BitcodeReader.cpp revision 75831904220042260c4faece8507a2807acba47f
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> :
166  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    const Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                        NewOps.size());
297      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                         UserCS->getType()->isPacked());
300      } else if (isa<ConstantVector>(UserC)) {
301        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302      } else {
303        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                          NewOps.size());
306      }
307
308      UserC->replaceAllUsesWith(NewC);
309      UserC->destroyConstant();
310      NewOps.clear();
311    }
312
313    // Update all ValueHandles, they should be the only users at this point.
314    Placeholder->replaceAllUsesWith(RealVal);
315    delete Placeholder;
316  }
317}
318
319void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320  if (Idx == size()) {
321    push_back(V);
322    return;
323  }
324
325  if (Idx >= size())
326    resize(Idx+1);
327
328  WeakVH &OldV = MDValuePtrs[Idx];
329  if (OldV == 0) {
330    OldV = V;
331    return;
332  }
333
334  // If there was a forward reference to this value, replace it.
335  MDNode *PrevVal = cast<MDNode>(OldV);
336  OldV->replaceAllUsesWith(V);
337  MDNode::deleteTemporary(PrevVal);
338  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339  // value for Idx.
340  MDValuePtrs[Idx] = V;
341}
342
343Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344  if (Idx >= size())
345    resize(Idx + 1);
346
347  if (Value *V = MDValuePtrs[Idx]) {
348    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349    return V;
350  }
351
352  // Create and return a placeholder, which will later be RAUW'd.
353  Value *V = MDNode::getTemporary(Context, 0, 0);
354  MDValuePtrs[Idx] = V;
355  return V;
356}
357
358const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359  // If the TypeID is in range, return it.
360  if (ID < TypeList.size())
361    return TypeList[ID].get();
362  if (!isTypeTable) return 0;
363
364  // The type table allows forward references.  Push as many Opaque types as
365  // needed to get up to ID.
366  while (TypeList.size() <= ID)
367    TypeList.push_back(OpaqueType::get(Context));
368  return TypeList.back().get();
369}
370
371//===----------------------------------------------------------------------===//
372//  Functions for parsing blocks from the bitcode file
373//===----------------------------------------------------------------------===//
374
375bool BitcodeReader::ParseAttributeBlock() {
376  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377    return Error("Malformed block record");
378
379  if (!MAttributes.empty())
380    return Error("Multiple PARAMATTR blocks found!");
381
382  SmallVector<uint64_t, 64> Record;
383
384  SmallVector<AttributeWithIndex, 8> Attrs;
385
386  // Read all the records.
387  while (1) {
388    unsigned Code = Stream.ReadCode();
389    if (Code == bitc::END_BLOCK) {
390      if (Stream.ReadBlockEnd())
391        return Error("Error at end of PARAMATTR block");
392      return false;
393    }
394
395    if (Code == bitc::ENTER_SUBBLOCK) {
396      // No known subblocks, always skip them.
397      Stream.ReadSubBlockID();
398      if (Stream.SkipBlock())
399        return Error("Malformed block record");
400      continue;
401    }
402
403    if (Code == bitc::DEFINE_ABBREV) {
404      Stream.ReadAbbrevRecord();
405      continue;
406    }
407
408    // Read a record.
409    Record.clear();
410    switch (Stream.ReadRecord(Code, Record)) {
411    default:  // Default behavior: ignore.
412      break;
413    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414      if (Record.size() & 1)
415        return Error("Invalid ENTRY record");
416
417      // FIXME : Remove this autoupgrade code in LLVM 3.0.
418      // If Function attributes are using index 0 then transfer them
419      // to index ~0. Index 0 is used for return value attributes but used to be
420      // used for function attributes.
421      Attributes RetAttribute = Attribute::None;
422      Attributes FnAttribute = Attribute::None;
423      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424        // FIXME: remove in LLVM 3.0
425        // The alignment is stored as a 16-bit raw value from bits 31--16.
426        // We shift the bits above 31 down by 11 bits.
427
428        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429        if (Alignment && !isPowerOf2_32(Alignment))
430          return Error("Alignment is not a power of two.");
431
432        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433        if (Alignment)
434          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436        Record[i+1] = ReconstitutedAttr;
437
438        if (Record[i] == 0)
439          RetAttribute = Record[i+1];
440        else if (Record[i] == ~0U)
441          FnAttribute = Record[i+1];
442      }
443
444      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                              Attribute::ReadOnly|Attribute::ReadNone);
446
447      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448          (RetAttribute & OldRetAttrs) != 0) {
449        if (FnAttribute == Attribute::None) { // add a slot so they get added.
450          Record.push_back(~0U);
451          Record.push_back(0);
452        }
453
454        FnAttribute  |= RetAttribute & OldRetAttrs;
455        RetAttribute &= ~OldRetAttrs;
456      }
457
458      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459        if (Record[i] == 0) {
460          if (RetAttribute != Attribute::None)
461            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462        } else if (Record[i] == ~0U) {
463          if (FnAttribute != Attribute::None)
464            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465        } else if (Record[i+1] != Attribute::None)
466          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467      }
468
469      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470      Attrs.clear();
471      break;
472    }
473    }
474  }
475}
476
477
478bool BitcodeReader::ParseTypeTable() {
479  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480    return Error("Malformed block record");
481
482  if (!TypeList.empty())
483    return Error("Multiple TYPE_BLOCKs found!");
484
485  SmallVector<uint64_t, 64> Record;
486  unsigned NumRecords = 0;
487
488  // Read all the records for this type table.
489  while (1) {
490    unsigned Code = Stream.ReadCode();
491    if (Code == bitc::END_BLOCK) {
492      if (NumRecords != TypeList.size())
493        return Error("Invalid type forward reference in TYPE_BLOCK");
494      if (Stream.ReadBlockEnd())
495        return Error("Error at end of type table block");
496      return false;
497    }
498
499    if (Code == bitc::ENTER_SUBBLOCK) {
500      // No known subblocks, always skip them.
501      Stream.ReadSubBlockID();
502      if (Stream.SkipBlock())
503        return Error("Malformed block record");
504      continue;
505    }
506
507    if (Code == bitc::DEFINE_ABBREV) {
508      Stream.ReadAbbrevRecord();
509      continue;
510    }
511
512    // Read a record.
513    Record.clear();
514    const Type *ResultTy = 0;
515    switch (Stream.ReadRecord(Code, Record)) {
516    default:  // Default behavior: unknown type.
517      ResultTy = 0;
518      break;
519    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521      // type list.  This allows us to reserve space.
522      if (Record.size() < 1)
523        return Error("Invalid TYPE_CODE_NUMENTRY record");
524      TypeList.reserve(Record[0]);
525      continue;
526    case bitc::TYPE_CODE_VOID:      // VOID
527      ResultTy = Type::getVoidTy(Context);
528      break;
529    case bitc::TYPE_CODE_FLOAT:     // FLOAT
530      ResultTy = Type::getFloatTy(Context);
531      break;
532    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533      ResultTy = Type::getDoubleTy(Context);
534      break;
535    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536      ResultTy = Type::getX86_FP80Ty(Context);
537      break;
538    case bitc::TYPE_CODE_FP128:     // FP128
539      ResultTy = Type::getFP128Ty(Context);
540      break;
541    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542      ResultTy = Type::getPPC_FP128Ty(Context);
543      break;
544    case bitc::TYPE_CODE_LABEL:     // LABEL
545      ResultTy = Type::getLabelTy(Context);
546      break;
547    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548      ResultTy = 0;
549      break;
550    case bitc::TYPE_CODE_METADATA:  // METADATA
551      ResultTy = Type::getMetadataTy(Context);
552      break;
553    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
554      ResultTy = Type::getX86_MMXTy(Context);
555      break;
556    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
557      if (Record.size() < 1)
558        return Error("Invalid Integer type record");
559
560      ResultTy = IntegerType::get(Context, Record[0]);
561      break;
562    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
563                                    //          [pointee type, address space]
564      if (Record.size() < 1)
565        return Error("Invalid POINTER type record");
566      unsigned AddressSpace = 0;
567      if (Record.size() == 2)
568        AddressSpace = Record[1];
569      ResultTy = PointerType::get(getTypeByID(Record[0], true),
570                                        AddressSpace);
571      break;
572    }
573    case bitc::TYPE_CODE_FUNCTION: {
574      // FIXME: attrid is dead, remove it in LLVM 3.0
575      // FUNCTION: [vararg, attrid, retty, paramty x N]
576      if (Record.size() < 3)
577        return Error("Invalid FUNCTION type record");
578      std::vector<const Type*> ArgTys;
579      for (unsigned i = 3, e = Record.size(); i != e; ++i)
580        ArgTys.push_back(getTypeByID(Record[i], true));
581
582      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
583                                   Record[0]);
584      break;
585    }
586    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
587      if (Record.size() < 1)
588        return Error("Invalid STRUCT type record");
589      std::vector<const Type*> EltTys;
590      for (unsigned i = 1, e = Record.size(); i != e; ++i)
591        EltTys.push_back(getTypeByID(Record[i], true));
592      ResultTy = StructType::get(Context, EltTys, Record[0]);
593      break;
594    }
595    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
596      if (Record.size() < 2)
597        return Error("Invalid ARRAY type record");
598      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
599      break;
600    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
601      if (Record.size() < 2)
602        return Error("Invalid VECTOR type record");
603      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
604      break;
605    }
606
607    if (NumRecords == TypeList.size()) {
608      // If this is a new type slot, just append it.
609      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
610      ++NumRecords;
611    } else if (ResultTy == 0) {
612      // Otherwise, this was forward referenced, so an opaque type was created,
613      // but the result type is actually just an opaque.  Leave the one we
614      // created previously.
615      ++NumRecords;
616    } else {
617      // Otherwise, this was forward referenced, so an opaque type was created.
618      // Resolve the opaque type to the real type now.
619      assert(NumRecords < TypeList.size() && "Typelist imbalance");
620      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
621
622      // Don't directly push the new type on the Tab. Instead we want to replace
623      // the opaque type we previously inserted with the new concrete value. The
624      // refinement from the abstract (opaque) type to the new type causes all
625      // uses of the abstract type to use the concrete type (NewTy). This will
626      // also cause the opaque type to be deleted.
627      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
628
629      // This should have replaced the old opaque type with the new type in the
630      // value table... or with a preexisting type that was already in the
631      // system.  Let's just make sure it did.
632      assert(TypeList[NumRecords-1].get() != OldTy &&
633             "refineAbstractType didn't work!");
634    }
635  }
636}
637
638
639bool BitcodeReader::ParseTypeSymbolTable() {
640  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
641    return Error("Malformed block record");
642
643  SmallVector<uint64_t, 64> Record;
644
645  // Read all the records for this type table.
646  std::string TypeName;
647  while (1) {
648    unsigned Code = Stream.ReadCode();
649    if (Code == bitc::END_BLOCK) {
650      if (Stream.ReadBlockEnd())
651        return Error("Error at end of type symbol table block");
652      return false;
653    }
654
655    if (Code == bitc::ENTER_SUBBLOCK) {
656      // No known subblocks, always skip them.
657      Stream.ReadSubBlockID();
658      if (Stream.SkipBlock())
659        return Error("Malformed block record");
660      continue;
661    }
662
663    if (Code == bitc::DEFINE_ABBREV) {
664      Stream.ReadAbbrevRecord();
665      continue;
666    }
667
668    // Read a record.
669    Record.clear();
670    switch (Stream.ReadRecord(Code, Record)) {
671    default:  // Default behavior: unknown type.
672      break;
673    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
674      if (ConvertToString(Record, 1, TypeName))
675        return Error("Invalid TST_ENTRY record");
676      unsigned TypeID = Record[0];
677      if (TypeID >= TypeList.size())
678        return Error("Invalid Type ID in TST_ENTRY record");
679
680      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
681      TypeName.clear();
682      break;
683    }
684  }
685}
686
687bool BitcodeReader::ParseValueSymbolTable() {
688  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
689    return Error("Malformed block record");
690
691  SmallVector<uint64_t, 64> Record;
692
693  // Read all the records for this value table.
694  SmallString<128> ValueName;
695  while (1) {
696    unsigned Code = Stream.ReadCode();
697    if (Code == bitc::END_BLOCK) {
698      if (Stream.ReadBlockEnd())
699        return Error("Error at end of value symbol table block");
700      return false;
701    }
702    if (Code == bitc::ENTER_SUBBLOCK) {
703      // No known subblocks, always skip them.
704      Stream.ReadSubBlockID();
705      if (Stream.SkipBlock())
706        return Error("Malformed block record");
707      continue;
708    }
709
710    if (Code == bitc::DEFINE_ABBREV) {
711      Stream.ReadAbbrevRecord();
712      continue;
713    }
714
715    // Read a record.
716    Record.clear();
717    switch (Stream.ReadRecord(Code, Record)) {
718    default:  // Default behavior: unknown type.
719      break;
720    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
721      if (ConvertToString(Record, 1, ValueName))
722        return Error("Invalid VST_ENTRY record");
723      unsigned ValueID = Record[0];
724      if (ValueID >= ValueList.size())
725        return Error("Invalid Value ID in VST_ENTRY record");
726      Value *V = ValueList[ValueID];
727
728      V->setName(StringRef(ValueName.data(), ValueName.size()));
729      ValueName.clear();
730      break;
731    }
732    case bitc::VST_CODE_BBENTRY: {
733      if (ConvertToString(Record, 1, ValueName))
734        return Error("Invalid VST_BBENTRY record");
735      BasicBlock *BB = getBasicBlock(Record[0]);
736      if (BB == 0)
737        return Error("Invalid BB ID in VST_BBENTRY record");
738
739      BB->setName(StringRef(ValueName.data(), ValueName.size()));
740      ValueName.clear();
741      break;
742    }
743    }
744  }
745}
746
747bool BitcodeReader::ParseMetadata() {
748  unsigned NextMDValueNo = MDValueList.size();
749
750  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
751    return Error("Malformed block record");
752
753  SmallVector<uint64_t, 64> Record;
754
755  // Read all the records.
756  while (1) {
757    unsigned Code = Stream.ReadCode();
758    if (Code == bitc::END_BLOCK) {
759      if (Stream.ReadBlockEnd())
760        return Error("Error at end of PARAMATTR block");
761      return false;
762    }
763
764    if (Code == bitc::ENTER_SUBBLOCK) {
765      // No known subblocks, always skip them.
766      Stream.ReadSubBlockID();
767      if (Stream.SkipBlock())
768        return Error("Malformed block record");
769      continue;
770    }
771
772    if (Code == bitc::DEFINE_ABBREV) {
773      Stream.ReadAbbrevRecord();
774      continue;
775    }
776
777    bool IsFunctionLocal = false;
778    // Read a record.
779    Record.clear();
780    Code = Stream.ReadRecord(Code, Record);
781    switch (Code) {
782    default:  // Default behavior: ignore.
783      break;
784    case bitc::METADATA_NAME: {
785      // Read named of the named metadata.
786      unsigned NameLength = Record.size();
787      SmallString<8> Name;
788      Name.resize(NameLength);
789      for (unsigned i = 0; i != NameLength; ++i)
790        Name[i] = Record[i];
791      Record.clear();
792      Code = Stream.ReadCode();
793
794      // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
795      // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
796      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
797      if (NextBitCode == bitc::METADATA_NAMED_NODE) {
798        LLVM2_7MetadataDetected = true;
799      } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
800        assert ( 0 && "Invalid Named Metadata record");
801
802      // Read named metadata elements.
803      unsigned Size = Record.size();
804      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
805      for (unsigned i = 0; i != Size; ++i) {
806        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
807        if (MD == 0)
808          return Error("Malformed metadata record");
809        NMD->addOperand(MD);
810      }
811      // Backwards compatibility hack: NamedMDValues used to be Values,
812      // and they got their own slots in the value numbering. They are no
813      // longer Values, however we still need to account for them in the
814      // numbering in order to be able to read old bitcode files.
815      // FIXME: Remove this in LLVM 3.0.
816      if (LLVM2_7MetadataDetected)
817        MDValueList.AssignValue(0, NextMDValueNo++);
818      break;
819    }
820    case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
821    case bitc::METADATA_FN_NODE2:
822      IsFunctionLocal = true;
823      // fall-through
824    case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
825    case bitc::METADATA_NODE2: {
826
827      // Detect 2.7-era metadata.
828      // FIXME: Remove in LLVM 3.0.
829      if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
830        LLVM2_7MetadataDetected = true;
831
832      if (Record.size() % 2 == 1)
833        return Error("Invalid METADATA_NODE2 record");
834
835      unsigned Size = Record.size();
836      SmallVector<Value*, 8> Elts;
837      for (unsigned i = 0; i != Size; i += 2) {
838        const Type *Ty = getTypeByID(Record[i]);
839        if (!Ty) return Error("Invalid METADATA_NODE2 record");
840        if (Ty->isMetadataTy())
841          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
842        else if (!Ty->isVoidTy())
843          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
844        else
845          Elts.push_back(NULL);
846      }
847      Value *V = MDNode::getWhenValsUnresolved(Context,
848                                               Elts.data(), Elts.size(),
849                                               IsFunctionLocal);
850      IsFunctionLocal = false;
851      MDValueList.AssignValue(V, NextMDValueNo++);
852      break;
853    }
854    case bitc::METADATA_STRING: {
855      unsigned MDStringLength = Record.size();
856      SmallString<8> String;
857      String.resize(MDStringLength);
858      for (unsigned i = 0; i != MDStringLength; ++i)
859        String[i] = Record[i];
860      Value *V = MDString::get(Context,
861                               StringRef(String.data(), String.size()));
862      MDValueList.AssignValue(V, NextMDValueNo++);
863      break;
864    }
865    case bitc::METADATA_KIND: {
866      unsigned RecordLength = Record.size();
867      if (Record.empty() || RecordLength < 2)
868        return Error("Invalid METADATA_KIND record");
869      SmallString<8> Name;
870      Name.resize(RecordLength-1);
871      unsigned Kind = Record[0];
872      for (unsigned i = 1; i != RecordLength; ++i)
873        Name[i-1] = Record[i];
874
875      unsigned NewKind = TheModule->getMDKindID(Name.str());
876      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
877        return Error("Conflicting METADATA_KIND records");
878      break;
879    }
880    }
881  }
882}
883
884/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
885/// the LSB for dense VBR encoding.
886static uint64_t DecodeSignRotatedValue(uint64_t V) {
887  if ((V & 1) == 0)
888    return V >> 1;
889  if (V != 1)
890    return -(V >> 1);
891  // There is no such thing as -0 with integers.  "-0" really means MININT.
892  return 1ULL << 63;
893}
894
895/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
896/// values and aliases that we can.
897bool BitcodeReader::ResolveGlobalAndAliasInits() {
898  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
899  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
900
901  GlobalInitWorklist.swap(GlobalInits);
902  AliasInitWorklist.swap(AliasInits);
903
904  while (!GlobalInitWorklist.empty()) {
905    unsigned ValID = GlobalInitWorklist.back().second;
906    if (ValID >= ValueList.size()) {
907      // Not ready to resolve this yet, it requires something later in the file.
908      GlobalInits.push_back(GlobalInitWorklist.back());
909    } else {
910      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
911        GlobalInitWorklist.back().first->setInitializer(C);
912      else
913        return Error("Global variable initializer is not a constant!");
914    }
915    GlobalInitWorklist.pop_back();
916  }
917
918  while (!AliasInitWorklist.empty()) {
919    unsigned ValID = AliasInitWorklist.back().second;
920    if (ValID >= ValueList.size()) {
921      AliasInits.push_back(AliasInitWorklist.back());
922    } else {
923      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
924        AliasInitWorklist.back().first->setAliasee(C);
925      else
926        return Error("Alias initializer is not a constant!");
927    }
928    AliasInitWorklist.pop_back();
929  }
930  return false;
931}
932
933bool BitcodeReader::ParseConstants() {
934  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
935    return Error("Malformed block record");
936
937  SmallVector<uint64_t, 64> Record;
938
939  // Read all the records for this value table.
940  const Type *CurTy = Type::getInt32Ty(Context);
941  unsigned NextCstNo = ValueList.size();
942  while (1) {
943    unsigned Code = Stream.ReadCode();
944    if (Code == bitc::END_BLOCK)
945      break;
946
947    if (Code == bitc::ENTER_SUBBLOCK) {
948      // No known subblocks, always skip them.
949      Stream.ReadSubBlockID();
950      if (Stream.SkipBlock())
951        return Error("Malformed block record");
952      continue;
953    }
954
955    if (Code == bitc::DEFINE_ABBREV) {
956      Stream.ReadAbbrevRecord();
957      continue;
958    }
959
960    // Read a record.
961    Record.clear();
962    Value *V = 0;
963    unsigned BitCode = Stream.ReadRecord(Code, Record);
964    switch (BitCode) {
965    default:  // Default behavior: unknown constant
966    case bitc::CST_CODE_UNDEF:     // UNDEF
967      V = UndefValue::get(CurTy);
968      break;
969    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
970      if (Record.empty())
971        return Error("Malformed CST_SETTYPE record");
972      if (Record[0] >= TypeList.size())
973        return Error("Invalid Type ID in CST_SETTYPE record");
974      CurTy = TypeList[Record[0]];
975      continue;  // Skip the ValueList manipulation.
976    case bitc::CST_CODE_NULL:      // NULL
977      V = Constant::getNullValue(CurTy);
978      break;
979    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
980      if (!CurTy->isIntegerTy() || Record.empty())
981        return Error("Invalid CST_INTEGER record");
982      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
983      break;
984    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
985      if (!CurTy->isIntegerTy() || Record.empty())
986        return Error("Invalid WIDE_INTEGER record");
987
988      unsigned NumWords = Record.size();
989      SmallVector<uint64_t, 8> Words;
990      Words.resize(NumWords);
991      for (unsigned i = 0; i != NumWords; ++i)
992        Words[i] = DecodeSignRotatedValue(Record[i]);
993      V = ConstantInt::get(Context,
994                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
995                           NumWords, &Words[0]));
996      break;
997    }
998    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
999      if (Record.empty())
1000        return Error("Invalid FLOAT record");
1001      if (CurTy->isFloatTy())
1002        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1003      else if (CurTy->isDoubleTy())
1004        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1005      else if (CurTy->isX86_FP80Ty()) {
1006        // Bits are not stored the same way as a normal i80 APInt, compensate.
1007        uint64_t Rearrange[2];
1008        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1009        Rearrange[1] = Record[0] >> 48;
1010        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1011      } else if (CurTy->isFP128Ty())
1012        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1013      else if (CurTy->isPPC_FP128Ty())
1014        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1015      else
1016        V = UndefValue::get(CurTy);
1017      break;
1018    }
1019
1020    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1021      if (Record.empty())
1022        return Error("Invalid CST_AGGREGATE record");
1023
1024      unsigned Size = Record.size();
1025      std::vector<Constant*> Elts;
1026
1027      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1028        for (unsigned i = 0; i != Size; ++i)
1029          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1030                                                     STy->getElementType(i)));
1031        V = ConstantStruct::get(STy, Elts);
1032      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1033        const Type *EltTy = ATy->getElementType();
1034        for (unsigned i = 0; i != Size; ++i)
1035          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1036        V = ConstantArray::get(ATy, Elts);
1037      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1038        const Type *EltTy = VTy->getElementType();
1039        for (unsigned i = 0; i != Size; ++i)
1040          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1041        V = ConstantVector::get(Elts);
1042      } else {
1043        V = UndefValue::get(CurTy);
1044      }
1045      break;
1046    }
1047    case bitc::CST_CODE_STRING: { // STRING: [values]
1048      if (Record.empty())
1049        return Error("Invalid CST_AGGREGATE record");
1050
1051      const ArrayType *ATy = cast<ArrayType>(CurTy);
1052      const Type *EltTy = ATy->getElementType();
1053
1054      unsigned Size = Record.size();
1055      std::vector<Constant*> Elts;
1056      for (unsigned i = 0; i != Size; ++i)
1057        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1058      V = ConstantArray::get(ATy, Elts);
1059      break;
1060    }
1061    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1062      if (Record.empty())
1063        return Error("Invalid CST_AGGREGATE record");
1064
1065      const ArrayType *ATy = cast<ArrayType>(CurTy);
1066      const Type *EltTy = ATy->getElementType();
1067
1068      unsigned Size = Record.size();
1069      std::vector<Constant*> Elts;
1070      for (unsigned i = 0; i != Size; ++i)
1071        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1072      Elts.push_back(Constant::getNullValue(EltTy));
1073      V = ConstantArray::get(ATy, Elts);
1074      break;
1075    }
1076    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1077      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1078      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1079      if (Opc < 0) {
1080        V = UndefValue::get(CurTy);  // Unknown binop.
1081      } else {
1082        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1083        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1084        unsigned Flags = 0;
1085        if (Record.size() >= 4) {
1086          if (Opc == Instruction::Add ||
1087              Opc == Instruction::Sub ||
1088              Opc == Instruction::Mul ||
1089              Opc == Instruction::Shl) {
1090            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1091              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1092            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1093              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1094          } else if (Opc == Instruction::SDiv ||
1095                     Opc == Instruction::UDiv ||
1096                     Opc == Instruction::LShr ||
1097                     Opc == Instruction::AShr) {
1098            if (Record[3] & (1 << bitc::PEO_EXACT))
1099              Flags |= SDivOperator::IsExact;
1100          }
1101        }
1102        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1103      }
1104      break;
1105    }
1106    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1107      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1108      int Opc = GetDecodedCastOpcode(Record[0]);
1109      if (Opc < 0) {
1110        V = UndefValue::get(CurTy);  // Unknown cast.
1111      } else {
1112        const Type *OpTy = getTypeByID(Record[1]);
1113        if (!OpTy) return Error("Invalid CE_CAST record");
1114        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1115        V = ConstantExpr::getCast(Opc, Op, CurTy);
1116      }
1117      break;
1118    }
1119    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1120    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1121      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1122      SmallVector<Constant*, 16> Elts;
1123      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1124        const Type *ElTy = getTypeByID(Record[i]);
1125        if (!ElTy) return Error("Invalid CE_GEP record");
1126        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1127      }
1128      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1129        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1130                                                   Elts.size()-1);
1131      else
1132        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1133                                           Elts.size()-1);
1134      break;
1135    }
1136    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1137      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1138      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1139                                                              Type::getInt1Ty(Context)),
1140                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1141                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1142      break;
1143    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1144      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1145      const VectorType *OpTy =
1146        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1147      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1148      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1149      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1150      V = ConstantExpr::getExtractElement(Op0, Op1);
1151      break;
1152    }
1153    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1154      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1155      if (Record.size() < 3 || OpTy == 0)
1156        return Error("Invalid CE_INSERTELT record");
1157      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1158      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1159                                                  OpTy->getElementType());
1160      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1161      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1162      break;
1163    }
1164    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1165      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1166      if (Record.size() < 3 || OpTy == 0)
1167        return Error("Invalid CE_SHUFFLEVEC record");
1168      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1169      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1170      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1171                                                 OpTy->getNumElements());
1172      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1173      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1174      break;
1175    }
1176    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1177      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1178      const VectorType *OpTy =
1179        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1180      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1181        return Error("Invalid CE_SHUFVEC_EX record");
1182      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1183      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1184      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1185                                                 RTy->getNumElements());
1186      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1187      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1188      break;
1189    }
1190    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1191      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1192      const Type *OpTy = getTypeByID(Record[0]);
1193      if (OpTy == 0) return Error("Invalid CE_CMP record");
1194      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1195      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1196
1197      if (OpTy->isFPOrFPVectorTy())
1198        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1199      else
1200        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1201      break;
1202    }
1203    case bitc::CST_CODE_INLINEASM: {
1204      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1205      std::string AsmStr, ConstrStr;
1206      bool HasSideEffects = Record[0] & 1;
1207      bool IsAlignStack = Record[0] >> 1;
1208      unsigned AsmStrSize = Record[1];
1209      if (2+AsmStrSize >= Record.size())
1210        return Error("Invalid INLINEASM record");
1211      unsigned ConstStrSize = Record[2+AsmStrSize];
1212      if (3+AsmStrSize+ConstStrSize > Record.size())
1213        return Error("Invalid INLINEASM record");
1214
1215      for (unsigned i = 0; i != AsmStrSize; ++i)
1216        AsmStr += (char)Record[2+i];
1217      for (unsigned i = 0; i != ConstStrSize; ++i)
1218        ConstrStr += (char)Record[3+AsmStrSize+i];
1219      const PointerType *PTy = cast<PointerType>(CurTy);
1220      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1221                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1222      break;
1223    }
1224    case bitc::CST_CODE_BLOCKADDRESS:{
1225      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1226      const Type *FnTy = getTypeByID(Record[0]);
1227      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1228      Function *Fn =
1229        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1230      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1231
1232      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1233                                                  Type::getInt8Ty(Context),
1234                                            false, GlobalValue::InternalLinkage,
1235                                                  0, "");
1236      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1237      V = FwdRef;
1238      break;
1239    }
1240    }
1241
1242    ValueList.AssignValue(V, NextCstNo);
1243    ++NextCstNo;
1244  }
1245
1246  if (NextCstNo != ValueList.size())
1247    return Error("Invalid constant reference!");
1248
1249  if (Stream.ReadBlockEnd())
1250    return Error("Error at end of constants block");
1251
1252  // Once all the constants have been read, go through and resolve forward
1253  // references.
1254  ValueList.ResolveConstantForwardRefs();
1255  return false;
1256}
1257
1258/// RememberAndSkipFunctionBody - When we see the block for a function body,
1259/// remember where it is and then skip it.  This lets us lazily deserialize the
1260/// functions.
1261bool BitcodeReader::RememberAndSkipFunctionBody() {
1262  // Get the function we are talking about.
1263  if (FunctionsWithBodies.empty())
1264    return Error("Insufficient function protos");
1265
1266  Function *Fn = FunctionsWithBodies.back();
1267  FunctionsWithBodies.pop_back();
1268
1269  // Save the current stream state.
1270  uint64_t CurBit = Stream.GetCurrentBitNo();
1271  DeferredFunctionInfo[Fn] = CurBit;
1272
1273  // Skip over the function block for now.
1274  if (Stream.SkipBlock())
1275    return Error("Malformed block record");
1276  return false;
1277}
1278
1279bool BitcodeReader::ParseModule() {
1280  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1281    return Error("Malformed block record");
1282
1283  SmallVector<uint64_t, 64> Record;
1284  std::vector<std::string> SectionTable;
1285  std::vector<std::string> GCTable;
1286
1287  // Read all the records for this module.
1288  while (!Stream.AtEndOfStream()) {
1289    unsigned Code = Stream.ReadCode();
1290    if (Code == bitc::END_BLOCK) {
1291      if (Stream.ReadBlockEnd())
1292        return Error("Error at end of module block");
1293
1294      // Patch the initializers for globals and aliases up.
1295      ResolveGlobalAndAliasInits();
1296      if (!GlobalInits.empty() || !AliasInits.empty())
1297        return Error("Malformed global initializer set");
1298      if (!FunctionsWithBodies.empty())
1299        return Error("Too few function bodies found");
1300
1301      // Look for intrinsic functions which need to be upgraded at some point
1302      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1303           FI != FE; ++FI) {
1304        Function* NewFn;
1305        if (UpgradeIntrinsicFunction(FI, NewFn))
1306          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1307      }
1308
1309      // Look for global variables which need to be renamed.
1310      for (Module::global_iterator
1311             GI = TheModule->global_begin(), GE = TheModule->global_end();
1312           GI != GE; ++GI)
1313        UpgradeGlobalVariable(GI);
1314
1315      // Force deallocation of memory for these vectors to favor the client that
1316      // want lazy deserialization.
1317      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1318      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1319      std::vector<Function*>().swap(FunctionsWithBodies);
1320      return false;
1321    }
1322
1323    if (Code == bitc::ENTER_SUBBLOCK) {
1324      switch (Stream.ReadSubBlockID()) {
1325      default:  // Skip unknown content.
1326        if (Stream.SkipBlock())
1327          return Error("Malformed block record");
1328        break;
1329      case bitc::BLOCKINFO_BLOCK_ID:
1330        if (Stream.ReadBlockInfoBlock())
1331          return Error("Malformed BlockInfoBlock");
1332        break;
1333      case bitc::PARAMATTR_BLOCK_ID:
1334        if (ParseAttributeBlock())
1335          return true;
1336        break;
1337      case bitc::TYPE_BLOCK_ID:
1338        if (ParseTypeTable())
1339          return true;
1340        break;
1341      case bitc::TYPE_SYMTAB_BLOCK_ID:
1342        if (ParseTypeSymbolTable())
1343          return true;
1344        break;
1345      case bitc::VALUE_SYMTAB_BLOCK_ID:
1346        if (ParseValueSymbolTable())
1347          return true;
1348        break;
1349      case bitc::CONSTANTS_BLOCK_ID:
1350        if (ParseConstants() || ResolveGlobalAndAliasInits())
1351          return true;
1352        break;
1353      case bitc::METADATA_BLOCK_ID:
1354        if (ParseMetadata())
1355          return true;
1356        break;
1357      case bitc::FUNCTION_BLOCK_ID:
1358        // If this is the first function body we've seen, reverse the
1359        // FunctionsWithBodies list.
1360        if (!HasReversedFunctionsWithBodies) {
1361          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1362          HasReversedFunctionsWithBodies = true;
1363        }
1364
1365        if (RememberAndSkipFunctionBody())
1366          return true;
1367        break;
1368      }
1369      continue;
1370    }
1371
1372    if (Code == bitc::DEFINE_ABBREV) {
1373      Stream.ReadAbbrevRecord();
1374      continue;
1375    }
1376
1377    // Read a record.
1378    switch (Stream.ReadRecord(Code, Record)) {
1379    default: break;  // Default behavior, ignore unknown content.
1380    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1381      if (Record.size() < 1)
1382        return Error("Malformed MODULE_CODE_VERSION");
1383      // Only version #0 is supported so far.
1384      if (Record[0] != 0)
1385        return Error("Unknown bitstream version!");
1386      break;
1387    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1388      std::string S;
1389      if (ConvertToString(Record, 0, S))
1390        return Error("Invalid MODULE_CODE_TRIPLE record");
1391      TheModule->setTargetTriple(S);
1392      break;
1393    }
1394    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1395      std::string S;
1396      if (ConvertToString(Record, 0, S))
1397        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1398      TheModule->setDataLayout(S);
1399      break;
1400    }
1401    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1402      std::string S;
1403      if (ConvertToString(Record, 0, S))
1404        return Error("Invalid MODULE_CODE_ASM record");
1405      TheModule->setModuleInlineAsm(S);
1406      break;
1407    }
1408    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1409      std::string S;
1410      if (ConvertToString(Record, 0, S))
1411        return Error("Invalid MODULE_CODE_DEPLIB record");
1412      TheModule->addLibrary(S);
1413      break;
1414    }
1415    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1416      std::string S;
1417      if (ConvertToString(Record, 0, S))
1418        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1419      SectionTable.push_back(S);
1420      break;
1421    }
1422    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1423      std::string S;
1424      if (ConvertToString(Record, 0, S))
1425        return Error("Invalid MODULE_CODE_GCNAME record");
1426      GCTable.push_back(S);
1427      break;
1428    }
1429    // GLOBALVAR: [pointer type, isconst, initid,
1430    //             linkage, alignment, section, visibility, threadlocal,
1431    //             unnamed_addr]
1432    case bitc::MODULE_CODE_GLOBALVAR: {
1433      if (Record.size() < 6)
1434        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1435      const Type *Ty = getTypeByID(Record[0]);
1436      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1437      if (!Ty->isPointerTy())
1438        return Error("Global not a pointer type!");
1439      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1440      Ty = cast<PointerType>(Ty)->getElementType();
1441
1442      bool isConstant = Record[1];
1443      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1444      unsigned Alignment = (1 << Record[4]) >> 1;
1445      std::string Section;
1446      if (Record[5]) {
1447        if (Record[5]-1 >= SectionTable.size())
1448          return Error("Invalid section ID");
1449        Section = SectionTable[Record[5]-1];
1450      }
1451      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1452      if (Record.size() > 6)
1453        Visibility = GetDecodedVisibility(Record[6]);
1454      bool isThreadLocal = false;
1455      if (Record.size() > 7)
1456        isThreadLocal = Record[7];
1457
1458      bool UnnamedAddr = false;
1459      if (Record.size() > 8)
1460        UnnamedAddr = Record[8];
1461
1462      GlobalVariable *NewGV =
1463        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1464                           isThreadLocal, AddressSpace);
1465      NewGV->setAlignment(Alignment);
1466      if (!Section.empty())
1467        NewGV->setSection(Section);
1468      NewGV->setVisibility(Visibility);
1469      NewGV->setThreadLocal(isThreadLocal);
1470      NewGV->setUnnamedAddr(UnnamedAddr);
1471
1472      ValueList.push_back(NewGV);
1473
1474      // Remember which value to use for the global initializer.
1475      if (unsigned InitID = Record[2])
1476        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1477      break;
1478    }
1479    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1480    //             alignment, section, visibility, gc, unnamed_addr]
1481    case bitc::MODULE_CODE_FUNCTION: {
1482      if (Record.size() < 8)
1483        return Error("Invalid MODULE_CODE_FUNCTION record");
1484      const Type *Ty = getTypeByID(Record[0]);
1485      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1486      if (!Ty->isPointerTy())
1487        return Error("Function not a pointer type!");
1488      const FunctionType *FTy =
1489        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1490      if (!FTy)
1491        return Error("Function not a pointer to function type!");
1492
1493      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1494                                        "", TheModule);
1495
1496      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1497      bool isProto = Record[2];
1498      Func->setLinkage(GetDecodedLinkage(Record[3]));
1499      Func->setAttributes(getAttributes(Record[4]));
1500
1501      Func->setAlignment((1 << Record[5]) >> 1);
1502      if (Record[6]) {
1503        if (Record[6]-1 >= SectionTable.size())
1504          return Error("Invalid section ID");
1505        Func->setSection(SectionTable[Record[6]-1]);
1506      }
1507      Func->setVisibility(GetDecodedVisibility(Record[7]));
1508      if (Record.size() > 8 && Record[8]) {
1509        if (Record[8]-1 > GCTable.size())
1510          return Error("Invalid GC ID");
1511        Func->setGC(GCTable[Record[8]-1].c_str());
1512      }
1513      bool UnnamedAddr = false;
1514      if (Record.size() > 9)
1515        UnnamedAddr = Record[9];
1516      Func->setUnnamedAddr(UnnamedAddr);
1517      ValueList.push_back(Func);
1518
1519      // If this is a function with a body, remember the prototype we are
1520      // creating now, so that we can match up the body with them later.
1521      if (!isProto)
1522        FunctionsWithBodies.push_back(Func);
1523      break;
1524    }
1525    // ALIAS: [alias type, aliasee val#, linkage]
1526    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1527    case bitc::MODULE_CODE_ALIAS: {
1528      if (Record.size() < 3)
1529        return Error("Invalid MODULE_ALIAS record");
1530      const Type *Ty = getTypeByID(Record[0]);
1531      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1532      if (!Ty->isPointerTy())
1533        return Error("Function not a pointer type!");
1534
1535      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1536                                           "", 0, TheModule);
1537      // Old bitcode files didn't have visibility field.
1538      if (Record.size() > 3)
1539        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1540      ValueList.push_back(NewGA);
1541      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1542      break;
1543    }
1544    /// MODULE_CODE_PURGEVALS: [numvals]
1545    case bitc::MODULE_CODE_PURGEVALS:
1546      // Trim down the value list to the specified size.
1547      if (Record.size() < 1 || Record[0] > ValueList.size())
1548        return Error("Invalid MODULE_PURGEVALS record");
1549      ValueList.shrinkTo(Record[0]);
1550      break;
1551    }
1552    Record.clear();
1553  }
1554
1555  return Error("Premature end of bitstream");
1556}
1557
1558bool BitcodeReader::ParseBitcodeInto(Module *M) {
1559  TheModule = 0;
1560
1561  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1562  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1563
1564  if (Buffer->getBufferSize() & 3) {
1565    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1566      return Error("Invalid bitcode signature");
1567    else
1568      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1569  }
1570
1571  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1572  // The magic number is 0x0B17C0DE stored in little endian.
1573  if (isBitcodeWrapper(BufPtr, BufEnd))
1574    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1575      return Error("Invalid bitcode wrapper header");
1576
1577  StreamFile.init(BufPtr, BufEnd);
1578  Stream.init(StreamFile);
1579
1580  // Sniff for the signature.
1581  if (Stream.Read(8) != 'B' ||
1582      Stream.Read(8) != 'C' ||
1583      Stream.Read(4) != 0x0 ||
1584      Stream.Read(4) != 0xC ||
1585      Stream.Read(4) != 0xE ||
1586      Stream.Read(4) != 0xD)
1587    return Error("Invalid bitcode signature");
1588
1589  // We expect a number of well-defined blocks, though we don't necessarily
1590  // need to understand them all.
1591  while (!Stream.AtEndOfStream()) {
1592    unsigned Code = Stream.ReadCode();
1593
1594    if (Code != bitc::ENTER_SUBBLOCK)
1595      return Error("Invalid record at top-level");
1596
1597    unsigned BlockID = Stream.ReadSubBlockID();
1598
1599    // We only know the MODULE subblock ID.
1600    switch (BlockID) {
1601    case bitc::BLOCKINFO_BLOCK_ID:
1602      if (Stream.ReadBlockInfoBlock())
1603        return Error("Malformed BlockInfoBlock");
1604      break;
1605    case bitc::MODULE_BLOCK_ID:
1606      // Reject multiple MODULE_BLOCK's in a single bitstream.
1607      if (TheModule)
1608        return Error("Multiple MODULE_BLOCKs in same stream");
1609      TheModule = M;
1610      if (ParseModule())
1611        return true;
1612      break;
1613    default:
1614      if (Stream.SkipBlock())
1615        return Error("Malformed block record");
1616      break;
1617    }
1618  }
1619
1620  return false;
1621}
1622
1623bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1624  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1625    return Error("Malformed block record");
1626
1627  SmallVector<uint64_t, 64> Record;
1628
1629  // Read all the records for this module.
1630  while (!Stream.AtEndOfStream()) {
1631    unsigned Code = Stream.ReadCode();
1632    if (Code == bitc::END_BLOCK) {
1633      if (Stream.ReadBlockEnd())
1634        return Error("Error at end of module block");
1635
1636      return false;
1637    }
1638
1639    if (Code == bitc::ENTER_SUBBLOCK) {
1640      switch (Stream.ReadSubBlockID()) {
1641      default:  // Skip unknown content.
1642        if (Stream.SkipBlock())
1643          return Error("Malformed block record");
1644        break;
1645      }
1646      continue;
1647    }
1648
1649    if (Code == bitc::DEFINE_ABBREV) {
1650      Stream.ReadAbbrevRecord();
1651      continue;
1652    }
1653
1654    // Read a record.
1655    switch (Stream.ReadRecord(Code, Record)) {
1656    default: break;  // Default behavior, ignore unknown content.
1657    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1658      if (Record.size() < 1)
1659        return Error("Malformed MODULE_CODE_VERSION");
1660      // Only version #0 is supported so far.
1661      if (Record[0] != 0)
1662        return Error("Unknown bitstream version!");
1663      break;
1664    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1665      std::string S;
1666      if (ConvertToString(Record, 0, S))
1667        return Error("Invalid MODULE_CODE_TRIPLE record");
1668      Triple = S;
1669      break;
1670    }
1671    }
1672    Record.clear();
1673  }
1674
1675  return Error("Premature end of bitstream");
1676}
1677
1678bool BitcodeReader::ParseTriple(std::string &Triple) {
1679  if (Buffer->getBufferSize() & 3)
1680    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1681
1682  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1683  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1684
1685  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1686  // The magic number is 0x0B17C0DE stored in little endian.
1687  if (isBitcodeWrapper(BufPtr, BufEnd))
1688    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1689      return Error("Invalid bitcode wrapper header");
1690
1691  StreamFile.init(BufPtr, BufEnd);
1692  Stream.init(StreamFile);
1693
1694  // Sniff for the signature.
1695  if (Stream.Read(8) != 'B' ||
1696      Stream.Read(8) != 'C' ||
1697      Stream.Read(4) != 0x0 ||
1698      Stream.Read(4) != 0xC ||
1699      Stream.Read(4) != 0xE ||
1700      Stream.Read(4) != 0xD)
1701    return Error("Invalid bitcode signature");
1702
1703  // We expect a number of well-defined blocks, though we don't necessarily
1704  // need to understand them all.
1705  while (!Stream.AtEndOfStream()) {
1706    unsigned Code = Stream.ReadCode();
1707
1708    if (Code != bitc::ENTER_SUBBLOCK)
1709      return Error("Invalid record at top-level");
1710
1711    unsigned BlockID = Stream.ReadSubBlockID();
1712
1713    // We only know the MODULE subblock ID.
1714    switch (BlockID) {
1715    case bitc::MODULE_BLOCK_ID:
1716      if (ParseModuleTriple(Triple))
1717        return true;
1718      break;
1719    default:
1720      if (Stream.SkipBlock())
1721        return Error("Malformed block record");
1722      break;
1723    }
1724  }
1725
1726  return false;
1727}
1728
1729/// ParseMetadataAttachment - Parse metadata attachments.
1730bool BitcodeReader::ParseMetadataAttachment() {
1731  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1732    return Error("Malformed block record");
1733
1734  SmallVector<uint64_t, 64> Record;
1735  while(1) {
1736    unsigned Code = Stream.ReadCode();
1737    if (Code == bitc::END_BLOCK) {
1738      if (Stream.ReadBlockEnd())
1739        return Error("Error at end of PARAMATTR block");
1740      break;
1741    }
1742    if (Code == bitc::DEFINE_ABBREV) {
1743      Stream.ReadAbbrevRecord();
1744      continue;
1745    }
1746    // Read a metadata attachment record.
1747    Record.clear();
1748    switch (Stream.ReadRecord(Code, Record)) {
1749    default:  // Default behavior: ignore.
1750      break;
1751    // FIXME: Remove in LLVM 3.0.
1752    case bitc::METADATA_ATTACHMENT:
1753      LLVM2_7MetadataDetected = true;
1754    case bitc::METADATA_ATTACHMENT2: {
1755      unsigned RecordLength = Record.size();
1756      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1757        return Error ("Invalid METADATA_ATTACHMENT reader!");
1758      Instruction *Inst = InstructionList[Record[0]];
1759      for (unsigned i = 1; i != RecordLength; i = i+2) {
1760        unsigned Kind = Record[i];
1761        DenseMap<unsigned, unsigned>::iterator I =
1762          MDKindMap.find(Kind);
1763        if (I == MDKindMap.end())
1764          return Error("Invalid metadata kind ID");
1765        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1766        Inst->setMetadata(I->second, cast<MDNode>(Node));
1767      }
1768      break;
1769    }
1770    }
1771  }
1772  return false;
1773}
1774
1775/// ParseFunctionBody - Lazily parse the specified function body block.
1776bool BitcodeReader::ParseFunctionBody(Function *F) {
1777  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1778    return Error("Malformed block record");
1779
1780  InstructionList.clear();
1781  unsigned ModuleValueListSize = ValueList.size();
1782  unsigned ModuleMDValueListSize = MDValueList.size();
1783
1784  // Add all the function arguments to the value table.
1785  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1786    ValueList.push_back(I);
1787
1788  unsigned NextValueNo = ValueList.size();
1789  BasicBlock *CurBB = 0;
1790  unsigned CurBBNo = 0;
1791
1792  DebugLoc LastLoc;
1793
1794  // Read all the records.
1795  SmallVector<uint64_t, 64> Record;
1796  while (1) {
1797    unsigned Code = Stream.ReadCode();
1798    if (Code == bitc::END_BLOCK) {
1799      if (Stream.ReadBlockEnd())
1800        return Error("Error at end of function block");
1801      break;
1802    }
1803
1804    if (Code == bitc::ENTER_SUBBLOCK) {
1805      switch (Stream.ReadSubBlockID()) {
1806      default:  // Skip unknown content.
1807        if (Stream.SkipBlock())
1808          return Error("Malformed block record");
1809        break;
1810      case bitc::CONSTANTS_BLOCK_ID:
1811        if (ParseConstants()) return true;
1812        NextValueNo = ValueList.size();
1813        break;
1814      case bitc::VALUE_SYMTAB_BLOCK_ID:
1815        if (ParseValueSymbolTable()) return true;
1816        break;
1817      case bitc::METADATA_ATTACHMENT_ID:
1818        if (ParseMetadataAttachment()) return true;
1819        break;
1820      case bitc::METADATA_BLOCK_ID:
1821        if (ParseMetadata()) return true;
1822        break;
1823      }
1824      continue;
1825    }
1826
1827    if (Code == bitc::DEFINE_ABBREV) {
1828      Stream.ReadAbbrevRecord();
1829      continue;
1830    }
1831
1832    // Read a record.
1833    Record.clear();
1834    Instruction *I = 0;
1835    unsigned BitCode = Stream.ReadRecord(Code, Record);
1836    switch (BitCode) {
1837    default: // Default behavior: reject
1838      return Error("Unknown instruction");
1839    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1840      if (Record.size() < 1 || Record[0] == 0)
1841        return Error("Invalid DECLAREBLOCKS record");
1842      // Create all the basic blocks for the function.
1843      FunctionBBs.resize(Record[0]);
1844      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1845        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1846      CurBB = FunctionBBs[0];
1847      continue;
1848
1849
1850    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1851      // This record indicates that the last instruction is at the same
1852      // location as the previous instruction with a location.
1853      I = 0;
1854
1855      // Get the last instruction emitted.
1856      if (CurBB && !CurBB->empty())
1857        I = &CurBB->back();
1858      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1859               !FunctionBBs[CurBBNo-1]->empty())
1860        I = &FunctionBBs[CurBBNo-1]->back();
1861
1862      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1863      I->setDebugLoc(LastLoc);
1864      I = 0;
1865      continue;
1866
1867    // FIXME: Remove this in LLVM 3.0.
1868    case bitc::FUNC_CODE_DEBUG_LOC:
1869      LLVM2_7MetadataDetected = true;
1870    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1871      I = 0;     // Get the last instruction emitted.
1872      if (CurBB && !CurBB->empty())
1873        I = &CurBB->back();
1874      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1875               !FunctionBBs[CurBBNo-1]->empty())
1876        I = &FunctionBBs[CurBBNo-1]->back();
1877      if (I == 0 || Record.size() < 4)
1878        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1879
1880      unsigned Line = Record[0], Col = Record[1];
1881      unsigned ScopeID = Record[2], IAID = Record[3];
1882
1883      MDNode *Scope = 0, *IA = 0;
1884      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1885      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1886      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1887      I->setDebugLoc(LastLoc);
1888      I = 0;
1889      continue;
1890    }
1891
1892    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1893      unsigned OpNum = 0;
1894      Value *LHS, *RHS;
1895      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1896          getValue(Record, OpNum, LHS->getType(), RHS) ||
1897          OpNum+1 > Record.size())
1898        return Error("Invalid BINOP record");
1899
1900      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1901      if (Opc == -1) return Error("Invalid BINOP record");
1902      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1903      InstructionList.push_back(I);
1904      if (OpNum < Record.size()) {
1905        if (Opc == Instruction::Add ||
1906            Opc == Instruction::Sub ||
1907            Opc == Instruction::Mul ||
1908            Opc == Instruction::Shl) {
1909          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1910            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1911          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1912            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1913        } else if (Opc == Instruction::SDiv ||
1914                   Opc == Instruction::UDiv ||
1915                   Opc == Instruction::LShr ||
1916                   Opc == Instruction::AShr) {
1917          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1918            cast<BinaryOperator>(I)->setIsExact(true);
1919        }
1920      }
1921      break;
1922    }
1923    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1924      unsigned OpNum = 0;
1925      Value *Op;
1926      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1927          OpNum+2 != Record.size())
1928        return Error("Invalid CAST record");
1929
1930      const Type *ResTy = getTypeByID(Record[OpNum]);
1931      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1932      if (Opc == -1 || ResTy == 0)
1933        return Error("Invalid CAST record");
1934      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1935      InstructionList.push_back(I);
1936      break;
1937    }
1938    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1939    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1940      unsigned OpNum = 0;
1941      Value *BasePtr;
1942      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1943        return Error("Invalid GEP record");
1944
1945      SmallVector<Value*, 16> GEPIdx;
1946      while (OpNum != Record.size()) {
1947        Value *Op;
1948        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1949          return Error("Invalid GEP record");
1950        GEPIdx.push_back(Op);
1951      }
1952
1953      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1954      InstructionList.push_back(I);
1955      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1956        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1957      break;
1958    }
1959
1960    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1961                                       // EXTRACTVAL: [opty, opval, n x indices]
1962      unsigned OpNum = 0;
1963      Value *Agg;
1964      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1965        return Error("Invalid EXTRACTVAL record");
1966
1967      SmallVector<unsigned, 4> EXTRACTVALIdx;
1968      for (unsigned RecSize = Record.size();
1969           OpNum != RecSize; ++OpNum) {
1970        uint64_t Index = Record[OpNum];
1971        if ((unsigned)Index != Index)
1972          return Error("Invalid EXTRACTVAL index");
1973        EXTRACTVALIdx.push_back((unsigned)Index);
1974      }
1975
1976      I = ExtractValueInst::Create(Agg,
1977                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1978      InstructionList.push_back(I);
1979      break;
1980    }
1981
1982    case bitc::FUNC_CODE_INST_INSERTVAL: {
1983                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1984      unsigned OpNum = 0;
1985      Value *Agg;
1986      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1987        return Error("Invalid INSERTVAL record");
1988      Value *Val;
1989      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1990        return Error("Invalid INSERTVAL record");
1991
1992      SmallVector<unsigned, 4> INSERTVALIdx;
1993      for (unsigned RecSize = Record.size();
1994           OpNum != RecSize; ++OpNum) {
1995        uint64_t Index = Record[OpNum];
1996        if ((unsigned)Index != Index)
1997          return Error("Invalid INSERTVAL index");
1998        INSERTVALIdx.push_back((unsigned)Index);
1999      }
2000
2001      I = InsertValueInst::Create(Agg, Val,
2002                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
2003      InstructionList.push_back(I);
2004      break;
2005    }
2006
2007    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2008      // obsolete form of select
2009      // handles select i1 ... in old bitcode
2010      unsigned OpNum = 0;
2011      Value *TrueVal, *FalseVal, *Cond;
2012      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2013          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2014          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2015        return Error("Invalid SELECT record");
2016
2017      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2018      InstructionList.push_back(I);
2019      break;
2020    }
2021
2022    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2023      // new form of select
2024      // handles select i1 or select [N x i1]
2025      unsigned OpNum = 0;
2026      Value *TrueVal, *FalseVal, *Cond;
2027      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2028          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2029          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2030        return Error("Invalid SELECT record");
2031
2032      // select condition can be either i1 or [N x i1]
2033      if (const VectorType* vector_type =
2034          dyn_cast<const VectorType>(Cond->getType())) {
2035        // expect <n x i1>
2036        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2037          return Error("Invalid SELECT condition type");
2038      } else {
2039        // expect i1
2040        if (Cond->getType() != Type::getInt1Ty(Context))
2041          return Error("Invalid SELECT condition type");
2042      }
2043
2044      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2045      InstructionList.push_back(I);
2046      break;
2047    }
2048
2049    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2050      unsigned OpNum = 0;
2051      Value *Vec, *Idx;
2052      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2053          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2054        return Error("Invalid EXTRACTELT record");
2055      I = ExtractElementInst::Create(Vec, Idx);
2056      InstructionList.push_back(I);
2057      break;
2058    }
2059
2060    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2061      unsigned OpNum = 0;
2062      Value *Vec, *Elt, *Idx;
2063      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2064          getValue(Record, OpNum,
2065                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2066          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2067        return Error("Invalid INSERTELT record");
2068      I = InsertElementInst::Create(Vec, Elt, Idx);
2069      InstructionList.push_back(I);
2070      break;
2071    }
2072
2073    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2074      unsigned OpNum = 0;
2075      Value *Vec1, *Vec2, *Mask;
2076      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2077          getValue(Record, OpNum, Vec1->getType(), Vec2))
2078        return Error("Invalid SHUFFLEVEC record");
2079
2080      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2081        return Error("Invalid SHUFFLEVEC record");
2082      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2083      InstructionList.push_back(I);
2084      break;
2085    }
2086
2087    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2088      // Old form of ICmp/FCmp returning bool
2089      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2090      // both legal on vectors but had different behaviour.
2091    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2092      // FCmp/ICmp returning bool or vector of bool
2093
2094      unsigned OpNum = 0;
2095      Value *LHS, *RHS;
2096      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2097          getValue(Record, OpNum, LHS->getType(), RHS) ||
2098          OpNum+1 != Record.size())
2099        return Error("Invalid CMP record");
2100
2101      if (LHS->getType()->isFPOrFPVectorTy())
2102        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2103      else
2104        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2105      InstructionList.push_back(I);
2106      break;
2107    }
2108
2109    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2110      if (Record.size() != 2)
2111        return Error("Invalid GETRESULT record");
2112      unsigned OpNum = 0;
2113      Value *Op;
2114      getValueTypePair(Record, OpNum, NextValueNo, Op);
2115      unsigned Index = Record[1];
2116      I = ExtractValueInst::Create(Op, Index);
2117      InstructionList.push_back(I);
2118      break;
2119    }
2120
2121    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2122      {
2123        unsigned Size = Record.size();
2124        if (Size == 0) {
2125          I = ReturnInst::Create(Context);
2126          InstructionList.push_back(I);
2127          break;
2128        }
2129
2130        unsigned OpNum = 0;
2131        SmallVector<Value *,4> Vs;
2132        do {
2133          Value *Op = NULL;
2134          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2135            return Error("Invalid RET record");
2136          Vs.push_back(Op);
2137        } while(OpNum != Record.size());
2138
2139        const Type *ReturnType = F->getReturnType();
2140        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2141        if (Vs.size() > 1 ||
2142            (ReturnType->isStructTy() &&
2143             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2144          Value *RV = UndefValue::get(ReturnType);
2145          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2146            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2147            InstructionList.push_back(I);
2148            CurBB->getInstList().push_back(I);
2149            ValueList.AssignValue(I, NextValueNo++);
2150            RV = I;
2151          }
2152          I = ReturnInst::Create(Context, RV);
2153          InstructionList.push_back(I);
2154          break;
2155        }
2156
2157        I = ReturnInst::Create(Context, Vs[0]);
2158        InstructionList.push_back(I);
2159        break;
2160      }
2161    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2162      if (Record.size() != 1 && Record.size() != 3)
2163        return Error("Invalid BR record");
2164      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2165      if (TrueDest == 0)
2166        return Error("Invalid BR record");
2167
2168      if (Record.size() == 1) {
2169        I = BranchInst::Create(TrueDest);
2170        InstructionList.push_back(I);
2171      }
2172      else {
2173        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2174        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2175        if (FalseDest == 0 || Cond == 0)
2176          return Error("Invalid BR record");
2177        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2178        InstructionList.push_back(I);
2179      }
2180      break;
2181    }
2182    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2183      if (Record.size() < 3 || (Record.size() & 1) == 0)
2184        return Error("Invalid SWITCH record");
2185      const Type *OpTy = getTypeByID(Record[0]);
2186      Value *Cond = getFnValueByID(Record[1], OpTy);
2187      BasicBlock *Default = getBasicBlock(Record[2]);
2188      if (OpTy == 0 || Cond == 0 || Default == 0)
2189        return Error("Invalid SWITCH record");
2190      unsigned NumCases = (Record.size()-3)/2;
2191      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2192      InstructionList.push_back(SI);
2193      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2194        ConstantInt *CaseVal =
2195          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2196        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2197        if (CaseVal == 0 || DestBB == 0) {
2198          delete SI;
2199          return Error("Invalid SWITCH record!");
2200        }
2201        SI->addCase(CaseVal, DestBB);
2202      }
2203      I = SI;
2204      break;
2205    }
2206    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2207      if (Record.size() < 2)
2208        return Error("Invalid INDIRECTBR record");
2209      const Type *OpTy = getTypeByID(Record[0]);
2210      Value *Address = getFnValueByID(Record[1], OpTy);
2211      if (OpTy == 0 || Address == 0)
2212        return Error("Invalid INDIRECTBR record");
2213      unsigned NumDests = Record.size()-2;
2214      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2215      InstructionList.push_back(IBI);
2216      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2217        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2218          IBI->addDestination(DestBB);
2219        } else {
2220          delete IBI;
2221          return Error("Invalid INDIRECTBR record!");
2222        }
2223      }
2224      I = IBI;
2225      break;
2226    }
2227
2228    case bitc::FUNC_CODE_INST_INVOKE: {
2229      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2230      if (Record.size() < 4) return Error("Invalid INVOKE record");
2231      AttrListPtr PAL = getAttributes(Record[0]);
2232      unsigned CCInfo = Record[1];
2233      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2234      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2235
2236      unsigned OpNum = 4;
2237      Value *Callee;
2238      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2239        return Error("Invalid INVOKE record");
2240
2241      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2242      const FunctionType *FTy = !CalleeTy ? 0 :
2243        dyn_cast<FunctionType>(CalleeTy->getElementType());
2244
2245      // Check that the right number of fixed parameters are here.
2246      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2247          Record.size() < OpNum+FTy->getNumParams())
2248        return Error("Invalid INVOKE record");
2249
2250      SmallVector<Value*, 16> Ops;
2251      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2252        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2253        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2254      }
2255
2256      if (!FTy->isVarArg()) {
2257        if (Record.size() != OpNum)
2258          return Error("Invalid INVOKE record");
2259      } else {
2260        // Read type/value pairs for varargs params.
2261        while (OpNum != Record.size()) {
2262          Value *Op;
2263          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2264            return Error("Invalid INVOKE record");
2265          Ops.push_back(Op);
2266        }
2267      }
2268
2269      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2270                             Ops.begin(), Ops.end());
2271      InstructionList.push_back(I);
2272      cast<InvokeInst>(I)->setCallingConv(
2273        static_cast<CallingConv::ID>(CCInfo));
2274      cast<InvokeInst>(I)->setAttributes(PAL);
2275      break;
2276    }
2277    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2278      I = new UnwindInst(Context);
2279      InstructionList.push_back(I);
2280      break;
2281    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2282      I = new UnreachableInst(Context);
2283      InstructionList.push_back(I);
2284      break;
2285    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2286      if (Record.size() < 1 || ((Record.size()-1)&1))
2287        return Error("Invalid PHI record");
2288      const Type *Ty = getTypeByID(Record[0]);
2289      if (!Ty) return Error("Invalid PHI record");
2290
2291      PHINode *PN = PHINode::Create(Ty);
2292      InstructionList.push_back(PN);
2293      PN->reserveOperandSpace((Record.size()-1)/2);
2294
2295      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2296        Value *V = getFnValueByID(Record[1+i], Ty);
2297        BasicBlock *BB = getBasicBlock(Record[2+i]);
2298        if (!V || !BB) return Error("Invalid PHI record");
2299        PN->addIncoming(V, BB);
2300      }
2301      I = PN;
2302      break;
2303    }
2304
2305    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2306      // Autoupgrade malloc instruction to malloc call.
2307      // FIXME: Remove in LLVM 3.0.
2308      if (Record.size() < 3)
2309        return Error("Invalid MALLOC record");
2310      const PointerType *Ty =
2311        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2312      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2313      if (!Ty || !Size) return Error("Invalid MALLOC record");
2314      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2315      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2316      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2317      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2318      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2319                                 AllocSize, Size, NULL);
2320      InstructionList.push_back(I);
2321      break;
2322    }
2323    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2324      unsigned OpNum = 0;
2325      Value *Op;
2326      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2327          OpNum != Record.size())
2328        return Error("Invalid FREE record");
2329      if (!CurBB) return Error("Invalid free instruction with no BB");
2330      I = CallInst::CreateFree(Op, CurBB);
2331      InstructionList.push_back(I);
2332      break;
2333    }
2334    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2335      // For backward compatibility, tolerate a lack of an opty, and use i32.
2336      // Remove this in LLVM 3.0.
2337      if (Record.size() < 3 || Record.size() > 4)
2338        return Error("Invalid ALLOCA record");
2339      unsigned OpNum = 0;
2340      const PointerType *Ty =
2341        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2342      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2343                                              Type::getInt32Ty(Context);
2344      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2345      unsigned Align = Record[OpNum++];
2346      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2347      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2348      InstructionList.push_back(I);
2349      break;
2350    }
2351    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2352      unsigned OpNum = 0;
2353      Value *Op;
2354      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2355          OpNum+2 != Record.size())
2356        return Error("Invalid LOAD record");
2357
2358      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2359      InstructionList.push_back(I);
2360      break;
2361    }
2362    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2363      unsigned OpNum = 0;
2364      Value *Val, *Ptr;
2365      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2366          getValue(Record, OpNum,
2367                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2368          OpNum+2 != Record.size())
2369        return Error("Invalid STORE record");
2370
2371      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2372      InstructionList.push_back(I);
2373      break;
2374    }
2375    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2376      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2377      unsigned OpNum = 0;
2378      Value *Val, *Ptr;
2379      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2380          getValue(Record, OpNum,
2381                   PointerType::getUnqual(Val->getType()), Ptr)||
2382          OpNum+2 != Record.size())
2383        return Error("Invalid STORE record");
2384
2385      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2386      InstructionList.push_back(I);
2387      break;
2388    }
2389    // FIXME: Remove this in LLVM 3.0.
2390    case bitc::FUNC_CODE_INST_CALL:
2391      LLVM2_7MetadataDetected = true;
2392    case bitc::FUNC_CODE_INST_CALL2: {
2393      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2394      if (Record.size() < 3)
2395        return Error("Invalid CALL record");
2396
2397      AttrListPtr PAL = getAttributes(Record[0]);
2398      unsigned CCInfo = Record[1];
2399
2400      unsigned OpNum = 2;
2401      Value *Callee;
2402      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2403        return Error("Invalid CALL record");
2404
2405      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2406      const FunctionType *FTy = 0;
2407      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2408      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2409        return Error("Invalid CALL record");
2410
2411      SmallVector<Value*, 16> Args;
2412      // Read the fixed params.
2413      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2414        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2415          Args.push_back(getBasicBlock(Record[OpNum]));
2416        else
2417          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2418        if (Args.back() == 0) return Error("Invalid CALL record");
2419      }
2420
2421      // Read type/value pairs for varargs params.
2422      if (!FTy->isVarArg()) {
2423        if (OpNum != Record.size())
2424          return Error("Invalid CALL record");
2425      } else {
2426        while (OpNum != Record.size()) {
2427          Value *Op;
2428          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2429            return Error("Invalid CALL record");
2430          Args.push_back(Op);
2431        }
2432      }
2433
2434      I = CallInst::Create(Callee, Args.begin(), Args.end());
2435      InstructionList.push_back(I);
2436      cast<CallInst>(I)->setCallingConv(
2437        static_cast<CallingConv::ID>(CCInfo>>1));
2438      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2439      cast<CallInst>(I)->setAttributes(PAL);
2440      break;
2441    }
2442    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2443      if (Record.size() < 3)
2444        return Error("Invalid VAARG record");
2445      const Type *OpTy = getTypeByID(Record[0]);
2446      Value *Op = getFnValueByID(Record[1], OpTy);
2447      const Type *ResTy = getTypeByID(Record[2]);
2448      if (!OpTy || !Op || !ResTy)
2449        return Error("Invalid VAARG record");
2450      I = new VAArgInst(Op, ResTy);
2451      InstructionList.push_back(I);
2452      break;
2453    }
2454    }
2455
2456    // Add instruction to end of current BB.  If there is no current BB, reject
2457    // this file.
2458    if (CurBB == 0) {
2459      delete I;
2460      return Error("Invalid instruction with no BB");
2461    }
2462    CurBB->getInstList().push_back(I);
2463
2464    // If this was a terminator instruction, move to the next block.
2465    if (isa<TerminatorInst>(I)) {
2466      ++CurBBNo;
2467      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2468    }
2469
2470    // Non-void values get registered in the value table for future use.
2471    if (I && !I->getType()->isVoidTy())
2472      ValueList.AssignValue(I, NextValueNo++);
2473  }
2474
2475  // Check the function list for unresolved values.
2476  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2477    if (A->getParent() == 0) {
2478      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2479      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2480        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2481          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2482          delete A;
2483        }
2484      }
2485      return Error("Never resolved value found in function!");
2486    }
2487  }
2488
2489  // FIXME: Check for unresolved forward-declared metadata references
2490  // and clean up leaks.
2491
2492  // See if anything took the address of blocks in this function.  If so,
2493  // resolve them now.
2494  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2495    BlockAddrFwdRefs.find(F);
2496  if (BAFRI != BlockAddrFwdRefs.end()) {
2497    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2498    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2499      unsigned BlockIdx = RefList[i].first;
2500      if (BlockIdx >= FunctionBBs.size())
2501        return Error("Invalid blockaddress block #");
2502
2503      GlobalVariable *FwdRef = RefList[i].second;
2504      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2505      FwdRef->eraseFromParent();
2506    }
2507
2508    BlockAddrFwdRefs.erase(BAFRI);
2509  }
2510
2511  // FIXME: Remove this in LLVM 3.0.
2512  unsigned NewMDValueListSize = MDValueList.size();
2513
2514  // Trim the value list down to the size it was before we parsed this function.
2515  ValueList.shrinkTo(ModuleValueListSize);
2516  MDValueList.shrinkTo(ModuleMDValueListSize);
2517
2518  // Backwards compatibility hack: Function-local metadata numbers
2519  // were previously not reset between functions. This is now fixed,
2520  // however we still need to understand the old numbering in order
2521  // to be able to read old bitcode files.
2522  // FIXME: Remove this in LLVM 3.0.
2523  if (LLVM2_7MetadataDetected)
2524    MDValueList.resize(NewMDValueListSize);
2525
2526  std::vector<BasicBlock*>().swap(FunctionBBs);
2527
2528  return false;
2529}
2530
2531//===----------------------------------------------------------------------===//
2532// GVMaterializer implementation
2533//===----------------------------------------------------------------------===//
2534
2535
2536bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2537  if (const Function *F = dyn_cast<Function>(GV)) {
2538    return F->isDeclaration() &&
2539      DeferredFunctionInfo.count(const_cast<Function*>(F));
2540  }
2541  return false;
2542}
2543
2544bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2545  Function *F = dyn_cast<Function>(GV);
2546  // If it's not a function or is already material, ignore the request.
2547  if (!F || !F->isMaterializable()) return false;
2548
2549  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2550  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2551
2552  // Move the bit stream to the saved position of the deferred function body.
2553  Stream.JumpToBit(DFII->second);
2554
2555  if (ParseFunctionBody(F)) {
2556    if (ErrInfo) *ErrInfo = ErrorString;
2557    return true;
2558  }
2559
2560  // Upgrade any old intrinsic calls in the function.
2561  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2562       E = UpgradedIntrinsics.end(); I != E; ++I) {
2563    if (I->first != I->second) {
2564      for (Value::use_iterator UI = I->first->use_begin(),
2565           UE = I->first->use_end(); UI != UE; ) {
2566        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2567          UpgradeIntrinsicCall(CI, I->second);
2568      }
2569    }
2570  }
2571
2572  return false;
2573}
2574
2575bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2576  const Function *F = dyn_cast<Function>(GV);
2577  if (!F || F->isDeclaration())
2578    return false;
2579  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2580}
2581
2582void BitcodeReader::Dematerialize(GlobalValue *GV) {
2583  Function *F = dyn_cast<Function>(GV);
2584  // If this function isn't dematerializable, this is a noop.
2585  if (!F || !isDematerializable(F))
2586    return;
2587
2588  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2589
2590  // Just forget the function body, we can remat it later.
2591  F->deleteBody();
2592}
2593
2594
2595bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2596  assert(M == TheModule &&
2597         "Can only Materialize the Module this BitcodeReader is attached to.");
2598  // Iterate over the module, deserializing any functions that are still on
2599  // disk.
2600  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2601       F != E; ++F)
2602    if (F->isMaterializable() &&
2603        Materialize(F, ErrInfo))
2604      return true;
2605
2606  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2607  // delete the old functions to clean up. We can't do this unless the entire
2608  // module is materialized because there could always be another function body
2609  // with calls to the old function.
2610  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2611       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2612    if (I->first != I->second) {
2613      for (Value::use_iterator UI = I->first->use_begin(),
2614           UE = I->first->use_end(); UI != UE; ) {
2615        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2616          UpgradeIntrinsicCall(CI, I->second);
2617      }
2618      if (!I->first->use_empty())
2619        I->first->replaceAllUsesWith(I->second);
2620      I->first->eraseFromParent();
2621    }
2622  }
2623  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2624
2625  // Check debug info intrinsics.
2626  CheckDebugInfoIntrinsics(TheModule);
2627
2628  return false;
2629}
2630
2631
2632//===----------------------------------------------------------------------===//
2633// External interface
2634//===----------------------------------------------------------------------===//
2635
2636/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2637///
2638Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2639                                   LLVMContext& Context,
2640                                   std::string *ErrMsg) {
2641  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2642  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2643  M->setMaterializer(R);
2644  if (R->ParseBitcodeInto(M)) {
2645    if (ErrMsg)
2646      *ErrMsg = R->getErrorString();
2647
2648    delete M;  // Also deletes R.
2649    return 0;
2650  }
2651  // Have the BitcodeReader dtor delete 'Buffer'.
2652  R->setBufferOwned(true);
2653  return M;
2654}
2655
2656/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2657/// If an error occurs, return null and fill in *ErrMsg if non-null.
2658Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2659                               std::string *ErrMsg){
2660  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2661  if (!M) return 0;
2662
2663  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2664  // there was an error.
2665  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2666
2667  // Read in the entire module, and destroy the BitcodeReader.
2668  if (M->MaterializeAllPermanently(ErrMsg)) {
2669    delete M;
2670    return 0;
2671  }
2672
2673  return M;
2674}
2675
2676std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2677                                         LLVMContext& Context,
2678                                         std::string *ErrMsg) {
2679  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2680  // Don't let the BitcodeReader dtor delete 'Buffer'.
2681  R->setBufferOwned(false);
2682
2683  std::string Triple("");
2684  if (R->ParseTriple(Triple))
2685    if (ErrMsg)
2686      *ErrMsg = R->getErrorString();
2687
2688  delete R;
2689  return Triple;
2690}
2691