BitcodeReader.cpp revision 7379b6650008fba555d5472d5c76e8efc59e8a21
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<Type*>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134static AtomicOrdering GetDecodedOrdering(unsigned Val) {
135  switch (Val) {
136  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
137  case bitc::ORDERING_UNORDERED: return Unordered;
138  case bitc::ORDERING_MONOTONIC: return Monotonic;
139  case bitc::ORDERING_ACQUIRE: return Acquire;
140  case bitc::ORDERING_RELEASE: return Release;
141  case bitc::ORDERING_ACQREL: return AcquireRelease;
142  default: // Map unknown orderings to sequentially-consistent.
143  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
144  }
145}
146
147static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
148  switch (Val) {
149  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
150  default: // Map unknown scopes to cross-thread.
151  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
152  }
153}
154
155namespace llvm {
156namespace {
157  /// @brief A class for maintaining the slot number definition
158  /// as a placeholder for the actual definition for forward constants defs.
159  class ConstantPlaceHolder : public ConstantExpr {
160    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
161  public:
162    // allocate space for exactly one operand
163    void *operator new(size_t s) {
164      return User::operator new(s, 1);
165    }
166    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
167      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
168      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
169    }
170
171    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
172    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
173    static bool classof(const Value *V) {
174      return isa<ConstantExpr>(V) &&
175             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
176    }
177
178
179    /// Provide fast operand accessors
180    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
181  };
182}
183
184// FIXME: can we inherit this from ConstantExpr?
185template <>
186struct OperandTraits<ConstantPlaceHolder> :
187  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
188};
189}
190
191
192void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
193  if (Idx == size()) {
194    push_back(V);
195    return;
196  }
197
198  if (Idx >= size())
199    resize(Idx+1);
200
201  WeakVH &OldV = ValuePtrs[Idx];
202  if (OldV == 0) {
203    OldV = V;
204    return;
205  }
206
207  // Handle constants and non-constants (e.g. instrs) differently for
208  // efficiency.
209  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
210    ResolveConstants.push_back(std::make_pair(PHC, Idx));
211    OldV = V;
212  } else {
213    // If there was a forward reference to this value, replace it.
214    Value *PrevVal = OldV;
215    OldV->replaceAllUsesWith(V);
216    delete PrevVal;
217  }
218}
219
220
221Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
222                                                    Type *Ty) {
223  if (Idx >= size())
224    resize(Idx + 1);
225
226  if (Value *V = ValuePtrs[Idx]) {
227    assert(Ty == V->getType() && "Type mismatch in constant table!");
228    return cast<Constant>(V);
229  }
230
231  // Create and return a placeholder, which will later be RAUW'd.
232  Constant *C = new ConstantPlaceHolder(Ty, Context);
233  ValuePtrs[Idx] = C;
234  return C;
235}
236
237Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
238  if (Idx >= size())
239    resize(Idx + 1);
240
241  if (Value *V = ValuePtrs[Idx]) {
242    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
243    return V;
244  }
245
246  // No type specified, must be invalid reference.
247  if (Ty == 0) return 0;
248
249  // Create and return a placeholder, which will later be RAUW'd.
250  Value *V = new Argument(Ty);
251  ValuePtrs[Idx] = V;
252  return V;
253}
254
255/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
256/// resolves any forward references.  The idea behind this is that we sometimes
257/// get constants (such as large arrays) which reference *many* forward ref
258/// constants.  Replacing each of these causes a lot of thrashing when
259/// building/reuniquing the constant.  Instead of doing this, we look at all the
260/// uses and rewrite all the place holders at once for any constant that uses
261/// a placeholder.
262void BitcodeReaderValueList::ResolveConstantForwardRefs() {
263  // Sort the values by-pointer so that they are efficient to look up with a
264  // binary search.
265  std::sort(ResolveConstants.begin(), ResolveConstants.end());
266
267  SmallVector<Constant*, 64> NewOps;
268
269  while (!ResolveConstants.empty()) {
270    Value *RealVal = operator[](ResolveConstants.back().second);
271    Constant *Placeholder = ResolveConstants.back().first;
272    ResolveConstants.pop_back();
273
274    // Loop over all users of the placeholder, updating them to reference the
275    // new value.  If they reference more than one placeholder, update them all
276    // at once.
277    while (!Placeholder->use_empty()) {
278      Value::use_iterator UI = Placeholder->use_begin();
279      User *U = *UI;
280
281      // If the using object isn't uniqued, just update the operands.  This
282      // handles instructions and initializers for global variables.
283      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
284        UI.getUse().set(RealVal);
285        continue;
286      }
287
288      // Otherwise, we have a constant that uses the placeholder.  Replace that
289      // constant with a new constant that has *all* placeholder uses updated.
290      Constant *UserC = cast<Constant>(U);
291      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
292           I != E; ++I) {
293        Value *NewOp;
294        if (!isa<ConstantPlaceHolder>(*I)) {
295          // Not a placeholder reference.
296          NewOp = *I;
297        } else if (*I == Placeholder) {
298          // Common case is that it just references this one placeholder.
299          NewOp = RealVal;
300        } else {
301          // Otherwise, look up the placeholder in ResolveConstants.
302          ResolveConstantsTy::iterator It =
303            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
304                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
305                                                            0));
306          assert(It != ResolveConstants.end() && It->first == *I);
307          NewOp = operator[](It->second);
308        }
309
310        NewOps.push_back(cast<Constant>(NewOp));
311      }
312
313      // Make the new constant.
314      Constant *NewC;
315      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
316        NewC = ConstantArray::get(UserCA->getType(), NewOps);
317      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
318        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
319      } else if (isa<ConstantVector>(UserC)) {
320        NewC = ConstantVector::get(NewOps);
321      } else {
322        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
323        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
324      }
325
326      UserC->replaceAllUsesWith(NewC);
327      UserC->destroyConstant();
328      NewOps.clear();
329    }
330
331    // Update all ValueHandles, they should be the only users at this point.
332    Placeholder->replaceAllUsesWith(RealVal);
333    delete Placeholder;
334  }
335}
336
337void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
338  if (Idx == size()) {
339    push_back(V);
340    return;
341  }
342
343  if (Idx >= size())
344    resize(Idx+1);
345
346  WeakVH &OldV = MDValuePtrs[Idx];
347  if (OldV == 0) {
348    OldV = V;
349    return;
350  }
351
352  // If there was a forward reference to this value, replace it.
353  MDNode *PrevVal = cast<MDNode>(OldV);
354  OldV->replaceAllUsesWith(V);
355  MDNode::deleteTemporary(PrevVal);
356  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
357  // value for Idx.
358  MDValuePtrs[Idx] = V;
359}
360
361Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
362  if (Idx >= size())
363    resize(Idx + 1);
364
365  if (Value *V = MDValuePtrs[Idx]) {
366    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
367    return V;
368  }
369
370  // Create and return a placeholder, which will later be RAUW'd.
371  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
372  MDValuePtrs[Idx] = V;
373  return V;
374}
375
376Type *BitcodeReader::getTypeByID(unsigned ID) {
377  // The type table size is always specified correctly.
378  if (ID >= TypeList.size())
379    return 0;
380
381  if (Type *Ty = TypeList[ID])
382    return Ty;
383
384  // If we have a forward reference, the only possible case is when it is to a
385  // named struct.  Just create a placeholder for now.
386  return TypeList[ID] = StructType::createNamed(Context, "");
387}
388
389/// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
390Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
391  if (ID >= TypeList.size())
392    TypeList.resize(ID+1);
393
394  return TypeList[ID];
395}
396
397
398//===----------------------------------------------------------------------===//
399//  Functions for parsing blocks from the bitcode file
400//===----------------------------------------------------------------------===//
401
402bool BitcodeReader::ParseAttributeBlock() {
403  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
404    return Error("Malformed block record");
405
406  if (!MAttributes.empty())
407    return Error("Multiple PARAMATTR blocks found!");
408
409  SmallVector<uint64_t, 64> Record;
410
411  SmallVector<AttributeWithIndex, 8> Attrs;
412
413  // Read all the records.
414  while (1) {
415    unsigned Code = Stream.ReadCode();
416    if (Code == bitc::END_BLOCK) {
417      if (Stream.ReadBlockEnd())
418        return Error("Error at end of PARAMATTR block");
419      return false;
420    }
421
422    if (Code == bitc::ENTER_SUBBLOCK) {
423      // No known subblocks, always skip them.
424      Stream.ReadSubBlockID();
425      if (Stream.SkipBlock())
426        return Error("Malformed block record");
427      continue;
428    }
429
430    if (Code == bitc::DEFINE_ABBREV) {
431      Stream.ReadAbbrevRecord();
432      continue;
433    }
434
435    // Read a record.
436    Record.clear();
437    switch (Stream.ReadRecord(Code, Record)) {
438    default:  // Default behavior: ignore.
439      break;
440    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
441      if (Record.size() & 1)
442        return Error("Invalid ENTRY record");
443
444      // FIXME : Remove this autoupgrade code in LLVM 3.0.
445      // If Function attributes are using index 0 then transfer them
446      // to index ~0. Index 0 is used for return value attributes but used to be
447      // used for function attributes.
448      Attributes RetAttribute = Attribute::None;
449      Attributes FnAttribute = Attribute::None;
450      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
451        // FIXME: remove in LLVM 3.0
452        // The alignment is stored as a 16-bit raw value from bits 31--16.
453        // We shift the bits above 31 down by 11 bits.
454
455        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
456        if (Alignment && !isPowerOf2_32(Alignment))
457          return Error("Alignment is not a power of two.");
458
459        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
460        if (Alignment)
461          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
462        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
463        Record[i+1] = ReconstitutedAttr;
464
465        if (Record[i] == 0)
466          RetAttribute = Record[i+1];
467        else if (Record[i] == ~0U)
468          FnAttribute = Record[i+1];
469      }
470
471      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
472                              Attribute::ReadOnly|Attribute::ReadNone);
473
474      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
475          (RetAttribute & OldRetAttrs) != 0) {
476        if (FnAttribute == Attribute::None) { // add a slot so they get added.
477          Record.push_back(~0U);
478          Record.push_back(0);
479        }
480
481        FnAttribute  |= RetAttribute & OldRetAttrs;
482        RetAttribute &= ~OldRetAttrs;
483      }
484
485      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
486        if (Record[i] == 0) {
487          if (RetAttribute != Attribute::None)
488            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
489        } else if (Record[i] == ~0U) {
490          if (FnAttribute != Attribute::None)
491            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
492        } else if (Record[i+1] != Attribute::None)
493          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
494      }
495
496      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
497      Attrs.clear();
498      break;
499    }
500    }
501  }
502}
503
504bool BitcodeReader::ParseTypeTable() {
505  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
506    return Error("Malformed block record");
507
508  return ParseTypeTableBody();
509}
510
511bool BitcodeReader::ParseTypeTableBody() {
512  if (!TypeList.empty())
513    return Error("Multiple TYPE_BLOCKs found!");
514
515  SmallVector<uint64_t, 64> Record;
516  unsigned NumRecords = 0;
517
518  SmallString<64> TypeName;
519
520  // Read all the records for this type table.
521  while (1) {
522    unsigned Code = Stream.ReadCode();
523    if (Code == bitc::END_BLOCK) {
524      if (NumRecords != TypeList.size())
525        return Error("Invalid type forward reference in TYPE_BLOCK");
526      if (Stream.ReadBlockEnd())
527        return Error("Error at end of type table block");
528      return false;
529    }
530
531    if (Code == bitc::ENTER_SUBBLOCK) {
532      // No known subblocks, always skip them.
533      Stream.ReadSubBlockID();
534      if (Stream.SkipBlock())
535        return Error("Malformed block record");
536      continue;
537    }
538
539    if (Code == bitc::DEFINE_ABBREV) {
540      Stream.ReadAbbrevRecord();
541      continue;
542    }
543
544    // Read a record.
545    Record.clear();
546    Type *ResultTy = 0;
547    switch (Stream.ReadRecord(Code, Record)) {
548    default: return Error("unknown type in type table");
549    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
550      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
551      // type list.  This allows us to reserve space.
552      if (Record.size() < 1)
553        return Error("Invalid TYPE_CODE_NUMENTRY record");
554      TypeList.resize(Record[0]);
555      continue;
556    case bitc::TYPE_CODE_VOID:      // VOID
557      ResultTy = Type::getVoidTy(Context);
558      break;
559    case bitc::TYPE_CODE_FLOAT:     // FLOAT
560      ResultTy = Type::getFloatTy(Context);
561      break;
562    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
563      ResultTy = Type::getDoubleTy(Context);
564      break;
565    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
566      ResultTy = Type::getX86_FP80Ty(Context);
567      break;
568    case bitc::TYPE_CODE_FP128:     // FP128
569      ResultTy = Type::getFP128Ty(Context);
570      break;
571    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
572      ResultTy = Type::getPPC_FP128Ty(Context);
573      break;
574    case bitc::TYPE_CODE_LABEL:     // LABEL
575      ResultTy = Type::getLabelTy(Context);
576      break;
577    case bitc::TYPE_CODE_METADATA:  // METADATA
578      ResultTy = Type::getMetadataTy(Context);
579      break;
580    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
581      ResultTy = Type::getX86_MMXTy(Context);
582      break;
583    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
584      if (Record.size() < 1)
585        return Error("Invalid Integer type record");
586
587      ResultTy = IntegerType::get(Context, Record[0]);
588      break;
589    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
590                                    //          [pointee type, address space]
591      if (Record.size() < 1)
592        return Error("Invalid POINTER type record");
593      unsigned AddressSpace = 0;
594      if (Record.size() == 2)
595        AddressSpace = Record[1];
596      ResultTy = getTypeByID(Record[0]);
597      if (ResultTy == 0) return Error("invalid element type in pointer type");
598      ResultTy = PointerType::get(ResultTy, AddressSpace);
599      break;
600    }
601    case bitc::TYPE_CODE_FUNCTION: {
602      // FIXME: attrid is dead, remove it in LLVM 3.0
603      // FUNCTION: [vararg, attrid, retty, paramty x N]
604      if (Record.size() < 3)
605        return Error("Invalid FUNCTION type record");
606      std::vector<Type*> ArgTys;
607      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
608        if (Type *T = getTypeByID(Record[i]))
609          ArgTys.push_back(T);
610        else
611          break;
612      }
613
614      ResultTy = getTypeByID(Record[2]);
615      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
616        return Error("invalid type in function type");
617
618      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
619      break;
620    }
621    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
622      if (Record.size() < 1)
623        return Error("Invalid STRUCT type record");
624      std::vector<Type*> EltTys;
625      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
626        if (Type *T = getTypeByID(Record[i]))
627          EltTys.push_back(T);
628        else
629          break;
630      }
631      if (EltTys.size() != Record.size()-1)
632        return Error("invalid type in struct type");
633      ResultTy = StructType::get(Context, EltTys, Record[0]);
634      break;
635    }
636    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
637      if (ConvertToString(Record, 0, TypeName))
638        return Error("Invalid STRUCT_NAME record");
639      continue;
640
641    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
642      if (Record.size() < 1)
643        return Error("Invalid STRUCT type record");
644
645      if (NumRecords >= TypeList.size())
646        return Error("invalid TYPE table");
647
648      // Check to see if this was forward referenced, if so fill in the temp.
649      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
650      if (Res) {
651        Res->setName(TypeName);
652        TypeList[NumRecords] = 0;
653      } else  // Otherwise, create a new struct.
654        Res = StructType::createNamed(Context, TypeName);
655      TypeName.clear();
656
657      SmallVector<Type*, 8> EltTys;
658      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
659        if (Type *T = getTypeByID(Record[i]))
660          EltTys.push_back(T);
661        else
662          break;
663      }
664      if (EltTys.size() != Record.size()-1)
665        return Error("invalid STRUCT type record");
666      Res->setBody(EltTys, Record[0]);
667      ResultTy = Res;
668      break;
669    }
670    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
671      if (Record.size() != 1)
672        return Error("Invalid OPAQUE type record");
673
674      if (NumRecords >= TypeList.size())
675        return Error("invalid TYPE table");
676
677      // Check to see if this was forward referenced, if so fill in the temp.
678      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
679      if (Res) {
680        Res->setName(TypeName);
681        TypeList[NumRecords] = 0;
682      } else  // Otherwise, create a new struct with no body.
683        Res = StructType::createNamed(Context, TypeName);
684      TypeName.clear();
685      ResultTy = Res;
686      break;
687    }
688    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
689      if (Record.size() < 2)
690        return Error("Invalid ARRAY type record");
691      if ((ResultTy = getTypeByID(Record[1])))
692        ResultTy = ArrayType::get(ResultTy, Record[0]);
693      else
694        return Error("Invalid ARRAY type element");
695      break;
696    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
697      if (Record.size() < 2)
698        return Error("Invalid VECTOR type record");
699      if ((ResultTy = getTypeByID(Record[1])))
700        ResultTy = VectorType::get(ResultTy, Record[0]);
701      else
702        return Error("Invalid ARRAY type element");
703      break;
704    }
705
706    if (NumRecords >= TypeList.size())
707      return Error("invalid TYPE table");
708    assert(ResultTy && "Didn't read a type?");
709    assert(TypeList[NumRecords] == 0 && "Already read type?");
710    TypeList[NumRecords++] = ResultTy;
711  }
712}
713
714// FIXME: Remove in LLVM 3.1
715bool BitcodeReader::ParseOldTypeTable() {
716  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_OLD))
717    return Error("Malformed block record");
718
719  if (!TypeList.empty())
720    return Error("Multiple TYPE_BLOCKs found!");
721
722
723  // While horrible, we have no good ordering of types in the bc file.  Just
724  // iteratively parse types out of the bc file in multiple passes until we get
725  // them all.  Do this by saving a cursor for the start of the type block.
726  BitstreamCursor StartOfTypeBlockCursor(Stream);
727
728  unsigned NumTypesRead = 0;
729
730  SmallVector<uint64_t, 64> Record;
731RestartScan:
732  unsigned NextTypeID = 0;
733  bool ReadAnyTypes = false;
734
735  // Read all the records for this type table.
736  while (1) {
737    unsigned Code = Stream.ReadCode();
738    if (Code == bitc::END_BLOCK) {
739      if (NextTypeID != TypeList.size())
740        return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
741
742      // If we haven't read all of the types yet, iterate again.
743      if (NumTypesRead != TypeList.size()) {
744        // If we didn't successfully read any types in this pass, then we must
745        // have an unhandled forward reference.
746        if (!ReadAnyTypes)
747          return Error("Obsolete bitcode contains unhandled recursive type");
748
749        Stream = StartOfTypeBlockCursor;
750        goto RestartScan;
751      }
752
753      if (Stream.ReadBlockEnd())
754        return Error("Error at end of type table block");
755      return false;
756    }
757
758    if (Code == bitc::ENTER_SUBBLOCK) {
759      // No known subblocks, always skip them.
760      Stream.ReadSubBlockID();
761      if (Stream.SkipBlock())
762        return Error("Malformed block record");
763      continue;
764    }
765
766    if (Code == bitc::DEFINE_ABBREV) {
767      Stream.ReadAbbrevRecord();
768      continue;
769    }
770
771    // Read a record.
772    Record.clear();
773    Type *ResultTy = 0;
774    switch (Stream.ReadRecord(Code, Record)) {
775    default: return Error("unknown type in type table");
776    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
777      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
778      // type list.  This allows us to reserve space.
779      if (Record.size() < 1)
780        return Error("Invalid TYPE_CODE_NUMENTRY record");
781      TypeList.resize(Record[0]);
782      continue;
783    case bitc::TYPE_CODE_VOID:      // VOID
784      ResultTy = Type::getVoidTy(Context);
785      break;
786    case bitc::TYPE_CODE_FLOAT:     // FLOAT
787      ResultTy = Type::getFloatTy(Context);
788      break;
789    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
790      ResultTy = Type::getDoubleTy(Context);
791      break;
792    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
793      ResultTy = Type::getX86_FP80Ty(Context);
794      break;
795    case bitc::TYPE_CODE_FP128:     // FP128
796      ResultTy = Type::getFP128Ty(Context);
797      break;
798    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
799      ResultTy = Type::getPPC_FP128Ty(Context);
800      break;
801    case bitc::TYPE_CODE_LABEL:     // LABEL
802      ResultTy = Type::getLabelTy(Context);
803      break;
804    case bitc::TYPE_CODE_METADATA:  // METADATA
805      ResultTy = Type::getMetadataTy(Context);
806      break;
807    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
808      ResultTy = Type::getX86_MMXTy(Context);
809      break;
810    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
811      if (Record.size() < 1)
812        return Error("Invalid Integer type record");
813      ResultTy = IntegerType::get(Context, Record[0]);
814      break;
815    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
816      if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
817        ResultTy = StructType::createNamed(Context, "");
818      break;
819    case bitc::TYPE_CODE_STRUCT_OLD: {// STRUCT_OLD
820      if (NextTypeID >= TypeList.size()) break;
821      // If we already read it, don't reprocess.
822      if (TypeList[NextTypeID] &&
823          !cast<StructType>(TypeList[NextTypeID])->isOpaque())
824        break;
825
826      // Set a type.
827      if (TypeList[NextTypeID] == 0)
828        TypeList[NextTypeID] = StructType::createNamed(Context, "");
829
830      std::vector<Type*> EltTys;
831      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
832        if (Type *Elt = getTypeByIDOrNull(Record[i]))
833          EltTys.push_back(Elt);
834        else
835          break;
836      }
837
838      if (EltTys.size() != Record.size()-1)
839        break;      // Not all elements are ready.
840
841      cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
842      ResultTy = TypeList[NextTypeID];
843      TypeList[NextTypeID] = 0;
844      break;
845    }
846    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
847      //          [pointee type, address space]
848      if (Record.size() < 1)
849        return Error("Invalid POINTER type record");
850      unsigned AddressSpace = 0;
851      if (Record.size() == 2)
852        AddressSpace = Record[1];
853      if ((ResultTy = getTypeByIDOrNull(Record[0])))
854        ResultTy = PointerType::get(ResultTy, AddressSpace);
855      break;
856    }
857    case bitc::TYPE_CODE_FUNCTION: {
858      // FIXME: attrid is dead, remove it in LLVM 3.0
859      // FUNCTION: [vararg, attrid, retty, paramty x N]
860      if (Record.size() < 3)
861        return Error("Invalid FUNCTION type record");
862      std::vector<Type*> ArgTys;
863      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
864        if (Type *Elt = getTypeByIDOrNull(Record[i]))
865          ArgTys.push_back(Elt);
866        else
867          break;
868      }
869      if (ArgTys.size()+3 != Record.size())
870        break;  // Something was null.
871      if ((ResultTy = getTypeByIDOrNull(Record[2])))
872        ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
873      break;
874    }
875    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
876      if (Record.size() < 2)
877        return Error("Invalid ARRAY type record");
878      if ((ResultTy = getTypeByIDOrNull(Record[1])))
879        ResultTy = ArrayType::get(ResultTy, Record[0]);
880      break;
881    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
882      if (Record.size() < 2)
883        return Error("Invalid VECTOR type record");
884      if ((ResultTy = getTypeByIDOrNull(Record[1])))
885        ResultTy = VectorType::get(ResultTy, Record[0]);
886      break;
887    }
888
889    if (NextTypeID >= TypeList.size())
890      return Error("invalid TYPE table");
891
892    if (ResultTy && TypeList[NextTypeID] == 0) {
893      ++NumTypesRead;
894      ReadAnyTypes = true;
895
896      TypeList[NextTypeID] = ResultTy;
897    }
898
899    ++NextTypeID;
900  }
901}
902
903
904bool BitcodeReader::ParseOldTypeSymbolTable() {
905  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID_OLD))
906    return Error("Malformed block record");
907
908  SmallVector<uint64_t, 64> Record;
909
910  // Read all the records for this type table.
911  std::string TypeName;
912  while (1) {
913    unsigned Code = Stream.ReadCode();
914    if (Code == bitc::END_BLOCK) {
915      if (Stream.ReadBlockEnd())
916        return Error("Error at end of type symbol table block");
917      return false;
918    }
919
920    if (Code == bitc::ENTER_SUBBLOCK) {
921      // No known subblocks, always skip them.
922      Stream.ReadSubBlockID();
923      if (Stream.SkipBlock())
924        return Error("Malformed block record");
925      continue;
926    }
927
928    if (Code == bitc::DEFINE_ABBREV) {
929      Stream.ReadAbbrevRecord();
930      continue;
931    }
932
933    // Read a record.
934    Record.clear();
935    switch (Stream.ReadRecord(Code, Record)) {
936    default:  // Default behavior: unknown type.
937      break;
938    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
939      if (ConvertToString(Record, 1, TypeName))
940        return Error("Invalid TST_ENTRY record");
941      unsigned TypeID = Record[0];
942      if (TypeID >= TypeList.size())
943        return Error("Invalid Type ID in TST_ENTRY record");
944
945      // Only apply the type name to a struct type with no name.
946      if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
947        if (!STy->isAnonymous() && !STy->hasName())
948          STy->setName(TypeName);
949      TypeName.clear();
950      break;
951    }
952  }
953}
954
955bool BitcodeReader::ParseValueSymbolTable() {
956  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
957    return Error("Malformed block record");
958
959  SmallVector<uint64_t, 64> Record;
960
961  // Read all the records for this value table.
962  SmallString<128> ValueName;
963  while (1) {
964    unsigned Code = Stream.ReadCode();
965    if (Code == bitc::END_BLOCK) {
966      if (Stream.ReadBlockEnd())
967        return Error("Error at end of value symbol table block");
968      return false;
969    }
970    if (Code == bitc::ENTER_SUBBLOCK) {
971      // No known subblocks, always skip them.
972      Stream.ReadSubBlockID();
973      if (Stream.SkipBlock())
974        return Error("Malformed block record");
975      continue;
976    }
977
978    if (Code == bitc::DEFINE_ABBREV) {
979      Stream.ReadAbbrevRecord();
980      continue;
981    }
982
983    // Read a record.
984    Record.clear();
985    switch (Stream.ReadRecord(Code, Record)) {
986    default:  // Default behavior: unknown type.
987      break;
988    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
989      if (ConvertToString(Record, 1, ValueName))
990        return Error("Invalid VST_ENTRY record");
991      unsigned ValueID = Record[0];
992      if (ValueID >= ValueList.size())
993        return Error("Invalid Value ID in VST_ENTRY record");
994      Value *V = ValueList[ValueID];
995
996      V->setName(StringRef(ValueName.data(), ValueName.size()));
997      ValueName.clear();
998      break;
999    }
1000    case bitc::VST_CODE_BBENTRY: {
1001      if (ConvertToString(Record, 1, ValueName))
1002        return Error("Invalid VST_BBENTRY record");
1003      BasicBlock *BB = getBasicBlock(Record[0]);
1004      if (BB == 0)
1005        return Error("Invalid BB ID in VST_BBENTRY record");
1006
1007      BB->setName(StringRef(ValueName.data(), ValueName.size()));
1008      ValueName.clear();
1009      break;
1010    }
1011    }
1012  }
1013}
1014
1015bool BitcodeReader::ParseMetadata() {
1016  unsigned NextMDValueNo = MDValueList.size();
1017
1018  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1019    return Error("Malformed block record");
1020
1021  SmallVector<uint64_t, 64> Record;
1022
1023  // Read all the records.
1024  while (1) {
1025    unsigned Code = Stream.ReadCode();
1026    if (Code == bitc::END_BLOCK) {
1027      if (Stream.ReadBlockEnd())
1028        return Error("Error at end of PARAMATTR block");
1029      return false;
1030    }
1031
1032    if (Code == bitc::ENTER_SUBBLOCK) {
1033      // No known subblocks, always skip them.
1034      Stream.ReadSubBlockID();
1035      if (Stream.SkipBlock())
1036        return Error("Malformed block record");
1037      continue;
1038    }
1039
1040    if (Code == bitc::DEFINE_ABBREV) {
1041      Stream.ReadAbbrevRecord();
1042      continue;
1043    }
1044
1045    bool IsFunctionLocal = false;
1046    // Read a record.
1047    Record.clear();
1048    Code = Stream.ReadRecord(Code, Record);
1049    switch (Code) {
1050    default:  // Default behavior: ignore.
1051      break;
1052    case bitc::METADATA_NAME: {
1053      // Read named of the named metadata.
1054      unsigned NameLength = Record.size();
1055      SmallString<8> Name;
1056      Name.resize(NameLength);
1057      for (unsigned i = 0; i != NameLength; ++i)
1058        Name[i] = Record[i];
1059      Record.clear();
1060      Code = Stream.ReadCode();
1061
1062      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1063      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
1064      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1065
1066      // Read named metadata elements.
1067      unsigned Size = Record.size();
1068      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1069      for (unsigned i = 0; i != Size; ++i) {
1070        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1071        if (MD == 0)
1072          return Error("Malformed metadata record");
1073        NMD->addOperand(MD);
1074      }
1075      break;
1076    }
1077    case bitc::METADATA_FN_NODE:
1078      IsFunctionLocal = true;
1079      // fall-through
1080    case bitc::METADATA_NODE: {
1081      if (Record.size() % 2 == 1)
1082        return Error("Invalid METADATA_NODE record");
1083
1084      unsigned Size = Record.size();
1085      SmallVector<Value*, 8> Elts;
1086      for (unsigned i = 0; i != Size; i += 2) {
1087        Type *Ty = getTypeByID(Record[i]);
1088        if (!Ty) return Error("Invalid METADATA_NODE record");
1089        if (Ty->isMetadataTy())
1090          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1091        else if (!Ty->isVoidTy())
1092          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1093        else
1094          Elts.push_back(NULL);
1095      }
1096      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1097      IsFunctionLocal = false;
1098      MDValueList.AssignValue(V, NextMDValueNo++);
1099      break;
1100    }
1101    case bitc::METADATA_STRING: {
1102      unsigned MDStringLength = Record.size();
1103      SmallString<8> String;
1104      String.resize(MDStringLength);
1105      for (unsigned i = 0; i != MDStringLength; ++i)
1106        String[i] = Record[i];
1107      Value *V = MDString::get(Context,
1108                               StringRef(String.data(), String.size()));
1109      MDValueList.AssignValue(V, NextMDValueNo++);
1110      break;
1111    }
1112    case bitc::METADATA_KIND: {
1113      unsigned RecordLength = Record.size();
1114      if (Record.empty() || RecordLength < 2)
1115        return Error("Invalid METADATA_KIND record");
1116      SmallString<8> Name;
1117      Name.resize(RecordLength-1);
1118      unsigned Kind = Record[0];
1119      for (unsigned i = 1; i != RecordLength; ++i)
1120        Name[i-1] = Record[i];
1121
1122      unsigned NewKind = TheModule->getMDKindID(Name.str());
1123      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1124        return Error("Conflicting METADATA_KIND records");
1125      break;
1126    }
1127    }
1128  }
1129}
1130
1131/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
1132/// the LSB for dense VBR encoding.
1133static uint64_t DecodeSignRotatedValue(uint64_t V) {
1134  if ((V & 1) == 0)
1135    return V >> 1;
1136  if (V != 1)
1137    return -(V >> 1);
1138  // There is no such thing as -0 with integers.  "-0" really means MININT.
1139  return 1ULL << 63;
1140}
1141
1142/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1143/// values and aliases that we can.
1144bool BitcodeReader::ResolveGlobalAndAliasInits() {
1145  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1146  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1147
1148  GlobalInitWorklist.swap(GlobalInits);
1149  AliasInitWorklist.swap(AliasInits);
1150
1151  while (!GlobalInitWorklist.empty()) {
1152    unsigned ValID = GlobalInitWorklist.back().second;
1153    if (ValID >= ValueList.size()) {
1154      // Not ready to resolve this yet, it requires something later in the file.
1155      GlobalInits.push_back(GlobalInitWorklist.back());
1156    } else {
1157      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1158        GlobalInitWorklist.back().first->setInitializer(C);
1159      else
1160        return Error("Global variable initializer is not a constant!");
1161    }
1162    GlobalInitWorklist.pop_back();
1163  }
1164
1165  while (!AliasInitWorklist.empty()) {
1166    unsigned ValID = AliasInitWorklist.back().second;
1167    if (ValID >= ValueList.size()) {
1168      AliasInits.push_back(AliasInitWorklist.back());
1169    } else {
1170      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1171        AliasInitWorklist.back().first->setAliasee(C);
1172      else
1173        return Error("Alias initializer is not a constant!");
1174    }
1175    AliasInitWorklist.pop_back();
1176  }
1177  return false;
1178}
1179
1180bool BitcodeReader::ParseConstants() {
1181  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1182    return Error("Malformed block record");
1183
1184  SmallVector<uint64_t, 64> Record;
1185
1186  // Read all the records for this value table.
1187  Type *CurTy = Type::getInt32Ty(Context);
1188  unsigned NextCstNo = ValueList.size();
1189  while (1) {
1190    unsigned Code = Stream.ReadCode();
1191    if (Code == bitc::END_BLOCK)
1192      break;
1193
1194    if (Code == bitc::ENTER_SUBBLOCK) {
1195      // No known subblocks, always skip them.
1196      Stream.ReadSubBlockID();
1197      if (Stream.SkipBlock())
1198        return Error("Malformed block record");
1199      continue;
1200    }
1201
1202    if (Code == bitc::DEFINE_ABBREV) {
1203      Stream.ReadAbbrevRecord();
1204      continue;
1205    }
1206
1207    // Read a record.
1208    Record.clear();
1209    Value *V = 0;
1210    unsigned BitCode = Stream.ReadRecord(Code, Record);
1211    switch (BitCode) {
1212    default:  // Default behavior: unknown constant
1213    case bitc::CST_CODE_UNDEF:     // UNDEF
1214      V = UndefValue::get(CurTy);
1215      break;
1216    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1217      if (Record.empty())
1218        return Error("Malformed CST_SETTYPE record");
1219      if (Record[0] >= TypeList.size())
1220        return Error("Invalid Type ID in CST_SETTYPE record");
1221      CurTy = TypeList[Record[0]];
1222      continue;  // Skip the ValueList manipulation.
1223    case bitc::CST_CODE_NULL:      // NULL
1224      V = Constant::getNullValue(CurTy);
1225      break;
1226    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1227      if (!CurTy->isIntegerTy() || Record.empty())
1228        return Error("Invalid CST_INTEGER record");
1229      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1230      break;
1231    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1232      if (!CurTy->isIntegerTy() || Record.empty())
1233        return Error("Invalid WIDE_INTEGER record");
1234
1235      unsigned NumWords = Record.size();
1236      SmallVector<uint64_t, 8> Words;
1237      Words.resize(NumWords);
1238      for (unsigned i = 0; i != NumWords; ++i)
1239        Words[i] = DecodeSignRotatedValue(Record[i]);
1240      V = ConstantInt::get(Context,
1241                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1242                                 Words));
1243      break;
1244    }
1245    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1246      if (Record.empty())
1247        return Error("Invalid FLOAT record");
1248      if (CurTy->isFloatTy())
1249        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1250      else if (CurTy->isDoubleTy())
1251        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1252      else if (CurTy->isX86_FP80Ty()) {
1253        // Bits are not stored the same way as a normal i80 APInt, compensate.
1254        uint64_t Rearrange[2];
1255        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1256        Rearrange[1] = Record[0] >> 48;
1257        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1258      } else if (CurTy->isFP128Ty())
1259        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1260      else if (CurTy->isPPC_FP128Ty())
1261        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1262      else
1263        V = UndefValue::get(CurTy);
1264      break;
1265    }
1266
1267    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1268      if (Record.empty())
1269        return Error("Invalid CST_AGGREGATE record");
1270
1271      unsigned Size = Record.size();
1272      std::vector<Constant*> Elts;
1273
1274      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1275        for (unsigned i = 0; i != Size; ++i)
1276          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1277                                                     STy->getElementType(i)));
1278        V = ConstantStruct::get(STy, Elts);
1279      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1280        Type *EltTy = ATy->getElementType();
1281        for (unsigned i = 0; i != Size; ++i)
1282          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1283        V = ConstantArray::get(ATy, Elts);
1284      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1285        Type *EltTy = VTy->getElementType();
1286        for (unsigned i = 0; i != Size; ++i)
1287          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1288        V = ConstantVector::get(Elts);
1289      } else {
1290        V = UndefValue::get(CurTy);
1291      }
1292      break;
1293    }
1294    case bitc::CST_CODE_STRING: { // STRING: [values]
1295      if (Record.empty())
1296        return Error("Invalid CST_AGGREGATE record");
1297
1298      ArrayType *ATy = cast<ArrayType>(CurTy);
1299      Type *EltTy = ATy->getElementType();
1300
1301      unsigned Size = Record.size();
1302      std::vector<Constant*> Elts;
1303      for (unsigned i = 0; i != Size; ++i)
1304        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1305      V = ConstantArray::get(ATy, Elts);
1306      break;
1307    }
1308    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1309      if (Record.empty())
1310        return Error("Invalid CST_AGGREGATE record");
1311
1312      ArrayType *ATy = cast<ArrayType>(CurTy);
1313      Type *EltTy = ATy->getElementType();
1314
1315      unsigned Size = Record.size();
1316      std::vector<Constant*> Elts;
1317      for (unsigned i = 0; i != Size; ++i)
1318        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1319      Elts.push_back(Constant::getNullValue(EltTy));
1320      V = ConstantArray::get(ATy, Elts);
1321      break;
1322    }
1323    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1324      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1325      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1326      if (Opc < 0) {
1327        V = UndefValue::get(CurTy);  // Unknown binop.
1328      } else {
1329        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1330        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1331        unsigned Flags = 0;
1332        if (Record.size() >= 4) {
1333          if (Opc == Instruction::Add ||
1334              Opc == Instruction::Sub ||
1335              Opc == Instruction::Mul ||
1336              Opc == Instruction::Shl) {
1337            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1338              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1339            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1340              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1341          } else if (Opc == Instruction::SDiv ||
1342                     Opc == Instruction::UDiv ||
1343                     Opc == Instruction::LShr ||
1344                     Opc == Instruction::AShr) {
1345            if (Record[3] & (1 << bitc::PEO_EXACT))
1346              Flags |= SDivOperator::IsExact;
1347          }
1348        }
1349        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1350      }
1351      break;
1352    }
1353    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1354      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1355      int Opc = GetDecodedCastOpcode(Record[0]);
1356      if (Opc < 0) {
1357        V = UndefValue::get(CurTy);  // Unknown cast.
1358      } else {
1359        Type *OpTy = getTypeByID(Record[1]);
1360        if (!OpTy) return Error("Invalid CE_CAST record");
1361        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1362        V = ConstantExpr::getCast(Opc, Op, CurTy);
1363      }
1364      break;
1365    }
1366    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1367    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1368      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1369      SmallVector<Constant*, 16> Elts;
1370      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1371        Type *ElTy = getTypeByID(Record[i]);
1372        if (!ElTy) return Error("Invalid CE_GEP record");
1373        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1374      }
1375      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1376      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1377                                         BitCode ==
1378                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1379      break;
1380    }
1381    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1382      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1383      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1384                                                              Type::getInt1Ty(Context)),
1385                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1386                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1387      break;
1388    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1389      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1390      VectorType *OpTy =
1391        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1392      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1393      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1394      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1395      V = ConstantExpr::getExtractElement(Op0, Op1);
1396      break;
1397    }
1398    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1399      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1400      if (Record.size() < 3 || OpTy == 0)
1401        return Error("Invalid CE_INSERTELT record");
1402      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1403      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1404                                                  OpTy->getElementType());
1405      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1406      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1407      break;
1408    }
1409    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1410      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1411      if (Record.size() < 3 || OpTy == 0)
1412        return Error("Invalid CE_SHUFFLEVEC record");
1413      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1414      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1415      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1416                                                 OpTy->getNumElements());
1417      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1418      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1419      break;
1420    }
1421    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1422      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1423      VectorType *OpTy =
1424        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1425      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1426        return Error("Invalid CE_SHUFVEC_EX record");
1427      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1428      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1429      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1430                                                 RTy->getNumElements());
1431      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1432      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1433      break;
1434    }
1435    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1436      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1437      Type *OpTy = getTypeByID(Record[0]);
1438      if (OpTy == 0) return Error("Invalid CE_CMP record");
1439      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1440      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1441
1442      if (OpTy->isFPOrFPVectorTy())
1443        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1444      else
1445        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1446      break;
1447    }
1448    case bitc::CST_CODE_INLINEASM: {
1449      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1450      std::string AsmStr, ConstrStr;
1451      bool HasSideEffects = Record[0] & 1;
1452      bool IsAlignStack = Record[0] >> 1;
1453      unsigned AsmStrSize = Record[1];
1454      if (2+AsmStrSize >= Record.size())
1455        return Error("Invalid INLINEASM record");
1456      unsigned ConstStrSize = Record[2+AsmStrSize];
1457      if (3+AsmStrSize+ConstStrSize > Record.size())
1458        return Error("Invalid INLINEASM record");
1459
1460      for (unsigned i = 0; i != AsmStrSize; ++i)
1461        AsmStr += (char)Record[2+i];
1462      for (unsigned i = 0; i != ConstStrSize; ++i)
1463        ConstrStr += (char)Record[3+AsmStrSize+i];
1464      PointerType *PTy = cast<PointerType>(CurTy);
1465      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1466                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1467      break;
1468    }
1469    case bitc::CST_CODE_BLOCKADDRESS:{
1470      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1471      Type *FnTy = getTypeByID(Record[0]);
1472      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1473      Function *Fn =
1474        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1475      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1476
1477      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1478                                                  Type::getInt8Ty(Context),
1479                                            false, GlobalValue::InternalLinkage,
1480                                                  0, "");
1481      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1482      V = FwdRef;
1483      break;
1484    }
1485    }
1486
1487    ValueList.AssignValue(V, NextCstNo);
1488    ++NextCstNo;
1489  }
1490
1491  if (NextCstNo != ValueList.size())
1492    return Error("Invalid constant reference!");
1493
1494  if (Stream.ReadBlockEnd())
1495    return Error("Error at end of constants block");
1496
1497  // Once all the constants have been read, go through and resolve forward
1498  // references.
1499  ValueList.ResolveConstantForwardRefs();
1500  return false;
1501}
1502
1503/// RememberAndSkipFunctionBody - When we see the block for a function body,
1504/// remember where it is and then skip it.  This lets us lazily deserialize the
1505/// functions.
1506bool BitcodeReader::RememberAndSkipFunctionBody() {
1507  // Get the function we are talking about.
1508  if (FunctionsWithBodies.empty())
1509    return Error("Insufficient function protos");
1510
1511  Function *Fn = FunctionsWithBodies.back();
1512  FunctionsWithBodies.pop_back();
1513
1514  // Save the current stream state.
1515  uint64_t CurBit = Stream.GetCurrentBitNo();
1516  DeferredFunctionInfo[Fn] = CurBit;
1517
1518  // Skip over the function block for now.
1519  if (Stream.SkipBlock())
1520    return Error("Malformed block record");
1521  return false;
1522}
1523
1524bool BitcodeReader::ParseModule() {
1525  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1526    return Error("Malformed block record");
1527
1528  SmallVector<uint64_t, 64> Record;
1529  std::vector<std::string> SectionTable;
1530  std::vector<std::string> GCTable;
1531
1532  // Read all the records for this module.
1533  while (!Stream.AtEndOfStream()) {
1534    unsigned Code = Stream.ReadCode();
1535    if (Code == bitc::END_BLOCK) {
1536      if (Stream.ReadBlockEnd())
1537        return Error("Error at end of module block");
1538
1539      // Patch the initializers for globals and aliases up.
1540      ResolveGlobalAndAliasInits();
1541      if (!GlobalInits.empty() || !AliasInits.empty())
1542        return Error("Malformed global initializer set");
1543      if (!FunctionsWithBodies.empty())
1544        return Error("Too few function bodies found");
1545
1546      // Look for intrinsic functions which need to be upgraded at some point
1547      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1548           FI != FE; ++FI) {
1549        Function* NewFn;
1550        if (UpgradeIntrinsicFunction(FI, NewFn))
1551          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1552      }
1553
1554      // Look for global variables which need to be renamed.
1555      for (Module::global_iterator
1556             GI = TheModule->global_begin(), GE = TheModule->global_end();
1557           GI != GE; ++GI)
1558        UpgradeGlobalVariable(GI);
1559
1560      // Force deallocation of memory for these vectors to favor the client that
1561      // want lazy deserialization.
1562      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1563      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1564      std::vector<Function*>().swap(FunctionsWithBodies);
1565      return false;
1566    }
1567
1568    if (Code == bitc::ENTER_SUBBLOCK) {
1569      switch (Stream.ReadSubBlockID()) {
1570      default:  // Skip unknown content.
1571        if (Stream.SkipBlock())
1572          return Error("Malformed block record");
1573        break;
1574      case bitc::BLOCKINFO_BLOCK_ID:
1575        if (Stream.ReadBlockInfoBlock())
1576          return Error("Malformed BlockInfoBlock");
1577        break;
1578      case bitc::PARAMATTR_BLOCK_ID:
1579        if (ParseAttributeBlock())
1580          return true;
1581        break;
1582      case bitc::TYPE_BLOCK_ID_NEW:
1583        if (ParseTypeTable())
1584          return true;
1585        break;
1586      case bitc::TYPE_BLOCK_ID_OLD:
1587        if (ParseOldTypeTable())
1588          return true;
1589        break;
1590      case bitc::TYPE_SYMTAB_BLOCK_ID_OLD:
1591        if (ParseOldTypeSymbolTable())
1592          return true;
1593        break;
1594      case bitc::VALUE_SYMTAB_BLOCK_ID:
1595        if (ParseValueSymbolTable())
1596          return true;
1597        break;
1598      case bitc::CONSTANTS_BLOCK_ID:
1599        if (ParseConstants() || ResolveGlobalAndAliasInits())
1600          return true;
1601        break;
1602      case bitc::METADATA_BLOCK_ID:
1603        if (ParseMetadata())
1604          return true;
1605        break;
1606      case bitc::FUNCTION_BLOCK_ID:
1607        // If this is the first function body we've seen, reverse the
1608        // FunctionsWithBodies list.
1609        if (!HasReversedFunctionsWithBodies) {
1610          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1611          HasReversedFunctionsWithBodies = true;
1612        }
1613
1614        if (RememberAndSkipFunctionBody())
1615          return true;
1616        break;
1617      }
1618      continue;
1619    }
1620
1621    if (Code == bitc::DEFINE_ABBREV) {
1622      Stream.ReadAbbrevRecord();
1623      continue;
1624    }
1625
1626    // Read a record.
1627    switch (Stream.ReadRecord(Code, Record)) {
1628    default: break;  // Default behavior, ignore unknown content.
1629    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1630      if (Record.size() < 1)
1631        return Error("Malformed MODULE_CODE_VERSION");
1632      // Only version #0 is supported so far.
1633      if (Record[0] != 0)
1634        return Error("Unknown bitstream version!");
1635      break;
1636    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1637      std::string S;
1638      if (ConvertToString(Record, 0, S))
1639        return Error("Invalid MODULE_CODE_TRIPLE record");
1640      TheModule->setTargetTriple(S);
1641      break;
1642    }
1643    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1644      std::string S;
1645      if (ConvertToString(Record, 0, S))
1646        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1647      TheModule->setDataLayout(S);
1648      break;
1649    }
1650    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1651      std::string S;
1652      if (ConvertToString(Record, 0, S))
1653        return Error("Invalid MODULE_CODE_ASM record");
1654      TheModule->setModuleInlineAsm(S);
1655      break;
1656    }
1657    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1658      std::string S;
1659      if (ConvertToString(Record, 0, S))
1660        return Error("Invalid MODULE_CODE_DEPLIB record");
1661      TheModule->addLibrary(S);
1662      break;
1663    }
1664    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1665      std::string S;
1666      if (ConvertToString(Record, 0, S))
1667        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1668      SectionTable.push_back(S);
1669      break;
1670    }
1671    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1672      std::string S;
1673      if (ConvertToString(Record, 0, S))
1674        return Error("Invalid MODULE_CODE_GCNAME record");
1675      GCTable.push_back(S);
1676      break;
1677    }
1678    // GLOBALVAR: [pointer type, isconst, initid,
1679    //             linkage, alignment, section, visibility, threadlocal,
1680    //             unnamed_addr]
1681    case bitc::MODULE_CODE_GLOBALVAR: {
1682      if (Record.size() < 6)
1683        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1684      Type *Ty = getTypeByID(Record[0]);
1685      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1686      if (!Ty->isPointerTy())
1687        return Error("Global not a pointer type!");
1688      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1689      Ty = cast<PointerType>(Ty)->getElementType();
1690
1691      bool isConstant = Record[1];
1692      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1693      unsigned Alignment = (1 << Record[4]) >> 1;
1694      std::string Section;
1695      if (Record[5]) {
1696        if (Record[5]-1 >= SectionTable.size())
1697          return Error("Invalid section ID");
1698        Section = SectionTable[Record[5]-1];
1699      }
1700      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1701      if (Record.size() > 6)
1702        Visibility = GetDecodedVisibility(Record[6]);
1703      bool isThreadLocal = false;
1704      if (Record.size() > 7)
1705        isThreadLocal = Record[7];
1706
1707      bool UnnamedAddr = false;
1708      if (Record.size() > 8)
1709        UnnamedAddr = Record[8];
1710
1711      GlobalVariable *NewGV =
1712        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1713                           isThreadLocal, AddressSpace);
1714      NewGV->setAlignment(Alignment);
1715      if (!Section.empty())
1716        NewGV->setSection(Section);
1717      NewGV->setVisibility(Visibility);
1718      NewGV->setThreadLocal(isThreadLocal);
1719      NewGV->setUnnamedAddr(UnnamedAddr);
1720
1721      ValueList.push_back(NewGV);
1722
1723      // Remember which value to use for the global initializer.
1724      if (unsigned InitID = Record[2])
1725        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1726      break;
1727    }
1728    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1729    //             alignment, section, visibility, gc, unnamed_addr]
1730    case bitc::MODULE_CODE_FUNCTION: {
1731      if (Record.size() < 8)
1732        return Error("Invalid MODULE_CODE_FUNCTION record");
1733      Type *Ty = getTypeByID(Record[0]);
1734      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1735      if (!Ty->isPointerTy())
1736        return Error("Function not a pointer type!");
1737      FunctionType *FTy =
1738        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1739      if (!FTy)
1740        return Error("Function not a pointer to function type!");
1741
1742      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1743                                        "", TheModule);
1744
1745      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1746      bool isProto = Record[2];
1747      Func->setLinkage(GetDecodedLinkage(Record[3]));
1748      Func->setAttributes(getAttributes(Record[4]));
1749
1750      Func->setAlignment((1 << Record[5]) >> 1);
1751      if (Record[6]) {
1752        if (Record[6]-1 >= SectionTable.size())
1753          return Error("Invalid section ID");
1754        Func->setSection(SectionTable[Record[6]-1]);
1755      }
1756      Func->setVisibility(GetDecodedVisibility(Record[7]));
1757      if (Record.size() > 8 && Record[8]) {
1758        if (Record[8]-1 > GCTable.size())
1759          return Error("Invalid GC ID");
1760        Func->setGC(GCTable[Record[8]-1].c_str());
1761      }
1762      bool UnnamedAddr = false;
1763      if (Record.size() > 9)
1764        UnnamedAddr = Record[9];
1765      Func->setUnnamedAddr(UnnamedAddr);
1766      ValueList.push_back(Func);
1767
1768      // If this is a function with a body, remember the prototype we are
1769      // creating now, so that we can match up the body with them later.
1770      if (!isProto)
1771        FunctionsWithBodies.push_back(Func);
1772      break;
1773    }
1774    // ALIAS: [alias type, aliasee val#, linkage]
1775    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1776    case bitc::MODULE_CODE_ALIAS: {
1777      if (Record.size() < 3)
1778        return Error("Invalid MODULE_ALIAS record");
1779      Type *Ty = getTypeByID(Record[0]);
1780      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1781      if (!Ty->isPointerTy())
1782        return Error("Function not a pointer type!");
1783
1784      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1785                                           "", 0, TheModule);
1786      // Old bitcode files didn't have visibility field.
1787      if (Record.size() > 3)
1788        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1789      ValueList.push_back(NewGA);
1790      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1791      break;
1792    }
1793    /// MODULE_CODE_PURGEVALS: [numvals]
1794    case bitc::MODULE_CODE_PURGEVALS:
1795      // Trim down the value list to the specified size.
1796      if (Record.size() < 1 || Record[0] > ValueList.size())
1797        return Error("Invalid MODULE_PURGEVALS record");
1798      ValueList.shrinkTo(Record[0]);
1799      break;
1800    }
1801    Record.clear();
1802  }
1803
1804  return Error("Premature end of bitstream");
1805}
1806
1807bool BitcodeReader::ParseBitcodeInto(Module *M) {
1808  TheModule = 0;
1809
1810  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1811  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1812
1813  if (Buffer->getBufferSize() & 3) {
1814    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1815      return Error("Invalid bitcode signature");
1816    else
1817      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1818  }
1819
1820  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1821  // The magic number is 0x0B17C0DE stored in little endian.
1822  if (isBitcodeWrapper(BufPtr, BufEnd))
1823    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1824      return Error("Invalid bitcode wrapper header");
1825
1826  StreamFile.init(BufPtr, BufEnd);
1827  Stream.init(StreamFile);
1828
1829  // Sniff for the signature.
1830  if (Stream.Read(8) != 'B' ||
1831      Stream.Read(8) != 'C' ||
1832      Stream.Read(4) != 0x0 ||
1833      Stream.Read(4) != 0xC ||
1834      Stream.Read(4) != 0xE ||
1835      Stream.Read(4) != 0xD)
1836    return Error("Invalid bitcode signature");
1837
1838  // We expect a number of well-defined blocks, though we don't necessarily
1839  // need to understand them all.
1840  while (!Stream.AtEndOfStream()) {
1841    unsigned Code = Stream.ReadCode();
1842
1843    if (Code != bitc::ENTER_SUBBLOCK) {
1844
1845      // The ranlib in xcode 4 will align archive members by appending newlines to the
1846      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1847      // ignore these final 4 bytes :-(
1848      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1849          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1850	  Stream.AtEndOfStream())
1851        return false;
1852
1853      return Error("Invalid record at top-level");
1854    }
1855
1856    unsigned BlockID = Stream.ReadSubBlockID();
1857
1858    // We only know the MODULE subblock ID.
1859    switch (BlockID) {
1860    case bitc::BLOCKINFO_BLOCK_ID:
1861      if (Stream.ReadBlockInfoBlock())
1862        return Error("Malformed BlockInfoBlock");
1863      break;
1864    case bitc::MODULE_BLOCK_ID:
1865      // Reject multiple MODULE_BLOCK's in a single bitstream.
1866      if (TheModule)
1867        return Error("Multiple MODULE_BLOCKs in same stream");
1868      TheModule = M;
1869      if (ParseModule())
1870        return true;
1871      break;
1872    default:
1873      if (Stream.SkipBlock())
1874        return Error("Malformed block record");
1875      break;
1876    }
1877  }
1878
1879  return false;
1880}
1881
1882bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1883  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1884    return Error("Malformed block record");
1885
1886  SmallVector<uint64_t, 64> Record;
1887
1888  // Read all the records for this module.
1889  while (!Stream.AtEndOfStream()) {
1890    unsigned Code = Stream.ReadCode();
1891    if (Code == bitc::END_BLOCK) {
1892      if (Stream.ReadBlockEnd())
1893        return Error("Error at end of module block");
1894
1895      return false;
1896    }
1897
1898    if (Code == bitc::ENTER_SUBBLOCK) {
1899      switch (Stream.ReadSubBlockID()) {
1900      default:  // Skip unknown content.
1901        if (Stream.SkipBlock())
1902          return Error("Malformed block record");
1903        break;
1904      }
1905      continue;
1906    }
1907
1908    if (Code == bitc::DEFINE_ABBREV) {
1909      Stream.ReadAbbrevRecord();
1910      continue;
1911    }
1912
1913    // Read a record.
1914    switch (Stream.ReadRecord(Code, Record)) {
1915    default: break;  // Default behavior, ignore unknown content.
1916    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1917      if (Record.size() < 1)
1918        return Error("Malformed MODULE_CODE_VERSION");
1919      // Only version #0 is supported so far.
1920      if (Record[0] != 0)
1921        return Error("Unknown bitstream version!");
1922      break;
1923    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1924      std::string S;
1925      if (ConvertToString(Record, 0, S))
1926        return Error("Invalid MODULE_CODE_TRIPLE record");
1927      Triple = S;
1928      break;
1929    }
1930    }
1931    Record.clear();
1932  }
1933
1934  return Error("Premature end of bitstream");
1935}
1936
1937bool BitcodeReader::ParseTriple(std::string &Triple) {
1938  if (Buffer->getBufferSize() & 3)
1939    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1940
1941  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1942  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1943
1944  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1945  // The magic number is 0x0B17C0DE stored in little endian.
1946  if (isBitcodeWrapper(BufPtr, BufEnd))
1947    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1948      return Error("Invalid bitcode wrapper header");
1949
1950  StreamFile.init(BufPtr, BufEnd);
1951  Stream.init(StreamFile);
1952
1953  // Sniff for the signature.
1954  if (Stream.Read(8) != 'B' ||
1955      Stream.Read(8) != 'C' ||
1956      Stream.Read(4) != 0x0 ||
1957      Stream.Read(4) != 0xC ||
1958      Stream.Read(4) != 0xE ||
1959      Stream.Read(4) != 0xD)
1960    return Error("Invalid bitcode signature");
1961
1962  // We expect a number of well-defined blocks, though we don't necessarily
1963  // need to understand them all.
1964  while (!Stream.AtEndOfStream()) {
1965    unsigned Code = Stream.ReadCode();
1966
1967    if (Code != bitc::ENTER_SUBBLOCK)
1968      return Error("Invalid record at top-level");
1969
1970    unsigned BlockID = Stream.ReadSubBlockID();
1971
1972    // We only know the MODULE subblock ID.
1973    switch (BlockID) {
1974    case bitc::MODULE_BLOCK_ID:
1975      if (ParseModuleTriple(Triple))
1976        return true;
1977      break;
1978    default:
1979      if (Stream.SkipBlock())
1980        return Error("Malformed block record");
1981      break;
1982    }
1983  }
1984
1985  return false;
1986}
1987
1988/// ParseMetadataAttachment - Parse metadata attachments.
1989bool BitcodeReader::ParseMetadataAttachment() {
1990  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1991    return Error("Malformed block record");
1992
1993  SmallVector<uint64_t, 64> Record;
1994  while(1) {
1995    unsigned Code = Stream.ReadCode();
1996    if (Code == bitc::END_BLOCK) {
1997      if (Stream.ReadBlockEnd())
1998        return Error("Error at end of PARAMATTR block");
1999      break;
2000    }
2001    if (Code == bitc::DEFINE_ABBREV) {
2002      Stream.ReadAbbrevRecord();
2003      continue;
2004    }
2005    // Read a metadata attachment record.
2006    Record.clear();
2007    switch (Stream.ReadRecord(Code, Record)) {
2008    default:  // Default behavior: ignore.
2009      break;
2010    case bitc::METADATA_ATTACHMENT: {
2011      unsigned RecordLength = Record.size();
2012      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2013        return Error ("Invalid METADATA_ATTACHMENT reader!");
2014      Instruction *Inst = InstructionList[Record[0]];
2015      for (unsigned i = 1; i != RecordLength; i = i+2) {
2016        unsigned Kind = Record[i];
2017        DenseMap<unsigned, unsigned>::iterator I =
2018          MDKindMap.find(Kind);
2019        if (I == MDKindMap.end())
2020          return Error("Invalid metadata kind ID");
2021        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2022        Inst->setMetadata(I->second, cast<MDNode>(Node));
2023      }
2024      break;
2025    }
2026    }
2027  }
2028  return false;
2029}
2030
2031/// ParseFunctionBody - Lazily parse the specified function body block.
2032bool BitcodeReader::ParseFunctionBody(Function *F) {
2033  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2034    return Error("Malformed block record");
2035
2036  InstructionList.clear();
2037  unsigned ModuleValueListSize = ValueList.size();
2038  unsigned ModuleMDValueListSize = MDValueList.size();
2039
2040  // Add all the function arguments to the value table.
2041  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2042    ValueList.push_back(I);
2043
2044  unsigned NextValueNo = ValueList.size();
2045  BasicBlock *CurBB = 0;
2046  unsigned CurBBNo = 0;
2047
2048  DebugLoc LastLoc;
2049
2050  // Read all the records.
2051  SmallVector<uint64_t, 64> Record;
2052  while (1) {
2053    unsigned Code = Stream.ReadCode();
2054    if (Code == bitc::END_BLOCK) {
2055      if (Stream.ReadBlockEnd())
2056        return Error("Error at end of function block");
2057      break;
2058    }
2059
2060    if (Code == bitc::ENTER_SUBBLOCK) {
2061      switch (Stream.ReadSubBlockID()) {
2062      default:  // Skip unknown content.
2063        if (Stream.SkipBlock())
2064          return Error("Malformed block record");
2065        break;
2066      case bitc::CONSTANTS_BLOCK_ID:
2067        if (ParseConstants()) return true;
2068        NextValueNo = ValueList.size();
2069        break;
2070      case bitc::VALUE_SYMTAB_BLOCK_ID:
2071        if (ParseValueSymbolTable()) return true;
2072        break;
2073      case bitc::METADATA_ATTACHMENT_ID:
2074        if (ParseMetadataAttachment()) return true;
2075        break;
2076      case bitc::METADATA_BLOCK_ID:
2077        if (ParseMetadata()) return true;
2078        break;
2079      }
2080      continue;
2081    }
2082
2083    if (Code == bitc::DEFINE_ABBREV) {
2084      Stream.ReadAbbrevRecord();
2085      continue;
2086    }
2087
2088    // Read a record.
2089    Record.clear();
2090    Instruction *I = 0;
2091    unsigned BitCode = Stream.ReadRecord(Code, Record);
2092    switch (BitCode) {
2093    default: // Default behavior: reject
2094      return Error("Unknown instruction");
2095    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2096      if (Record.size() < 1 || Record[0] == 0)
2097        return Error("Invalid DECLAREBLOCKS record");
2098      // Create all the basic blocks for the function.
2099      FunctionBBs.resize(Record[0]);
2100      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2101        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2102      CurBB = FunctionBBs[0];
2103      continue;
2104
2105    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2106      // This record indicates that the last instruction is at the same
2107      // location as the previous instruction with a location.
2108      I = 0;
2109
2110      // Get the last instruction emitted.
2111      if (CurBB && !CurBB->empty())
2112        I = &CurBB->back();
2113      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2114               !FunctionBBs[CurBBNo-1]->empty())
2115        I = &FunctionBBs[CurBBNo-1]->back();
2116
2117      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2118      I->setDebugLoc(LastLoc);
2119      I = 0;
2120      continue;
2121
2122    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2123      I = 0;     // Get the last instruction emitted.
2124      if (CurBB && !CurBB->empty())
2125        I = &CurBB->back();
2126      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2127               !FunctionBBs[CurBBNo-1]->empty())
2128        I = &FunctionBBs[CurBBNo-1]->back();
2129      if (I == 0 || Record.size() < 4)
2130        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2131
2132      unsigned Line = Record[0], Col = Record[1];
2133      unsigned ScopeID = Record[2], IAID = Record[3];
2134
2135      MDNode *Scope = 0, *IA = 0;
2136      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2137      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2138      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2139      I->setDebugLoc(LastLoc);
2140      I = 0;
2141      continue;
2142    }
2143
2144    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2145      unsigned OpNum = 0;
2146      Value *LHS, *RHS;
2147      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2148          getValue(Record, OpNum, LHS->getType(), RHS) ||
2149          OpNum+1 > Record.size())
2150        return Error("Invalid BINOP record");
2151
2152      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2153      if (Opc == -1) return Error("Invalid BINOP record");
2154      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2155      InstructionList.push_back(I);
2156      if (OpNum < Record.size()) {
2157        if (Opc == Instruction::Add ||
2158            Opc == Instruction::Sub ||
2159            Opc == Instruction::Mul ||
2160            Opc == Instruction::Shl) {
2161          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2162            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2163          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2164            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2165        } else if (Opc == Instruction::SDiv ||
2166                   Opc == Instruction::UDiv ||
2167                   Opc == Instruction::LShr ||
2168                   Opc == Instruction::AShr) {
2169          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2170            cast<BinaryOperator>(I)->setIsExact(true);
2171        }
2172      }
2173      break;
2174    }
2175    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2176      unsigned OpNum = 0;
2177      Value *Op;
2178      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2179          OpNum+2 != Record.size())
2180        return Error("Invalid CAST record");
2181
2182      Type *ResTy = getTypeByID(Record[OpNum]);
2183      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2184      if (Opc == -1 || ResTy == 0)
2185        return Error("Invalid CAST record");
2186      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2187      InstructionList.push_back(I);
2188      break;
2189    }
2190    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2191    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2192      unsigned OpNum = 0;
2193      Value *BasePtr;
2194      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2195        return Error("Invalid GEP record");
2196
2197      SmallVector<Value*, 16> GEPIdx;
2198      while (OpNum != Record.size()) {
2199        Value *Op;
2200        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2201          return Error("Invalid GEP record");
2202        GEPIdx.push_back(Op);
2203      }
2204
2205      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2206      InstructionList.push_back(I);
2207      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2208        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2209      break;
2210    }
2211
2212    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2213                                       // EXTRACTVAL: [opty, opval, n x indices]
2214      unsigned OpNum = 0;
2215      Value *Agg;
2216      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2217        return Error("Invalid EXTRACTVAL record");
2218
2219      SmallVector<unsigned, 4> EXTRACTVALIdx;
2220      for (unsigned RecSize = Record.size();
2221           OpNum != RecSize; ++OpNum) {
2222        uint64_t Index = Record[OpNum];
2223        if ((unsigned)Index != Index)
2224          return Error("Invalid EXTRACTVAL index");
2225        EXTRACTVALIdx.push_back((unsigned)Index);
2226      }
2227
2228      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2229      InstructionList.push_back(I);
2230      break;
2231    }
2232
2233    case bitc::FUNC_CODE_INST_INSERTVAL: {
2234                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2235      unsigned OpNum = 0;
2236      Value *Agg;
2237      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2238        return Error("Invalid INSERTVAL record");
2239      Value *Val;
2240      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2241        return Error("Invalid INSERTVAL record");
2242
2243      SmallVector<unsigned, 4> INSERTVALIdx;
2244      for (unsigned RecSize = Record.size();
2245           OpNum != RecSize; ++OpNum) {
2246        uint64_t Index = Record[OpNum];
2247        if ((unsigned)Index != Index)
2248          return Error("Invalid INSERTVAL index");
2249        INSERTVALIdx.push_back((unsigned)Index);
2250      }
2251
2252      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2253      InstructionList.push_back(I);
2254      break;
2255    }
2256
2257    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2258      // obsolete form of select
2259      // handles select i1 ... in old bitcode
2260      unsigned OpNum = 0;
2261      Value *TrueVal, *FalseVal, *Cond;
2262      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2263          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2264          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2265        return Error("Invalid SELECT record");
2266
2267      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2268      InstructionList.push_back(I);
2269      break;
2270    }
2271
2272    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2273      // new form of select
2274      // handles select i1 or select [N x i1]
2275      unsigned OpNum = 0;
2276      Value *TrueVal, *FalseVal, *Cond;
2277      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2278          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2279          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2280        return Error("Invalid SELECT record");
2281
2282      // select condition can be either i1 or [N x i1]
2283      if (VectorType* vector_type =
2284          dyn_cast<VectorType>(Cond->getType())) {
2285        // expect <n x i1>
2286        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2287          return Error("Invalid SELECT condition type");
2288      } else {
2289        // expect i1
2290        if (Cond->getType() != Type::getInt1Ty(Context))
2291          return Error("Invalid SELECT condition type");
2292      }
2293
2294      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2295      InstructionList.push_back(I);
2296      break;
2297    }
2298
2299    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2300      unsigned OpNum = 0;
2301      Value *Vec, *Idx;
2302      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2303          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2304        return Error("Invalid EXTRACTELT record");
2305      I = ExtractElementInst::Create(Vec, Idx);
2306      InstructionList.push_back(I);
2307      break;
2308    }
2309
2310    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2311      unsigned OpNum = 0;
2312      Value *Vec, *Elt, *Idx;
2313      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2314          getValue(Record, OpNum,
2315                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2316          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2317        return Error("Invalid INSERTELT record");
2318      I = InsertElementInst::Create(Vec, Elt, Idx);
2319      InstructionList.push_back(I);
2320      break;
2321    }
2322
2323    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2324      unsigned OpNum = 0;
2325      Value *Vec1, *Vec2, *Mask;
2326      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2327          getValue(Record, OpNum, Vec1->getType(), Vec2))
2328        return Error("Invalid SHUFFLEVEC record");
2329
2330      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2331        return Error("Invalid SHUFFLEVEC record");
2332      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2333      InstructionList.push_back(I);
2334      break;
2335    }
2336
2337    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2338      // Old form of ICmp/FCmp returning bool
2339      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2340      // both legal on vectors but had different behaviour.
2341    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2342      // FCmp/ICmp returning bool or vector of bool
2343
2344      unsigned OpNum = 0;
2345      Value *LHS, *RHS;
2346      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2347          getValue(Record, OpNum, LHS->getType(), RHS) ||
2348          OpNum+1 != Record.size())
2349        return Error("Invalid CMP record");
2350
2351      if (LHS->getType()->isFPOrFPVectorTy())
2352        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2353      else
2354        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2355      InstructionList.push_back(I);
2356      break;
2357    }
2358
2359    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2360      {
2361        unsigned Size = Record.size();
2362        if (Size == 0) {
2363          I = ReturnInst::Create(Context);
2364          InstructionList.push_back(I);
2365          break;
2366        }
2367
2368        unsigned OpNum = 0;
2369        Value *Op = NULL;
2370        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2371          return Error("Invalid RET record");
2372        if (OpNum != Record.size())
2373          return Error("Invalid RET record");
2374
2375        I = ReturnInst::Create(Context, Op);
2376        InstructionList.push_back(I);
2377        break;
2378      }
2379    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2380      if (Record.size() != 1 && Record.size() != 3)
2381        return Error("Invalid BR record");
2382      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2383      if (TrueDest == 0)
2384        return Error("Invalid BR record");
2385
2386      if (Record.size() == 1) {
2387        I = BranchInst::Create(TrueDest);
2388        InstructionList.push_back(I);
2389      }
2390      else {
2391        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2392        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2393        if (FalseDest == 0 || Cond == 0)
2394          return Error("Invalid BR record");
2395        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2396        InstructionList.push_back(I);
2397      }
2398      break;
2399    }
2400    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2401      if (Record.size() < 3 || (Record.size() & 1) == 0)
2402        return Error("Invalid SWITCH record");
2403      Type *OpTy = getTypeByID(Record[0]);
2404      Value *Cond = getFnValueByID(Record[1], OpTy);
2405      BasicBlock *Default = getBasicBlock(Record[2]);
2406      if (OpTy == 0 || Cond == 0 || Default == 0)
2407        return Error("Invalid SWITCH record");
2408      unsigned NumCases = (Record.size()-3)/2;
2409      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2410      InstructionList.push_back(SI);
2411      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2412        ConstantInt *CaseVal =
2413          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2414        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2415        if (CaseVal == 0 || DestBB == 0) {
2416          delete SI;
2417          return Error("Invalid SWITCH record!");
2418        }
2419        SI->addCase(CaseVal, DestBB);
2420      }
2421      I = SI;
2422      break;
2423    }
2424    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2425      if (Record.size() < 2)
2426        return Error("Invalid INDIRECTBR record");
2427      Type *OpTy = getTypeByID(Record[0]);
2428      Value *Address = getFnValueByID(Record[1], OpTy);
2429      if (OpTy == 0 || Address == 0)
2430        return Error("Invalid INDIRECTBR record");
2431      unsigned NumDests = Record.size()-2;
2432      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2433      InstructionList.push_back(IBI);
2434      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2435        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2436          IBI->addDestination(DestBB);
2437        } else {
2438          delete IBI;
2439          return Error("Invalid INDIRECTBR record!");
2440        }
2441      }
2442      I = IBI;
2443      break;
2444    }
2445
2446    case bitc::FUNC_CODE_INST_INVOKE: {
2447      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2448      if (Record.size() < 4) return Error("Invalid INVOKE record");
2449      AttrListPtr PAL = getAttributes(Record[0]);
2450      unsigned CCInfo = Record[1];
2451      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2452      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2453
2454      unsigned OpNum = 4;
2455      Value *Callee;
2456      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2457        return Error("Invalid INVOKE record");
2458
2459      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2460      FunctionType *FTy = !CalleeTy ? 0 :
2461        dyn_cast<FunctionType>(CalleeTy->getElementType());
2462
2463      // Check that the right number of fixed parameters are here.
2464      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2465          Record.size() < OpNum+FTy->getNumParams())
2466        return Error("Invalid INVOKE record");
2467
2468      SmallVector<Value*, 16> Ops;
2469      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2470        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2471        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2472      }
2473
2474      if (!FTy->isVarArg()) {
2475        if (Record.size() != OpNum)
2476          return Error("Invalid INVOKE record");
2477      } else {
2478        // Read type/value pairs for varargs params.
2479        while (OpNum != Record.size()) {
2480          Value *Op;
2481          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2482            return Error("Invalid INVOKE record");
2483          Ops.push_back(Op);
2484        }
2485      }
2486
2487      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2488      InstructionList.push_back(I);
2489      cast<InvokeInst>(I)->setCallingConv(
2490        static_cast<CallingConv::ID>(CCInfo));
2491      cast<InvokeInst>(I)->setAttributes(PAL);
2492      break;
2493    }
2494    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2495      unsigned Idx = 0;
2496      Value *Val = 0;
2497      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2498        return Error("Invalid RESUME record");
2499      I = ResumeInst::Create(Context, Val);
2500      break;
2501    }
2502    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2503      I = new UnwindInst(Context);
2504      InstructionList.push_back(I);
2505      break;
2506    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2507      I = new UnreachableInst(Context);
2508      InstructionList.push_back(I);
2509      break;
2510    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2511      if (Record.size() < 1 || ((Record.size()-1)&1))
2512        return Error("Invalid PHI record");
2513      Type *Ty = getTypeByID(Record[0]);
2514      if (!Ty) return Error("Invalid PHI record");
2515
2516      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2517      InstructionList.push_back(PN);
2518
2519      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2520        Value *V = getFnValueByID(Record[1+i], Ty);
2521        BasicBlock *BB = getBasicBlock(Record[2+i]);
2522        if (!V || !BB) return Error("Invalid PHI record");
2523        PN->addIncoming(V, BB);
2524      }
2525      I = PN;
2526      break;
2527    }
2528
2529    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2530      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2531      unsigned Idx = 0;
2532      if (Record.size() < 4)
2533        return Error("Invalid LANDINGPAD record");
2534      Type *Ty = getTypeByID(Record[Idx++]);
2535      if (!Ty) return Error("Invalid LANDINGPAD record");
2536      Value *PersFn = 0;
2537      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2538        return Error("Invalid LANDINGPAD record");
2539
2540      bool IsCleanup = !!Record[Idx++];
2541      unsigned NumClauses = Record[Idx++];
2542      LandingPadInst *LP = LandingPadInst::Create(Ty, cast<Function>(PersFn),
2543                                                  NumClauses);
2544      LP->setCleanup(IsCleanup);
2545      for (unsigned J = 0; J != NumClauses; ++J) {
2546        LandingPadInst::ClauseType CT =
2547          LandingPadInst::ClauseType(Record[Idx++]);
2548        Value *Val = 0;
2549        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2550          delete LP;
2551          return Error("Invalid LANDINGPAD record");
2552        }
2553
2554        LP->addClause(CT, cast<Constant>(Val));
2555      }
2556
2557      I = LP;
2558      break;
2559    }
2560
2561    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2562      if (Record.size() != 4)
2563        return Error("Invalid ALLOCA record");
2564      PointerType *Ty =
2565        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2566      Type *OpTy = getTypeByID(Record[1]);
2567      Value *Size = getFnValueByID(Record[2], OpTy);
2568      unsigned Align = Record[3];
2569      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2570      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2571      InstructionList.push_back(I);
2572      break;
2573    }
2574    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2575      unsigned OpNum = 0;
2576      Value *Op;
2577      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2578          OpNum+2 != Record.size())
2579        return Error("Invalid LOAD record");
2580
2581      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2582      InstructionList.push_back(I);
2583      break;
2584    }
2585    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2586      unsigned OpNum = 0;
2587      Value *Val, *Ptr;
2588      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2589          getValue(Record, OpNum,
2590                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2591          OpNum+2 != Record.size())
2592        return Error("Invalid STORE record");
2593
2594      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2595      InstructionList.push_back(I);
2596      break;
2597    }
2598    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2599      if (2 != Record.size())
2600        return Error("Invalid FENCE record");
2601      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2602      if (Ordering == NotAtomic || Ordering == Unordered ||
2603          Ordering == Monotonic)
2604        return Error("Invalid FENCE record");
2605      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2606      I = new FenceInst(Context, Ordering, SynchScope);
2607      InstructionList.push_back(I);
2608      break;
2609    }
2610    case bitc::FUNC_CODE_INST_CALL: {
2611      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2612      if (Record.size() < 3)
2613        return Error("Invalid CALL record");
2614
2615      AttrListPtr PAL = getAttributes(Record[0]);
2616      unsigned CCInfo = Record[1];
2617
2618      unsigned OpNum = 2;
2619      Value *Callee;
2620      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2621        return Error("Invalid CALL record");
2622
2623      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2624      FunctionType *FTy = 0;
2625      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2626      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2627        return Error("Invalid CALL record");
2628
2629      SmallVector<Value*, 16> Args;
2630      // Read the fixed params.
2631      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2632        if (FTy->getParamType(i)->isLabelTy())
2633          Args.push_back(getBasicBlock(Record[OpNum]));
2634        else
2635          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2636        if (Args.back() == 0) return Error("Invalid CALL record");
2637      }
2638
2639      // Read type/value pairs for varargs params.
2640      if (!FTy->isVarArg()) {
2641        if (OpNum != Record.size())
2642          return Error("Invalid CALL record");
2643      } else {
2644        while (OpNum != Record.size()) {
2645          Value *Op;
2646          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2647            return Error("Invalid CALL record");
2648          Args.push_back(Op);
2649        }
2650      }
2651
2652      I = CallInst::Create(Callee, Args);
2653      InstructionList.push_back(I);
2654      cast<CallInst>(I)->setCallingConv(
2655        static_cast<CallingConv::ID>(CCInfo>>1));
2656      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2657      cast<CallInst>(I)->setAttributes(PAL);
2658      break;
2659    }
2660    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2661      if (Record.size() < 3)
2662        return Error("Invalid VAARG record");
2663      Type *OpTy = getTypeByID(Record[0]);
2664      Value *Op = getFnValueByID(Record[1], OpTy);
2665      Type *ResTy = getTypeByID(Record[2]);
2666      if (!OpTy || !Op || !ResTy)
2667        return Error("Invalid VAARG record");
2668      I = new VAArgInst(Op, ResTy);
2669      InstructionList.push_back(I);
2670      break;
2671    }
2672    }
2673
2674    // Add instruction to end of current BB.  If there is no current BB, reject
2675    // this file.
2676    if (CurBB == 0) {
2677      delete I;
2678      return Error("Invalid instruction with no BB");
2679    }
2680    CurBB->getInstList().push_back(I);
2681
2682    // If this was a terminator instruction, move to the next block.
2683    if (isa<TerminatorInst>(I)) {
2684      ++CurBBNo;
2685      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2686    }
2687
2688    // Non-void values get registered in the value table for future use.
2689    if (I && !I->getType()->isVoidTy())
2690      ValueList.AssignValue(I, NextValueNo++);
2691  }
2692
2693  // Check the function list for unresolved values.
2694  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2695    if (A->getParent() == 0) {
2696      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2697      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2698        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2699          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2700          delete A;
2701        }
2702      }
2703      return Error("Never resolved value found in function!");
2704    }
2705  }
2706
2707  // FIXME: Check for unresolved forward-declared metadata references
2708  // and clean up leaks.
2709
2710  // See if anything took the address of blocks in this function.  If so,
2711  // resolve them now.
2712  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2713    BlockAddrFwdRefs.find(F);
2714  if (BAFRI != BlockAddrFwdRefs.end()) {
2715    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2716    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2717      unsigned BlockIdx = RefList[i].first;
2718      if (BlockIdx >= FunctionBBs.size())
2719        return Error("Invalid blockaddress block #");
2720
2721      GlobalVariable *FwdRef = RefList[i].second;
2722      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2723      FwdRef->eraseFromParent();
2724    }
2725
2726    BlockAddrFwdRefs.erase(BAFRI);
2727  }
2728
2729  // Trim the value list down to the size it was before we parsed this function.
2730  ValueList.shrinkTo(ModuleValueListSize);
2731  MDValueList.shrinkTo(ModuleMDValueListSize);
2732  std::vector<BasicBlock*>().swap(FunctionBBs);
2733  return false;
2734}
2735
2736//===----------------------------------------------------------------------===//
2737// GVMaterializer implementation
2738//===----------------------------------------------------------------------===//
2739
2740
2741bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2742  if (const Function *F = dyn_cast<Function>(GV)) {
2743    return F->isDeclaration() &&
2744      DeferredFunctionInfo.count(const_cast<Function*>(F));
2745  }
2746  return false;
2747}
2748
2749bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2750  Function *F = dyn_cast<Function>(GV);
2751  // If it's not a function or is already material, ignore the request.
2752  if (!F || !F->isMaterializable()) return false;
2753
2754  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2755  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2756
2757  // Move the bit stream to the saved position of the deferred function body.
2758  Stream.JumpToBit(DFII->second);
2759
2760  if (ParseFunctionBody(F)) {
2761    if (ErrInfo) *ErrInfo = ErrorString;
2762    return true;
2763  }
2764
2765  // Upgrade any old intrinsic calls in the function.
2766  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2767       E = UpgradedIntrinsics.end(); I != E; ++I) {
2768    if (I->first != I->second) {
2769      for (Value::use_iterator UI = I->first->use_begin(),
2770           UE = I->first->use_end(); UI != UE; ) {
2771        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2772          UpgradeIntrinsicCall(CI, I->second);
2773      }
2774    }
2775  }
2776
2777  return false;
2778}
2779
2780bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2781  const Function *F = dyn_cast<Function>(GV);
2782  if (!F || F->isDeclaration())
2783    return false;
2784  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2785}
2786
2787void BitcodeReader::Dematerialize(GlobalValue *GV) {
2788  Function *F = dyn_cast<Function>(GV);
2789  // If this function isn't dematerializable, this is a noop.
2790  if (!F || !isDematerializable(F))
2791    return;
2792
2793  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2794
2795  // Just forget the function body, we can remat it later.
2796  F->deleteBody();
2797}
2798
2799
2800bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2801  assert(M == TheModule &&
2802         "Can only Materialize the Module this BitcodeReader is attached to.");
2803  // Iterate over the module, deserializing any functions that are still on
2804  // disk.
2805  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2806       F != E; ++F)
2807    if (F->isMaterializable() &&
2808        Materialize(F, ErrInfo))
2809      return true;
2810
2811  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2812  // delete the old functions to clean up. We can't do this unless the entire
2813  // module is materialized because there could always be another function body
2814  // with calls to the old function.
2815  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2816       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2817    if (I->first != I->second) {
2818      for (Value::use_iterator UI = I->first->use_begin(),
2819           UE = I->first->use_end(); UI != UE; ) {
2820        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2821          UpgradeIntrinsicCall(CI, I->second);
2822      }
2823      if (!I->first->use_empty())
2824        I->first->replaceAllUsesWith(I->second);
2825      I->first->eraseFromParent();
2826    }
2827  }
2828  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2829
2830  // Check debug info intrinsics.
2831  CheckDebugInfoIntrinsics(TheModule);
2832
2833  return false;
2834}
2835
2836
2837//===----------------------------------------------------------------------===//
2838// External interface
2839//===----------------------------------------------------------------------===//
2840
2841/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2842///
2843Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2844                                   LLVMContext& Context,
2845                                   std::string *ErrMsg) {
2846  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2847  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2848  M->setMaterializer(R);
2849  if (R->ParseBitcodeInto(M)) {
2850    if (ErrMsg)
2851      *ErrMsg = R->getErrorString();
2852
2853    delete M;  // Also deletes R.
2854    return 0;
2855  }
2856  // Have the BitcodeReader dtor delete 'Buffer'.
2857  R->setBufferOwned(true);
2858  return M;
2859}
2860
2861/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2862/// If an error occurs, return null and fill in *ErrMsg if non-null.
2863Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2864                               std::string *ErrMsg){
2865  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2866  if (!M) return 0;
2867
2868  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2869  // there was an error.
2870  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2871
2872  // Read in the entire module, and destroy the BitcodeReader.
2873  if (M->MaterializeAllPermanently(ErrMsg)) {
2874    delete M;
2875    return 0;
2876  }
2877
2878  return M;
2879}
2880
2881std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2882                                         LLVMContext& Context,
2883                                         std::string *ErrMsg) {
2884  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2885  // Don't let the BitcodeReader dtor delete 'Buffer'.
2886  R->setBufferOwned(false);
2887
2888  std::string Triple("");
2889  if (R->ParseTriple(Triple))
2890    if (ErrMsg)
2891      *ErrMsg = R->getErrorString();
2892
2893  delete R;
2894  return Triple;
2895}
2896