BitcodeReader.cpp revision 73ddd4f00dd2a4b7b68a1500bc7e3322cab51270
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/AutoUpgrade.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/MathExtras.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/OperandTraits.h"
27using namespace llvm;
28
29void BitcodeReader::FreeState() {
30  delete Buffer;
31  Buffer = 0;
32  std::vector<PATypeHolder>().swap(TypeList);
33  ValueList.clear();
34
35  std::vector<AttrListPtr>().swap(MAttributes);
36  std::vector<BasicBlock*>().swap(FunctionBBs);
37  std::vector<Function*>().swap(FunctionsWithBodies);
38  DeferredFunctionInfo.clear();
39}
40
41//===----------------------------------------------------------------------===//
42//  Helper functions to implement forward reference resolution, etc.
43//===----------------------------------------------------------------------===//
44
45/// ConvertToString - Convert a string from a record into an std::string, return
46/// true on failure.
47template<typename StrTy>
48static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
49                            StrTy &Result) {
50  if (Idx > Record.size())
51    return true;
52
53  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
54    Result += (char)Record[i];
55  return false;
56}
57
58static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
59  switch (Val) {
60  default: // Map unknown/new linkages to external
61  case 0: return GlobalValue::ExternalLinkage;
62  case 1: return GlobalValue::WeakLinkage;
63  case 2: return GlobalValue::AppendingLinkage;
64  case 3: return GlobalValue::InternalLinkage;
65  case 4: return GlobalValue::LinkOnceLinkage;
66  case 5: return GlobalValue::DLLImportLinkage;
67  case 6: return GlobalValue::DLLExportLinkage;
68  case 7: return GlobalValue::ExternalWeakLinkage;
69  case 8: return GlobalValue::CommonLinkage;
70  }
71}
72
73static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
74  switch (Val) {
75  default: // Map unknown visibilities to default.
76  case 0: return GlobalValue::DefaultVisibility;
77  case 1: return GlobalValue::HiddenVisibility;
78  case 2: return GlobalValue::ProtectedVisibility;
79  }
80}
81
82static int GetDecodedCastOpcode(unsigned Val) {
83  switch (Val) {
84  default: return -1;
85  case bitc::CAST_TRUNC   : return Instruction::Trunc;
86  case bitc::CAST_ZEXT    : return Instruction::ZExt;
87  case bitc::CAST_SEXT    : return Instruction::SExt;
88  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
89  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
90  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
91  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
92  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
93  case bitc::CAST_FPEXT   : return Instruction::FPExt;
94  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
95  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
96  case bitc::CAST_BITCAST : return Instruction::BitCast;
97  }
98}
99static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
100  switch (Val) {
101  default: return -1;
102  case bitc::BINOP_ADD:  return Instruction::Add;
103  case bitc::BINOP_SUB:  return Instruction::Sub;
104  case bitc::BINOP_MUL:  return Instruction::Mul;
105  case bitc::BINOP_UDIV: return Instruction::UDiv;
106  case bitc::BINOP_SDIV:
107    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
108  case bitc::BINOP_UREM: return Instruction::URem;
109  case bitc::BINOP_SREM:
110    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
111  case bitc::BINOP_SHL:  return Instruction::Shl;
112  case bitc::BINOP_LSHR: return Instruction::LShr;
113  case bitc::BINOP_ASHR: return Instruction::AShr;
114  case bitc::BINOP_AND:  return Instruction::And;
115  case bitc::BINOP_OR:   return Instruction::Or;
116  case bitc::BINOP_XOR:  return Instruction::Xor;
117  }
118}
119
120namespace llvm {
121namespace {
122  /// @brief A class for maintaining the slot number definition
123  /// as a placeholder for the actual definition for forward constants defs.
124  class ConstantPlaceHolder : public ConstantExpr {
125    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
126    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
127  public:
128    // allocate space for exactly one operand
129    void *operator new(size_t s) {
130      return User::operator new(s, 1);
131    }
132    explicit ConstantPlaceHolder(const Type *Ty)
133      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
134      Op<0>() = UndefValue::get(Type::Int32Ty);
135    }
136
137    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
138    static inline bool classof(const ConstantPlaceHolder *) { return true; }
139    static bool classof(const Value *V) {
140      return isa<ConstantExpr>(V) &&
141             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
142    }
143
144
145    /// Provide fast operand accessors
146    DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
147  };
148}
149
150
151  // FIXME: can we inherit this from ConstantExpr?
152template <>
153struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
154};
155
156DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
157}
158
159void BitcodeReaderValueList::resize(unsigned Desired) {
160  if (Desired > Capacity) {
161    // Since we expect many values to come from the bitcode file we better
162    // allocate the double amount, so that the array size grows exponentially
163    // at each reallocation.  Also, add a small amount of 100 extra elements
164    // each time, to reallocate less frequently when the array is still small.
165    //
166    Capacity = Desired * 2 + 100;
167    Use *New = allocHungoffUses(Capacity);
168    Use *Old = OperandList;
169    unsigned Ops = getNumOperands();
170    for (int i(Ops - 1); i >= 0; --i)
171      New[i] = Old[i].get();
172    OperandList = New;
173    if (Old) Use::zap(Old, Old + Ops, true);
174  }
175}
176
177Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
178                                                    const Type *Ty) {
179  if (Idx >= size()) {
180    // Insert a bunch of null values.
181    resize(Idx + 1);
182    NumOperands = Idx+1;
183  }
184
185  if (Value *V = OperandList[Idx]) {
186    assert(Ty == V->getType() && "Type mismatch in constant table!");
187    return cast<Constant>(V);
188  }
189
190  // Create and return a placeholder, which will later be RAUW'd.
191  Constant *C = new ConstantPlaceHolder(Ty);
192  OperandList[Idx] = C;
193  return C;
194}
195
196Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
197  if (Idx >= size()) {
198    // Insert a bunch of null values.
199    resize(Idx + 1);
200    NumOperands = Idx+1;
201  }
202
203  if (Value *V = OperandList[Idx]) {
204    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
205    return V;
206  }
207
208  // No type specified, must be invalid reference.
209  if (Ty == 0) return 0;
210
211  // Create and return a placeholder, which will later be RAUW'd.
212  Value *V = new Argument(Ty);
213  OperandList[Idx] = V;
214  return V;
215}
216
217/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
218/// resolves any forward references.  The idea behind this is that we sometimes
219/// get constants (such as large arrays) which reference *many* forward ref
220/// constants.  Replacing each of these causes a lot of thrashing when
221/// building/reuniquing the constant.  Instead of doing this, we look at all the
222/// uses and rewrite all the place holders at once for any constant that uses
223/// a placeholder.
224void BitcodeReaderValueList::ResolveConstantForwardRefs() {
225  // Sort the values by-pointer so that they are efficient to look up with a
226  // binary search.
227  std::sort(ResolveConstants.begin(), ResolveConstants.end());
228
229  SmallVector<Constant*, 64> NewOps;
230
231  while (!ResolveConstants.empty()) {
232    Value *RealVal = getOperand(ResolveConstants.back().second);
233    Constant *Placeholder = ResolveConstants.back().first;
234    ResolveConstants.pop_back();
235
236    // Loop over all users of the placeholder, updating them to reference the
237    // new value.  If they reference more than one placeholder, update them all
238    // at once.
239    while (!Placeholder->use_empty()) {
240      Value::use_iterator UI = Placeholder->use_begin();
241
242      // If the using object isn't uniqued, just update the operands.  This
243      // handles instructions and initializers for global variables.
244      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
245        UI.getUse().set(RealVal);
246        continue;
247      }
248
249      // Otherwise, we have a constant that uses the placeholder.  Replace that
250      // constant with a new constant that has *all* placeholder uses updated.
251      Constant *UserC = cast<Constant>(*UI);
252      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
253           I != E; ++I) {
254        Value *NewOp;
255        if (!isa<ConstantPlaceHolder>(*I)) {
256          // Not a placeholder reference.
257          NewOp = *I;
258        } else if (*I == Placeholder) {
259          // Common case is that it just references this one placeholder.
260          NewOp = RealVal;
261        } else {
262          // Otherwise, look up the placeholder in ResolveConstants.
263          ResolveConstantsTy::iterator It =
264            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
265                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
266                                                            0));
267          assert(It != ResolveConstants.end() && It->first == *I);
268          NewOp = this->getOperand(It->second);
269        }
270
271        NewOps.push_back(cast<Constant>(NewOp));
272      }
273
274      // Make the new constant.
275      Constant *NewC;
276      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
277        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
278      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
279        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
280                                   UserCS->getType()->isPacked());
281      } else if (isa<ConstantVector>(UserC)) {
282        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
283      } else {
284        // Must be a constant expression.
285        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
286                                                          NewOps.size());
287      }
288
289      UserC->replaceAllUsesWith(NewC);
290      UserC->destroyConstant();
291      NewOps.clear();
292    }
293
294    delete Placeholder;
295  }
296}
297
298
299const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
300  // If the TypeID is in range, return it.
301  if (ID < TypeList.size())
302    return TypeList[ID].get();
303  if (!isTypeTable) return 0;
304
305  // The type table allows forward references.  Push as many Opaque types as
306  // needed to get up to ID.
307  while (TypeList.size() <= ID)
308    TypeList.push_back(OpaqueType::get());
309  return TypeList.back().get();
310}
311
312//===----------------------------------------------------------------------===//
313//  Functions for parsing blocks from the bitcode file
314//===----------------------------------------------------------------------===//
315
316bool BitcodeReader::ParseAttributeBlock() {
317  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
318    return Error("Malformed block record");
319
320  if (!MAttributes.empty())
321    return Error("Multiple PARAMATTR blocks found!");
322
323  SmallVector<uint64_t, 64> Record;
324
325  SmallVector<AttributeWithIndex, 8> Attrs;
326
327  // Read all the records.
328  while (1) {
329    unsigned Code = Stream.ReadCode();
330    if (Code == bitc::END_BLOCK) {
331      if (Stream.ReadBlockEnd())
332        return Error("Error at end of PARAMATTR block");
333      return false;
334    }
335
336    if (Code == bitc::ENTER_SUBBLOCK) {
337      // No known subblocks, always skip them.
338      Stream.ReadSubBlockID();
339      if (Stream.SkipBlock())
340        return Error("Malformed block record");
341      continue;
342    }
343
344    if (Code == bitc::DEFINE_ABBREV) {
345      Stream.ReadAbbrevRecord();
346      continue;
347    }
348
349    // Read a record.
350    Record.clear();
351    switch (Stream.ReadRecord(Code, Record)) {
352    default:  // Default behavior: ignore.
353      break;
354    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
355      if (Record.size() & 1)
356        return Error("Invalid ENTRY record");
357
358      // FIXME : Remove this autoupgrade code in LLVM 3.0.
359      // If Function attributes are using index 0 then transfer them
360      // to index ~0. Index 0 is used for return value attributes but used to be
361      // used for function attributes.
362      Attributes RetAttribute = Attribute::None;
363      Attributes FnAttribute = Attribute::None;
364      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
365        // FIXME: remove in LLVM 3.0
366        // The alignment is stored as a 16-bit raw value from bits 31--16.
367        // We shift the bits above 31 down by 11 bits.
368
369        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
370        if (Alignment && !isPowerOf2_32(Alignment))
371          return Error("Alignment is not a power of two.");
372
373        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
374        if (Alignment)
375          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
376        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
377        Record[i+1] = ReconstitutedAttr;
378
379        if (Record[i] == 0)
380          RetAttribute = Record[i+1];
381        else if (Record[i] == ~0U)
382          FnAttribute = Record[i+1];
383      }
384
385      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
386                              Attribute::ReadOnly|Attribute::ReadNone);
387
388      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
389          (RetAttribute & OldRetAttrs) != 0) {
390        if (FnAttribute == Attribute::None) { // add a slot so they get added.
391          Record.push_back(~0U);
392          Record.push_back(0);
393        }
394
395        FnAttribute  |= RetAttribute & OldRetAttrs;
396        RetAttribute &= ~OldRetAttrs;
397      }
398
399      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
400        if (Record[i] == 0) {
401          if (RetAttribute != Attribute::None)
402            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
403        } else if (Record[i] == ~0U) {
404          if (FnAttribute != Attribute::None)
405            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
406        } else if (Record[i+1] != Attribute::None)
407          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
408      }
409
410      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
411      Attrs.clear();
412      break;
413    }
414    }
415  }
416}
417
418
419bool BitcodeReader::ParseTypeTable() {
420  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
421    return Error("Malformed block record");
422
423  if (!TypeList.empty())
424    return Error("Multiple TYPE_BLOCKs found!");
425
426  SmallVector<uint64_t, 64> Record;
427  unsigned NumRecords = 0;
428
429  // Read all the records for this type table.
430  while (1) {
431    unsigned Code = Stream.ReadCode();
432    if (Code == bitc::END_BLOCK) {
433      if (NumRecords != TypeList.size())
434        return Error("Invalid type forward reference in TYPE_BLOCK");
435      if (Stream.ReadBlockEnd())
436        return Error("Error at end of type table block");
437      return false;
438    }
439
440    if (Code == bitc::ENTER_SUBBLOCK) {
441      // No known subblocks, always skip them.
442      Stream.ReadSubBlockID();
443      if (Stream.SkipBlock())
444        return Error("Malformed block record");
445      continue;
446    }
447
448    if (Code == bitc::DEFINE_ABBREV) {
449      Stream.ReadAbbrevRecord();
450      continue;
451    }
452
453    // Read a record.
454    Record.clear();
455    const Type *ResultTy = 0;
456    switch (Stream.ReadRecord(Code, Record)) {
457    default:  // Default behavior: unknown type.
458      ResultTy = 0;
459      break;
460    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
461      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
462      // type list.  This allows us to reserve space.
463      if (Record.size() < 1)
464        return Error("Invalid TYPE_CODE_NUMENTRY record");
465      TypeList.reserve(Record[0]);
466      continue;
467    case bitc::TYPE_CODE_VOID:      // VOID
468      ResultTy = Type::VoidTy;
469      break;
470    case bitc::TYPE_CODE_FLOAT:     // FLOAT
471      ResultTy = Type::FloatTy;
472      break;
473    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
474      ResultTy = Type::DoubleTy;
475      break;
476    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
477      ResultTy = Type::X86_FP80Ty;
478      break;
479    case bitc::TYPE_CODE_FP128:     // FP128
480      ResultTy = Type::FP128Ty;
481      break;
482    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
483      ResultTy = Type::PPC_FP128Ty;
484      break;
485    case bitc::TYPE_CODE_LABEL:     // LABEL
486      ResultTy = Type::LabelTy;
487      break;
488    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
489      ResultTy = 0;
490      break;
491    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
492      if (Record.size() < 1)
493        return Error("Invalid Integer type record");
494
495      ResultTy = IntegerType::get(Record[0]);
496      break;
497    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
498                                    //          [pointee type, address space]
499      if (Record.size() < 1)
500        return Error("Invalid POINTER type record");
501      unsigned AddressSpace = 0;
502      if (Record.size() == 2)
503        AddressSpace = Record[1];
504      ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
505      break;
506    }
507    case bitc::TYPE_CODE_FUNCTION: {
508      // FIXME: attrid is dead, remove it in LLVM 3.0
509      // FUNCTION: [vararg, attrid, retty, paramty x N]
510      if (Record.size() < 3)
511        return Error("Invalid FUNCTION type record");
512      std::vector<const Type*> ArgTys;
513      for (unsigned i = 3, e = Record.size(); i != e; ++i)
514        ArgTys.push_back(getTypeByID(Record[i], true));
515
516      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
517                                   Record[0]);
518      break;
519    }
520    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
521      if (Record.size() < 1)
522        return Error("Invalid STRUCT type record");
523      std::vector<const Type*> EltTys;
524      for (unsigned i = 1, e = Record.size(); i != e; ++i)
525        EltTys.push_back(getTypeByID(Record[i], true));
526      ResultTy = StructType::get(EltTys, Record[0]);
527      break;
528    }
529    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
530      if (Record.size() < 2)
531        return Error("Invalid ARRAY type record");
532      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
533      break;
534    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
535      if (Record.size() < 2)
536        return Error("Invalid VECTOR type record");
537      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
538      break;
539    }
540
541    if (NumRecords == TypeList.size()) {
542      // If this is a new type slot, just append it.
543      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
544      ++NumRecords;
545    } else if (ResultTy == 0) {
546      // Otherwise, this was forward referenced, so an opaque type was created,
547      // but the result type is actually just an opaque.  Leave the one we
548      // created previously.
549      ++NumRecords;
550    } else {
551      // Otherwise, this was forward referenced, so an opaque type was created.
552      // Resolve the opaque type to the real type now.
553      assert(NumRecords < TypeList.size() && "Typelist imbalance");
554      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
555
556      // Don't directly push the new type on the Tab. Instead we want to replace
557      // the opaque type we previously inserted with the new concrete value. The
558      // refinement from the abstract (opaque) type to the new type causes all
559      // uses of the abstract type to use the concrete type (NewTy). This will
560      // also cause the opaque type to be deleted.
561      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
562
563      // This should have replaced the old opaque type with the new type in the
564      // value table... or with a preexisting type that was already in the
565      // system.  Let's just make sure it did.
566      assert(TypeList[NumRecords-1].get() != OldTy &&
567             "refineAbstractType didn't work!");
568    }
569  }
570}
571
572
573bool BitcodeReader::ParseTypeSymbolTable() {
574  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
575    return Error("Malformed block record");
576
577  SmallVector<uint64_t, 64> Record;
578
579  // Read all the records for this type table.
580  std::string TypeName;
581  while (1) {
582    unsigned Code = Stream.ReadCode();
583    if (Code == bitc::END_BLOCK) {
584      if (Stream.ReadBlockEnd())
585        return Error("Error at end of type symbol table block");
586      return false;
587    }
588
589    if (Code == bitc::ENTER_SUBBLOCK) {
590      // No known subblocks, always skip them.
591      Stream.ReadSubBlockID();
592      if (Stream.SkipBlock())
593        return Error("Malformed block record");
594      continue;
595    }
596
597    if (Code == bitc::DEFINE_ABBREV) {
598      Stream.ReadAbbrevRecord();
599      continue;
600    }
601
602    // Read a record.
603    Record.clear();
604    switch (Stream.ReadRecord(Code, Record)) {
605    default:  // Default behavior: unknown type.
606      break;
607    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
608      if (ConvertToString(Record, 1, TypeName))
609        return Error("Invalid TST_ENTRY record");
610      unsigned TypeID = Record[0];
611      if (TypeID >= TypeList.size())
612        return Error("Invalid Type ID in TST_ENTRY record");
613
614      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
615      TypeName.clear();
616      break;
617    }
618  }
619}
620
621bool BitcodeReader::ParseValueSymbolTable() {
622  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
623    return Error("Malformed block record");
624
625  SmallVector<uint64_t, 64> Record;
626
627  // Read all the records for this value table.
628  SmallString<128> ValueName;
629  while (1) {
630    unsigned Code = Stream.ReadCode();
631    if (Code == bitc::END_BLOCK) {
632      if (Stream.ReadBlockEnd())
633        return Error("Error at end of value symbol table block");
634      return false;
635    }
636    if (Code == bitc::ENTER_SUBBLOCK) {
637      // No known subblocks, always skip them.
638      Stream.ReadSubBlockID();
639      if (Stream.SkipBlock())
640        return Error("Malformed block record");
641      continue;
642    }
643
644    if (Code == bitc::DEFINE_ABBREV) {
645      Stream.ReadAbbrevRecord();
646      continue;
647    }
648
649    // Read a record.
650    Record.clear();
651    switch (Stream.ReadRecord(Code, Record)) {
652    default:  // Default behavior: unknown type.
653      break;
654    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
655      if (ConvertToString(Record, 1, ValueName))
656        return Error("Invalid TST_ENTRY record");
657      unsigned ValueID = Record[0];
658      if (ValueID >= ValueList.size())
659        return Error("Invalid Value ID in VST_ENTRY record");
660      Value *V = ValueList[ValueID];
661
662      V->setName(&ValueName[0], ValueName.size());
663      ValueName.clear();
664      break;
665    }
666    case bitc::VST_CODE_BBENTRY: {
667      if (ConvertToString(Record, 1, ValueName))
668        return Error("Invalid VST_BBENTRY record");
669      BasicBlock *BB = getBasicBlock(Record[0]);
670      if (BB == 0)
671        return Error("Invalid BB ID in VST_BBENTRY record");
672
673      BB->setName(&ValueName[0], ValueName.size());
674      ValueName.clear();
675      break;
676    }
677    }
678  }
679}
680
681/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
682/// the LSB for dense VBR encoding.
683static uint64_t DecodeSignRotatedValue(uint64_t V) {
684  if ((V & 1) == 0)
685    return V >> 1;
686  if (V != 1)
687    return -(V >> 1);
688  // There is no such thing as -0 with integers.  "-0" really means MININT.
689  return 1ULL << 63;
690}
691
692/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
693/// values and aliases that we can.
694bool BitcodeReader::ResolveGlobalAndAliasInits() {
695  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
696  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
697
698  GlobalInitWorklist.swap(GlobalInits);
699  AliasInitWorklist.swap(AliasInits);
700
701  while (!GlobalInitWorklist.empty()) {
702    unsigned ValID = GlobalInitWorklist.back().second;
703    if (ValID >= ValueList.size()) {
704      // Not ready to resolve this yet, it requires something later in the file.
705      GlobalInits.push_back(GlobalInitWorklist.back());
706    } else {
707      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
708        GlobalInitWorklist.back().first->setInitializer(C);
709      else
710        return Error("Global variable initializer is not a constant!");
711    }
712    GlobalInitWorklist.pop_back();
713  }
714
715  while (!AliasInitWorklist.empty()) {
716    unsigned ValID = AliasInitWorklist.back().second;
717    if (ValID >= ValueList.size()) {
718      AliasInits.push_back(AliasInitWorklist.back());
719    } else {
720      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
721        AliasInitWorklist.back().first->setAliasee(C);
722      else
723        return Error("Alias initializer is not a constant!");
724    }
725    AliasInitWorklist.pop_back();
726  }
727  return false;
728}
729
730
731bool BitcodeReader::ParseConstants() {
732  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
733    return Error("Malformed block record");
734
735  SmallVector<uint64_t, 64> Record;
736
737  // Read all the records for this value table.
738  const Type *CurTy = Type::Int32Ty;
739  unsigned NextCstNo = ValueList.size();
740  while (1) {
741    unsigned Code = Stream.ReadCode();
742    if (Code == bitc::END_BLOCK)
743      break;
744
745    if (Code == bitc::ENTER_SUBBLOCK) {
746      // No known subblocks, always skip them.
747      Stream.ReadSubBlockID();
748      if (Stream.SkipBlock())
749        return Error("Malformed block record");
750      continue;
751    }
752
753    if (Code == bitc::DEFINE_ABBREV) {
754      Stream.ReadAbbrevRecord();
755      continue;
756    }
757
758    // Read a record.
759    Record.clear();
760    Value *V = 0;
761    switch (Stream.ReadRecord(Code, Record)) {
762    default:  // Default behavior: unknown constant
763    case bitc::CST_CODE_UNDEF:     // UNDEF
764      V = UndefValue::get(CurTy);
765      break;
766    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
767      if (Record.empty())
768        return Error("Malformed CST_SETTYPE record");
769      if (Record[0] >= TypeList.size())
770        return Error("Invalid Type ID in CST_SETTYPE record");
771      CurTy = TypeList[Record[0]];
772      continue;  // Skip the ValueList manipulation.
773    case bitc::CST_CODE_NULL:      // NULL
774      V = Constant::getNullValue(CurTy);
775      break;
776    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
777      if (!isa<IntegerType>(CurTy) || Record.empty())
778        return Error("Invalid CST_INTEGER record");
779      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
780      break;
781    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
782      if (!isa<IntegerType>(CurTy) || Record.empty())
783        return Error("Invalid WIDE_INTEGER record");
784
785      unsigned NumWords = Record.size();
786      SmallVector<uint64_t, 8> Words;
787      Words.resize(NumWords);
788      for (unsigned i = 0; i != NumWords; ++i)
789        Words[i] = DecodeSignRotatedValue(Record[i]);
790      V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
791                                 NumWords, &Words[0]));
792      break;
793    }
794    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
795      if (Record.empty())
796        return Error("Invalid FLOAT record");
797      if (CurTy == Type::FloatTy)
798        V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
799      else if (CurTy == Type::DoubleTy)
800        V = ConstantFP::get(APFloat(APInt(64, Record[0])));
801      else if (CurTy == Type::X86_FP80Ty)
802        V = ConstantFP::get(APFloat(APInt(80, 2, &Record[0])));
803      else if (CurTy == Type::FP128Ty)
804        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
805      else if (CurTy == Type::PPC_FP128Ty)
806        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
807      else
808        V = UndefValue::get(CurTy);
809      break;
810    }
811
812    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
813      if (Record.empty())
814        return Error("Invalid CST_AGGREGATE record");
815
816      unsigned Size = Record.size();
817      std::vector<Constant*> Elts;
818
819      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
820        for (unsigned i = 0; i != Size; ++i)
821          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
822                                                     STy->getElementType(i)));
823        V = ConstantStruct::get(STy, Elts);
824      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
825        const Type *EltTy = ATy->getElementType();
826        for (unsigned i = 0; i != Size; ++i)
827          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
828        V = ConstantArray::get(ATy, Elts);
829      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
830        const Type *EltTy = VTy->getElementType();
831        for (unsigned i = 0; i != Size; ++i)
832          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
833        V = ConstantVector::get(Elts);
834      } else {
835        V = UndefValue::get(CurTy);
836      }
837      break;
838    }
839    case bitc::CST_CODE_STRING: { // STRING: [values]
840      if (Record.empty())
841        return Error("Invalid CST_AGGREGATE record");
842
843      const ArrayType *ATy = cast<ArrayType>(CurTy);
844      const Type *EltTy = ATy->getElementType();
845
846      unsigned Size = Record.size();
847      std::vector<Constant*> Elts;
848      for (unsigned i = 0; i != Size; ++i)
849        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
850      V = ConstantArray::get(ATy, Elts);
851      break;
852    }
853    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
854      if (Record.empty())
855        return Error("Invalid CST_AGGREGATE record");
856
857      const ArrayType *ATy = cast<ArrayType>(CurTy);
858      const Type *EltTy = ATy->getElementType();
859
860      unsigned Size = Record.size();
861      std::vector<Constant*> Elts;
862      for (unsigned i = 0; i != Size; ++i)
863        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
864      Elts.push_back(Constant::getNullValue(EltTy));
865      V = ConstantArray::get(ATy, Elts);
866      break;
867    }
868    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
869      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
870      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
871      if (Opc < 0) {
872        V = UndefValue::get(CurTy);  // Unknown binop.
873      } else {
874        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
875        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
876        V = ConstantExpr::get(Opc, LHS, RHS);
877      }
878      break;
879    }
880    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
881      if (Record.size() < 3) return Error("Invalid CE_CAST record");
882      int Opc = GetDecodedCastOpcode(Record[0]);
883      if (Opc < 0) {
884        V = UndefValue::get(CurTy);  // Unknown cast.
885      } else {
886        const Type *OpTy = getTypeByID(Record[1]);
887        if (!OpTy) return Error("Invalid CE_CAST record");
888        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
889        V = ConstantExpr::getCast(Opc, Op, CurTy);
890      }
891      break;
892    }
893    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
894      if (Record.size() & 1) return Error("Invalid CE_GEP record");
895      SmallVector<Constant*, 16> Elts;
896      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
897        const Type *ElTy = getTypeByID(Record[i]);
898        if (!ElTy) return Error("Invalid CE_GEP record");
899        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
900      }
901      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
902      break;
903    }
904    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
905      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
906      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
907                                                              Type::Int1Ty),
908                                  ValueList.getConstantFwdRef(Record[1],CurTy),
909                                  ValueList.getConstantFwdRef(Record[2],CurTy));
910      break;
911    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
912      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
913      const VectorType *OpTy =
914        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
915      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
916      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
917      Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
918                                                  OpTy->getElementType());
919      V = ConstantExpr::getExtractElement(Op0, Op1);
920      break;
921    }
922    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
923      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
924      if (Record.size() < 3 || OpTy == 0)
925        return Error("Invalid CE_INSERTELT record");
926      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
927      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
928                                                  OpTy->getElementType());
929      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
930      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
931      break;
932    }
933    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
934      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
935      if (Record.size() < 3 || OpTy == 0)
936        return Error("Invalid CE_INSERTELT record");
937      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
938      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
939      const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
940      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
941      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
942      break;
943    }
944    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
945      if (Record.size() < 4) return Error("Invalid CE_CMP record");
946      const Type *OpTy = getTypeByID(Record[0]);
947      if (OpTy == 0) return Error("Invalid CE_CMP record");
948      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
949      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
950
951      if (OpTy->isFloatingPoint())
952        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
953      else if (!isa<VectorType>(OpTy))
954        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
955      else if (OpTy->isFPOrFPVector())
956        V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
957      else
958        V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
959      break;
960    }
961    case bitc::CST_CODE_INLINEASM: {
962      if (Record.size() < 2) return Error("Invalid INLINEASM record");
963      std::string AsmStr, ConstrStr;
964      bool HasSideEffects = Record[0];
965      unsigned AsmStrSize = Record[1];
966      if (2+AsmStrSize >= Record.size())
967        return Error("Invalid INLINEASM record");
968      unsigned ConstStrSize = Record[2+AsmStrSize];
969      if (3+AsmStrSize+ConstStrSize > Record.size())
970        return Error("Invalid INLINEASM record");
971
972      for (unsigned i = 0; i != AsmStrSize; ++i)
973        AsmStr += (char)Record[2+i];
974      for (unsigned i = 0; i != ConstStrSize; ++i)
975        ConstrStr += (char)Record[3+AsmStrSize+i];
976      const PointerType *PTy = cast<PointerType>(CurTy);
977      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
978                         AsmStr, ConstrStr, HasSideEffects);
979      break;
980    }
981    }
982
983    ValueList.AssignValue(V, NextCstNo);
984    ++NextCstNo;
985  }
986
987  if (NextCstNo != ValueList.size())
988    return Error("Invalid constant reference!");
989
990  if (Stream.ReadBlockEnd())
991    return Error("Error at end of constants block");
992
993  // Once all the constants have been read, go through and resolve forward
994  // references.
995  ValueList.ResolveConstantForwardRefs();
996  return false;
997}
998
999/// RememberAndSkipFunctionBody - When we see the block for a function body,
1000/// remember where it is and then skip it.  This lets us lazily deserialize the
1001/// functions.
1002bool BitcodeReader::RememberAndSkipFunctionBody() {
1003  // Get the function we are talking about.
1004  if (FunctionsWithBodies.empty())
1005    return Error("Insufficient function protos");
1006
1007  Function *Fn = FunctionsWithBodies.back();
1008  FunctionsWithBodies.pop_back();
1009
1010  // Save the current stream state.
1011  uint64_t CurBit = Stream.GetCurrentBitNo();
1012  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1013
1014  // Set the functions linkage to GhostLinkage so we know it is lazily
1015  // deserialized.
1016  Fn->setLinkage(GlobalValue::GhostLinkage);
1017
1018  // Skip over the function block for now.
1019  if (Stream.SkipBlock())
1020    return Error("Malformed block record");
1021  return false;
1022}
1023
1024bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1025  // Reject multiple MODULE_BLOCK's in a single bitstream.
1026  if (TheModule)
1027    return Error("Multiple MODULE_BLOCKs in same stream");
1028
1029  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1030    return Error("Malformed block record");
1031
1032  // Otherwise, create the module.
1033  TheModule = new Module(ModuleID);
1034
1035  SmallVector<uint64_t, 64> Record;
1036  std::vector<std::string> SectionTable;
1037  std::vector<std::string> GCTable;
1038
1039  // Read all the records for this module.
1040  while (!Stream.AtEndOfStream()) {
1041    unsigned Code = Stream.ReadCode();
1042    if (Code == bitc::END_BLOCK) {
1043      if (Stream.ReadBlockEnd())
1044        return Error("Error at end of module block");
1045
1046      // Patch the initializers for globals and aliases up.
1047      ResolveGlobalAndAliasInits();
1048      if (!GlobalInits.empty() || !AliasInits.empty())
1049        return Error("Malformed global initializer set");
1050      if (!FunctionsWithBodies.empty())
1051        return Error("Too few function bodies found");
1052
1053      // Look for intrinsic functions which need to be upgraded at some point
1054      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1055           FI != FE; ++FI) {
1056        Function* NewFn;
1057        if (UpgradeIntrinsicFunction(FI, NewFn))
1058          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1059      }
1060
1061      // Force deallocation of memory for these vectors to favor the client that
1062      // want lazy deserialization.
1063      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1064      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1065      std::vector<Function*>().swap(FunctionsWithBodies);
1066      return false;
1067    }
1068
1069    if (Code == bitc::ENTER_SUBBLOCK) {
1070      switch (Stream.ReadSubBlockID()) {
1071      default:  // Skip unknown content.
1072        if (Stream.SkipBlock())
1073          return Error("Malformed block record");
1074        break;
1075      case bitc::BLOCKINFO_BLOCK_ID:
1076        if (Stream.ReadBlockInfoBlock())
1077          return Error("Malformed BlockInfoBlock");
1078        break;
1079      case bitc::PARAMATTR_BLOCK_ID:
1080        if (ParseAttributeBlock())
1081          return true;
1082        break;
1083      case bitc::TYPE_BLOCK_ID:
1084        if (ParseTypeTable())
1085          return true;
1086        break;
1087      case bitc::TYPE_SYMTAB_BLOCK_ID:
1088        if (ParseTypeSymbolTable())
1089          return true;
1090        break;
1091      case bitc::VALUE_SYMTAB_BLOCK_ID:
1092        if (ParseValueSymbolTable())
1093          return true;
1094        break;
1095      case bitc::CONSTANTS_BLOCK_ID:
1096        if (ParseConstants() || ResolveGlobalAndAliasInits())
1097          return true;
1098        break;
1099      case bitc::FUNCTION_BLOCK_ID:
1100        // If this is the first function body we've seen, reverse the
1101        // FunctionsWithBodies list.
1102        if (!HasReversedFunctionsWithBodies) {
1103          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1104          HasReversedFunctionsWithBodies = true;
1105        }
1106
1107        if (RememberAndSkipFunctionBody())
1108          return true;
1109        break;
1110      }
1111      continue;
1112    }
1113
1114    if (Code == bitc::DEFINE_ABBREV) {
1115      Stream.ReadAbbrevRecord();
1116      continue;
1117    }
1118
1119    // Read a record.
1120    switch (Stream.ReadRecord(Code, Record)) {
1121    default: break;  // Default behavior, ignore unknown content.
1122    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1123      if (Record.size() < 1)
1124        return Error("Malformed MODULE_CODE_VERSION");
1125      // Only version #0 is supported so far.
1126      if (Record[0] != 0)
1127        return Error("Unknown bitstream version!");
1128      break;
1129    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1130      std::string S;
1131      if (ConvertToString(Record, 0, S))
1132        return Error("Invalid MODULE_CODE_TRIPLE record");
1133      TheModule->setTargetTriple(S);
1134      break;
1135    }
1136    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1137      std::string S;
1138      if (ConvertToString(Record, 0, S))
1139        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1140      TheModule->setDataLayout(S);
1141      break;
1142    }
1143    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1144      std::string S;
1145      if (ConvertToString(Record, 0, S))
1146        return Error("Invalid MODULE_CODE_ASM record");
1147      TheModule->setModuleInlineAsm(S);
1148      break;
1149    }
1150    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1151      std::string S;
1152      if (ConvertToString(Record, 0, S))
1153        return Error("Invalid MODULE_CODE_DEPLIB record");
1154      TheModule->addLibrary(S);
1155      break;
1156    }
1157    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1158      std::string S;
1159      if (ConvertToString(Record, 0, S))
1160        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1161      SectionTable.push_back(S);
1162      break;
1163    }
1164    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1165      std::string S;
1166      if (ConvertToString(Record, 0, S))
1167        return Error("Invalid MODULE_CODE_GCNAME record");
1168      GCTable.push_back(S);
1169      break;
1170    }
1171    // GLOBALVAR: [pointer type, isconst, initid,
1172    //             linkage, alignment, section, visibility, threadlocal]
1173    case bitc::MODULE_CODE_GLOBALVAR: {
1174      if (Record.size() < 6)
1175        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1176      const Type *Ty = getTypeByID(Record[0]);
1177      if (!isa<PointerType>(Ty))
1178        return Error("Global not a pointer type!");
1179      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1180      Ty = cast<PointerType>(Ty)->getElementType();
1181
1182      bool isConstant = Record[1];
1183      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1184      unsigned Alignment = (1 << Record[4]) >> 1;
1185      std::string Section;
1186      if (Record[5]) {
1187        if (Record[5]-1 >= SectionTable.size())
1188          return Error("Invalid section ID");
1189        Section = SectionTable[Record[5]-1];
1190      }
1191      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1192      if (Record.size() > 6)
1193        Visibility = GetDecodedVisibility(Record[6]);
1194      bool isThreadLocal = false;
1195      if (Record.size() > 7)
1196        isThreadLocal = Record[7];
1197
1198      GlobalVariable *NewGV =
1199        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1200                           isThreadLocal, AddressSpace);
1201      NewGV->setAlignment(Alignment);
1202      if (!Section.empty())
1203        NewGV->setSection(Section);
1204      NewGV->setVisibility(Visibility);
1205      NewGV->setThreadLocal(isThreadLocal);
1206
1207      ValueList.push_back(NewGV);
1208
1209      // Remember which value to use for the global initializer.
1210      if (unsigned InitID = Record[2])
1211        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1212      break;
1213    }
1214    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1215    //             alignment, section, visibility, gc]
1216    case bitc::MODULE_CODE_FUNCTION: {
1217      if (Record.size() < 8)
1218        return Error("Invalid MODULE_CODE_FUNCTION record");
1219      const Type *Ty = getTypeByID(Record[0]);
1220      if (!isa<PointerType>(Ty))
1221        return Error("Function not a pointer type!");
1222      const FunctionType *FTy =
1223        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1224      if (!FTy)
1225        return Error("Function not a pointer to function type!");
1226
1227      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1228                                        "", TheModule);
1229
1230      Func->setCallingConv(Record[1]);
1231      bool isProto = Record[2];
1232      Func->setLinkage(GetDecodedLinkage(Record[3]));
1233      Func->setAttributes(getAttributes(Record[4]));
1234
1235      Func->setAlignment((1 << Record[5]) >> 1);
1236      if (Record[6]) {
1237        if (Record[6]-1 >= SectionTable.size())
1238          return Error("Invalid section ID");
1239        Func->setSection(SectionTable[Record[6]-1]);
1240      }
1241      Func->setVisibility(GetDecodedVisibility(Record[7]));
1242      if (Record.size() > 8 && Record[8]) {
1243        if (Record[8]-1 > GCTable.size())
1244          return Error("Invalid GC ID");
1245        Func->setGC(GCTable[Record[8]-1].c_str());
1246      }
1247      ValueList.push_back(Func);
1248
1249      // If this is a function with a body, remember the prototype we are
1250      // creating now, so that we can match up the body with them later.
1251      if (!isProto)
1252        FunctionsWithBodies.push_back(Func);
1253      break;
1254    }
1255    // ALIAS: [alias type, aliasee val#, linkage]
1256    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1257    case bitc::MODULE_CODE_ALIAS: {
1258      if (Record.size() < 3)
1259        return Error("Invalid MODULE_ALIAS record");
1260      const Type *Ty = getTypeByID(Record[0]);
1261      if (!isa<PointerType>(Ty))
1262        return Error("Function not a pointer type!");
1263
1264      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1265                                           "", 0, TheModule);
1266      // Old bitcode files didn't have visibility field.
1267      if (Record.size() > 3)
1268        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1269      ValueList.push_back(NewGA);
1270      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1271      break;
1272    }
1273    /// MODULE_CODE_PURGEVALS: [numvals]
1274    case bitc::MODULE_CODE_PURGEVALS:
1275      // Trim down the value list to the specified size.
1276      if (Record.size() < 1 || Record[0] > ValueList.size())
1277        return Error("Invalid MODULE_PURGEVALS record");
1278      ValueList.shrinkTo(Record[0]);
1279      break;
1280    }
1281    Record.clear();
1282  }
1283
1284  return Error("Premature end of bitstream");
1285}
1286
1287/// SkipWrapperHeader - Some systems wrap bc files with a special header for
1288/// padding or other reasons.  The format of this header is:
1289///
1290/// struct bc_header {
1291///   uint32_t Magic;         // 0x0B17C0DE
1292///   uint32_t Version;       // Version, currently always 0.
1293///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
1294///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
1295///   ... potentially other gunk ...
1296/// };
1297///
1298/// This function is called when we find a file with a matching magic number.
1299/// In this case, skip down to the subsection of the file that is actually a BC
1300/// file.
1301static bool SkipWrapperHeader(unsigned char *&BufPtr, unsigned char *&BufEnd) {
1302  enum {
1303    KnownHeaderSize = 4*4,  // Size of header we read.
1304    OffsetField = 2*4,      // Offset in bytes to Offset field.
1305    SizeField = 3*4         // Offset in bytes to Size field.
1306  };
1307
1308
1309  // Must contain the header!
1310  if (BufEnd-BufPtr < KnownHeaderSize) return true;
1311
1312  unsigned Offset = ( BufPtr[OffsetField  ]        |
1313                     (BufPtr[OffsetField+1] << 8)  |
1314                     (BufPtr[OffsetField+2] << 16) |
1315                     (BufPtr[OffsetField+3] << 24));
1316  unsigned Size   = ( BufPtr[SizeField    ]        |
1317                     (BufPtr[SizeField  +1] << 8)  |
1318                     (BufPtr[SizeField  +2] << 16) |
1319                     (BufPtr[SizeField  +3] << 24));
1320
1321  // Verify that Offset+Size fits in the file.
1322  if (Offset+Size > unsigned(BufEnd-BufPtr))
1323    return true;
1324  BufPtr += Offset;
1325  BufEnd = BufPtr+Size;
1326  return false;
1327}
1328
1329bool BitcodeReader::ParseBitcode() {
1330  TheModule = 0;
1331
1332  if (Buffer->getBufferSize() & 3)
1333    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1334
1335  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1336  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1337
1338  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1339  // The magic number is 0x0B17C0DE stored in little endian.
1340  if (BufPtr != BufEnd && BufPtr[0] == 0xDE && BufPtr[1] == 0xC0 &&
1341      BufPtr[2] == 0x17 && BufPtr[3] == 0x0B)
1342    if (SkipWrapperHeader(BufPtr, BufEnd))
1343      return Error("Invalid bitcode wrapper header");
1344
1345  Stream.init(BufPtr, BufEnd);
1346
1347  // Sniff for the signature.
1348  if (Stream.Read(8) != 'B' ||
1349      Stream.Read(8) != 'C' ||
1350      Stream.Read(4) != 0x0 ||
1351      Stream.Read(4) != 0xC ||
1352      Stream.Read(4) != 0xE ||
1353      Stream.Read(4) != 0xD)
1354    return Error("Invalid bitcode signature");
1355
1356  // We expect a number of well-defined blocks, though we don't necessarily
1357  // need to understand them all.
1358  while (!Stream.AtEndOfStream()) {
1359    unsigned Code = Stream.ReadCode();
1360
1361    if (Code != bitc::ENTER_SUBBLOCK)
1362      return Error("Invalid record at top-level");
1363
1364    unsigned BlockID = Stream.ReadSubBlockID();
1365
1366    // We only know the MODULE subblock ID.
1367    switch (BlockID) {
1368    case bitc::BLOCKINFO_BLOCK_ID:
1369      if (Stream.ReadBlockInfoBlock())
1370        return Error("Malformed BlockInfoBlock");
1371      break;
1372    case bitc::MODULE_BLOCK_ID:
1373      if (ParseModule(Buffer->getBufferIdentifier()))
1374        return true;
1375      break;
1376    default:
1377      if (Stream.SkipBlock())
1378        return Error("Malformed block record");
1379      break;
1380    }
1381  }
1382
1383  return false;
1384}
1385
1386
1387/// ParseFunctionBody - Lazily parse the specified function body block.
1388bool BitcodeReader::ParseFunctionBody(Function *F) {
1389  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1390    return Error("Malformed block record");
1391
1392  unsigned ModuleValueListSize = ValueList.size();
1393
1394  // Add all the function arguments to the value table.
1395  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1396    ValueList.push_back(I);
1397
1398  unsigned NextValueNo = ValueList.size();
1399  BasicBlock *CurBB = 0;
1400  unsigned CurBBNo = 0;
1401
1402  // Read all the records.
1403  SmallVector<uint64_t, 64> Record;
1404  while (1) {
1405    unsigned Code = Stream.ReadCode();
1406    if (Code == bitc::END_BLOCK) {
1407      if (Stream.ReadBlockEnd())
1408        return Error("Error at end of function block");
1409      break;
1410    }
1411
1412    if (Code == bitc::ENTER_SUBBLOCK) {
1413      switch (Stream.ReadSubBlockID()) {
1414      default:  // Skip unknown content.
1415        if (Stream.SkipBlock())
1416          return Error("Malformed block record");
1417        break;
1418      case bitc::CONSTANTS_BLOCK_ID:
1419        if (ParseConstants()) return true;
1420        NextValueNo = ValueList.size();
1421        break;
1422      case bitc::VALUE_SYMTAB_BLOCK_ID:
1423        if (ParseValueSymbolTable()) return true;
1424        break;
1425      }
1426      continue;
1427    }
1428
1429    if (Code == bitc::DEFINE_ABBREV) {
1430      Stream.ReadAbbrevRecord();
1431      continue;
1432    }
1433
1434    // Read a record.
1435    Record.clear();
1436    Instruction *I = 0;
1437    switch (Stream.ReadRecord(Code, Record)) {
1438    default: // Default behavior: reject
1439      return Error("Unknown instruction");
1440    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1441      if (Record.size() < 1 || Record[0] == 0)
1442        return Error("Invalid DECLAREBLOCKS record");
1443      // Create all the basic blocks for the function.
1444      FunctionBBs.resize(Record[0]);
1445      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1446        FunctionBBs[i] = BasicBlock::Create("", F);
1447      CurBB = FunctionBBs[0];
1448      continue;
1449
1450    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1451      unsigned OpNum = 0;
1452      Value *LHS, *RHS;
1453      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1454          getValue(Record, OpNum, LHS->getType(), RHS) ||
1455          OpNum+1 != Record.size())
1456        return Error("Invalid BINOP record");
1457
1458      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1459      if (Opc == -1) return Error("Invalid BINOP record");
1460      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1461      break;
1462    }
1463    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1464      unsigned OpNum = 0;
1465      Value *Op;
1466      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1467          OpNum+2 != Record.size())
1468        return Error("Invalid CAST record");
1469
1470      const Type *ResTy = getTypeByID(Record[OpNum]);
1471      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1472      if (Opc == -1 || ResTy == 0)
1473        return Error("Invalid CAST record");
1474      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1475      break;
1476    }
1477    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1478      unsigned OpNum = 0;
1479      Value *BasePtr;
1480      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1481        return Error("Invalid GEP record");
1482
1483      SmallVector<Value*, 16> GEPIdx;
1484      while (OpNum != Record.size()) {
1485        Value *Op;
1486        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1487          return Error("Invalid GEP record");
1488        GEPIdx.push_back(Op);
1489      }
1490
1491      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1492      break;
1493    }
1494
1495    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1496                                       // EXTRACTVAL: [opty, opval, n x indices]
1497      unsigned OpNum = 0;
1498      Value *Agg;
1499      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1500        return Error("Invalid EXTRACTVAL record");
1501
1502      SmallVector<unsigned, 4> EXTRACTVALIdx;
1503      for (unsigned RecSize = Record.size();
1504           OpNum != RecSize; ++OpNum) {
1505        uint64_t Index = Record[OpNum];
1506        if ((unsigned)Index != Index)
1507          return Error("Invalid EXTRACTVAL index");
1508        EXTRACTVALIdx.push_back((unsigned)Index);
1509      }
1510
1511      I = ExtractValueInst::Create(Agg,
1512                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1513      break;
1514    }
1515
1516    case bitc::FUNC_CODE_INST_INSERTVAL: {
1517                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1518      unsigned OpNum = 0;
1519      Value *Agg;
1520      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1521        return Error("Invalid INSERTVAL record");
1522      Value *Val;
1523      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1524        return Error("Invalid INSERTVAL record");
1525
1526      SmallVector<unsigned, 4> INSERTVALIdx;
1527      for (unsigned RecSize = Record.size();
1528           OpNum != RecSize; ++OpNum) {
1529        uint64_t Index = Record[OpNum];
1530        if ((unsigned)Index != Index)
1531          return Error("Invalid INSERTVAL index");
1532        INSERTVALIdx.push_back((unsigned)Index);
1533      }
1534
1535      I = InsertValueInst::Create(Agg, Val,
1536                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1537      break;
1538    }
1539
1540    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1541      // obsolete form of select
1542      // handles select i1 ... in old bitcode
1543      unsigned OpNum = 0;
1544      Value *TrueVal, *FalseVal, *Cond;
1545      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1546          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1547          getValue(Record, OpNum, Type::Int1Ty, Cond))
1548        return Error("Invalid SELECT record");
1549
1550      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1551      break;
1552    }
1553
1554    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1555      // new form of select
1556      // handles select i1 or select [N x i1]
1557      unsigned OpNum = 0;
1558      Value *TrueVal, *FalseVal, *Cond;
1559      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1560          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1561          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1562        return Error("Invalid SELECT record");
1563
1564      // select condition can be either i1 or [N x i1]
1565      if (const VectorType* vector_type =
1566          dyn_cast<const VectorType>(Cond->getType())) {
1567        // expect <n x i1>
1568        if (vector_type->getElementType() != Type::Int1Ty)
1569          return Error("Invalid SELECT condition type");
1570      } else {
1571        // expect i1
1572        if (Cond->getType() != Type::Int1Ty)
1573          return Error("Invalid SELECT condition type");
1574      }
1575
1576      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1577      break;
1578    }
1579
1580    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1581      unsigned OpNum = 0;
1582      Value *Vec, *Idx;
1583      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1584          getValue(Record, OpNum, Type::Int32Ty, Idx))
1585        return Error("Invalid EXTRACTELT record");
1586      I = new ExtractElementInst(Vec, Idx);
1587      break;
1588    }
1589
1590    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1591      unsigned OpNum = 0;
1592      Value *Vec, *Elt, *Idx;
1593      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1594          getValue(Record, OpNum,
1595                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1596          getValue(Record, OpNum, Type::Int32Ty, Idx))
1597        return Error("Invalid INSERTELT record");
1598      I = InsertElementInst::Create(Vec, Elt, Idx);
1599      break;
1600    }
1601
1602    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1603      unsigned OpNum = 0;
1604      Value *Vec1, *Vec2, *Mask;
1605      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1606          getValue(Record, OpNum, Vec1->getType(), Vec2))
1607        return Error("Invalid SHUFFLEVEC record");
1608
1609      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1610        return Error("Invalid SHUFFLEVEC record");
1611      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1612      break;
1613    }
1614
1615    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1616      // VFCmp/VICmp
1617      // or old form of ICmp/FCmp returning bool
1618      unsigned OpNum = 0;
1619      Value *LHS, *RHS;
1620      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1621          getValue(Record, OpNum, LHS->getType(), RHS) ||
1622          OpNum+1 != Record.size())
1623        return Error("Invalid CMP record");
1624
1625      if (LHS->getType()->isFloatingPoint())
1626        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1627      else if (!isa<VectorType>(LHS->getType()))
1628        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1629      else if (LHS->getType()->isFPOrFPVector())
1630        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1631      else
1632        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1633      break;
1634    }
1635    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1636      // Fcmp/ICmp returning bool or vector of bool
1637      unsigned OpNum = 0;
1638      Value *LHS, *RHS;
1639      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1640          getValue(Record, OpNum, LHS->getType(), RHS) ||
1641          OpNum+1 != Record.size())
1642        return Error("Invalid CMP2 record");
1643
1644      if (LHS->getType()->isFPOrFPVector())
1645        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1646      else
1647        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1648      break;
1649    }
1650    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1651      if (Record.size() != 2)
1652        return Error("Invalid GETRESULT record");
1653      unsigned OpNum = 0;
1654      Value *Op;
1655      getValueTypePair(Record, OpNum, NextValueNo, Op);
1656      unsigned Index = Record[1];
1657      I = ExtractValueInst::Create(Op, Index);
1658      break;
1659    }
1660
1661    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1662      {
1663        unsigned Size = Record.size();
1664        if (Size == 0) {
1665          I = ReturnInst::Create();
1666          break;
1667        }
1668
1669        unsigned OpNum = 0;
1670        SmallVector<Value *,4> Vs;
1671        do {
1672          Value *Op = NULL;
1673          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1674            return Error("Invalid RET record");
1675          Vs.push_back(Op);
1676        } while(OpNum != Record.size());
1677
1678        const Type *ReturnType = F->getReturnType();
1679        if (Vs.size() > 1 ||
1680            (isa<StructType>(ReturnType) &&
1681             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1682          Value *RV = UndefValue::get(ReturnType);
1683          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1684            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1685            CurBB->getInstList().push_back(I);
1686            ValueList.AssignValue(I, NextValueNo++);
1687            RV = I;
1688          }
1689          I = ReturnInst::Create(RV);
1690          break;
1691        }
1692
1693        I = ReturnInst::Create(Vs[0]);
1694        break;
1695      }
1696    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1697      if (Record.size() != 1 && Record.size() != 3)
1698        return Error("Invalid BR record");
1699      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1700      if (TrueDest == 0)
1701        return Error("Invalid BR record");
1702
1703      if (Record.size() == 1)
1704        I = BranchInst::Create(TrueDest);
1705      else {
1706        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1707        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1708        if (FalseDest == 0 || Cond == 0)
1709          return Error("Invalid BR record");
1710        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1711      }
1712      break;
1713    }
1714    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1715      if (Record.size() < 3 || (Record.size() & 1) == 0)
1716        return Error("Invalid SWITCH record");
1717      const Type *OpTy = getTypeByID(Record[0]);
1718      Value *Cond = getFnValueByID(Record[1], OpTy);
1719      BasicBlock *Default = getBasicBlock(Record[2]);
1720      if (OpTy == 0 || Cond == 0 || Default == 0)
1721        return Error("Invalid SWITCH record");
1722      unsigned NumCases = (Record.size()-3)/2;
1723      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1724      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1725        ConstantInt *CaseVal =
1726          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1727        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1728        if (CaseVal == 0 || DestBB == 0) {
1729          delete SI;
1730          return Error("Invalid SWITCH record!");
1731        }
1732        SI->addCase(CaseVal, DestBB);
1733      }
1734      I = SI;
1735      break;
1736    }
1737
1738    case bitc::FUNC_CODE_INST_INVOKE: {
1739      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1740      if (Record.size() < 4) return Error("Invalid INVOKE record");
1741      AttrListPtr PAL = getAttributes(Record[0]);
1742      unsigned CCInfo = Record[1];
1743      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1744      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1745
1746      unsigned OpNum = 4;
1747      Value *Callee;
1748      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1749        return Error("Invalid INVOKE record");
1750
1751      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1752      const FunctionType *FTy = !CalleeTy ? 0 :
1753        dyn_cast<FunctionType>(CalleeTy->getElementType());
1754
1755      // Check that the right number of fixed parameters are here.
1756      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1757          Record.size() < OpNum+FTy->getNumParams())
1758        return Error("Invalid INVOKE record");
1759
1760      SmallVector<Value*, 16> Ops;
1761      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1762        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1763        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1764      }
1765
1766      if (!FTy->isVarArg()) {
1767        if (Record.size() != OpNum)
1768          return Error("Invalid INVOKE record");
1769      } else {
1770        // Read type/value pairs for varargs params.
1771        while (OpNum != Record.size()) {
1772          Value *Op;
1773          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1774            return Error("Invalid INVOKE record");
1775          Ops.push_back(Op);
1776        }
1777      }
1778
1779      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1780                             Ops.begin(), Ops.end());
1781      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1782      cast<InvokeInst>(I)->setAttributes(PAL);
1783      break;
1784    }
1785    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1786      I = new UnwindInst();
1787      break;
1788    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1789      I = new UnreachableInst();
1790      break;
1791    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1792      if (Record.size() < 1 || ((Record.size()-1)&1))
1793        return Error("Invalid PHI record");
1794      const Type *Ty = getTypeByID(Record[0]);
1795      if (!Ty) return Error("Invalid PHI record");
1796
1797      PHINode *PN = PHINode::Create(Ty);
1798      PN->reserveOperandSpace((Record.size()-1)/2);
1799
1800      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1801        Value *V = getFnValueByID(Record[1+i], Ty);
1802        BasicBlock *BB = getBasicBlock(Record[2+i]);
1803        if (!V || !BB) return Error("Invalid PHI record");
1804        PN->addIncoming(V, BB);
1805      }
1806      I = PN;
1807      break;
1808    }
1809
1810    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1811      if (Record.size() < 3)
1812        return Error("Invalid MALLOC record");
1813      const PointerType *Ty =
1814        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1815      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1816      unsigned Align = Record[2];
1817      if (!Ty || !Size) return Error("Invalid MALLOC record");
1818      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1819      break;
1820    }
1821    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1822      unsigned OpNum = 0;
1823      Value *Op;
1824      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1825          OpNum != Record.size())
1826        return Error("Invalid FREE record");
1827      I = new FreeInst(Op);
1828      break;
1829    }
1830    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1831      if (Record.size() < 3)
1832        return Error("Invalid ALLOCA record");
1833      const PointerType *Ty =
1834        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1835      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1836      unsigned Align = Record[2];
1837      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1838      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1839      break;
1840    }
1841    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1842      unsigned OpNum = 0;
1843      Value *Op;
1844      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1845          OpNum+2 != Record.size())
1846        return Error("Invalid LOAD record");
1847
1848      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1849      break;
1850    }
1851    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1852      unsigned OpNum = 0;
1853      Value *Val, *Ptr;
1854      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1855          getValue(Record, OpNum,
1856                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1857          OpNum+2 != Record.size())
1858        return Error("Invalid STORE record");
1859
1860      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1861      break;
1862    }
1863    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1864      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1865      unsigned OpNum = 0;
1866      Value *Val, *Ptr;
1867      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1868          getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1869          OpNum+2 != Record.size())
1870        return Error("Invalid STORE record");
1871
1872      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1873      break;
1874    }
1875    case bitc::FUNC_CODE_INST_CALL: {
1876      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1877      if (Record.size() < 3)
1878        return Error("Invalid CALL record");
1879
1880      AttrListPtr PAL = getAttributes(Record[0]);
1881      unsigned CCInfo = Record[1];
1882
1883      unsigned OpNum = 2;
1884      Value *Callee;
1885      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1886        return Error("Invalid CALL record");
1887
1888      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1889      const FunctionType *FTy = 0;
1890      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1891      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1892        return Error("Invalid CALL record");
1893
1894      SmallVector<Value*, 16> Args;
1895      // Read the fixed params.
1896      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1897        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1898          Args.push_back(getBasicBlock(Record[OpNum]));
1899        else
1900          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1901        if (Args.back() == 0) return Error("Invalid CALL record");
1902      }
1903
1904      // Read type/value pairs for varargs params.
1905      if (!FTy->isVarArg()) {
1906        if (OpNum != Record.size())
1907          return Error("Invalid CALL record");
1908      } else {
1909        while (OpNum != Record.size()) {
1910          Value *Op;
1911          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1912            return Error("Invalid CALL record");
1913          Args.push_back(Op);
1914        }
1915      }
1916
1917      I = CallInst::Create(Callee, Args.begin(), Args.end());
1918      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1919      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1920      cast<CallInst>(I)->setAttributes(PAL);
1921      break;
1922    }
1923    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1924      if (Record.size() < 3)
1925        return Error("Invalid VAARG record");
1926      const Type *OpTy = getTypeByID(Record[0]);
1927      Value *Op = getFnValueByID(Record[1], OpTy);
1928      const Type *ResTy = getTypeByID(Record[2]);
1929      if (!OpTy || !Op || !ResTy)
1930        return Error("Invalid VAARG record");
1931      I = new VAArgInst(Op, ResTy);
1932      break;
1933    }
1934    }
1935
1936    // Add instruction to end of current BB.  If there is no current BB, reject
1937    // this file.
1938    if (CurBB == 0) {
1939      delete I;
1940      return Error("Invalid instruction with no BB");
1941    }
1942    CurBB->getInstList().push_back(I);
1943
1944    // If this was a terminator instruction, move to the next block.
1945    if (isa<TerminatorInst>(I)) {
1946      ++CurBBNo;
1947      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1948    }
1949
1950    // Non-void values get registered in the value table for future use.
1951    if (I && I->getType() != Type::VoidTy)
1952      ValueList.AssignValue(I, NextValueNo++);
1953  }
1954
1955  // Check the function list for unresolved values.
1956  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1957    if (A->getParent() == 0) {
1958      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1959      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1960        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1961          A->replaceAllUsesWith(UndefValue::get(A->getType()));
1962          delete A;
1963        }
1964      }
1965      return Error("Never resolved value found in function!");
1966    }
1967  }
1968
1969  // Trim the value list down to the size it was before we parsed this function.
1970  ValueList.shrinkTo(ModuleValueListSize);
1971  std::vector<BasicBlock*>().swap(FunctionBBs);
1972
1973  return false;
1974}
1975
1976//===----------------------------------------------------------------------===//
1977// ModuleProvider implementation
1978//===----------------------------------------------------------------------===//
1979
1980
1981bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1982  // If it already is material, ignore the request.
1983  if (!F->hasNotBeenReadFromBitcode()) return false;
1984
1985  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1986    DeferredFunctionInfo.find(F);
1987  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1988
1989  // Move the bit stream to the saved position of the deferred function body and
1990  // restore the real linkage type for the function.
1991  Stream.JumpToBit(DFII->second.first);
1992  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
1993
1994  if (ParseFunctionBody(F)) {
1995    if (ErrInfo) *ErrInfo = ErrorString;
1996    return true;
1997  }
1998
1999  // Upgrade any old intrinsic calls in the function.
2000  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2001       E = UpgradedIntrinsics.end(); I != E; ++I) {
2002    if (I->first != I->second) {
2003      for (Value::use_iterator UI = I->first->use_begin(),
2004           UE = I->first->use_end(); UI != UE; ) {
2005        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2006          UpgradeIntrinsicCall(CI, I->second);
2007      }
2008    }
2009  }
2010
2011  return false;
2012}
2013
2014void BitcodeReader::dematerializeFunction(Function *F) {
2015  // If this function isn't materialized, or if it is a proto, this is a noop.
2016  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2017    return;
2018
2019  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2020
2021  // Just forget the function body, we can remat it later.
2022  F->deleteBody();
2023  F->setLinkage(GlobalValue::GhostLinkage);
2024}
2025
2026
2027Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2028  for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2029       DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2030       ++I) {
2031    Function *F = I->first;
2032    if (F->hasNotBeenReadFromBitcode() &&
2033        materializeFunction(F, ErrInfo))
2034      return 0;
2035  }
2036
2037  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2038  // delete the old functions to clean up. We can't do this unless the entire
2039  // module is materialized because there could always be another function body
2040  // with calls to the old function.
2041  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2042       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2043    if (I->first != I->second) {
2044      for (Value::use_iterator UI = I->first->use_begin(),
2045           UE = I->first->use_end(); UI != UE; ) {
2046        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2047          UpgradeIntrinsicCall(CI, I->second);
2048      }
2049      ValueList.replaceUsesOfWith(I->first, I->second);
2050      I->first->eraseFromParent();
2051    }
2052  }
2053  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2054
2055  return TheModule;
2056}
2057
2058
2059/// This method is provided by the parent ModuleProvde class and overriden
2060/// here. It simply releases the module from its provided and frees up our
2061/// state.
2062/// @brief Release our hold on the generated module
2063Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2064  // Since we're losing control of this Module, we must hand it back complete
2065  Module *M = ModuleProvider::releaseModule(ErrInfo);
2066  FreeState();
2067  return M;
2068}
2069
2070
2071//===----------------------------------------------------------------------===//
2072// External interface
2073//===----------------------------------------------------------------------===//
2074
2075/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2076///
2077ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2078                                               std::string *ErrMsg) {
2079  BitcodeReader *R = new BitcodeReader(Buffer);
2080  if (R->ParseBitcode()) {
2081    if (ErrMsg)
2082      *ErrMsg = R->getErrorString();
2083
2084    // Don't let the BitcodeReader dtor delete 'Buffer'.
2085    R->releaseMemoryBuffer();
2086    delete R;
2087    return 0;
2088  }
2089  return R;
2090}
2091
2092/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2093/// If an error occurs, return null and fill in *ErrMsg if non-null.
2094Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2095  BitcodeReader *R;
2096  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2097  if (!R) return 0;
2098
2099  // Read in the entire module.
2100  Module *M = R->materializeModule(ErrMsg);
2101
2102  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2103  // there was an error.
2104  R->releaseMemoryBuffer();
2105
2106  // If there was no error, tell ModuleProvider not to delete it when its dtor
2107  // is run.
2108  if (M)
2109    M = R->releaseModule(ErrMsg);
2110
2111  delete R;
2112  return M;
2113}
2114