertToString(Record, 0, S))
1391        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1392      SectionTable.push_back(S);
1393      break;
1394    }
1395    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1396      std::string S;
1397      if (ConvertToString(Record, 0, S))
1398        return Error("Invalid MODULE_CODE_GCNAME record");
1399      GCTable.push_back(S);
1400      break;
1401    }
1402    // GLOBALVAR: [pointer type, isconst, initid,
1403    //             linkage, alignment, section, visibility, threadlocal]
1404    case bitc::MODULE_CODE_GLOBALVAR: {
1405      if (Record.size() < 6)
1406        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1407      const Type *Ty = getTypeByID(Record[0]);
1408      if (!isa<PointerType>(Ty))
1409        return Error("Global not a pointer type!");
1410      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1411      Ty = cast<PointerType>(Ty)->getElementType();
1412
1413      bool isConstant = Record[1];
1414      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1415      unsigned Alignment = (1 << Record[4]) >> 1;
1416      std::string Section;
1417      if (Record[5]) {
1418        if (Record[5]-1 >= SectionTable.size())
1419          return Error("Invalid section ID");
1420        Section = SectionTable[Record[5]-1];
1421      }
1422      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1423      if (Record.size() > 6)
1424        Visibility = GetDecodedVisibility(Record[6]);
1425      bool isThreadLocal = false;
1426      if (Record.size() > 7)
1427        isThreadLocal = Record[7];
1428
1429      GlobalVariable *NewGV =
1430        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1431                           isThreadLocal, AddressSpace);
1432      NewGV->setAlignment(Alignment);
1433      if (!Section.empty())
1434        NewGV->setSection(Section);
1435      NewGV->setVisibility(Visibility);
1436      NewGV->setThreadLocal(isThreadLocal);
1437
1438      ValueList.push_back(NewGV);
1439
1440      // Remember which value to use for the global initializer.
1441      if (unsigned InitID = Record[2])
1442        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1443      break;
1444    }
1445    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1446    //             alignment, section, visibility, gc]
1447    case bitc::MODULE_CODE_FUNCTION: {
1448      if (Record.size() < 8)
1449        return Error("Invalid MODULE_CODE_FUNCTION record");
1450      const Type *Ty = getTypeByID(Record[0]);
1451      if (!isa<PointerType>(Ty))
1452        return Error("Function not a pointer type!");
1453      const FunctionType *FTy =
1454        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1455      if (!FTy)
1456        return Error("Function not a pointer to function type!");
1457
1458      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1459                                        "", TheModule);
1460
1461      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1462      bool isProto = Record[2];
1463      Func->setLinkage(GetDecodedLinkage(Record[3]));
1464      Func->setAttributes(getAttributes(Record[4]));
1465
1466      Func->setAlignment((1 << Record[5]) >> 1);
1467      if (Record[6]) {
1468        if (Record[6]-1 >= SectionTable.size())
1469          return Error("Invalid section ID");
1470        Func->setSection(SectionTable[Record[6]-1]);
1471      }
1472      Func->setVisibility(GetDecodedVisibility(Record[7]));
1473      if (Record.size() > 8 && Record[8]) {
1474        if (Record[8]-1 > GCTable.size())
1475          return Error("Invalid GC ID");
1476        Func->setGC(GCTable[Record[8]-1].c_str());
1477      }
1478      ValueList.push_back(Func);
1479
1480      // If this is a function with a body, remember the prototype we are
1481      // creating now, so that we can match up the body with them later.
1482      if (!isProto)
1483        FunctionsWithBodies.push_back(Func);
1484      break;
1485    }
1486    // ALIAS: [alias type, aliasee val#, linkage]
1487    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1488    case bitc::MODULE_CODE_ALIAS: {
1489      if (Record.size() < 3)
1490        return Error("Invalid MODULE_ALIAS record");
1491      const Type *Ty = getTypeByID(Record[0]);
1492      if (!isa<PointerType>(Ty))
1493        return Error("Function not a pointer type!");
1494
1495      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1496                                           "", 0, TheModule);
1497      // Old bitcode files didn't have visibility field.
1498      if (Record.size() > 3)
1499        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1500      ValueList.push_back(NewGA);
1501      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1502      break;
1503    }
1504    /// MODULE_CODE_PURGEVALS: [numvals]
1505    case bitc::MODULE_CODE_PURGEVALS:
1506      // Trim down the value list to the specified size.
1507      if (Record.size() < 1 || Record[0] > ValueList.size())
1508        return Error("Invalid MODULE_PURGEVALS record");
1509      ValueList.shrinkTo(Record[0]);
1510      break;
1511    }
1512    Record.clear();
1513  }
1514
1515  return Error("Premature end of bitstream");
1516}
1517
1518bool BitcodeReader::ParseBitcode() {
1519  TheModule = 0;
1520
1521  if (Buffer->getBufferSize() & 3)
1522    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1523
1524  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1525  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1526
1527  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1528  // The magic number is 0x0B17C0DE stored in little endian.
1529  if (isBitcodeWrapper(BufPtr, BufEnd))
1530    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1531      return Error("Invalid bitcode wrapper header");
1532
1533  StreamFile.init(BufPtr, BufEnd);
1534  Stream.init(StreamFile);
1535
1536  // Sniff for the signature.
1537  if (Stream.Read(8) != 'B' ||
1538      Stream.Read(8) != 'C' ||
1539      Stream.Read(4) != 0x0 ||
1540      Stream.Read(4) != 0xC ||
1541      Stream.Read(4) != 0xE ||
1542      Stream.Read(4) != 0xD)
1543    return Error("Invalid bitcode signature");
1544
1545  // We expect a number of well-defined blocks, though we don't necessarily
1546  // need to understand them all.
1547  while (!Stream.AtEndOfStream()) {
1548    unsigned Code = Stream.ReadCode();
1549
1550    if (Code != bitc::ENTER_SUBBLOCK)
1551      return Error("Invalid record at top-level");
1552
1553    unsigned BlockID = Stream.ReadSubBlockID();
1554
1555    // We only know the MODULE subblock ID.
1556    switch (BlockID) {
1557    case bitc::BLOCKINFO_BLOCK_ID:
1558      if (Stream.ReadBlockInfoBlock())
1559        return Error("Malformed BlockInfoBlock");
1560      break;
1561    case bitc::MODULE_BLOCK_ID:
1562      if (ParseModule(Buffer->getBufferIdentifier()))
1563        return true;
1564      break;
1565    default:
1566      if (Stream.SkipBlock())
1567        return Error("Malformed block record");
1568      break;
1569    }
1570  }
1571
1572  return false;
1573}
1574
1575/// ParseMetadataAttachment - Parse metadata attachments.
1576bool BitcodeReader::ParseMetadataAttachment() {
1577  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1578    return Error("Malformed block record");
1579
1580  SmallVector<uint64_t, 64> Record;
1581  while(1) {
1582    unsigned Code = Stream.ReadCode();
1583    if (Code == bitc::END_BLOCK) {
1584      if (Stream.ReadBlockEnd())
1585        return Error("Error at end of PARAMATTR block");
1586      break;
1587    }
1588    if (Code == bitc::DEFINE_ABBREV) {
1589      Stream.ReadAbbrevRecord();
1590      continue;
1591    }
1592    // Read a metadata attachment record.
1593    Record.clear();
1594    switch (Stream.ReadRecord(Code, Record)) {
1595    default:  // Default behavior: ignore.
1596      break;
1597    case bitc::METADATA_ATTACHMENT: {
1598      unsigned RecordLength = Record.size();
1599      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1600        return Error ("Invalid METADATA_ATTACHMENT reader!");
1601      Instruction *Inst = InstructionList[Record[0]];
1602      for (unsigned i = 1; i != RecordLength; i = i+2) {
1603        unsigned Kind = Record[i];
1604        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1605        Inst->setMetadata(Kind, cast<MDNode>(Node));
1606      }
1607      break;
1608    }
1609    }
1610  }
1611  return false;
1612}
1613
1614/// ParseFunctionBody - Lazily parse the specified function body block.
1615bool BitcodeReader::ParseFunctionBody(Function *F) {
1616  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1617    return Error("Malformed block record");
1618
1619  unsigned ModuleValueListSize = ValueList.size();
1620
1621  // Add all the function arguments to the value table.
1622  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1623    ValueList.push_back(I);
1624
1625  unsigned NextValueNo = ValueList.size();
1626  BasicBlock *CurBB = 0;
1627  unsigned CurBBNo = 0;
1628
1629  // Read all the records.
1630  SmallVector<uint64_t, 64> Record;
1631  while (1) {
1632    unsigned Code = Stream.ReadCode();
1633    if (Code == bitc::END_BLOCK) {
1634      if (Stream.ReadBlockEnd())
1635        return Error("Error at end of function block");
1636      break;
1637    }
1638
1639    if (Code == bitc::ENTER_SUBBLOCK) {
1640      switch (Stream.ReadSubBlockID()) {
1641      default:  // Skip unknown content.
1642        if (Stream.SkipBlock())
1643          return Error("Malformed block record");
1644        break;
1645      case bitc::CONSTANTS_BLOCK_ID:
1646        if (ParseConstants()) return true;
1647        NextValueNo = ValueList.size();
1648        break;
1649      case bitc::VALUE_SYMTAB_BLOCK_ID:
1650        if (ParseValueSymbolTable()) return true;
1651        break;
1652      case bitc::METADATA_ATTACHMENT_ID:
1653        if (ParseMetadataAttachment()) return true;
1654        break;
1655      }
1656      continue;
1657    }
1658
1659    if (Code == bitc::DEFINE_ABBREV) {
1660      Stream.ReadAbbrevRecord();
1661      continue;
1662    }
1663
1664    // Read a record.
1665    Record.clear();
1666    Instruction *I = 0;
1667    unsigned BitCode = Stream.ReadRecord(Code, Record);
1668    switch (BitCode) {
1669    default: // Default behavior: reject
1670      return Error("Unknown instruction");
1671    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1672      if (Record.size() < 1 || Record[0] == 0)
1673        return Error("Invalid DECLAREBLOCKS record");
1674      // Create all the basic blocks for the function.
1675      FunctionBBs.resize(Record[0]);
1676      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1677        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1678      CurBB = FunctionBBs[0];
1679      continue;
1680
1681    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1682      unsigned OpNum = 0;
1683      Value *LHS, *RHS;
1684      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1685          getValue(Record, OpNum, LHS->getType(), RHS) ||
1686          OpNum+1 > Record.size())
1687        return Error("Invalid BINOP record");
1688
1689      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1690      if (Opc == -1) return Error("Invalid BINOP record");
1691      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1692      InstructionList.push_back(I);
1693      if (OpNum < Record.size()) {
1694        if (Opc == Instruction::Add ||
1695            Opc == Instruction::Sub ||
1696            Opc == Instruction::Mul) {
1697          if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1698            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1699          if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1700            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1701        } else if (Opc == Instruction::SDiv) {
1702          if (Record[3] & (1 << bitc::SDIV_EXACT))
1703            cast<BinaryOperator>(I)->setIsExact(true);
1704        }
1705      }
1706      break;
1707    }
1708    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1709      unsigned OpNum = 0;
1710      Value *Op;
1711      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1712          OpNum+2 != Record.size())
1713        return Error("Invalid CAST record");
1714
1715      const Type *ResTy = getTypeByID(Record[OpNum]);
1716      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1717      if (Opc == -1 || ResTy == 0)
1718        return Error("Invalid CAST record");
1719      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1720      InstructionList.push_back(I);
1721      break;
1722    }
1723    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1724    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1725      unsigned OpNum = 0;
1726      Value *BasePtr;
1727      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1728        return Error("Invalid GEP record");
1729
1730      SmallVector<Value*, 16> GEPIdx;
1731      while (OpNum != Record.size()) {
1732        Value *Op;
1733        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1734          return Error("Invalid GEP record");
1735        GEPIdx.push_back(Op);
1736      }
1737
1738      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1739      InstructionList.push_back(I);
1740      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1741        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1742      break;
1743    }
1744
1745    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1746                                       // EXTRACTVAL: [opty, opval, n x indices]
1747      unsigned OpNum = 0;
1748      Value *Agg;
1749      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1750        return Error("Invalid EXTRACTVAL record");
1751
1752      SmallVector<unsigned, 4> EXTRACTVALIdx;
1753      for (unsigned RecSize = Record.size();
1754           OpNum != RecSize; ++OpNum) {
1755        uint64_t Index = Record[OpNum];
1756        if ((unsigned)Index != Index)
1757          return Error("Invalid EXTRACTVAL index");
1758        EXTRACTVALIdx.push_back((unsigned)Index);
1759      }
1760
1761      I = ExtractValueInst::Create(Agg,
1762                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1763      InstructionList.push_back(I);
1764      break;
1765    }
1766
1767    case bitc::FUNC_CODE_INST_INSERTVAL: {
1768                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1769      unsigned OpNum = 0;
1770      Value *Agg;
1771      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1772        return Error("Invalid INSERTVAL record");
1773      Value *Val;
1774      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1775        return Error("Invalid INSERTVAL record");
1776
1777      SmallVector<unsigned, 4> INSERTVALIdx;
1778      for (unsigned RecSize = Record.size();
1779           OpNum != RecSize; ++OpNum) {
1780        uint64_t Index = Record[OpNum];
1781        if ((unsigned)Index != Index)
1782          return Error("Invalid INSERTVAL index");
1783        INSERTVALIdx.push_back((unsigned)Index);
1784      }
1785
1786      I = InsertValueInst::Create(Agg, Val,
1787                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1788      InstructionList.push_back(I);
1789      break;
1790    }
1791
1792    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1793      // obsolete form of select
1794      // handles select i1 ... in old bitcode
1795      unsigned OpNum = 0;
1796      Value *TrueVal, *FalseVal, *Cond;
1797      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1798          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1799          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1800        return Error("Invalid SELECT record");
1801
1802      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1803      InstructionList.push_back(I);
1804      break;
1805    }
1806
1807    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1808      // new form of select
1809      // handles select i1 or select [N x i1]
1810      unsigned OpNum = 0;
1811      Value *TrueVal, *FalseVal, *Cond;
1812      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1813          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1814          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1815        return Error("Invalid SELECT record");
1816
1817      // select condition can be either i1 or [N x i1]
1818      if (const VectorType* vector_type =
1819          dyn_cast<const VectorType>(Cond->getType())) {
1820        // expect <n x i1>
1821        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1822          return Error("Invalid SELECT condition type");
1823      } else {
1824        // expect i1
1825        if (Cond->getType() != Type::getInt1Ty(Context))
1826          return Error("Invalid SELECT condition type");
1827      }
1828
1829      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1830      InstructionList.push_back(I);
1831      break;
1832    }
1833
1834    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1835      unsigned OpNum = 0;
1836      Value *Vec, *Idx;
1837      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1838          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1839        return Error("Invalid EXTRACTELT record");
1840      I = ExtractElementInst::Create(Vec, Idx);
1841      InstructionList.push_back(I);
1842      break;
1843    }
1844
1845    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1846      unsigned OpNum = 0;
1847      Value *Vec, *Elt, *Idx;
1848      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1849          getValue(Record, OpNum,
1850                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1851          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1852        return Error("Invalid INSERTELT record");
1853      I = InsertElementInst::Create(Vec, Elt, Idx);
1854      InstructionList.push_back(I);
1855      break;
1856    }
1857
1858    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1859      unsigned OpNum = 0;
1860      Value *Vec1, *Vec2, *Mask;
1861      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1862          getValue(Record, OpNum, Vec1->getType(), Vec2))
1863        return Error("Invalid SHUFFLEVEC record");
1864
1865      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1866        return Error("Invalid SHUFFLEVEC record");
1867      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1868      InstructionList.push_back(I);
1869      break;
1870    }
1871
1872    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1873      // Old form of ICmp/FCmp returning bool
1874      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1875      // both legal on vectors but had different behaviour.
1876    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1877      // FCmp/ICmp returning bool or vector of bool
1878
1879      unsigned OpNum = 0;
1880      Value *LHS, *RHS;
1881      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1882          getValue(Record, OpNum, LHS->getType(), RHS) ||
1883          OpNum+1 != Record.size())
1884        return Error("Invalid CMP record");
1885
1886      if (LHS->getType()->isFPOrFPVector())
1887        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1888      else
1889        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1890      InstructionList.push_back(I);
1891      break;
1892    }
1893
1894    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1895      if (Record.size() != 2)
1896        return Error("Invalid GETRESULT record");
1897      unsigned OpNum = 0;
1898      Value *Op;
1899      getValueTypePair(Record, OpNum, NextValueNo, Op);
1900      unsigned Index = Record[1];
1901      I = ExtractValueInst::Create(Op, Index);
1902      InstructionList.push_back(I);
1903      break;
1904    }
1905
1906    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1907      {
1908        unsigned Size = Record.size();
1909        if (Size == 0) {
1910          I = ReturnInst::Create(Context);
1911          InstructionList.push_back(I);
1912          break;
1913        }
1914
1915        unsigned OpNum = 0;
1916        SmallVector<Value *,4> Vs;
1917        do {
1918          Value *Op = NULL;
1919          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1920            return Error("Invalid RET record");
1921          Vs.push_back(Op);
1922        } while(OpNum != Record.size());
1923
1924        const Type *ReturnType = F->getReturnType();
1925        if (Vs.size() > 1 ||
1926            (isa<StructType>(ReturnType) &&
1927             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1928          Value *RV = UndefValue::get(ReturnType);
1929          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1930            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1931            InstructionList.push_back(I);
1932            CurBB->getInstList().push_back(I);
1933            ValueList.AssignValue(I, NextValueNo++);
1934            RV = I;
1935          }
1936          I = ReturnInst::Create(Context, RV);
1937          InstructionList.push_back(I);
1938          break;
1939        }
1940
1941        I = ReturnInst::Create(Context, Vs[0]);
1942        InstructionList.push_back(I);
1943        break;
1944      }
1945    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1946      if (Record.size() != 1 && Record.size() != 3)
1947        return Error("Invalid BR record");
1948      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1949      if (TrueDest == 0)
1950        return Error("Invalid BR record");
1951
1952      if (Record.size() == 1) {
1953        I = BranchInst::Create(TrueDest);
1954        InstructionList.push_back(I);
1955      }
1956      else {
1957        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1958        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1959        if (FalseDest == 0 || Cond == 0)
1960          return Error("Invalid BR record");
1961        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1962        InstructionList.push_back(I);
1963      }
1964      break;
1965    }
1966    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1967      if (Record.size() < 3 || (Record.size() & 1) == 0)
1968        return Error("Invalid SWITCH record");
1969      const Type *OpTy = getTypeByID(Record[0]);
1970      Value *Cond = getFnValueByID(Record[1], OpTy);
1971      BasicBlock *Default = getBasicBlock(Record[2]);
1972      if (OpTy == 0 || Cond == 0 || Default == 0)
1973        return Error("Invalid SWITCH record");
1974      unsigned NumCases = (Record.size()-3)/2;
1975      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1976      InstructionList.push_back(SI);
1977      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1978        ConstantInt *CaseVal =
1979          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1980        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1981        if (CaseVal == 0 || DestBB == 0) {
1982          delete SI;
1983          return Error("Invalid SWITCH record!");
1984        }
1985        SI->addCase(CaseVal, DestBB);
1986      }
1987      I = SI;
1988      break;
1989    }
1990    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1991      if (Record.size() < 2)
1992        return Error("Invalid INDIRECTBR record");
1993      const Type *OpTy = getTypeByID(Record[0]);
1994      Value *Address = getFnValueByID(Record[1], OpTy);
1995      if (OpTy == 0 || Address == 0)
1996        return Error("Invalid INDIRECTBR record");
1997      unsigned NumDests = Record.size()-2;
1998      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
1999      InstructionList.push_back(IBI);
2000      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2001        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2002          IBI->addDestination(DestBB);
2003        } else {
2004          delete IBI;
2005          return Error("Invalid INDIRECTBR record!");
2006        }
2007      }
2008      I = IBI;
2009      break;
2010    }
2011
2012    case bitc::FUNC_CODE_INST_INVOKE: {
2013      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2014      if (Record.size() < 4) return Error("Invalid INVOKE record");
2015      AttrListPtr PAL = getAttributes(Record[0]);
2016      unsigned CCInfo = Record[1];
2017      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2018      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2019
2020      unsigned OpNum = 4;
2021      Value *Callee;
2022      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2023        return Error("Invalid INVOKE record");
2024
2025      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2026      const FunctionType *FTy = !CalleeTy ? 0 :
2027        dyn_cast<FunctionType>(CalleeTy->getElementType());
2028
2029      // Check that the right number of fixed parameters are here.
2030      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2031          Record.size() < OpNum+FTy->getNumParams())
2032        return Error("Invalid INVOKE record");
2033
2034      SmallVector<Value*, 16> Ops;
2035      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2036        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2037        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2038      }
2039
2040      if (!FTy->isVarArg()) {
2041        if (Record.size() != OpNum)
2042          return Error("Invalid INVOKE record");
2043      } else {
2044        // Read type/value pairs for varargs params.
2045        while (OpNum != Record.size()) {
2046          Value *Op;
2047          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2048            return Error("Invalid INVOKE record");
2049          Ops.push_back(Op);
2050        }
2051      }
2052
2053      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2054                             Ops.begin(), Ops.end());
2055      InstructionList.push_back(I);
2056      cast<InvokeInst>(I)->setCallingConv(
2057        static_cast<CallingConv::ID>(CCInfo));
2058      cast<InvokeInst>(I)->setAttributes(PAL);
2059      break;
2060    }
2061    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2062      I = new UnwindInst(Context);
2063      InstructionList.push_back(I);
2064      break;
2065    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2066      I = new UnreachableInst(Context);
2067      InstructionList.push_back(I);
2068      break;
2069    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2070      if (Record.size() < 1 || ((Record.size()-1)&1))
2071        return Error("Invalid PHI record");
2072      const Type *Ty = getTypeByID(Record[0]);
2073      if (!Ty) return Error("Invalid PHI record");
2074
2075      PHINode *PN = PHINode::Create(Ty);
2076      InstructionList.push_back(PN);
2077      PN->reserveOperandSpace((Record.size()-1)/2);
2078
2079      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2080        Value *V = getFnValueByID(Record[1+i], Ty);
2081        BasicBlock *BB = getBasicBlock(Record[2+i]);
2082        if (!V || !BB) return Error("Invalid PHI record");
2083        PN->addIncoming(V, BB);
2084      }
2085      I = PN;
2086      break;
2087    }
2088
2089    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2090      // Autoupgrade malloc instruction to malloc call.
2091      // FIXME: Remove in LLVM 3.0.
2092      if (Record.size() < 3)
2093        return Error("Invalid MALLOC record");
2094      const PointerType *Ty =
2095        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2096      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2097      if (!Ty || !Size) return Error("Invalid MALLOC record");
2098      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2099      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2100      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2101      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2102      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2103                                 AllocSize, Size, NULL);
2104      InstructionList.push_back(I);
2105      break;
2106    }
2107    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2108      unsigned OpNum = 0;
2109      Value *Op;
2110      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2111          OpNum != Record.size())
2112        return Error("Invalid FREE record");
2113      if (!CurBB) return Error("Invalid free instruction with no BB");
2114      I = CallInst::CreateFree(Op, CurBB);
2115      InstructionList.push_back(I);
2116      break;
2117    }
2118    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2119      if (Record.size() < 3)
2120        return Error("Invalid ALLOCA record");
2121      const PointerType *Ty =
2122        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2123      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2124      unsigned Align = Record[2];
2125      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2126      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2127      InstructionList.push_back(I);
2128      break;
2129    }
2130    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2131      unsigned OpNum = 0;
2132      Value *Op;
2133      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2134          OpNum+2 != Record.size())
2135        return Error("Invalid LOAD record");
2136
2137      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2138      InstructionList.push_back(I);
2139      break;
2140    }
2141    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2142      unsigned OpNum = 0;
2143      Value *Val, *Ptr;
2144      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2145          getValue(Record, OpNum,
2146                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2147          OpNum+2 != Record.size())
2148        return Error("Invalid STORE record");
2149
2150      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2151      InstructionList.push_back(I);
2152      break;
2153    }
2154    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2155      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2156      unsigned OpNum = 0;
2157      Value *Val, *Ptr;
2158      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2159          getValue(Record, OpNum,
2160                   PointerType::getUnqual(Val->getType()), Ptr)||
2161          OpNum+2 != Record.size())
2162        return Error("Invalid STORE record");
2163
2164      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2165      InstructionList.push_back(I);
2166      break;
2167    }
2168    case bitc::FUNC_CODE_INST_CALL: {
2169      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2170      if (Record.size() < 3)
2171        return Error("Invalid CALL record");
2172
2173      AttrListPtr PAL = getAttributes(Record[0]);
2174      unsigned CCInfo = Record[1];
2175
2176      unsigned OpNum = 2;
2177      Value *Callee;
2178      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2179        return Error("Invalid CALL record");
2180
2181      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2182      const FunctionType *FTy = 0;
2183      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2184      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2185        return Error("Invalid CALL record");
2186
2187      SmallVector<Value*, 16> Args;
2188      // Read the fixed params.
2189      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2190        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2191          Args.push_back(getBasicBlock(Record[OpNum]));
2192        else
2193          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2194        if (Args.back() == 0) return Error("Invalid CALL record");
2195      }
2196
2197      // Read type/value pairs for varargs params.
2198      if (!FTy->isVarArg()) {
2199        if (OpNum != Record.size())
2200          return Error("Invalid CALL record");
2201      } else {
2202        while (OpNum != Record.size()) {
2203          Value *Op;
2204          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2205            return Error("Invalid CALL record");
2206          Args.push_back(Op);
2207        }
2208      }
2209
2210      I = CallInst::Create(Callee, Args.begin(), Args.end());
2211      InstructionList.push_back(I);
2212      cast<CallInst>(I)->setCallingConv(
2213        static_cast<CallingConv::ID>(CCInfo>>1));
2214      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2215      cast<CallInst>(I)->setAttributes(PAL);
2216      break;
2217    }
2218    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2219      if (Record.size() < 3)
2220        return Error("Invalid VAARG record");
2221      const Type *OpTy = getTypeByID(Record[0]);
2222      Value *Op = getFnValueByID(Record[1], OpTy);
2223      const Type *ResTy = getTypeByID(Record[2]);
2224      if (!OpTy || !Op || !ResTy)
2225        return Error("Invalid VAARG record");
2226      I = new VAArgInst(Op, ResTy);
2227      InstructionList.push_back(I);
2228      break;
2229    }
2230    }
2231
2232    // Add instruction to end of current BB.  If there is no current BB, reject
2233    // this file.
2234    if (CurBB == 0) {
2235      delete I;
2236      return Error("Invalid instruction with no BB");
2237    }
2238    CurBB->getInstList().push_back(I);
2239
2240    // If this was a terminator instruction, move to the next block.
2241    if (isa<TerminatorInst>(I)) {
2242      ++CurBBNo;
2243      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2244    }
2245
2246    // Non-void values get registered in the value table for future use.
2247    if (I && !I->getType()->isVoidTy())
2248      ValueList.AssignValue(I, NextValueNo++);
2249  }
2250
2251  // Check the function list for unresolved values.
2252  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2253    if (A->getParent() == 0) {
2254      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2255      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2256        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2257          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2258          delete A;
2259        }
2260      }
2261      return Error("Never resolved value found in function!");
2262    }
2263  }
2264
2265  // See if anything took the address of blocks in this function.  If so,
2266  // resolve them now.
2267  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2268  /// are resolved lazily when functions are loaded.
2269  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2270    BlockAddrFwdRefs.find(F);
2271  if (BAFRI != BlockAddrFwdRefs.end()) {
2272    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2273    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2274      unsigned BlockIdx = RefList[i].first;
2275      if (BlockIdx >= FunctionBBs.size())
2276        return Error("Invalid blockaddress block #");
2277
2278      GlobalVariable *FwdRef = RefList[i].second;
2279      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2280      FwdRef->eraseFromParent();
2281    }
2282
2283    BlockAddrFwdRefs.erase(BAFRI);
2284  }
2285
2286  // Trim the value list down to the size it was before we parsed this function.
2287  ValueList.shrinkTo(ModuleValueListSize);
2288  std::vector<BasicBlock*>().swap(FunctionBBs);
2289
2290  return false;
2291}
2292
2293//===----------------------------------------------------------------------===//
2294// ModuleProvider implementation
2295//===----------------------------------------------------------------------===//
2296
2297
2298bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2299  // If it already is material, ignore the request.
2300  if (!F->hasNotBeenReadFromBitcode()) return false;
2301
2302  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2303    DeferredFunctionInfo.find(F);
2304  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2305
2306  // Move the bit stream to the saved position of the deferred function body and
2307  // restore the real linkage type for the function.
2308  Stream.JumpToBit(DFII->second.first);
2309  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2310
2311  if (ParseFunctionBody(F)) {
2312    if (ErrInfo) *ErrInfo = ErrorString;
2313    return true;
2314  }
2315
2316  // Upgrade any old intrinsic calls in the function.
2317  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2318       E = UpgradedIntrinsics.end(); I != E; ++I) {
2319    if (I->first != I->second) {
2320      for (Value::use_iterator UI = I->first->use_begin(),
2321           UE = I->first->use_end(); UI != UE; ) {
2322        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2323          UpgradeIntrinsicCall(CI, I->second);
2324      }
2325    }
2326  }
2327
2328  return false;
2329}
2330
2331void BitcodeReader::dematerializeFunction(Function *F) {
2332  // If this function isn't materialized, or if it is a proto, this is a noop.
2333  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2334    return;
2335
2336  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2337
2338  // Just forget the function body, we can remat it later.
2339  F->deleteBody();
2340  F->setLinkage(GlobalValue::GhostLinkage);
2341}
2342
2343
2344Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2345  // Iterate over the module, deserializing any functions that are still on
2346  // disk.
2347  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2348       F != E; ++F)
2349    if (F->hasNotBeenReadFromBitcode() &&
2350        materializeFunction(F, ErrInfo))
2351      return 0;
2352
2353  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2354  // delete the old functions to clean up. We can't do this unless the entire
2355  // module is materialized because there could always be another function body
2356  // with calls to the old function.
2357  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2358       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2359    if (I->first != I->second) {
2360      for (Value::use_iterator UI = I->first->use_begin(),
2361           UE = I->first->use_end(); UI != UE; ) {
2362        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2363          UpgradeIntrinsicCall(CI, I->second);
2364      }
2365      if (!I->first->use_empty())
2366        I->first->replaceAllUsesWith(I->second);
2367      I->first->eraseFromParent();
2368    }
2369  }
2370  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2371
2372  // Check debug info intrinsics.
2373  CheckDebugInfoIntrinsics(TheModule);
2374
2375  return TheModule;
2376}
2377
2378
2379/// This method is provided by the parent ModuleProvde class and overriden
2380/// here. It simply releases the module from its provided and frees up our
2381/// state.
2382/// @brief Release our hold on the generated module
2383Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2384  // Since we're losing control of this Module, we must hand it back complete
2385  Module *M = ModuleProvider::releaseModule(ErrInfo);
2386  FreeState();
2387  return M;
2388}
2389
2390
2391//===----------------------------------------------------------------------===//
2392// External interface
2393//===----------------------------------------------------------------------===//
2394
2395/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2396///
2397ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2398                                               LLVMContext& Context,
2399                                               std::string *ErrMsg) {
2400  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2401  if (R->ParseBitcode()) {
2402    if (ErrMsg)
2403      *ErrMsg = R->getErrorString();
2404
2405    // Don't let the BitcodeReader dtor delete 'Buffer'.
2406    R->releaseMemoryBuffer();
2407    delete R;
2408    return 0;
2409  }
2410  return R;
2411}
2412
2413/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2414/// If an error occurs, return null and fill in *ErrMsg if non-null.
2415Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2416                               std::string *ErrMsg){
2417  BitcodeReader *R;
2418  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2419                                                           ErrMsg));
2420  if (!R) return 0;
2421
2422  // Read in the entire module.
2423  Module *M = R->materializeModule(ErrMsg);
2424
2425  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2426  // there was an error.
2427  R->releaseMemoryBuffer();
2428
2429  // If there was no error, tell ModuleProvider not to delete it when its dtor
2430  // is run.
2431  if (M)
2432    M = R->releaseModule(ErrMsg);
2433
2434  delete R;
2435  return M;
2436}
2437