BitcodeReader.cpp revision 74a77812d1785ad6c62226c52dcd4d129b3cdd0b
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/AutoUpgrade.h"
24#include "llvm/ADT/SmallString.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/OperandTraits.h"
29using namespace llvm;
30
31void BitcodeReader::FreeState() {
32  delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36
37  std::vector<AttrListPtr>().swap(MAttributes);
38  std::vector<BasicBlock*>().swap(FunctionBBs);
39  std::vector<Function*>().swap(FunctionsWithBodies);
40  DeferredFunctionInfo.clear();
41}
42
43//===----------------------------------------------------------------------===//
44//  Helper functions to implement forward reference resolution, etc.
45//===----------------------------------------------------------------------===//
46
47/// ConvertToString - Convert a string from a record into an std::string, return
48/// true on failure.
49template<typename StrTy>
50static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
51                            StrTy &Result) {
52  if (Idx > Record.size())
53    return true;
54
55  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
56    Result += (char)Record[i];
57  return false;
58}
59
60static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
61  switch (Val) {
62  default: // Map unknown/new linkages to external
63  case 0: return GlobalValue::ExternalLinkage;
64  case 1: return GlobalValue::WeakAnyLinkage;
65  case 2: return GlobalValue::AppendingLinkage;
66  case 3: return GlobalValue::InternalLinkage;
67  case 4: return GlobalValue::LinkOnceAnyLinkage;
68  case 5: return GlobalValue::DLLImportLinkage;
69  case 6: return GlobalValue::DLLExportLinkage;
70  case 7: return GlobalValue::ExternalWeakLinkage;
71  case 8: return GlobalValue::CommonLinkage;
72  case 9: return GlobalValue::PrivateLinkage;
73  case 10: return GlobalValue::WeakODRLinkage;
74  case 11: return GlobalValue::LinkOnceODRLinkage;
75  case 12: return GlobalValue::AvailableExternallyLinkage;
76  }
77}
78
79static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
80  switch (Val) {
81  default: // Map unknown visibilities to default.
82  case 0: return GlobalValue::DefaultVisibility;
83  case 1: return GlobalValue::HiddenVisibility;
84  case 2: return GlobalValue::ProtectedVisibility;
85  }
86}
87
88static int GetDecodedCastOpcode(unsigned Val) {
89  switch (Val) {
90  default: return -1;
91  case bitc::CAST_TRUNC   : return Instruction::Trunc;
92  case bitc::CAST_ZEXT    : return Instruction::ZExt;
93  case bitc::CAST_SEXT    : return Instruction::SExt;
94  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
95  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
96  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
97  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
98  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
99  case bitc::CAST_FPEXT   : return Instruction::FPExt;
100  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
101  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
102  case bitc::CAST_BITCAST : return Instruction::BitCast;
103  }
104}
105static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
106  switch (Val) {
107  default: return -1;
108  case bitc::BINOP_ADD:
109    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
110  case bitc::BINOP_SUB:
111    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
112  case bitc::BINOP_MUL:
113    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
114  case bitc::BINOP_UDIV: return Instruction::UDiv;
115  case bitc::BINOP_SDIV:
116    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
117  case bitc::BINOP_UREM: return Instruction::URem;
118  case bitc::BINOP_SREM:
119    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
120  case bitc::BINOP_SHL:  return Instruction::Shl;
121  case bitc::BINOP_LSHR: return Instruction::LShr;
122  case bitc::BINOP_ASHR: return Instruction::AShr;
123  case bitc::BINOP_AND:  return Instruction::And;
124  case bitc::BINOP_OR:   return Instruction::Or;
125  case bitc::BINOP_XOR:  return Instruction::Xor;
126  }
127}
128
129namespace llvm {
130namespace {
131  /// @brief A class for maintaining the slot number definition
132  /// as a placeholder for the actual definition for forward constants defs.
133  class ConstantPlaceHolder : public ConstantExpr {
134    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
135    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
136  public:
137    // allocate space for exactly one operand
138    void *operator new(size_t s) {
139      return User::operator new(s, 1);
140    }
141    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
142      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
143      Op<0>() = Context.getUndef(Type::Int32Ty);
144    }
145
146    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
147    static inline bool classof(const ConstantPlaceHolder *) { return true; }
148    static bool classof(const Value *V) {
149      return isa<ConstantExpr>(V) &&
150             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
151    }
152
153
154    /// Provide fast operand accessors
155    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
156  };
157}
158
159// FIXME: can we inherit this from ConstantExpr?
160template <>
161struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
162};
163}
164
165
166void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
167  if (Idx == size()) {
168    push_back(V);
169    return;
170  }
171
172  if (Idx >= size())
173    resize(Idx+1);
174
175  WeakVH &OldV = ValuePtrs[Idx];
176  if (OldV == 0) {
177    OldV = V;
178    return;
179  }
180
181  // Handle constants and non-constants (e.g. instrs) differently for
182  // efficiency.
183  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
184    ResolveConstants.push_back(std::make_pair(PHC, Idx));
185    OldV = V;
186  } else {
187    // If there was a forward reference to this value, replace it.
188    Value *PrevVal = OldV;
189    OldV->replaceAllUsesWith(V);
190    delete PrevVal;
191  }
192}
193
194
195Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
196                                                    const Type *Ty) {
197  if (Idx >= size())
198    resize(Idx + 1);
199
200  if (Value *V = ValuePtrs[Idx]) {
201    assert(Ty == V->getType() && "Type mismatch in constant table!");
202    return cast<Constant>(V);
203  }
204
205  // Create and return a placeholder, which will later be RAUW'd.
206  Constant *C = new ConstantPlaceHolder(Ty, Context);
207  ValuePtrs[Idx] = C;
208  return C;
209}
210
211Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
212  if (Idx >= size())
213    resize(Idx + 1);
214
215  if (Value *V = ValuePtrs[Idx]) {
216    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
217    return V;
218  }
219
220  // No type specified, must be invalid reference.
221  if (Ty == 0) return 0;
222
223  // Create and return a placeholder, which will later be RAUW'd.
224  Value *V = new Argument(Ty);
225  ValuePtrs[Idx] = V;
226  return V;
227}
228
229/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
230/// resolves any forward references.  The idea behind this is that we sometimes
231/// get constants (such as large arrays) which reference *many* forward ref
232/// constants.  Replacing each of these causes a lot of thrashing when
233/// building/reuniquing the constant.  Instead of doing this, we look at all the
234/// uses and rewrite all the place holders at once for any constant that uses
235/// a placeholder.
236void BitcodeReaderValueList::ResolveConstantForwardRefs() {
237  // Sort the values by-pointer so that they are efficient to look up with a
238  // binary search.
239  std::sort(ResolveConstants.begin(), ResolveConstants.end());
240
241  SmallVector<Constant*, 64> NewOps;
242
243  while (!ResolveConstants.empty()) {
244    Value *RealVal = operator[](ResolveConstants.back().second);
245    Constant *Placeholder = ResolveConstants.back().first;
246    ResolveConstants.pop_back();
247
248    // Loop over all users of the placeholder, updating them to reference the
249    // new value.  If they reference more than one placeholder, update them all
250    // at once.
251    while (!Placeholder->use_empty()) {
252      Value::use_iterator UI = Placeholder->use_begin();
253
254      // If the using object isn't uniqued, just update the operands.  This
255      // handles instructions and initializers for global variables.
256      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
257        UI.getUse().set(RealVal);
258        continue;
259      }
260
261      // Otherwise, we have a constant that uses the placeholder.  Replace that
262      // constant with a new constant that has *all* placeholder uses updated.
263      Constant *UserC = cast<Constant>(*UI);
264      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
265           I != E; ++I) {
266        Value *NewOp;
267        if (!isa<ConstantPlaceHolder>(*I)) {
268          // Not a placeholder reference.
269          NewOp = *I;
270        } else if (*I == Placeholder) {
271          // Common case is that it just references this one placeholder.
272          NewOp = RealVal;
273        } else {
274          // Otherwise, look up the placeholder in ResolveConstants.
275          ResolveConstantsTy::iterator It =
276            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
277                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
278                                                            0));
279          assert(It != ResolveConstants.end() && It->first == *I);
280          NewOp = operator[](It->second);
281        }
282
283        NewOps.push_back(cast<Constant>(NewOp));
284      }
285
286      // Make the new constant.
287      Constant *NewC;
288      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
289        NewC = Context.getConstantArray(UserCA->getType(), &NewOps[0],
290                                        NewOps.size());
291      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
292        NewC = Context.getConstantStruct(&NewOps[0], NewOps.size(),
293                                         UserCS->getType()->isPacked());
294      } else if (isa<ConstantVector>(UserC)) {
295        NewC = Context.getConstantVector(&NewOps[0], NewOps.size());
296      } else {
297        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
298        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
299                                                          NewOps.size());
300      }
301
302      UserC->replaceAllUsesWith(NewC);
303      UserC->destroyConstant();
304      NewOps.clear();
305    }
306
307    // Update all ValueHandles, they should be the only users at this point.
308    Placeholder->replaceAllUsesWith(RealVal);
309    delete Placeholder;
310  }
311}
312
313
314const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
315  // If the TypeID is in range, return it.
316  if (ID < TypeList.size())
317    return TypeList[ID].get();
318  if (!isTypeTable) return 0;
319
320  // The type table allows forward references.  Push as many Opaque types as
321  // needed to get up to ID.
322  while (TypeList.size() <= ID)
323    TypeList.push_back(Context.getOpaqueType());
324  return TypeList.back().get();
325}
326
327//===----------------------------------------------------------------------===//
328//  Functions for parsing blocks from the bitcode file
329//===----------------------------------------------------------------------===//
330
331bool BitcodeReader::ParseAttributeBlock() {
332  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
333    return Error("Malformed block record");
334
335  if (!MAttributes.empty())
336    return Error("Multiple PARAMATTR blocks found!");
337
338  SmallVector<uint64_t, 64> Record;
339
340  SmallVector<AttributeWithIndex, 8> Attrs;
341
342  // Read all the records.
343  while (1) {
344    unsigned Code = Stream.ReadCode();
345    if (Code == bitc::END_BLOCK) {
346      if (Stream.ReadBlockEnd())
347        return Error("Error at end of PARAMATTR block");
348      return false;
349    }
350
351    if (Code == bitc::ENTER_SUBBLOCK) {
352      // No known subblocks, always skip them.
353      Stream.ReadSubBlockID();
354      if (Stream.SkipBlock())
355        return Error("Malformed block record");
356      continue;
357    }
358
359    if (Code == bitc::DEFINE_ABBREV) {
360      Stream.ReadAbbrevRecord();
361      continue;
362    }
363
364    // Read a record.
365    Record.clear();
366    switch (Stream.ReadRecord(Code, Record)) {
367    default:  // Default behavior: ignore.
368      break;
369    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
370      if (Record.size() & 1)
371        return Error("Invalid ENTRY record");
372
373      // FIXME : Remove this autoupgrade code in LLVM 3.0.
374      // If Function attributes are using index 0 then transfer them
375      // to index ~0. Index 0 is used for return value attributes but used to be
376      // used for function attributes.
377      Attributes RetAttribute = Attribute::None;
378      Attributes FnAttribute = Attribute::None;
379      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
380        // FIXME: remove in LLVM 3.0
381        // The alignment is stored as a 16-bit raw value from bits 31--16.
382        // We shift the bits above 31 down by 11 bits.
383
384        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
385        if (Alignment && !isPowerOf2_32(Alignment))
386          return Error("Alignment is not a power of two.");
387
388        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
389        if (Alignment)
390          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
391        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
392        Record[i+1] = ReconstitutedAttr;
393
394        if (Record[i] == 0)
395          RetAttribute = Record[i+1];
396        else if (Record[i] == ~0U)
397          FnAttribute = Record[i+1];
398      }
399
400      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
401                              Attribute::ReadOnly|Attribute::ReadNone);
402
403      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
404          (RetAttribute & OldRetAttrs) != 0) {
405        if (FnAttribute == Attribute::None) { // add a slot so they get added.
406          Record.push_back(~0U);
407          Record.push_back(0);
408        }
409
410        FnAttribute  |= RetAttribute & OldRetAttrs;
411        RetAttribute &= ~OldRetAttrs;
412      }
413
414      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
415        if (Record[i] == 0) {
416          if (RetAttribute != Attribute::None)
417            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
418        } else if (Record[i] == ~0U) {
419          if (FnAttribute != Attribute::None)
420            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
421        } else if (Record[i+1] != Attribute::None)
422          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
423      }
424
425      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
426      Attrs.clear();
427      break;
428    }
429    }
430  }
431}
432
433
434bool BitcodeReader::ParseTypeTable() {
435  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
436    return Error("Malformed block record");
437
438  if (!TypeList.empty())
439    return Error("Multiple TYPE_BLOCKs found!");
440
441  SmallVector<uint64_t, 64> Record;
442  unsigned NumRecords = 0;
443
444  // Read all the records for this type table.
445  while (1) {
446    unsigned Code = Stream.ReadCode();
447    if (Code == bitc::END_BLOCK) {
448      if (NumRecords != TypeList.size())
449        return Error("Invalid type forward reference in TYPE_BLOCK");
450      if (Stream.ReadBlockEnd())
451        return Error("Error at end of type table block");
452      return false;
453    }
454
455    if (Code == bitc::ENTER_SUBBLOCK) {
456      // No known subblocks, always skip them.
457      Stream.ReadSubBlockID();
458      if (Stream.SkipBlock())
459        return Error("Malformed block record");
460      continue;
461    }
462
463    if (Code == bitc::DEFINE_ABBREV) {
464      Stream.ReadAbbrevRecord();
465      continue;
466    }
467
468    // Read a record.
469    Record.clear();
470    const Type *ResultTy = 0;
471    switch (Stream.ReadRecord(Code, Record)) {
472    default:  // Default behavior: unknown type.
473      ResultTy = 0;
474      break;
475    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
476      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
477      // type list.  This allows us to reserve space.
478      if (Record.size() < 1)
479        return Error("Invalid TYPE_CODE_NUMENTRY record");
480      TypeList.reserve(Record[0]);
481      continue;
482    case bitc::TYPE_CODE_VOID:      // VOID
483      ResultTy = Type::VoidTy;
484      break;
485    case bitc::TYPE_CODE_FLOAT:     // FLOAT
486      ResultTy = Type::FloatTy;
487      break;
488    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
489      ResultTy = Type::DoubleTy;
490      break;
491    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
492      ResultTy = Type::X86_FP80Ty;
493      break;
494    case bitc::TYPE_CODE_FP128:     // FP128
495      ResultTy = Type::FP128Ty;
496      break;
497    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
498      ResultTy = Type::PPC_FP128Ty;
499      break;
500    case bitc::TYPE_CODE_LABEL:     // LABEL
501      ResultTy = Type::LabelTy;
502      break;
503    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
504      ResultTy = 0;
505      break;
506    case bitc::TYPE_CODE_METADATA:  // METADATA
507      ResultTy = Type::MetadataTy;
508      break;
509    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
510      if (Record.size() < 1)
511        return Error("Invalid Integer type record");
512
513      ResultTy = Context.getIntegerType(Record[0]);
514      break;
515    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
516                                    //          [pointee type, address space]
517      if (Record.size() < 1)
518        return Error("Invalid POINTER type record");
519      unsigned AddressSpace = 0;
520      if (Record.size() == 2)
521        AddressSpace = Record[1];
522      ResultTy = Context.getPointerType(getTypeByID(Record[0], true),
523                                        AddressSpace);
524      break;
525    }
526    case bitc::TYPE_CODE_FUNCTION: {
527      // FIXME: attrid is dead, remove it in LLVM 3.0
528      // FUNCTION: [vararg, attrid, retty, paramty x N]
529      if (Record.size() < 3)
530        return Error("Invalid FUNCTION type record");
531      std::vector<const Type*> ArgTys;
532      for (unsigned i = 3, e = Record.size(); i != e; ++i)
533        ArgTys.push_back(getTypeByID(Record[i], true));
534
535      ResultTy = Context.getFunctionType(getTypeByID(Record[2], true), ArgTys,
536                                   Record[0]);
537      break;
538    }
539    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
540      if (Record.size() < 1)
541        return Error("Invalid STRUCT type record");
542      std::vector<const Type*> EltTys;
543      for (unsigned i = 1, e = Record.size(); i != e; ++i)
544        EltTys.push_back(getTypeByID(Record[i], true));
545      ResultTy = Context.getStructType(EltTys, Record[0]);
546      break;
547    }
548    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
549      if (Record.size() < 2)
550        return Error("Invalid ARRAY type record");
551      ResultTy = Context.getArrayType(getTypeByID(Record[1], true), Record[0]);
552      break;
553    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
554      if (Record.size() < 2)
555        return Error("Invalid VECTOR type record");
556      ResultTy = Context.getVectorType(getTypeByID(Record[1], true), Record[0]);
557      break;
558    }
559
560    if (NumRecords == TypeList.size()) {
561      // If this is a new type slot, just append it.
562      TypeList.push_back(ResultTy ? ResultTy : Context.getOpaqueType());
563      ++NumRecords;
564    } else if (ResultTy == 0) {
565      // Otherwise, this was forward referenced, so an opaque type was created,
566      // but the result type is actually just an opaque.  Leave the one we
567      // created previously.
568      ++NumRecords;
569    } else {
570      // Otherwise, this was forward referenced, so an opaque type was created.
571      // Resolve the opaque type to the real type now.
572      assert(NumRecords < TypeList.size() && "Typelist imbalance");
573      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
574
575      // Don't directly push the new type on the Tab. Instead we want to replace
576      // the opaque type we previously inserted with the new concrete value. The
577      // refinement from the abstract (opaque) type to the new type causes all
578      // uses of the abstract type to use the concrete type (NewTy). This will
579      // also cause the opaque type to be deleted.
580      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
581
582      // This should have replaced the old opaque type with the new type in the
583      // value table... or with a preexisting type that was already in the
584      // system.  Let's just make sure it did.
585      assert(TypeList[NumRecords-1].get() != OldTy &&
586             "refineAbstractType didn't work!");
587    }
588  }
589}
590
591
592bool BitcodeReader::ParseTypeSymbolTable() {
593  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
594    return Error("Malformed block record");
595
596  SmallVector<uint64_t, 64> Record;
597
598  // Read all the records for this type table.
599  std::string TypeName;
600  while (1) {
601    unsigned Code = Stream.ReadCode();
602    if (Code == bitc::END_BLOCK) {
603      if (Stream.ReadBlockEnd())
604        return Error("Error at end of type symbol table block");
605      return false;
606    }
607
608    if (Code == bitc::ENTER_SUBBLOCK) {
609      // No known subblocks, always skip them.
610      Stream.ReadSubBlockID();
611      if (Stream.SkipBlock())
612        return Error("Malformed block record");
613      continue;
614    }
615
616    if (Code == bitc::DEFINE_ABBREV) {
617      Stream.ReadAbbrevRecord();
618      continue;
619    }
620
621    // Read a record.
622    Record.clear();
623    switch (Stream.ReadRecord(Code, Record)) {
624    default:  // Default behavior: unknown type.
625      break;
626    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
627      if (ConvertToString(Record, 1, TypeName))
628        return Error("Invalid TST_ENTRY record");
629      unsigned TypeID = Record[0];
630      if (TypeID >= TypeList.size())
631        return Error("Invalid Type ID in TST_ENTRY record");
632
633      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
634      TypeName.clear();
635      break;
636    }
637  }
638}
639
640bool BitcodeReader::ParseValueSymbolTable() {
641  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
642    return Error("Malformed block record");
643
644  SmallVector<uint64_t, 64> Record;
645
646  // Read all the records for this value table.
647  SmallString<128> ValueName;
648  while (1) {
649    unsigned Code = Stream.ReadCode();
650    if (Code == bitc::END_BLOCK) {
651      if (Stream.ReadBlockEnd())
652        return Error("Error at end of value symbol table block");
653      return false;
654    }
655    if (Code == bitc::ENTER_SUBBLOCK) {
656      // No known subblocks, always skip them.
657      Stream.ReadSubBlockID();
658      if (Stream.SkipBlock())
659        return Error("Malformed block record");
660      continue;
661    }
662
663    if (Code == bitc::DEFINE_ABBREV) {
664      Stream.ReadAbbrevRecord();
665      continue;
666    }
667
668    // Read a record.
669    Record.clear();
670    switch (Stream.ReadRecord(Code, Record)) {
671    default:  // Default behavior: unknown type.
672      break;
673    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
674      if (ConvertToString(Record, 1, ValueName))
675        return Error("Invalid VST_ENTRY record");
676      unsigned ValueID = Record[0];
677      if (ValueID >= ValueList.size())
678        return Error("Invalid Value ID in VST_ENTRY record");
679      Value *V = ValueList[ValueID];
680
681      V->setName(&ValueName[0], ValueName.size());
682      ValueName.clear();
683      break;
684    }
685    case bitc::VST_CODE_BBENTRY: {
686      if (ConvertToString(Record, 1, ValueName))
687        return Error("Invalid VST_BBENTRY record");
688      BasicBlock *BB = getBasicBlock(Record[0]);
689      if (BB == 0)
690        return Error("Invalid BB ID in VST_BBENTRY record");
691
692      BB->setName(&ValueName[0], ValueName.size());
693      ValueName.clear();
694      break;
695    }
696    }
697  }
698}
699
700/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
701/// the LSB for dense VBR encoding.
702static uint64_t DecodeSignRotatedValue(uint64_t V) {
703  if ((V & 1) == 0)
704    return V >> 1;
705  if (V != 1)
706    return -(V >> 1);
707  // There is no such thing as -0 with integers.  "-0" really means MININT.
708  return 1ULL << 63;
709}
710
711/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
712/// values and aliases that we can.
713bool BitcodeReader::ResolveGlobalAndAliasInits() {
714  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
715  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
716
717  GlobalInitWorklist.swap(GlobalInits);
718  AliasInitWorklist.swap(AliasInits);
719
720  while (!GlobalInitWorklist.empty()) {
721    unsigned ValID = GlobalInitWorklist.back().second;
722    if (ValID >= ValueList.size()) {
723      // Not ready to resolve this yet, it requires something later in the file.
724      GlobalInits.push_back(GlobalInitWorklist.back());
725    } else {
726      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
727        GlobalInitWorklist.back().first->setInitializer(C);
728      else
729        return Error("Global variable initializer is not a constant!");
730    }
731    GlobalInitWorklist.pop_back();
732  }
733
734  while (!AliasInitWorklist.empty()) {
735    unsigned ValID = AliasInitWorklist.back().second;
736    if (ValID >= ValueList.size()) {
737      AliasInits.push_back(AliasInitWorklist.back());
738    } else {
739      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
740        AliasInitWorklist.back().first->setAliasee(C);
741      else
742        return Error("Alias initializer is not a constant!");
743    }
744    AliasInitWorklist.pop_back();
745  }
746  return false;
747}
748
749
750bool BitcodeReader::ParseConstants() {
751  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
752    return Error("Malformed block record");
753
754  SmallVector<uint64_t, 64> Record;
755
756  // Read all the records for this value table.
757  const Type *CurTy = Type::Int32Ty;
758  unsigned NextCstNo = ValueList.size();
759  while (1) {
760    unsigned Code = Stream.ReadCode();
761    if (Code == bitc::END_BLOCK)
762      break;
763
764    if (Code == bitc::ENTER_SUBBLOCK) {
765      // No known subblocks, always skip them.
766      Stream.ReadSubBlockID();
767      if (Stream.SkipBlock())
768        return Error("Malformed block record");
769      continue;
770    }
771
772    if (Code == bitc::DEFINE_ABBREV) {
773      Stream.ReadAbbrevRecord();
774      continue;
775    }
776
777    // Read a record.
778    Record.clear();
779    Value *V = 0;
780    switch (Stream.ReadRecord(Code, Record)) {
781    default:  // Default behavior: unknown constant
782    case bitc::CST_CODE_UNDEF:     // UNDEF
783      V = Context.getUndef(CurTy);
784      break;
785    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
786      if (Record.empty())
787        return Error("Malformed CST_SETTYPE record");
788      if (Record[0] >= TypeList.size())
789        return Error("Invalid Type ID in CST_SETTYPE record");
790      CurTy = TypeList[Record[0]];
791      continue;  // Skip the ValueList manipulation.
792    case bitc::CST_CODE_NULL:      // NULL
793      V = Context.getNullValue(CurTy);
794      break;
795    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
796      if (!isa<IntegerType>(CurTy) || Record.empty())
797        return Error("Invalid CST_INTEGER record");
798      V = Context.getConstantInt(CurTy, DecodeSignRotatedValue(Record[0]));
799      break;
800    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
801      if (!isa<IntegerType>(CurTy) || Record.empty())
802        return Error("Invalid WIDE_INTEGER record");
803
804      unsigned NumWords = Record.size();
805      SmallVector<uint64_t, 8> Words;
806      Words.resize(NumWords);
807      for (unsigned i = 0; i != NumWords; ++i)
808        Words[i] = DecodeSignRotatedValue(Record[i]);
809      V = Context.getConstantInt(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
810                                 NumWords, &Words[0]));
811      break;
812    }
813    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
814      if (Record.empty())
815        return Error("Invalid FLOAT record");
816      if (CurTy == Type::FloatTy)
817        V = Context.getConstantFP(APFloat(APInt(32, (uint32_t)Record[0])));
818      else if (CurTy == Type::DoubleTy)
819        V = Context.getConstantFP(APFloat(APInt(64, Record[0])));
820      else if (CurTy == Type::X86_FP80Ty) {
821        // Bits are not stored the same way as a normal i80 APInt, compensate.
822        uint64_t Rearrange[2];
823        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
824        Rearrange[1] = Record[0] >> 48;
825        V = Context.getConstantFP(APFloat(APInt(80, 2, Rearrange)));
826      } else if (CurTy == Type::FP128Ty)
827        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0]), true));
828      else if (CurTy == Type::PPC_FP128Ty)
829        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0])));
830      else
831        V = Context.getUndef(CurTy);
832      break;
833    }
834
835    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
836      if (Record.empty())
837        return Error("Invalid CST_AGGREGATE record");
838
839      unsigned Size = Record.size();
840      std::vector<Constant*> Elts;
841
842      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
843        for (unsigned i = 0; i != Size; ++i)
844          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
845                                                     STy->getElementType(i)));
846        V = Context.getConstantStruct(STy, Elts);
847      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
848        const Type *EltTy = ATy->getElementType();
849        for (unsigned i = 0; i != Size; ++i)
850          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
851        V = Context.getConstantArray(ATy, Elts);
852      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
853        const Type *EltTy = VTy->getElementType();
854        for (unsigned i = 0; i != Size; ++i)
855          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
856        V = Context.getConstantVector(Elts);
857      } else {
858        V = Context.getUndef(CurTy);
859      }
860      break;
861    }
862    case bitc::CST_CODE_STRING: { // STRING: [values]
863      if (Record.empty())
864        return Error("Invalid CST_AGGREGATE record");
865
866      const ArrayType *ATy = cast<ArrayType>(CurTy);
867      const Type *EltTy = ATy->getElementType();
868
869      unsigned Size = Record.size();
870      std::vector<Constant*> Elts;
871      for (unsigned i = 0; i != Size; ++i)
872        Elts.push_back(Context.getConstantInt(EltTy, Record[i]));
873      V = Context.getConstantArray(ATy, Elts);
874      break;
875    }
876    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
877      if (Record.empty())
878        return Error("Invalid CST_AGGREGATE record");
879
880      const ArrayType *ATy = cast<ArrayType>(CurTy);
881      const Type *EltTy = ATy->getElementType();
882
883      unsigned Size = Record.size();
884      std::vector<Constant*> Elts;
885      for (unsigned i = 0; i != Size; ++i)
886        Elts.push_back(Context.getConstantInt(EltTy, Record[i]));
887      Elts.push_back(Context.getNullValue(EltTy));
888      V = Context.getConstantArray(ATy, Elts);
889      break;
890    }
891    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
892      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
893      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
894      if (Opc < 0) {
895        V = Context.getUndef(CurTy);  // Unknown binop.
896      } else {
897        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
898        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
899        V = Context.getConstantExpr(Opc, LHS, RHS);
900      }
901      break;
902    }
903    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
904      if (Record.size() < 3) return Error("Invalid CE_CAST record");
905      int Opc = GetDecodedCastOpcode(Record[0]);
906      if (Opc < 0) {
907        V = Context.getUndef(CurTy);  // Unknown cast.
908      } else {
909        const Type *OpTy = getTypeByID(Record[1]);
910        if (!OpTy) return Error("Invalid CE_CAST record");
911        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
912        V = Context.getConstantExprCast(Opc, Op, CurTy);
913      }
914      break;
915    }
916    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
917      if (Record.size() & 1) return Error("Invalid CE_GEP record");
918      SmallVector<Constant*, 16> Elts;
919      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
920        const Type *ElTy = getTypeByID(Record[i]);
921        if (!ElTy) return Error("Invalid CE_GEP record");
922        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
923      }
924      V = Context.getConstantExprGetElementPtr(Elts[0], &Elts[1],
925                                               Elts.size()-1);
926      break;
927    }
928    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
929      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
930      V = Context.getConstantExprSelect(ValueList.getConstantFwdRef(Record[0],
931                                                              Type::Int1Ty),
932                                  ValueList.getConstantFwdRef(Record[1],CurTy),
933                                  ValueList.getConstantFwdRef(Record[2],CurTy));
934      break;
935    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
936      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
937      const VectorType *OpTy =
938        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
939      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
940      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
941      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
942      V = Context.getConstantExprExtractElement(Op0, Op1);
943      break;
944    }
945    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
946      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
947      if (Record.size() < 3 || OpTy == 0)
948        return Error("Invalid CE_INSERTELT record");
949      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
950      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
951                                                  OpTy->getElementType());
952      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
953      V = Context.getConstantExprInsertElement(Op0, Op1, Op2);
954      break;
955    }
956    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
957      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
958      if (Record.size() < 3 || OpTy == 0)
959        return Error("Invalid CE_SHUFFLEVEC record");
960      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
961      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
962      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
963                                                 OpTy->getNumElements());
964      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
965      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
966      break;
967    }
968    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
969      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
970      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
971      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
972        return Error("Invalid CE_SHUFVEC_EX record");
973      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
974      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
975      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
976                                                 RTy->getNumElements());
977      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
978      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
979      break;
980    }
981    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
982      if (Record.size() < 4) return Error("Invalid CE_CMP record");
983      const Type *OpTy = getTypeByID(Record[0]);
984      if (OpTy == 0) return Error("Invalid CE_CMP record");
985      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
986      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
987
988      if (OpTy->isFloatingPoint())
989        V = Context.getConstantExprFCmp(Record[3], Op0, Op1);
990      else if (!isa<VectorType>(OpTy))
991        V = Context.getConstantExprICmp(Record[3], Op0, Op1);
992      else if (OpTy->isFPOrFPVector())
993        V = Context.getConstantExprVFCmp(Record[3], Op0, Op1);
994      else
995        V = Context.getConstantExprVICmp(Record[3], Op0, Op1);
996      break;
997    }
998    case bitc::CST_CODE_INLINEASM: {
999      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1000      std::string AsmStr, ConstrStr;
1001      bool HasSideEffects = Record[0];
1002      unsigned AsmStrSize = Record[1];
1003      if (2+AsmStrSize >= Record.size())
1004        return Error("Invalid INLINEASM record");
1005      unsigned ConstStrSize = Record[2+AsmStrSize];
1006      if (3+AsmStrSize+ConstStrSize > Record.size())
1007        return Error("Invalid INLINEASM record");
1008
1009      for (unsigned i = 0; i != AsmStrSize; ++i)
1010        AsmStr += (char)Record[2+i];
1011      for (unsigned i = 0; i != ConstStrSize; ++i)
1012        ConstrStr += (char)Record[3+AsmStrSize+i];
1013      const PointerType *PTy = cast<PointerType>(CurTy);
1014      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1015                         AsmStr, ConstrStr, HasSideEffects);
1016      break;
1017    }
1018    case bitc::CST_CODE_MDSTRING: {
1019      unsigned MDStringLength = Record.size();
1020      SmallString<8> String;
1021      String.resize(MDStringLength);
1022      for (unsigned i = 0; i != MDStringLength; ++i)
1023        String[i] = Record[i];
1024      V = Context.getMDString(String.c_str(), String.c_str() + MDStringLength);
1025      break;
1026    }
1027    case bitc::CST_CODE_MDNODE: {
1028      if (Record.empty() || Record.size() % 2 == 1)
1029        return Error("Invalid CST_MDNODE record");
1030
1031      unsigned Size = Record.size();
1032      SmallVector<Value*, 8> Elts;
1033      for (unsigned i = 0; i != Size; i += 2) {
1034        const Type *Ty = getTypeByID(Record[i], false);
1035        if (Ty != Type::VoidTy)
1036          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1037        else
1038          Elts.push_back(NULL);
1039      }
1040      V = Context.getMDNode(&Elts[0], Elts.size());
1041      break;
1042    }
1043    }
1044
1045    ValueList.AssignValue(V, NextCstNo);
1046    ++NextCstNo;
1047  }
1048
1049  if (NextCstNo != ValueList.size())
1050    return Error("Invalid constant reference!");
1051
1052  if (Stream.ReadBlockEnd())
1053    return Error("Error at end of constants block");
1054
1055  // Once all the constants have been read, go through and resolve forward
1056  // references.
1057  ValueList.ResolveConstantForwardRefs();
1058  return false;
1059}
1060
1061/// RememberAndSkipFunctionBody - When we see the block for a function body,
1062/// remember where it is and then skip it.  This lets us lazily deserialize the
1063/// functions.
1064bool BitcodeReader::RememberAndSkipFunctionBody() {
1065  // Get the function we are talking about.
1066  if (FunctionsWithBodies.empty())
1067    return Error("Insufficient function protos");
1068
1069  Function *Fn = FunctionsWithBodies.back();
1070  FunctionsWithBodies.pop_back();
1071
1072  // Save the current stream state.
1073  uint64_t CurBit = Stream.GetCurrentBitNo();
1074  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1075
1076  // Set the functions linkage to GhostLinkage so we know it is lazily
1077  // deserialized.
1078  Fn->setLinkage(GlobalValue::GhostLinkage);
1079
1080  // Skip over the function block for now.
1081  if (Stream.SkipBlock())
1082    return Error("Malformed block record");
1083  return false;
1084}
1085
1086bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1087  // Reject multiple MODULE_BLOCK's in a single bitstream.
1088  if (TheModule)
1089    return Error("Multiple MODULE_BLOCKs in same stream");
1090
1091  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1092    return Error("Malformed block record");
1093
1094  // Otherwise, create the module.
1095  TheModule = new Module(ModuleID, Context);
1096
1097  SmallVector<uint64_t, 64> Record;
1098  std::vector<std::string> SectionTable;
1099  std::vector<std::string> GCTable;
1100
1101  // Read all the records for this module.
1102  while (!Stream.AtEndOfStream()) {
1103    unsigned Code = Stream.ReadCode();
1104    if (Code == bitc::END_BLOCK) {
1105      if (Stream.ReadBlockEnd())
1106        return Error("Error at end of module block");
1107
1108      // Patch the initializers for globals and aliases up.
1109      ResolveGlobalAndAliasInits();
1110      if (!GlobalInits.empty() || !AliasInits.empty())
1111        return Error("Malformed global initializer set");
1112      if (!FunctionsWithBodies.empty())
1113        return Error("Too few function bodies found");
1114
1115      // Look for intrinsic functions which need to be upgraded at some point
1116      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1117           FI != FE; ++FI) {
1118        Function* NewFn;
1119        if (UpgradeIntrinsicFunction(FI, NewFn))
1120          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1121      }
1122
1123      // Force deallocation of memory for these vectors to favor the client that
1124      // want lazy deserialization.
1125      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1126      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1127      std::vector<Function*>().swap(FunctionsWithBodies);
1128      return false;
1129    }
1130
1131    if (Code == bitc::ENTER_SUBBLOCK) {
1132      switch (Stream.ReadSubBlockID()) {
1133      default:  // Skip unknown content.
1134        if (Stream.SkipBlock())
1135          return Error("Malformed block record");
1136        break;
1137      case bitc::BLOCKINFO_BLOCK_ID:
1138        if (Stream.ReadBlockInfoBlock())
1139          return Error("Malformed BlockInfoBlock");
1140        break;
1141      case bitc::PARAMATTR_BLOCK_ID:
1142        if (ParseAttributeBlock())
1143          return true;
1144        break;
1145      case bitc::TYPE_BLOCK_ID:
1146        if (ParseTypeTable())
1147          return true;
1148        break;
1149      case bitc::TYPE_SYMTAB_BLOCK_ID:
1150        if (ParseTypeSymbolTable())
1151          return true;
1152        break;
1153      case bitc::VALUE_SYMTAB_BLOCK_ID:
1154        if (ParseValueSymbolTable())
1155          return true;
1156        break;
1157      case bitc::CONSTANTS_BLOCK_ID:
1158        if (ParseConstants() || ResolveGlobalAndAliasInits())
1159          return true;
1160        break;
1161      case bitc::FUNCTION_BLOCK_ID:
1162        // If this is the first function body we've seen, reverse the
1163        // FunctionsWithBodies list.
1164        if (!HasReversedFunctionsWithBodies) {
1165          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1166          HasReversedFunctionsWithBodies = true;
1167        }
1168
1169        if (RememberAndSkipFunctionBody())
1170          return true;
1171        break;
1172      }
1173      continue;
1174    }
1175
1176    if (Code == bitc::DEFINE_ABBREV) {
1177      Stream.ReadAbbrevRecord();
1178      continue;
1179    }
1180
1181    // Read a record.
1182    switch (Stream.ReadRecord(Code, Record)) {
1183    default: break;  // Default behavior, ignore unknown content.
1184    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1185      if (Record.size() < 1)
1186        return Error("Malformed MODULE_CODE_VERSION");
1187      // Only version #0 is supported so far.
1188      if (Record[0] != 0)
1189        return Error("Unknown bitstream version!");
1190      break;
1191    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1192      std::string S;
1193      if (ConvertToString(Record, 0, S))
1194        return Error("Invalid MODULE_CODE_TRIPLE record");
1195      TheModule->setTargetTriple(S);
1196      break;
1197    }
1198    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1199      std::string S;
1200      if (ConvertToString(Record, 0, S))
1201        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1202      TheModule->setDataLayout(S);
1203      break;
1204    }
1205    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1206      std::string S;
1207      if (ConvertToString(Record, 0, S))
1208        return Error("Invalid MODULE_CODE_ASM record");
1209      TheModule->setModuleInlineAsm(S);
1210      break;
1211    }
1212    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1213      std::string S;
1214      if (ConvertToString(Record, 0, S))
1215        return Error("Invalid MODULE_CODE_DEPLIB record");
1216      TheModule->addLibrary(S);
1217      break;
1218    }
1219    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1220      std::string S;
1221      if (ConvertToString(Record, 0, S))
1222        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1223      SectionTable.push_back(S);
1224      break;
1225    }
1226    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1227      std::string S;
1228      if (ConvertToString(Record, 0, S))
1229        return Error("Invalid MODULE_CODE_GCNAME record");
1230      GCTable.push_back(S);
1231      break;
1232    }
1233    // GLOBALVAR: [pointer type, isconst, initid,
1234    //             linkage, alignment, section, visibility, threadlocal]
1235    case bitc::MODULE_CODE_GLOBALVAR: {
1236      if (Record.size() < 6)
1237        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1238      const Type *Ty = getTypeByID(Record[0]);
1239      if (!isa<PointerType>(Ty))
1240        return Error("Global not a pointer type!");
1241      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1242      Ty = cast<PointerType>(Ty)->getElementType();
1243
1244      bool isConstant = Record[1];
1245      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1246      unsigned Alignment = (1 << Record[4]) >> 1;
1247      std::string Section;
1248      if (Record[5]) {
1249        if (Record[5]-1 >= SectionTable.size())
1250          return Error("Invalid section ID");
1251        Section = SectionTable[Record[5]-1];
1252      }
1253      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1254      if (Record.size() > 6)
1255        Visibility = GetDecodedVisibility(Record[6]);
1256      bool isThreadLocal = false;
1257      if (Record.size() > 7)
1258        isThreadLocal = Record[7];
1259
1260      GlobalVariable *NewGV =
1261        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1262                           isThreadLocal, AddressSpace);
1263      NewGV->setAlignment(Alignment);
1264      if (!Section.empty())
1265        NewGV->setSection(Section);
1266      NewGV->setVisibility(Visibility);
1267      NewGV->setThreadLocal(isThreadLocal);
1268
1269      ValueList.push_back(NewGV);
1270
1271      // Remember which value to use for the global initializer.
1272      if (unsigned InitID = Record[2])
1273        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1274      break;
1275    }
1276    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1277    //             alignment, section, visibility, gc]
1278    case bitc::MODULE_CODE_FUNCTION: {
1279      if (Record.size() < 8)
1280        return Error("Invalid MODULE_CODE_FUNCTION record");
1281      const Type *Ty = getTypeByID(Record[0]);
1282      if (!isa<PointerType>(Ty))
1283        return Error("Function not a pointer type!");
1284      const FunctionType *FTy =
1285        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1286      if (!FTy)
1287        return Error("Function not a pointer to function type!");
1288
1289      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1290                                        "", TheModule);
1291
1292      Func->setCallingConv(Record[1]);
1293      bool isProto = Record[2];
1294      Func->setLinkage(GetDecodedLinkage(Record[3]));
1295      Func->setAttributes(getAttributes(Record[4]));
1296
1297      Func->setAlignment((1 << Record[5]) >> 1);
1298      if (Record[6]) {
1299        if (Record[6]-1 >= SectionTable.size())
1300          return Error("Invalid section ID");
1301        Func->setSection(SectionTable[Record[6]-1]);
1302      }
1303      Func->setVisibility(GetDecodedVisibility(Record[7]));
1304      if (Record.size() > 8 && Record[8]) {
1305        if (Record[8]-1 > GCTable.size())
1306          return Error("Invalid GC ID");
1307        Func->setGC(GCTable[Record[8]-1].c_str());
1308      }
1309      ValueList.push_back(Func);
1310
1311      // If this is a function with a body, remember the prototype we are
1312      // creating now, so that we can match up the body with them later.
1313      if (!isProto)
1314        FunctionsWithBodies.push_back(Func);
1315      break;
1316    }
1317    // ALIAS: [alias type, aliasee val#, linkage]
1318    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1319    case bitc::MODULE_CODE_ALIAS: {
1320      if (Record.size() < 3)
1321        return Error("Invalid MODULE_ALIAS record");
1322      const Type *Ty = getTypeByID(Record[0]);
1323      if (!isa<PointerType>(Ty))
1324        return Error("Function not a pointer type!");
1325
1326      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1327                                           "", 0, TheModule);
1328      // Old bitcode files didn't have visibility field.
1329      if (Record.size() > 3)
1330        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1331      ValueList.push_back(NewGA);
1332      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1333      break;
1334    }
1335    /// MODULE_CODE_PURGEVALS: [numvals]
1336    case bitc::MODULE_CODE_PURGEVALS:
1337      // Trim down the value list to the specified size.
1338      if (Record.size() < 1 || Record[0] > ValueList.size())
1339        return Error("Invalid MODULE_PURGEVALS record");
1340      ValueList.shrinkTo(Record[0]);
1341      break;
1342    }
1343    Record.clear();
1344  }
1345
1346  return Error("Premature end of bitstream");
1347}
1348
1349bool BitcodeReader::ParseBitcode() {
1350  TheModule = 0;
1351
1352  if (Buffer->getBufferSize() & 3)
1353    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1354
1355  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1356  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1357
1358  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1359  // The magic number is 0x0B17C0DE stored in little endian.
1360  if (isBitcodeWrapper(BufPtr, BufEnd))
1361    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1362      return Error("Invalid bitcode wrapper header");
1363
1364  StreamFile.init(BufPtr, BufEnd);
1365  Stream.init(StreamFile);
1366
1367  // Sniff for the signature.
1368  if (Stream.Read(8) != 'B' ||
1369      Stream.Read(8) != 'C' ||
1370      Stream.Read(4) != 0x0 ||
1371      Stream.Read(4) != 0xC ||
1372      Stream.Read(4) != 0xE ||
1373      Stream.Read(4) != 0xD)
1374    return Error("Invalid bitcode signature");
1375
1376  // We expect a number of well-defined blocks, though we don't necessarily
1377  // need to understand them all.
1378  while (!Stream.AtEndOfStream()) {
1379    unsigned Code = Stream.ReadCode();
1380
1381    if (Code != bitc::ENTER_SUBBLOCK)
1382      return Error("Invalid record at top-level");
1383
1384    unsigned BlockID = Stream.ReadSubBlockID();
1385
1386    // We only know the MODULE subblock ID.
1387    switch (BlockID) {
1388    case bitc::BLOCKINFO_BLOCK_ID:
1389      if (Stream.ReadBlockInfoBlock())
1390        return Error("Malformed BlockInfoBlock");
1391      break;
1392    case bitc::MODULE_BLOCK_ID:
1393      if (ParseModule(Buffer->getBufferIdentifier()))
1394        return true;
1395      break;
1396    default:
1397      if (Stream.SkipBlock())
1398        return Error("Malformed block record");
1399      break;
1400    }
1401  }
1402
1403  return false;
1404}
1405
1406
1407/// ParseFunctionBody - Lazily parse the specified function body block.
1408bool BitcodeReader::ParseFunctionBody(Function *F) {
1409  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1410    return Error("Malformed block record");
1411
1412  unsigned ModuleValueListSize = ValueList.size();
1413
1414  // Add all the function arguments to the value table.
1415  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1416    ValueList.push_back(I);
1417
1418  unsigned NextValueNo = ValueList.size();
1419  BasicBlock *CurBB = 0;
1420  unsigned CurBBNo = 0;
1421
1422  // Read all the records.
1423  SmallVector<uint64_t, 64> Record;
1424  while (1) {
1425    unsigned Code = Stream.ReadCode();
1426    if (Code == bitc::END_BLOCK) {
1427      if (Stream.ReadBlockEnd())
1428        return Error("Error at end of function block");
1429      break;
1430    }
1431
1432    if (Code == bitc::ENTER_SUBBLOCK) {
1433      switch (Stream.ReadSubBlockID()) {
1434      default:  // Skip unknown content.
1435        if (Stream.SkipBlock())
1436          return Error("Malformed block record");
1437        break;
1438      case bitc::CONSTANTS_BLOCK_ID:
1439        if (ParseConstants()) return true;
1440        NextValueNo = ValueList.size();
1441        break;
1442      case bitc::VALUE_SYMTAB_BLOCK_ID:
1443        if (ParseValueSymbolTable()) return true;
1444        break;
1445      }
1446      continue;
1447    }
1448
1449    if (Code == bitc::DEFINE_ABBREV) {
1450      Stream.ReadAbbrevRecord();
1451      continue;
1452    }
1453
1454    // Read a record.
1455    Record.clear();
1456    Instruction *I = 0;
1457    switch (Stream.ReadRecord(Code, Record)) {
1458    default: // Default behavior: reject
1459      return Error("Unknown instruction");
1460    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1461      if (Record.size() < 1 || Record[0] == 0)
1462        return Error("Invalid DECLAREBLOCKS record");
1463      // Create all the basic blocks for the function.
1464      FunctionBBs.resize(Record[0]);
1465      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1466        FunctionBBs[i] = BasicBlock::Create("", F);
1467      CurBB = FunctionBBs[0];
1468      continue;
1469
1470    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1471      unsigned OpNum = 0;
1472      Value *LHS, *RHS;
1473      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1474          getValue(Record, OpNum, LHS->getType(), RHS) ||
1475          OpNum+1 != Record.size())
1476        return Error("Invalid BINOP record");
1477
1478      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1479      if (Opc == -1) return Error("Invalid BINOP record");
1480      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1481      break;
1482    }
1483    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1484      unsigned OpNum = 0;
1485      Value *Op;
1486      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1487          OpNum+2 != Record.size())
1488        return Error("Invalid CAST record");
1489
1490      const Type *ResTy = getTypeByID(Record[OpNum]);
1491      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1492      if (Opc == -1 || ResTy == 0)
1493        return Error("Invalid CAST record");
1494      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1495      break;
1496    }
1497    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1498      unsigned OpNum = 0;
1499      Value *BasePtr;
1500      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1501        return Error("Invalid GEP record");
1502
1503      SmallVector<Value*, 16> GEPIdx;
1504      while (OpNum != Record.size()) {
1505        Value *Op;
1506        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1507          return Error("Invalid GEP record");
1508        GEPIdx.push_back(Op);
1509      }
1510
1511      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1512      break;
1513    }
1514
1515    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1516                                       // EXTRACTVAL: [opty, opval, n x indices]
1517      unsigned OpNum = 0;
1518      Value *Agg;
1519      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1520        return Error("Invalid EXTRACTVAL record");
1521
1522      SmallVector<unsigned, 4> EXTRACTVALIdx;
1523      for (unsigned RecSize = Record.size();
1524           OpNum != RecSize; ++OpNum) {
1525        uint64_t Index = Record[OpNum];
1526        if ((unsigned)Index != Index)
1527          return Error("Invalid EXTRACTVAL index");
1528        EXTRACTVALIdx.push_back((unsigned)Index);
1529      }
1530
1531      I = ExtractValueInst::Create(Agg,
1532                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1533      break;
1534    }
1535
1536    case bitc::FUNC_CODE_INST_INSERTVAL: {
1537                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1538      unsigned OpNum = 0;
1539      Value *Agg;
1540      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1541        return Error("Invalid INSERTVAL record");
1542      Value *Val;
1543      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1544        return Error("Invalid INSERTVAL record");
1545
1546      SmallVector<unsigned, 4> INSERTVALIdx;
1547      for (unsigned RecSize = Record.size();
1548           OpNum != RecSize; ++OpNum) {
1549        uint64_t Index = Record[OpNum];
1550        if ((unsigned)Index != Index)
1551          return Error("Invalid INSERTVAL index");
1552        INSERTVALIdx.push_back((unsigned)Index);
1553      }
1554
1555      I = InsertValueInst::Create(Agg, Val,
1556                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1557      break;
1558    }
1559
1560    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1561      // obsolete form of select
1562      // handles select i1 ... in old bitcode
1563      unsigned OpNum = 0;
1564      Value *TrueVal, *FalseVal, *Cond;
1565      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1566          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1567          getValue(Record, OpNum, Type::Int1Ty, Cond))
1568        return Error("Invalid SELECT record");
1569
1570      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1571      break;
1572    }
1573
1574    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1575      // new form of select
1576      // handles select i1 or select [N x i1]
1577      unsigned OpNum = 0;
1578      Value *TrueVal, *FalseVal, *Cond;
1579      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1580          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1581          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1582        return Error("Invalid SELECT record");
1583
1584      // select condition can be either i1 or [N x i1]
1585      if (const VectorType* vector_type =
1586          dyn_cast<const VectorType>(Cond->getType())) {
1587        // expect <n x i1>
1588        if (vector_type->getElementType() != Type::Int1Ty)
1589          return Error("Invalid SELECT condition type");
1590      } else {
1591        // expect i1
1592        if (Cond->getType() != Type::Int1Ty)
1593          return Error("Invalid SELECT condition type");
1594      }
1595
1596      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1597      break;
1598    }
1599
1600    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1601      unsigned OpNum = 0;
1602      Value *Vec, *Idx;
1603      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1604          getValue(Record, OpNum, Type::Int32Ty, Idx))
1605        return Error("Invalid EXTRACTELT record");
1606      I = new ExtractElementInst(Vec, Idx);
1607      break;
1608    }
1609
1610    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1611      unsigned OpNum = 0;
1612      Value *Vec, *Elt, *Idx;
1613      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1614          getValue(Record, OpNum,
1615                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1616          getValue(Record, OpNum, Type::Int32Ty, Idx))
1617        return Error("Invalid INSERTELT record");
1618      I = InsertElementInst::Create(Vec, Elt, Idx);
1619      break;
1620    }
1621
1622    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1623      unsigned OpNum = 0;
1624      Value *Vec1, *Vec2, *Mask;
1625      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1626          getValue(Record, OpNum, Vec1->getType(), Vec2))
1627        return Error("Invalid SHUFFLEVEC record");
1628
1629      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1630        return Error("Invalid SHUFFLEVEC record");
1631      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1632      break;
1633    }
1634
1635    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1636      // VFCmp/VICmp
1637      // or old form of ICmp/FCmp returning bool
1638      unsigned OpNum = 0;
1639      Value *LHS, *RHS;
1640      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1641          getValue(Record, OpNum, LHS->getType(), RHS) ||
1642          OpNum+1 != Record.size())
1643        return Error("Invalid CMP record");
1644
1645      if (LHS->getType()->isFloatingPoint())
1646        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1647      else if (!isa<VectorType>(LHS->getType()))
1648        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1649      else if (LHS->getType()->isFPOrFPVector())
1650        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1651      else
1652        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1653      break;
1654    }
1655    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1656      // Fcmp/ICmp returning bool or vector of bool
1657      unsigned OpNum = 0;
1658      Value *LHS, *RHS;
1659      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1660          getValue(Record, OpNum, LHS->getType(), RHS) ||
1661          OpNum+1 != Record.size())
1662        return Error("Invalid CMP2 record");
1663
1664      if (LHS->getType()->isFPOrFPVector())
1665        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1666      else
1667        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1668      break;
1669    }
1670    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1671      if (Record.size() != 2)
1672        return Error("Invalid GETRESULT record");
1673      unsigned OpNum = 0;
1674      Value *Op;
1675      getValueTypePair(Record, OpNum, NextValueNo, Op);
1676      unsigned Index = Record[1];
1677      I = ExtractValueInst::Create(Op, Index);
1678      break;
1679    }
1680
1681    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1682      {
1683        unsigned Size = Record.size();
1684        if (Size == 0) {
1685          I = ReturnInst::Create();
1686          break;
1687        }
1688
1689        unsigned OpNum = 0;
1690        SmallVector<Value *,4> Vs;
1691        do {
1692          Value *Op = NULL;
1693          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1694            return Error("Invalid RET record");
1695          Vs.push_back(Op);
1696        } while(OpNum != Record.size());
1697
1698        const Type *ReturnType = F->getReturnType();
1699        if (Vs.size() > 1 ||
1700            (isa<StructType>(ReturnType) &&
1701             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1702          Value *RV = Context.getUndef(ReturnType);
1703          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1704            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1705            CurBB->getInstList().push_back(I);
1706            ValueList.AssignValue(I, NextValueNo++);
1707            RV = I;
1708          }
1709          I = ReturnInst::Create(RV);
1710          break;
1711        }
1712
1713        I = ReturnInst::Create(Vs[0]);
1714        break;
1715      }
1716    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1717      if (Record.size() != 1 && Record.size() != 3)
1718        return Error("Invalid BR record");
1719      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1720      if (TrueDest == 0)
1721        return Error("Invalid BR record");
1722
1723      if (Record.size() == 1)
1724        I = BranchInst::Create(TrueDest);
1725      else {
1726        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1727        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1728        if (FalseDest == 0 || Cond == 0)
1729          return Error("Invalid BR record");
1730        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1731      }
1732      break;
1733    }
1734    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1735      if (Record.size() < 3 || (Record.size() & 1) == 0)
1736        return Error("Invalid SWITCH record");
1737      const Type *OpTy = getTypeByID(Record[0]);
1738      Value *Cond = getFnValueByID(Record[1], OpTy);
1739      BasicBlock *Default = getBasicBlock(Record[2]);
1740      if (OpTy == 0 || Cond == 0 || Default == 0)
1741        return Error("Invalid SWITCH record");
1742      unsigned NumCases = (Record.size()-3)/2;
1743      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1744      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1745        ConstantInt *CaseVal =
1746          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1747        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1748        if (CaseVal == 0 || DestBB == 0) {
1749          delete SI;
1750          return Error("Invalid SWITCH record!");
1751        }
1752        SI->addCase(CaseVal, DestBB);
1753      }
1754      I = SI;
1755      break;
1756    }
1757
1758    case bitc::FUNC_CODE_INST_INVOKE: {
1759      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1760      if (Record.size() < 4) return Error("Invalid INVOKE record");
1761      AttrListPtr PAL = getAttributes(Record[0]);
1762      unsigned CCInfo = Record[1];
1763      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1764      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1765
1766      unsigned OpNum = 4;
1767      Value *Callee;
1768      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1769        return Error("Invalid INVOKE record");
1770
1771      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1772      const FunctionType *FTy = !CalleeTy ? 0 :
1773        dyn_cast<FunctionType>(CalleeTy->getElementType());
1774
1775      // Check that the right number of fixed parameters are here.
1776      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1777          Record.size() < OpNum+FTy->getNumParams())
1778        return Error("Invalid INVOKE record");
1779
1780      SmallVector<Value*, 16> Ops;
1781      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1782        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1783        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1784      }
1785
1786      if (!FTy->isVarArg()) {
1787        if (Record.size() != OpNum)
1788          return Error("Invalid INVOKE record");
1789      } else {
1790        // Read type/value pairs for varargs params.
1791        while (OpNum != Record.size()) {
1792          Value *Op;
1793          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1794            return Error("Invalid INVOKE record");
1795          Ops.push_back(Op);
1796        }
1797      }
1798
1799      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1800                             Ops.begin(), Ops.end());
1801      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1802      cast<InvokeInst>(I)->setAttributes(PAL);
1803      break;
1804    }
1805    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1806      I = new UnwindInst();
1807      break;
1808    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1809      I = new UnreachableInst();
1810      break;
1811    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1812      if (Record.size() < 1 || ((Record.size()-1)&1))
1813        return Error("Invalid PHI record");
1814      const Type *Ty = getTypeByID(Record[0]);
1815      if (!Ty) return Error("Invalid PHI record");
1816
1817      PHINode *PN = PHINode::Create(Ty);
1818      PN->reserveOperandSpace((Record.size()-1)/2);
1819
1820      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1821        Value *V = getFnValueByID(Record[1+i], Ty);
1822        BasicBlock *BB = getBasicBlock(Record[2+i]);
1823        if (!V || !BB) return Error("Invalid PHI record");
1824        PN->addIncoming(V, BB);
1825      }
1826      I = PN;
1827      break;
1828    }
1829
1830    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1831      if (Record.size() < 3)
1832        return Error("Invalid MALLOC record");
1833      const PointerType *Ty =
1834        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1835      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1836      unsigned Align = Record[2];
1837      if (!Ty || !Size) return Error("Invalid MALLOC record");
1838      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1839      break;
1840    }
1841    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1842      unsigned OpNum = 0;
1843      Value *Op;
1844      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1845          OpNum != Record.size())
1846        return Error("Invalid FREE record");
1847      I = new FreeInst(Op);
1848      break;
1849    }
1850    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1851      if (Record.size() < 3)
1852        return Error("Invalid ALLOCA record");
1853      const PointerType *Ty =
1854        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1855      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1856      unsigned Align = Record[2];
1857      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1858      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1859      break;
1860    }
1861    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1862      unsigned OpNum = 0;
1863      Value *Op;
1864      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1865          OpNum+2 != Record.size())
1866        return Error("Invalid LOAD record");
1867
1868      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1869      break;
1870    }
1871    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1872      unsigned OpNum = 0;
1873      Value *Val, *Ptr;
1874      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1875          getValue(Record, OpNum,
1876                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1877          OpNum+2 != Record.size())
1878        return Error("Invalid STORE record");
1879
1880      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1881      break;
1882    }
1883    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1884      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1885      unsigned OpNum = 0;
1886      Value *Val, *Ptr;
1887      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1888          getValue(Record, OpNum,
1889                   Context.getPointerTypeUnqual(Val->getType()), Ptr)||
1890          OpNum+2 != Record.size())
1891        return Error("Invalid STORE record");
1892
1893      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1894      break;
1895    }
1896    case bitc::FUNC_CODE_INST_CALL: {
1897      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1898      if (Record.size() < 3)
1899        return Error("Invalid CALL record");
1900
1901      AttrListPtr PAL = getAttributes(Record[0]);
1902      unsigned CCInfo = Record[1];
1903
1904      unsigned OpNum = 2;
1905      Value *Callee;
1906      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1907        return Error("Invalid CALL record");
1908
1909      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1910      const FunctionType *FTy = 0;
1911      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1912      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1913        return Error("Invalid CALL record");
1914
1915      SmallVector<Value*, 16> Args;
1916      // Read the fixed params.
1917      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1918        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1919          Args.push_back(getBasicBlock(Record[OpNum]));
1920        else
1921          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1922        if (Args.back() == 0) return Error("Invalid CALL record");
1923      }
1924
1925      // Read type/value pairs for varargs params.
1926      if (!FTy->isVarArg()) {
1927        if (OpNum != Record.size())
1928          return Error("Invalid CALL record");
1929      } else {
1930        while (OpNum != Record.size()) {
1931          Value *Op;
1932          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1933            return Error("Invalid CALL record");
1934          Args.push_back(Op);
1935        }
1936      }
1937
1938      I = CallInst::Create(Callee, Args.begin(), Args.end());
1939      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1940      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1941      cast<CallInst>(I)->setAttributes(PAL);
1942      break;
1943    }
1944    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1945      if (Record.size() < 3)
1946        return Error("Invalid VAARG record");
1947      const Type *OpTy = getTypeByID(Record[0]);
1948      Value *Op = getFnValueByID(Record[1], OpTy);
1949      const Type *ResTy = getTypeByID(Record[2]);
1950      if (!OpTy || !Op || !ResTy)
1951        return Error("Invalid VAARG record");
1952      I = new VAArgInst(Op, ResTy);
1953      break;
1954    }
1955    }
1956
1957    // Add instruction to end of current BB.  If there is no current BB, reject
1958    // this file.
1959    if (CurBB == 0) {
1960      delete I;
1961      return Error("Invalid instruction with no BB");
1962    }
1963    CurBB->getInstList().push_back(I);
1964
1965    // If this was a terminator instruction, move to the next block.
1966    if (isa<TerminatorInst>(I)) {
1967      ++CurBBNo;
1968      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1969    }
1970
1971    // Non-void values get registered in the value table for future use.
1972    if (I && I->getType() != Type::VoidTy)
1973      ValueList.AssignValue(I, NextValueNo++);
1974  }
1975
1976  // Check the function list for unresolved values.
1977  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1978    if (A->getParent() == 0) {
1979      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1980      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1981        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1982          A->replaceAllUsesWith(Context.getUndef(A->getType()));
1983          delete A;
1984        }
1985      }
1986      return Error("Never resolved value found in function!");
1987    }
1988  }
1989
1990  // Trim the value list down to the size it was before we parsed this function.
1991  ValueList.shrinkTo(ModuleValueListSize);
1992  std::vector<BasicBlock*>().swap(FunctionBBs);
1993
1994  return false;
1995}
1996
1997//===----------------------------------------------------------------------===//
1998// ModuleProvider implementation
1999//===----------------------------------------------------------------------===//
2000
2001
2002bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2003  // If it already is material, ignore the request.
2004  if (!F->hasNotBeenReadFromBitcode()) return false;
2005
2006  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2007    DeferredFunctionInfo.find(F);
2008  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2009
2010  // Move the bit stream to the saved position of the deferred function body and
2011  // restore the real linkage type for the function.
2012  Stream.JumpToBit(DFII->second.first);
2013  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2014
2015  if (ParseFunctionBody(F)) {
2016    if (ErrInfo) *ErrInfo = ErrorString;
2017    return true;
2018  }
2019
2020  // Upgrade any old intrinsic calls in the function.
2021  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2022       E = UpgradedIntrinsics.end(); I != E; ++I) {
2023    if (I->first != I->second) {
2024      for (Value::use_iterator UI = I->first->use_begin(),
2025           UE = I->first->use_end(); UI != UE; ) {
2026        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2027          UpgradeIntrinsicCall(CI, I->second);
2028      }
2029    }
2030  }
2031
2032  return false;
2033}
2034
2035void BitcodeReader::dematerializeFunction(Function *F) {
2036  // If this function isn't materialized, or if it is a proto, this is a noop.
2037  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2038    return;
2039
2040  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2041
2042  // Just forget the function body, we can remat it later.
2043  F->deleteBody();
2044  F->setLinkage(GlobalValue::GhostLinkage);
2045}
2046
2047
2048Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2049  // Iterate over the module, deserializing any functions that are still on
2050  // disk.
2051  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2052       F != E; ++F)
2053    if (F->hasNotBeenReadFromBitcode() &&
2054        materializeFunction(F, ErrInfo))
2055      return 0;
2056
2057  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2058  // delete the old functions to clean up. We can't do this unless the entire
2059  // module is materialized because there could always be another function body
2060  // with calls to the old function.
2061  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2062       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2063    if (I->first != I->second) {
2064      for (Value::use_iterator UI = I->first->use_begin(),
2065           UE = I->first->use_end(); UI != UE; ) {
2066        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2067          UpgradeIntrinsicCall(CI, I->second);
2068      }
2069      if (!I->first->use_empty())
2070        I->first->replaceAllUsesWith(I->second);
2071      I->first->eraseFromParent();
2072    }
2073  }
2074  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2075
2076  return TheModule;
2077}
2078
2079
2080/// This method is provided by the parent ModuleProvde class and overriden
2081/// here. It simply releases the module from its provided and frees up our
2082/// state.
2083/// @brief Release our hold on the generated module
2084Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2085  // Since we're losing control of this Module, we must hand it back complete
2086  Module *M = ModuleProvider::releaseModule(ErrInfo);
2087  FreeState();
2088  return M;
2089}
2090
2091
2092//===----------------------------------------------------------------------===//
2093// External interface
2094//===----------------------------------------------------------------------===//
2095
2096/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2097///
2098ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2099                                               LLVMContext& Context,
2100                                               std::string *ErrMsg) {
2101  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2102  if (R->ParseBitcode()) {
2103    if (ErrMsg)
2104      *ErrMsg = R->getErrorString();
2105
2106    // Don't let the BitcodeReader dtor delete 'Buffer'.
2107    R->releaseMemoryBuffer();
2108    delete R;
2109    return 0;
2110  }
2111  return R;
2112}
2113
2114/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2115/// If an error occurs, return null and fill in *ErrMsg if non-null.
2116Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2117                               std::string *ErrMsg){
2118  BitcodeReader *R;
2119  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2120                                                           ErrMsg));
2121  if (!R) return 0;
2122
2123  // Read in the entire module.
2124  Module *M = R->materializeModule(ErrMsg);
2125
2126  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2127  // there was an error.
2128  R->releaseMemoryBuffer();
2129
2130  // If there was no error, tell ModuleProvider not to delete it when its dtor
2131  // is run.
2132  if (M)
2133    M = R->releaseModule(ErrMsg);
2134
2135  delete R;
2136  return M;
2137}
2138