BitcodeReader.cpp revision 7d83ebcadd725d050cc58962e9b7c4312d676e7f
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Metadata.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37  MDValueList.clear();
38
39  std::vector<AttrListPtr>().swap(MAttributes);
40  std::vector<BasicBlock*>().swap(FunctionBBs);
41  std::vector<Function*>().swap(FunctionsWithBodies);
42  DeferredFunctionInfo.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  }
80}
81
82static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83  switch (Val) {
84  default: // Map unknown visibilities to default.
85  case 0: return GlobalValue::DefaultVisibility;
86  case 1: return GlobalValue::HiddenVisibility;
87  case 2: return GlobalValue::ProtectedVisibility;
88  }
89}
90
91static int GetDecodedCastOpcode(unsigned Val) {
92  switch (Val) {
93  default: return -1;
94  case bitc::CAST_TRUNC   : return Instruction::Trunc;
95  case bitc::CAST_ZEXT    : return Instruction::ZExt;
96  case bitc::CAST_SEXT    : return Instruction::SExt;
97  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102  case bitc::CAST_FPEXT   : return Instruction::FPExt;
103  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105  case bitc::CAST_BITCAST : return Instruction::BitCast;
106  }
107}
108static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109  switch (Val) {
110  default: return -1;
111  case bitc::BINOP_ADD:
112    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113  case bitc::BINOP_SUB:
114    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115  case bitc::BINOP_MUL:
116    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117  case bitc::BINOP_UDIV: return Instruction::UDiv;
118  case bitc::BINOP_SDIV:
119    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120  case bitc::BINOP_UREM: return Instruction::URem;
121  case bitc::BINOP_SREM:
122    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123  case bitc::BINOP_SHL:  return Instruction::Shl;
124  case bitc::BINOP_LSHR: return Instruction::LShr;
125  case bitc::BINOP_ASHR: return Instruction::AShr;
126  case bitc::BINOP_AND:  return Instruction::And;
127  case bitc::BINOP_OR:   return Instruction::Or;
128  case bitc::BINOP_XOR:  return Instruction::Xor;
129  }
130}
131
132namespace llvm {
133namespace {
134  /// @brief A class for maintaining the slot number definition
135  /// as a placeholder for the actual definition for forward constants defs.
136  class ConstantPlaceHolder : public ConstantExpr {
137    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139  public:
140    // allocate space for exactly one operand
141    void *operator new(size_t s) {
142      return User::operator new(s, 1);
143    }
144    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147    }
148
149    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150    static inline bool classof(const ConstantPlaceHolder *) { return true; }
151    static bool classof(const Value *V) {
152      return isa<ConstantExpr>(V) &&
153             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154    }
155
156
157    /// Provide fast operand accessors
158    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159  };
160}
161
162// FIXME: can we inherit this from ConstantExpr?
163template <>
164struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165};
166}
167
168
169void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170  if (Idx == size()) {
171    push_back(V);
172    return;
173  }
174
175  if (Idx >= size())
176    resize(Idx+1);
177
178  WeakVH &OldV = ValuePtrs[Idx];
179  if (OldV == 0) {
180    OldV = V;
181    return;
182  }
183
184  // Handle constants and non-constants (e.g. instrs) differently for
185  // efficiency.
186  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187    ResolveConstants.push_back(std::make_pair(PHC, Idx));
188    OldV = V;
189  } else {
190    // If there was a forward reference to this value, replace it.
191    Value *PrevVal = OldV;
192    OldV->replaceAllUsesWith(V);
193    delete PrevVal;
194  }
195}
196
197
198Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                    const Type *Ty) {
200  if (Idx >= size())
201    resize(Idx + 1);
202
203  if (Value *V = ValuePtrs[Idx]) {
204    assert(Ty == V->getType() && "Type mismatch in constant table!");
205    return cast<Constant>(V);
206  }
207
208  // Create and return a placeholder, which will later be RAUW'd.
209  Constant *C = new ConstantPlaceHolder(Ty, Context);
210  ValuePtrs[Idx] = C;
211  return C;
212}
213
214Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215  if (Idx >= size())
216    resize(Idx + 1);
217
218  if (Value *V = ValuePtrs[Idx]) {
219    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220    return V;
221  }
222
223  // No type specified, must be invalid reference.
224  if (Ty == 0) return 0;
225
226  // Create and return a placeholder, which will later be RAUW'd.
227  Value *V = new Argument(Ty);
228  ValuePtrs[Idx] = V;
229  return V;
230}
231
232/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233/// resolves any forward references.  The idea behind this is that we sometimes
234/// get constants (such as large arrays) which reference *many* forward ref
235/// constants.  Replacing each of these causes a lot of thrashing when
236/// building/reuniquing the constant.  Instead of doing this, we look at all the
237/// uses and rewrite all the place holders at once for any constant that uses
238/// a placeholder.
239void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240  // Sort the values by-pointer so that they are efficient to look up with a
241  // binary search.
242  std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244  SmallVector<Constant*, 64> NewOps;
245
246  while (!ResolveConstants.empty()) {
247    Value *RealVal = operator[](ResolveConstants.back().second);
248    Constant *Placeholder = ResolveConstants.back().first;
249    ResolveConstants.pop_back();
250
251    // Loop over all users of the placeholder, updating them to reference the
252    // new value.  If they reference more than one placeholder, update them all
253    // at once.
254    while (!Placeholder->use_empty()) {
255      Value::use_iterator UI = Placeholder->use_begin();
256
257      // If the using object isn't uniqued, just update the operands.  This
258      // handles instructions and initializers for global variables.
259      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260        UI.getUse().set(RealVal);
261        continue;
262      }
263
264      // Otherwise, we have a constant that uses the placeholder.  Replace that
265      // constant with a new constant that has *all* placeholder uses updated.
266      Constant *UserC = cast<Constant>(*UI);
267      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268           I != E; ++I) {
269        Value *NewOp;
270        if (!isa<ConstantPlaceHolder>(*I)) {
271          // Not a placeholder reference.
272          NewOp = *I;
273        } else if (*I == Placeholder) {
274          // Common case is that it just references this one placeholder.
275          NewOp = RealVal;
276        } else {
277          // Otherwise, look up the placeholder in ResolveConstants.
278          ResolveConstantsTy::iterator It =
279            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                            0));
282          assert(It != ResolveConstants.end() && It->first == *I);
283          NewOp = operator[](It->second);
284        }
285
286        NewOps.push_back(cast<Constant>(NewOp));
287      }
288
289      // Make the new constant.
290      Constant *NewC;
291      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                        NewOps.size());
294      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                         UserCS->getType()->isPacked());
297      } else if (isa<ConstantVector>(UserC)) {
298        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299      } else {
300        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302                                                          NewOps.size());
303      }
304
305      UserC->replaceAllUsesWith(NewC);
306      UserC->destroyConstant();
307      NewOps.clear();
308    }
309
310    // Update all ValueHandles, they should be the only users at this point.
311    Placeholder->replaceAllUsesWith(RealVal);
312    delete Placeholder;
313  }
314}
315
316void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317  if (Idx == size()) {
318    push_back(V);
319    return;
320  }
321
322  if (Idx >= size())
323    resize(Idx+1);
324
325  WeakVH &OldV = MDValuePtrs[Idx];
326  if (OldV == 0) {
327    OldV = V;
328    return;
329  }
330
331  // If there was a forward reference to this value, replace it.
332  Value *PrevVal = OldV;
333  OldV->replaceAllUsesWith(V);
334  delete PrevVal;
335  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336  // value for Idx.
337  MDValuePtrs[Idx] = V;
338}
339
340Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341  if (Idx >= size())
342    resize(Idx + 1);
343
344  if (Value *V = MDValuePtrs[Idx]) {
345    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
346    return V;
347  }
348
349  // Create and return a placeholder, which will later be RAUW'd.
350  Value *V = new Argument(Type::getMetadataTy(Context));
351  MDValuePtrs[Idx] = V;
352  return V;
353}
354
355const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356  // If the TypeID is in range, return it.
357  if (ID < TypeList.size())
358    return TypeList[ID].get();
359  if (!isTypeTable) return 0;
360
361  // The type table allows forward references.  Push as many Opaque types as
362  // needed to get up to ID.
363  while (TypeList.size() <= ID)
364    TypeList.push_back(OpaqueType::get(Context));
365  return TypeList.back().get();
366}
367
368//===----------------------------------------------------------------------===//
369//  Functions for parsing blocks from the bitcode file
370//===----------------------------------------------------------------------===//
371
372bool BitcodeReader::ParseAttributeBlock() {
373  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374    return Error("Malformed block record");
375
376  if (!MAttributes.empty())
377    return Error("Multiple PARAMATTR blocks found!");
378
379  SmallVector<uint64_t, 64> Record;
380
381  SmallVector<AttributeWithIndex, 8> Attrs;
382
383  // Read all the records.
384  while (1) {
385    unsigned Code = Stream.ReadCode();
386    if (Code == bitc::END_BLOCK) {
387      if (Stream.ReadBlockEnd())
388        return Error("Error at end of PARAMATTR block");
389      return false;
390    }
391
392    if (Code == bitc::ENTER_SUBBLOCK) {
393      // No known subblocks, always skip them.
394      Stream.ReadSubBlockID();
395      if (Stream.SkipBlock())
396        return Error("Malformed block record");
397      continue;
398    }
399
400    if (Code == bitc::DEFINE_ABBREV) {
401      Stream.ReadAbbrevRecord();
402      continue;
403    }
404
405    // Read a record.
406    Record.clear();
407    switch (Stream.ReadRecord(Code, Record)) {
408    default:  // Default behavior: ignore.
409      break;
410    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411      if (Record.size() & 1)
412        return Error("Invalid ENTRY record");
413
414      // FIXME : Remove this autoupgrade code in LLVM 3.0.
415      // If Function attributes are using index 0 then transfer them
416      // to index ~0. Index 0 is used for return value attributes but used to be
417      // used for function attributes.
418      Attributes RetAttribute = Attribute::None;
419      Attributes FnAttribute = Attribute::None;
420      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421        // FIXME: remove in LLVM 3.0
422        // The alignment is stored as a 16-bit raw value from bits 31--16.
423        // We shift the bits above 31 down by 11 bits.
424
425        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426        if (Alignment && !isPowerOf2_32(Alignment))
427          return Error("Alignment is not a power of two.");
428
429        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430        if (Alignment)
431          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433        Record[i+1] = ReconstitutedAttr;
434
435        if (Record[i] == 0)
436          RetAttribute = Record[i+1];
437        else if (Record[i] == ~0U)
438          FnAttribute = Record[i+1];
439      }
440
441      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442                              Attribute::ReadOnly|Attribute::ReadNone);
443
444      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445          (RetAttribute & OldRetAttrs) != 0) {
446        if (FnAttribute == Attribute::None) { // add a slot so they get added.
447          Record.push_back(~0U);
448          Record.push_back(0);
449        }
450
451        FnAttribute  |= RetAttribute & OldRetAttrs;
452        RetAttribute &= ~OldRetAttrs;
453      }
454
455      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456        if (Record[i] == 0) {
457          if (RetAttribute != Attribute::None)
458            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459        } else if (Record[i] == ~0U) {
460          if (FnAttribute != Attribute::None)
461            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462        } else if (Record[i+1] != Attribute::None)
463          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
464      }
465
466      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467      Attrs.clear();
468      break;
469    }
470    }
471  }
472}
473
474
475bool BitcodeReader::ParseTypeTable() {
476  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477    return Error("Malformed block record");
478
479  if (!TypeList.empty())
480    return Error("Multiple TYPE_BLOCKs found!");
481
482  SmallVector<uint64_t, 64> Record;
483  unsigned NumRecords = 0;
484
485  // Read all the records for this type table.
486  while (1) {
487    unsigned Code = Stream.ReadCode();
488    if (Code == bitc::END_BLOCK) {
489      if (NumRecords != TypeList.size())
490        return Error("Invalid type forward reference in TYPE_BLOCK");
491      if (Stream.ReadBlockEnd())
492        return Error("Error at end of type table block");
493      return false;
494    }
495
496    if (Code == bitc::ENTER_SUBBLOCK) {
497      // No known subblocks, always skip them.
498      Stream.ReadSubBlockID();
499      if (Stream.SkipBlock())
500        return Error("Malformed block record");
501      continue;
502    }
503
504    if (Code == bitc::DEFINE_ABBREV) {
505      Stream.ReadAbbrevRecord();
506      continue;
507    }
508
509    // Read a record.
510    Record.clear();
511    const Type *ResultTy = 0;
512    switch (Stream.ReadRecord(Code, Record)) {
513    default:  // Default behavior: unknown type.
514      ResultTy = 0;
515      break;
516    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518      // type list.  This allows us to reserve space.
519      if (Record.size() < 1)
520        return Error("Invalid TYPE_CODE_NUMENTRY record");
521      TypeList.reserve(Record[0]);
522      continue;
523    case bitc::TYPE_CODE_VOID:      // VOID
524      ResultTy = Type::getVoidTy(Context);
525      break;
526    case bitc::TYPE_CODE_FLOAT:     // FLOAT
527      ResultTy = Type::getFloatTy(Context);
528      break;
529    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
530      ResultTy = Type::getDoubleTy(Context);
531      break;
532    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
533      ResultTy = Type::getX86_FP80Ty(Context);
534      break;
535    case bitc::TYPE_CODE_FP128:     // FP128
536      ResultTy = Type::getFP128Ty(Context);
537      break;
538    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539      ResultTy = Type::getPPC_FP128Ty(Context);
540      break;
541    case bitc::TYPE_CODE_LABEL:     // LABEL
542      ResultTy = Type::getLabelTy(Context);
543      break;
544    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
545      ResultTy = 0;
546      break;
547    case bitc::TYPE_CODE_METADATA:  // METADATA
548      ResultTy = Type::getMetadataTy(Context);
549      break;
550    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
551      if (Record.size() < 1)
552        return Error("Invalid Integer type record");
553
554      ResultTy = IntegerType::get(Context, Record[0]);
555      break;
556    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557                                    //          [pointee type, address space]
558      if (Record.size() < 1)
559        return Error("Invalid POINTER type record");
560      unsigned AddressSpace = 0;
561      if (Record.size() == 2)
562        AddressSpace = Record[1];
563      ResultTy = PointerType::get(getTypeByID(Record[0], true),
564                                        AddressSpace);
565      break;
566    }
567    case bitc::TYPE_CODE_FUNCTION: {
568      // FIXME: attrid is dead, remove it in LLVM 3.0
569      // FUNCTION: [vararg, attrid, retty, paramty x N]
570      if (Record.size() < 3)
571        return Error("Invalid FUNCTION type record");
572      std::vector<const Type*> ArgTys;
573      for (unsigned i = 3, e = Record.size(); i != e; ++i)
574        ArgTys.push_back(getTypeByID(Record[i], true));
575
576      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577                                   Record[0]);
578      break;
579    }
580    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
581      if (Record.size() < 1)
582        return Error("Invalid STRUCT type record");
583      std::vector<const Type*> EltTys;
584      for (unsigned i = 1, e = Record.size(); i != e; ++i)
585        EltTys.push_back(getTypeByID(Record[i], true));
586      ResultTy = StructType::get(Context, EltTys, Record[0]);
587      break;
588    }
589    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
590      if (Record.size() < 2)
591        return Error("Invalid ARRAY type record");
592      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593      break;
594    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid VECTOR type record");
597      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    }
600
601    if (NumRecords == TypeList.size()) {
602      // If this is a new type slot, just append it.
603      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604      ++NumRecords;
605    } else if (ResultTy == 0) {
606      // Otherwise, this was forward referenced, so an opaque type was created,
607      // but the result type is actually just an opaque.  Leave the one we
608      // created previously.
609      ++NumRecords;
610    } else {
611      // Otherwise, this was forward referenced, so an opaque type was created.
612      // Resolve the opaque type to the real type now.
613      assert(NumRecords < TypeList.size() && "Typelist imbalance");
614      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
615
616      // Don't directly push the new type on the Tab. Instead we want to replace
617      // the opaque type we previously inserted with the new concrete value. The
618      // refinement from the abstract (opaque) type to the new type causes all
619      // uses of the abstract type to use the concrete type (NewTy). This will
620      // also cause the opaque type to be deleted.
621      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
622
623      // This should have replaced the old opaque type with the new type in the
624      // value table... or with a preexisting type that was already in the
625      // system.  Let's just make sure it did.
626      assert(TypeList[NumRecords-1].get() != OldTy &&
627             "refineAbstractType didn't work!");
628    }
629  }
630}
631
632
633bool BitcodeReader::ParseTypeSymbolTable() {
634  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635    return Error("Malformed block record");
636
637  SmallVector<uint64_t, 64> Record;
638
639  // Read all the records for this type table.
640  std::string TypeName;
641  while (1) {
642    unsigned Code = Stream.ReadCode();
643    if (Code == bitc::END_BLOCK) {
644      if (Stream.ReadBlockEnd())
645        return Error("Error at end of type symbol table block");
646      return false;
647    }
648
649    if (Code == bitc::ENTER_SUBBLOCK) {
650      // No known subblocks, always skip them.
651      Stream.ReadSubBlockID();
652      if (Stream.SkipBlock())
653        return Error("Malformed block record");
654      continue;
655    }
656
657    if (Code == bitc::DEFINE_ABBREV) {
658      Stream.ReadAbbrevRecord();
659      continue;
660    }
661
662    // Read a record.
663    Record.clear();
664    switch (Stream.ReadRecord(Code, Record)) {
665    default:  // Default behavior: unknown type.
666      break;
667    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
668      if (ConvertToString(Record, 1, TypeName))
669        return Error("Invalid TST_ENTRY record");
670      unsigned TypeID = Record[0];
671      if (TypeID >= TypeList.size())
672        return Error("Invalid Type ID in TST_ENTRY record");
673
674      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675      TypeName.clear();
676      break;
677    }
678  }
679}
680
681bool BitcodeReader::ParseValueSymbolTable() {
682  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683    return Error("Malformed block record");
684
685  SmallVector<uint64_t, 64> Record;
686
687  // Read all the records for this value table.
688  SmallString<128> ValueName;
689  while (1) {
690    unsigned Code = Stream.ReadCode();
691    if (Code == bitc::END_BLOCK) {
692      if (Stream.ReadBlockEnd())
693        return Error("Error at end of value symbol table block");
694      return false;
695    }
696    if (Code == bitc::ENTER_SUBBLOCK) {
697      // No known subblocks, always skip them.
698      Stream.ReadSubBlockID();
699      if (Stream.SkipBlock())
700        return Error("Malformed block record");
701      continue;
702    }
703
704    if (Code == bitc::DEFINE_ABBREV) {
705      Stream.ReadAbbrevRecord();
706      continue;
707    }
708
709    // Read a record.
710    Record.clear();
711    switch (Stream.ReadRecord(Code, Record)) {
712    default:  // Default behavior: unknown type.
713      break;
714    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
715      if (ConvertToString(Record, 1, ValueName))
716        return Error("Invalid VST_ENTRY record");
717      unsigned ValueID = Record[0];
718      if (ValueID >= ValueList.size())
719        return Error("Invalid Value ID in VST_ENTRY record");
720      Value *V = ValueList[ValueID];
721
722      V->setName(StringRef(ValueName.data(), ValueName.size()));
723      ValueName.clear();
724      break;
725    }
726    case bitc::VST_CODE_BBENTRY: {
727      if (ConvertToString(Record, 1, ValueName))
728        return Error("Invalid VST_BBENTRY record");
729      BasicBlock *BB = getBasicBlock(Record[0]);
730      if (BB == 0)
731        return Error("Invalid BB ID in VST_BBENTRY record");
732
733      BB->setName(StringRef(ValueName.data(), ValueName.size()));
734      ValueName.clear();
735      break;
736    }
737    }
738  }
739}
740
741bool BitcodeReader::ParseMetadata() {
742  unsigned NextValueNo = MDValueList.size();
743
744  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745    return Error("Malformed block record");
746
747  SmallVector<uint64_t, 64> Record;
748
749  // Read all the records.
750  while (1) {
751    unsigned Code = Stream.ReadCode();
752    if (Code == bitc::END_BLOCK) {
753      if (Stream.ReadBlockEnd())
754        return Error("Error at end of PARAMATTR block");
755      return false;
756    }
757
758    if (Code == bitc::ENTER_SUBBLOCK) {
759      // No known subblocks, always skip them.
760      Stream.ReadSubBlockID();
761      if (Stream.SkipBlock())
762        return Error("Malformed block record");
763      continue;
764    }
765
766    if (Code == bitc::DEFINE_ABBREV) {
767      Stream.ReadAbbrevRecord();
768      continue;
769    }
770
771    // Read a record.
772    Record.clear();
773    switch (Stream.ReadRecord(Code, Record)) {
774    default:  // Default behavior: ignore.
775      break;
776    case bitc::METADATA_NAME: {
777      // Read named of the named metadata.
778      unsigned NameLength = Record.size();
779      SmallString<8> Name;
780      Name.resize(NameLength);
781      for (unsigned i = 0; i != NameLength; ++i)
782        Name[i] = Record[i];
783      Record.clear();
784      Code = Stream.ReadCode();
785
786      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788        assert ( 0 && "Inavlid Named Metadata record");
789
790      // Read named metadata elements.
791      unsigned Size = Record.size();
792      SmallVector<MetadataBase*, 8> Elts;
793      for (unsigned i = 0; i != Size; ++i) {
794        Value *MD = MDValueList.getValueFwdRef(Record[i]);
795        if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796        Elts.push_back(B);
797      }
798      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799                                     Elts.size(), TheModule);
800      MDValueList.AssignValue(V, NextValueNo++);
801      break;
802    }
803    case bitc::METADATA_NODE: {
804      if (Record.empty() || Record.size() % 2 == 1)
805        return Error("Invalid METADATA_NODE record");
806
807      unsigned Size = Record.size();
808      SmallVector<Value*, 8> Elts;
809      for (unsigned i = 0; i != Size; i += 2) {
810        const Type *Ty = getTypeByID(Record[i], false);
811        if (Ty->isMetadataTy())
812          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813        else if (Ty != Type::getVoidTy(Context))
814          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815        else
816          Elts.push_back(NULL);
817      }
818      Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819      MDValueList.AssignValue(V, NextValueNo++);
820      break;
821    }
822    case bitc::METADATA_STRING: {
823      unsigned MDStringLength = Record.size();
824      SmallString<8> String;
825      String.resize(MDStringLength);
826      for (unsigned i = 0; i != MDStringLength; ++i)
827        String[i] = Record[i];
828      Value *V = MDString::get(Context,
829                               StringRef(String.data(), String.size()));
830      MDValueList.AssignValue(V, NextValueNo++);
831      break;
832    }
833    case bitc::METADATA_KIND: {
834      unsigned RecordLength = Record.size();
835      if (Record.empty() || RecordLength < 2)
836        return Error("Invalid METADATA_KIND record");
837      SmallString<8> Name;
838      Name.resize(RecordLength-1);
839      unsigned Kind = Record[0];
840      (void) Kind;
841      for (unsigned i = 1; i != RecordLength; ++i)
842        Name[i-1] = Record[i];
843      MetadataContext &TheMetadata = Context.getMetadata();
844      unsigned ExistingKind = TheMetadata.getMDKind(Name.str());
845      if (ExistingKind == 0) {
846        unsigned NewKind = TheMetadata.registerMDKind(Name.str());
847        (void) NewKind;
848        assert (Kind == NewKind
849                && "Unable to handle custom metadata mismatch!");
850      } else {
851        assert (ExistingKind == Kind
852                && "Unable to handle custom metadata mismatch!");
853      }
854      break;
855    }
856    }
857  }
858}
859
860/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
861/// the LSB for dense VBR encoding.
862static uint64_t DecodeSignRotatedValue(uint64_t V) {
863  if ((V & 1) == 0)
864    return V >> 1;
865  if (V != 1)
866    return -(V >> 1);
867  // There is no such thing as -0 with integers.  "-0" really means MININT.
868  return 1ULL << 63;
869}
870
871/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
872/// values and aliases that we can.
873bool BitcodeReader::ResolveGlobalAndAliasInits() {
874  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
875  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
876
877  GlobalInitWorklist.swap(GlobalInits);
878  AliasInitWorklist.swap(AliasInits);
879
880  while (!GlobalInitWorklist.empty()) {
881    unsigned ValID = GlobalInitWorklist.back().second;
882    if (ValID >= ValueList.size()) {
883      // Not ready to resolve this yet, it requires something later in the file.
884      GlobalInits.push_back(GlobalInitWorklist.back());
885    } else {
886      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
887        GlobalInitWorklist.back().first->setInitializer(C);
888      else
889        return Error("Global variable initializer is not a constant!");
890    }
891    GlobalInitWorklist.pop_back();
892  }
893
894  while (!AliasInitWorklist.empty()) {
895    unsigned ValID = AliasInitWorklist.back().second;
896    if (ValID >= ValueList.size()) {
897      AliasInits.push_back(AliasInitWorklist.back());
898    } else {
899      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
900        AliasInitWorklist.back().first->setAliasee(C);
901      else
902        return Error("Alias initializer is not a constant!");
903    }
904    AliasInitWorklist.pop_back();
905  }
906  return false;
907}
908
909bool BitcodeReader::ParseConstants() {
910  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
911    return Error("Malformed block record");
912
913  SmallVector<uint64_t, 64> Record;
914
915  // Read all the records for this value table.
916  const Type *CurTy = Type::getInt32Ty(Context);
917  unsigned NextCstNo = ValueList.size();
918  while (1) {
919    unsigned Code = Stream.ReadCode();
920    if (Code == bitc::END_BLOCK)
921      break;
922
923    if (Code == bitc::ENTER_SUBBLOCK) {
924      // No known subblocks, always skip them.
925      Stream.ReadSubBlockID();
926      if (Stream.SkipBlock())
927        return Error("Malformed block record");
928      continue;
929    }
930
931    if (Code == bitc::DEFINE_ABBREV) {
932      Stream.ReadAbbrevRecord();
933      continue;
934    }
935
936    // Read a record.
937    Record.clear();
938    Value *V = 0;
939    unsigned BitCode = Stream.ReadRecord(Code, Record);
940    switch (BitCode) {
941    default:  // Default behavior: unknown constant
942    case bitc::CST_CODE_UNDEF:     // UNDEF
943      V = UndefValue::get(CurTy);
944      break;
945    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
946      if (Record.empty())
947        return Error("Malformed CST_SETTYPE record");
948      if (Record[0] >= TypeList.size())
949        return Error("Invalid Type ID in CST_SETTYPE record");
950      CurTy = TypeList[Record[0]];
951      continue;  // Skip the ValueList manipulation.
952    case bitc::CST_CODE_NULL:      // NULL
953      V = Constant::getNullValue(CurTy);
954      break;
955    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
956      if (!isa<IntegerType>(CurTy) || Record.empty())
957        return Error("Invalid CST_INTEGER record");
958      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
959      break;
960    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
961      if (!isa<IntegerType>(CurTy) || Record.empty())
962        return Error("Invalid WIDE_INTEGER record");
963
964      unsigned NumWords = Record.size();
965      SmallVector<uint64_t, 8> Words;
966      Words.resize(NumWords);
967      for (unsigned i = 0; i != NumWords; ++i)
968        Words[i] = DecodeSignRotatedValue(Record[i]);
969      V = ConstantInt::get(Context,
970                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
971                           NumWords, &Words[0]));
972      break;
973    }
974    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
975      if (Record.empty())
976        return Error("Invalid FLOAT record");
977      if (CurTy->isFloatTy())
978        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
979      else if (CurTy->isDoubleTy())
980        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
981      else if (CurTy->isX86_FP80Ty()) {
982        // Bits are not stored the same way as a normal i80 APInt, compensate.
983        uint64_t Rearrange[2];
984        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
985        Rearrange[1] = Record[0] >> 48;
986        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
987      } else if (CurTy->isFP128Ty())
988        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
989      else if (CurTy->isPPC_FP128Ty())
990        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
991      else
992        V = UndefValue::get(CurTy);
993      break;
994    }
995
996    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
997      if (Record.empty())
998        return Error("Invalid CST_AGGREGATE record");
999
1000      unsigned Size = Record.size();
1001      std::vector<Constant*> Elts;
1002
1003      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1004        for (unsigned i = 0; i != Size; ++i)
1005          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1006                                                     STy->getElementType(i)));
1007        V = ConstantStruct::get(STy, Elts);
1008      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1009        const Type *EltTy = ATy->getElementType();
1010        for (unsigned i = 0; i != Size; ++i)
1011          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1012        V = ConstantArray::get(ATy, Elts);
1013      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1014        const Type *EltTy = VTy->getElementType();
1015        for (unsigned i = 0; i != Size; ++i)
1016          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1017        V = ConstantVector::get(Elts);
1018      } else {
1019        V = UndefValue::get(CurTy);
1020      }
1021      break;
1022    }
1023    case bitc::CST_CODE_STRING: { // STRING: [values]
1024      if (Record.empty())
1025        return Error("Invalid CST_AGGREGATE record");
1026
1027      const ArrayType *ATy = cast<ArrayType>(CurTy);
1028      const Type *EltTy = ATy->getElementType();
1029
1030      unsigned Size = Record.size();
1031      std::vector<Constant*> Elts;
1032      for (unsigned i = 0; i != Size; ++i)
1033        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1034      V = ConstantArray::get(ATy, Elts);
1035      break;
1036    }
1037    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1038      if (Record.empty())
1039        return Error("Invalid CST_AGGREGATE record");
1040
1041      const ArrayType *ATy = cast<ArrayType>(CurTy);
1042      const Type *EltTy = ATy->getElementType();
1043
1044      unsigned Size = Record.size();
1045      std::vector<Constant*> Elts;
1046      for (unsigned i = 0; i != Size; ++i)
1047        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1048      Elts.push_back(Constant::getNullValue(EltTy));
1049      V = ConstantArray::get(ATy, Elts);
1050      break;
1051    }
1052    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1053      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1054      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1055      if (Opc < 0) {
1056        V = UndefValue::get(CurTy);  // Unknown binop.
1057      } else {
1058        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1059        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1060        unsigned Flags = 0;
1061        if (Record.size() >= 4) {
1062          if (Opc == Instruction::Add ||
1063              Opc == Instruction::Sub ||
1064              Opc == Instruction::Mul) {
1065            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1066              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1067            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1068              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1069          } else if (Opc == Instruction::SDiv) {
1070            if (Record[3] & (1 << bitc::SDIV_EXACT))
1071              Flags |= SDivOperator::IsExact;
1072          }
1073        }
1074        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1075      }
1076      break;
1077    }
1078    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1079      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1080      int Opc = GetDecodedCastOpcode(Record[0]);
1081      if (Opc < 0) {
1082        V = UndefValue::get(CurTy);  // Unknown cast.
1083      } else {
1084        const Type *OpTy = getTypeByID(Record[1]);
1085        if (!OpTy) return Error("Invalid CE_CAST record");
1086        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1087        V = ConstantExpr::getCast(Opc, Op, CurTy);
1088      }
1089      break;
1090    }
1091    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1092    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1093      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1094      SmallVector<Constant*, 16> Elts;
1095      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1096        const Type *ElTy = getTypeByID(Record[i]);
1097        if (!ElTy) return Error("Invalid CE_GEP record");
1098        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1099      }
1100      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1101        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1102                                                   Elts.size()-1);
1103      else
1104        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1105                                           Elts.size()-1);
1106      break;
1107    }
1108    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1109      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1110      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1111                                                              Type::getInt1Ty(Context)),
1112                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1113                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1114      break;
1115    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1116      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1117      const VectorType *OpTy =
1118        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1119      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1120      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1121      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1122      V = ConstantExpr::getExtractElement(Op0, Op1);
1123      break;
1124    }
1125    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1126      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1127      if (Record.size() < 3 || OpTy == 0)
1128        return Error("Invalid CE_INSERTELT record");
1129      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1130      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1131                                                  OpTy->getElementType());
1132      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1133      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1134      break;
1135    }
1136    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1137      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1138      if (Record.size() < 3 || OpTy == 0)
1139        return Error("Invalid CE_SHUFFLEVEC record");
1140      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1141      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1142      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1143                                                 OpTy->getNumElements());
1144      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1145      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1146      break;
1147    }
1148    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1149      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1150      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1151      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1152        return Error("Invalid CE_SHUFVEC_EX record");
1153      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1154      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1155      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1156                                                 RTy->getNumElements());
1157      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1158      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1159      break;
1160    }
1161    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1162      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1163      const Type *OpTy = getTypeByID(Record[0]);
1164      if (OpTy == 0) return Error("Invalid CE_CMP record");
1165      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1166      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1167
1168      if (OpTy->isFloatingPoint())
1169        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1170      else
1171        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1172      break;
1173    }
1174    case bitc::CST_CODE_INLINEASM: {
1175      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1176      std::string AsmStr, ConstrStr;
1177      bool HasSideEffects = Record[0] & 1;
1178      bool IsAlignStack = Record[0] >> 1;
1179      unsigned AsmStrSize = Record[1];
1180      if (2+AsmStrSize >= Record.size())
1181        return Error("Invalid INLINEASM record");
1182      unsigned ConstStrSize = Record[2+AsmStrSize];
1183      if (3+AsmStrSize+ConstStrSize > Record.size())
1184        return Error("Invalid INLINEASM record");
1185
1186      for (unsigned i = 0; i != AsmStrSize; ++i)
1187        AsmStr += (char)Record[2+i];
1188      for (unsigned i = 0; i != ConstStrSize; ++i)
1189        ConstrStr += (char)Record[3+AsmStrSize+i];
1190      const PointerType *PTy = cast<PointerType>(CurTy);
1191      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1192                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1193      break;
1194    }
1195    case bitc::CST_CODE_BLOCKADDRESS:{
1196      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1197      const Type *FnTy = getTypeByID(Record[0]);
1198      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1199      Function *Fn =
1200        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1201      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1202
1203      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1204                                                  Type::getInt8Ty(Context),
1205                                            false, GlobalValue::InternalLinkage,
1206                                                  0, "");
1207      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1208      V = FwdRef;
1209      break;
1210    }
1211    }
1212
1213    ValueList.AssignValue(V, NextCstNo);
1214    ++NextCstNo;
1215  }
1216
1217  if (NextCstNo != ValueList.size())
1218    return Error("Invalid constant reference!");
1219
1220  if (Stream.ReadBlockEnd())
1221    return Error("Error at end of constants block");
1222
1223  // Once all the constants have been read, go through and resolve forward
1224  // references.
1225  ValueList.ResolveConstantForwardRefs();
1226  return false;
1227}
1228
1229/// RememberAndSkipFunctionBody - When we see the block for a function body,
1230/// remember where it is and then skip it.  This lets us lazily deserialize the
1231/// functions.
1232bool BitcodeReader::RememberAndSkipFunctionBody() {
1233  // Get the function we are talking about.
1234  if (FunctionsWithBodies.empty())
1235    return Error("Insufficient function protos");
1236
1237  Function *Fn = FunctionsWithBodies.back();
1238  FunctionsWithBodies.pop_back();
1239
1240  // Save the current stream state.
1241  uint64_t CurBit = Stream.GetCurrentBitNo();
1242  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1243
1244  // Set the functions linkage to GhostLinkage so we know it is lazily
1245  // deserialized.
1246  Fn->setLinkage(GlobalValue::GhostLinkage);
1247
1248  // Skip over the function block for now.
1249  if (Stream.SkipBlock())
1250    return Error("Malformed block record");
1251  return false;
1252}
1253
1254bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1255  // Reject multiple MODULE_BLOCK's in a single bitstream.
1256  if (TheModule)
1257    return Error("Multiple MODULE_BLOCKs in same stream");
1258
1259  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1260    return Error("Malformed block record");
1261
1262  // Otherwise, create the module.
1263  TheModule = new Module(ModuleID, Context);
1264
1265  SmallVector<uint64_t, 64> Record;
1266  std::vector<std::string> SectionTable;
1267  std::vector<std::string> GCTable;
1268
1269  // Read all the records for this module.
1270  while (!Stream.AtEndOfStream()) {
1271    unsigned Code = Stream.ReadCode();
1272    if (Code == bitc::END_BLOCK) {
1273      if (Stream.ReadBlockEnd())
1274        return Error("Error at end of module block");
1275
1276      // Patch the initializers for globals and aliases up.
1277      ResolveGlobalAndAliasInits();
1278      if (!GlobalInits.empty() || !AliasInits.empty())
1279        return Error("Malformed global initializer set");
1280      if (!FunctionsWithBodies.empty())
1281        return Error("Too few function bodies found");
1282
1283      // Look for intrinsic functions which need to be upgraded at some point
1284      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1285           FI != FE; ++FI) {
1286        Function* NewFn;
1287        if (UpgradeIntrinsicFunction(FI, NewFn))
1288          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1289      }
1290
1291      // Force deallocation of memory for these vectors to favor the client that
1292      // want lazy deserialization.
1293      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1294      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1295      std::vector<Function*>().swap(FunctionsWithBodies);
1296      return false;
1297    }
1298
1299    if (Code == bitc::ENTER_SUBBLOCK) {
1300      switch (Stream.ReadSubBlockID()) {
1301      default:  // Skip unknown content.
1302        if (Stream.SkipBlock())
1303          return Error("Malformed block record");
1304        break;
1305      case bitc::BLOCKINFO_BLOCK_ID:
1306        if (Stream.ReadBlockInfoBlock())
1307          return Error("Malformed BlockInfoBlock");
1308        break;
1309      case bitc::PARAMATTR_BLOCK_ID:
1310        if (ParseAttributeBlock())
1311          return true;
1312        break;
1313      case bitc::TYPE_BLOCK_ID:
1314        if (ParseTypeTable())
1315          return true;
1316        break;
1317      case bitc::TYPE_SYMTAB_BLOCK_ID:
1318        if (ParseTypeSymbolTable())
1319          return true;
1320        break;
1321      case bitc::VALUE_SYMTAB_BLOCK_ID:
1322        if (ParseValueSymbolTable())
1323          return true;
1324        break;
1325      case bitc::CONSTANTS_BLOCK_ID:
1326        if (ParseConstants() || ResolveGlobalAndAliasInits())
1327          return true;
1328        break;
1329      case bitc::METADATA_BLOCK_ID:
1330        if (ParseMetadata())
1331          return true;
1332        break;
1333      case bitc::FUNCTION_BLOCK_ID:
1334        // If this is the first function body we've seen, reverse the
1335        // FunctionsWithBodies list.
1336        if (!HasReversedFunctionsWithBodies) {
1337          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1338          HasReversedFunctionsWithBodies = true;
1339        }
1340
1341        if (RememberAndSkipFunctionBody())
1342          return true;
1343        break;
1344      }
1345      continue;
1346    }
1347
1348    if (Code == bitc::DEFINE_ABBREV) {
1349      Stream.ReadAbbrevRecord();
1350      continue;
1351    }
1352
1353    // Read a record.
1354    switch (Stream.ReadRecord(Code, Record)) {
1355    default: break;  // Default behavior, ignore unknown content.
1356    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1357      if (Record.size() < 1)
1358        return Error("Malformed MODULE_CODE_VERSION");
1359      // Only version #0 is supported so far.
1360      if (Record[0] != 0)
1361        return Error("Unknown bitstream version!");
1362      break;
1363    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1364      std::string S;
1365      if (ConvertToString(Record, 0, S))
1366        return Error("Invalid MODULE_CODE_TRIPLE record");
1367      TheModule->setTargetTriple(S);
1368      break;
1369    }
1370    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1371      std::string S;
1372      if (ConvertToString(Record, 0, S))
1373        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1374      TheModule->setDataLayout(S);
1375      break;
1376    }
1377    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1378      std::string S;
1379      if (ConvertToString(Record, 0, S))
1380        return Error("Invalid MODULE_CODE_ASM record");
1381      TheModule->setModuleInlineAsm(S);
1382      break;
1383    }
1384    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1385      std::string S;
1386      if (ConvertToString(Record, 0, S))
1387        return Error("Invalid MODULE_CODE_DEPLIB record");
1388      TheModule->addLibrary(S);
1389      break;
1390    }
1391    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1392      std::string S;
1393      if (ConvertToString(Record, 0, S))
1394        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1395      SectionTable.push_back(S);
1396      break;
1397    }
1398    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1399      std::string S;
1400      if (ConvertToString(Record, 0, S))
1401        return Error("Invalid MODULE_CODE_GCNAME record");
1402      GCTable.push_back(S);
1403      break;
1404    }
1405    // GLOBALVAR: [pointer type, isconst, initid,
1406    //             linkage, alignment, section, visibility, threadlocal]
1407    case bitc::MODULE_CODE_GLOBALVAR: {
1408      if (Record.size() < 6)
1409        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1410      const Type *Ty = getTypeByID(Record[0]);
1411      if (!isa<PointerType>(Ty))
1412        return Error("Global not a pointer type!");
1413      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1414      Ty = cast<PointerType>(Ty)->getElementType();
1415
1416      bool isConstant = Record[1];
1417      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1418      unsigned Alignment = (1 << Record[4]) >> 1;
1419      std::string Section;
1420      if (Record[5]) {
1421        if (Record[5]-1 >= SectionTable.size())
1422          return Error("Invalid section ID");
1423        Section = SectionTable[Record[5]-1];
1424      }
1425      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1426      if (Record.size() > 6)
1427        Visibility = GetDecodedVisibility(Record[6]);
1428      bool isThreadLocal = false;
1429      if (Record.size() > 7)
1430        isThreadLocal = Record[7];
1431
1432      GlobalVariable *NewGV =
1433        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1434                           isThreadLocal, AddressSpace);
1435      NewGV->setAlignment(Alignment);
1436      if (!Section.empty())
1437        NewGV->setSection(Section);
1438      NewGV->setVisibility(Visibility);
1439      NewGV->setThreadLocal(isThreadLocal);
1440
1441      ValueList.push_back(NewGV);
1442
1443      // Remember which value to use for the global initializer.
1444      if (unsigned InitID = Record[2])
1445        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1446      break;
1447    }
1448    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1449    //             alignment, section, visibility, gc]
1450    case bitc::MODULE_CODE_FUNCTION: {
1451      if (Record.size() < 8)
1452        return Error("Invalid MODULE_CODE_FUNCTION record");
1453      const Type *Ty = getTypeByID(Record[0]);
1454      if (!isa<PointerType>(Ty))
1455        return Error("Function not a pointer type!");
1456      const FunctionType *FTy =
1457        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1458      if (!FTy)
1459        return Error("Function not a pointer to function type!");
1460
1461      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1462                                        "", TheModule);
1463
1464      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1465      bool isProto = Record[2];
1466      Func->setLinkage(GetDecodedLinkage(Record[3]));
1467      Func->setAttributes(getAttributes(Record[4]));
1468
1469      Func->setAlignment((1 << Record[5]) >> 1);
1470      if (Record[6]) {
1471        if (Record[6]-1 >= SectionTable.size())
1472          return Error("Invalid section ID");
1473        Func->setSection(SectionTable[Record[6]-1]);
1474      }
1475      Func->setVisibility(GetDecodedVisibility(Record[7]));
1476      if (Record.size() > 8 && Record[8]) {
1477        if (Record[8]-1 > GCTable.size())
1478          return Error("Invalid GC ID");
1479        Func->setGC(GCTable[Record[8]-1].c_str());
1480      }
1481      ValueList.push_back(Func);
1482
1483      // If this is a function with a body, remember the prototype we are
1484      // creating now, so that we can match up the body with them later.
1485      if (!isProto)
1486        FunctionsWithBodies.push_back(Func);
1487      break;
1488    }
1489    // ALIAS: [alias type, aliasee val#, linkage]
1490    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1491    case bitc::MODULE_CODE_ALIAS: {
1492      if (Record.size() < 3)
1493        return Error("Invalid MODULE_ALIAS record");
1494      const Type *Ty = getTypeByID(Record[0]);
1495      if (!isa<PointerType>(Ty))
1496        return Error("Function not a pointer type!");
1497
1498      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1499                                           "", 0, TheModule);
1500      // Old bitcode files didn't have visibility field.
1501      if (Record.size() > 3)
1502        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1503      ValueList.push_back(NewGA);
1504      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1505      break;
1506    }
1507    /// MODULE_CODE_PURGEVALS: [numvals]
1508    case bitc::MODULE_CODE_PURGEVALS:
1509      // Trim down the value list to the specified size.
1510      if (Record.size() < 1 || Record[0] > ValueList.size())
1511        return Error("Invalid MODULE_PURGEVALS record");
1512      ValueList.shrinkTo(Record[0]);
1513      break;
1514    }
1515    Record.clear();
1516  }
1517
1518  return Error("Premature end of bitstream");
1519}
1520
1521bool BitcodeReader::ParseBitcode() {
1522  TheModule = 0;
1523
1524  if (Buffer->getBufferSize() & 3)
1525    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1526
1527  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1528  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1529
1530  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1531  // The magic number is 0x0B17C0DE stored in little endian.
1532  if (isBitcodeWrapper(BufPtr, BufEnd))
1533    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1534      return Error("Invalid bitcode wrapper header");
1535
1536  StreamFile.init(BufPtr, BufEnd);
1537  Stream.init(StreamFile);
1538
1539  // Sniff for the signature.
1540  if (Stream.Read(8) != 'B' ||
1541      Stream.Read(8) != 'C' ||
1542      Stream.Read(4) != 0x0 ||
1543      Stream.Read(4) != 0xC ||
1544      Stream.Read(4) != 0xE ||
1545      Stream.Read(4) != 0xD)
1546    return Error("Invalid bitcode signature");
1547
1548  // We expect a number of well-defined blocks, though we don't necessarily
1549  // need to understand them all.
1550  while (!Stream.AtEndOfStream()) {
1551    unsigned Code = Stream.ReadCode();
1552
1553    if (Code != bitc::ENTER_SUBBLOCK)
1554      return Error("Invalid record at top-level");
1555
1556    unsigned BlockID = Stream.ReadSubBlockID();
1557
1558    // We only know the MODULE subblock ID.
1559    switch (BlockID) {
1560    case bitc::BLOCKINFO_BLOCK_ID:
1561      if (Stream.ReadBlockInfoBlock())
1562        return Error("Malformed BlockInfoBlock");
1563      break;
1564    case bitc::MODULE_BLOCK_ID:
1565      if (ParseModule(Buffer->getBufferIdentifier()))
1566        return true;
1567      break;
1568    default:
1569      if (Stream.SkipBlock())
1570        return Error("Malformed block record");
1571      break;
1572    }
1573  }
1574
1575  return false;
1576}
1577
1578/// ParseMetadataAttachment - Parse metadata attachments.
1579bool BitcodeReader::ParseMetadataAttachment() {
1580  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1581    return Error("Malformed block record");
1582
1583  MetadataContext &TheMetadata = Context.getMetadata();
1584  SmallVector<uint64_t, 64> Record;
1585  while(1) {
1586    unsigned Code = Stream.ReadCode();
1587    if (Code == bitc::END_BLOCK) {
1588      if (Stream.ReadBlockEnd())
1589        return Error("Error at end of PARAMATTR block");
1590      break;
1591    }
1592    if (Code == bitc::DEFINE_ABBREV) {
1593      Stream.ReadAbbrevRecord();
1594      continue;
1595    }
1596    // Read a metadata attachment record.
1597    Record.clear();
1598    switch (Stream.ReadRecord(Code, Record)) {
1599    default:  // Default behavior: ignore.
1600      break;
1601    case bitc::METADATA_ATTACHMENT: {
1602      unsigned RecordLength = Record.size();
1603      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1604        return Error ("Invalid METADATA_ATTACHMENT reader!");
1605      Instruction *Inst = InstructionList[Record[0]];
1606      for (unsigned i = 1; i != RecordLength; i = i+2) {
1607        unsigned Kind = Record[i];
1608        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1609        TheMetadata.addMD(Kind, cast<MDNode>(Node), Inst);
1610      }
1611      break;
1612    }
1613    }
1614  }
1615  return false;
1616}
1617
1618/// ParseFunctionBody - Lazily parse the specified function body block.
1619bool BitcodeReader::ParseFunctionBody(Function *F) {
1620  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1621    return Error("Malformed block record");
1622
1623  unsigned ModuleValueListSize = ValueList.size();
1624
1625  // Add all the function arguments to the value table.
1626  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1627    ValueList.push_back(I);
1628
1629  unsigned NextValueNo = ValueList.size();
1630  BasicBlock *CurBB = 0;
1631  unsigned CurBBNo = 0;
1632
1633  // Read all the records.
1634  SmallVector<uint64_t, 64> Record;
1635  while (1) {
1636    unsigned Code = Stream.ReadCode();
1637    if (Code == bitc::END_BLOCK) {
1638      if (Stream.ReadBlockEnd())
1639        return Error("Error at end of function block");
1640      break;
1641    }
1642
1643    if (Code == bitc::ENTER_SUBBLOCK) {
1644      switch (Stream.ReadSubBlockID()) {
1645      default:  // Skip unknown content.
1646        if (Stream.SkipBlock())
1647          return Error("Malformed block record");
1648        break;
1649      case bitc::CONSTANTS_BLOCK_ID:
1650        if (ParseConstants()) return true;
1651        NextValueNo = ValueList.size();
1652        break;
1653      case bitc::VALUE_SYMTAB_BLOCK_ID:
1654        if (ParseValueSymbolTable()) return true;
1655        break;
1656      case bitc::METADATA_ATTACHMENT_ID:
1657        if (ParseMetadataAttachment()) return true;
1658        break;
1659      }
1660      continue;
1661    }
1662
1663    if (Code == bitc::DEFINE_ABBREV) {
1664      Stream.ReadAbbrevRecord();
1665      continue;
1666    }
1667
1668    // Read a record.
1669    Record.clear();
1670    Instruction *I = 0;
1671    unsigned BitCode = Stream.ReadRecord(Code, Record);
1672    switch (BitCode) {
1673    default: // Default behavior: reject
1674      return Error("Unknown instruction");
1675    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1676      if (Record.size() < 1 || Record[0] == 0)
1677        return Error("Invalid DECLAREBLOCKS record");
1678      // Create all the basic blocks for the function.
1679      FunctionBBs.resize(Record[0]);
1680      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1681        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1682      CurBB = FunctionBBs[0];
1683      continue;
1684
1685    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1686      unsigned OpNum = 0;
1687      Value *LHS, *RHS;
1688      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1689          getValue(Record, OpNum, LHS->getType(), RHS) ||
1690          OpNum+1 > Record.size())
1691        return Error("Invalid BINOP record");
1692
1693      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1694      if (Opc == -1) return Error("Invalid BINOP record");
1695      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1696      InstructionList.push_back(I);
1697      if (OpNum < Record.size()) {
1698        if (Opc == Instruction::Add ||
1699            Opc == Instruction::Sub ||
1700            Opc == Instruction::Mul) {
1701          if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1702            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1703          if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1704            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1705        } else if (Opc == Instruction::SDiv) {
1706          if (Record[3] & (1 << bitc::SDIV_EXACT))
1707            cast<BinaryOperator>(I)->setIsExact(true);
1708        }
1709      }
1710      break;
1711    }
1712    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1713      unsigned OpNum = 0;
1714      Value *Op;
1715      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1716          OpNum+2 != Record.size())
1717        return Error("Invalid CAST record");
1718
1719      const Type *ResTy = getTypeByID(Record[OpNum]);
1720      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1721      if (Opc == -1 || ResTy == 0)
1722        return Error("Invalid CAST record");
1723      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1724      InstructionList.push_back(I);
1725      break;
1726    }
1727    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1728    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1729      unsigned OpNum = 0;
1730      Value *BasePtr;
1731      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1732        return Error("Invalid GEP record");
1733
1734      SmallVector<Value*, 16> GEPIdx;
1735      while (OpNum != Record.size()) {
1736        Value *Op;
1737        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1738          return Error("Invalid GEP record");
1739        GEPIdx.push_back(Op);
1740      }
1741
1742      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1743      InstructionList.push_back(I);
1744      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1745        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1746      break;
1747    }
1748
1749    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1750                                       // EXTRACTVAL: [opty, opval, n x indices]
1751      unsigned OpNum = 0;
1752      Value *Agg;
1753      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1754        return Error("Invalid EXTRACTVAL record");
1755
1756      SmallVector<unsigned, 4> EXTRACTVALIdx;
1757      for (unsigned RecSize = Record.size();
1758           OpNum != RecSize; ++OpNum) {
1759        uint64_t Index = Record[OpNum];
1760        if ((unsigned)Index != Index)
1761          return Error("Invalid EXTRACTVAL index");
1762        EXTRACTVALIdx.push_back((unsigned)Index);
1763      }
1764
1765      I = ExtractValueInst::Create(Agg,
1766                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1767      InstructionList.push_back(I);
1768      break;
1769    }
1770
1771    case bitc::FUNC_CODE_INST_INSERTVAL: {
1772                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1773      unsigned OpNum = 0;
1774      Value *Agg;
1775      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1776        return Error("Invalid INSERTVAL record");
1777      Value *Val;
1778      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1779        return Error("Invalid INSERTVAL record");
1780
1781      SmallVector<unsigned, 4> INSERTVALIdx;
1782      for (unsigned RecSize = Record.size();
1783           OpNum != RecSize; ++OpNum) {
1784        uint64_t Index = Record[OpNum];
1785        if ((unsigned)Index != Index)
1786          return Error("Invalid INSERTVAL index");
1787        INSERTVALIdx.push_back((unsigned)Index);
1788      }
1789
1790      I = InsertValueInst::Create(Agg, Val,
1791                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1792      InstructionList.push_back(I);
1793      break;
1794    }
1795
1796    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1797      // obsolete form of select
1798      // handles select i1 ... in old bitcode
1799      unsigned OpNum = 0;
1800      Value *TrueVal, *FalseVal, *Cond;
1801      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1802          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1803          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1804        return Error("Invalid SELECT record");
1805
1806      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1807      InstructionList.push_back(I);
1808      break;
1809    }
1810
1811    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1812      // new form of select
1813      // handles select i1 or select [N x i1]
1814      unsigned OpNum = 0;
1815      Value *TrueVal, *FalseVal, *Cond;
1816      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1817          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1818          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1819        return Error("Invalid SELECT record");
1820
1821      // select condition can be either i1 or [N x i1]
1822      if (const VectorType* vector_type =
1823          dyn_cast<const VectorType>(Cond->getType())) {
1824        // expect <n x i1>
1825        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1826          return Error("Invalid SELECT condition type");
1827      } else {
1828        // expect i1
1829        if (Cond->getType() != Type::getInt1Ty(Context))
1830          return Error("Invalid SELECT condition type");
1831      }
1832
1833      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1834      InstructionList.push_back(I);
1835      break;
1836    }
1837
1838    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1839      unsigned OpNum = 0;
1840      Value *Vec, *Idx;
1841      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1842          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1843        return Error("Invalid EXTRACTELT record");
1844      I = ExtractElementInst::Create(Vec, Idx);
1845      InstructionList.push_back(I);
1846      break;
1847    }
1848
1849    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1850      unsigned OpNum = 0;
1851      Value *Vec, *Elt, *Idx;
1852      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1853          getValue(Record, OpNum,
1854                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1855          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1856        return Error("Invalid INSERTELT record");
1857      I = InsertElementInst::Create(Vec, Elt, Idx);
1858      InstructionList.push_back(I);
1859      break;
1860    }
1861
1862    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1863      unsigned OpNum = 0;
1864      Value *Vec1, *Vec2, *Mask;
1865      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1866          getValue(Record, OpNum, Vec1->getType(), Vec2))
1867        return Error("Invalid SHUFFLEVEC record");
1868
1869      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1870        return Error("Invalid SHUFFLEVEC record");
1871      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1872      InstructionList.push_back(I);
1873      break;
1874    }
1875
1876    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1877      // Old form of ICmp/FCmp returning bool
1878      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1879      // both legal on vectors but had different behaviour.
1880    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1881      // FCmp/ICmp returning bool or vector of bool
1882
1883      unsigned OpNum = 0;
1884      Value *LHS, *RHS;
1885      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1886          getValue(Record, OpNum, LHS->getType(), RHS) ||
1887          OpNum+1 != Record.size())
1888        return Error("Invalid CMP record");
1889
1890      if (LHS->getType()->isFPOrFPVector())
1891        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1892      else
1893        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1894      InstructionList.push_back(I);
1895      break;
1896    }
1897
1898    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1899      if (Record.size() != 2)
1900        return Error("Invalid GETRESULT record");
1901      unsigned OpNum = 0;
1902      Value *Op;
1903      getValueTypePair(Record, OpNum, NextValueNo, Op);
1904      unsigned Index = Record[1];
1905      I = ExtractValueInst::Create(Op, Index);
1906      InstructionList.push_back(I);
1907      break;
1908    }
1909
1910    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1911      {
1912        unsigned Size = Record.size();
1913        if (Size == 0) {
1914          I = ReturnInst::Create(Context);
1915          InstructionList.push_back(I);
1916          break;
1917        }
1918
1919        unsigned OpNum = 0;
1920        SmallVector<Value *,4> Vs;
1921        do {
1922          Value *Op = NULL;
1923          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1924            return Error("Invalid RET record");
1925          Vs.push_back(Op);
1926        } while(OpNum != Record.size());
1927
1928        const Type *ReturnType = F->getReturnType();
1929        if (Vs.size() > 1 ||
1930            (isa<StructType>(ReturnType) &&
1931             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1932          Value *RV = UndefValue::get(ReturnType);
1933          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1934            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1935            InstructionList.push_back(I);
1936            CurBB->getInstList().push_back(I);
1937            ValueList.AssignValue(I, NextValueNo++);
1938            RV = I;
1939          }
1940          I = ReturnInst::Create(Context, RV);
1941          InstructionList.push_back(I);
1942          break;
1943        }
1944
1945        I = ReturnInst::Create(Context, Vs[0]);
1946        InstructionList.push_back(I);
1947        break;
1948      }
1949    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1950      if (Record.size() != 1 && Record.size() != 3)
1951        return Error("Invalid BR record");
1952      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1953      if (TrueDest == 0)
1954        return Error("Invalid BR record");
1955
1956      if (Record.size() == 1) {
1957        I = BranchInst::Create(TrueDest);
1958        InstructionList.push_back(I);
1959      }
1960      else {
1961        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1962        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1963        if (FalseDest == 0 || Cond == 0)
1964          return Error("Invalid BR record");
1965        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1966        InstructionList.push_back(I);
1967      }
1968      break;
1969    }
1970    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1971      if (Record.size() < 3 || (Record.size() & 1) == 0)
1972        return Error("Invalid SWITCH record");
1973      const Type *OpTy = getTypeByID(Record[0]);
1974      Value *Cond = getFnValueByID(Record[1], OpTy);
1975      BasicBlock *Default = getBasicBlock(Record[2]);
1976      if (OpTy == 0 || Cond == 0 || Default == 0)
1977        return Error("Invalid SWITCH record");
1978      unsigned NumCases = (Record.size()-3)/2;
1979      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1980      InstructionList.push_back(SI);
1981      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1982        ConstantInt *CaseVal =
1983          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1984        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1985        if (CaseVal == 0 || DestBB == 0) {
1986          delete SI;
1987          return Error("Invalid SWITCH record!");
1988        }
1989        SI->addCase(CaseVal, DestBB);
1990      }
1991      I = SI;
1992      break;
1993    }
1994    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1995      if (Record.size() < 2)
1996        return Error("Invalid INDIRECTBR record");
1997      const Type *OpTy = getTypeByID(Record[0]);
1998      Value *Address = getFnValueByID(Record[1], OpTy);
1999      if (OpTy == 0 || Address == 0)
2000        return Error("Invalid INDIRECTBR record");
2001      unsigned NumDests = Record.size()-2;
2002      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2003      InstructionList.push_back(IBI);
2004      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2005        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2006          IBI->addDestination(DestBB);
2007        } else {
2008          delete IBI;
2009          return Error("Invalid INDIRECTBR record!");
2010        }
2011      }
2012      I = IBI;
2013      break;
2014    }
2015
2016    case bitc::FUNC_CODE_INST_INVOKE: {
2017      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2018      if (Record.size() < 4) return Error("Invalid INVOKE record");
2019      AttrListPtr PAL = getAttributes(Record[0]);
2020      unsigned CCInfo = Record[1];
2021      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2022      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2023
2024      unsigned OpNum = 4;
2025      Value *Callee;
2026      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2027        return Error("Invalid INVOKE record");
2028
2029      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2030      const FunctionType *FTy = !CalleeTy ? 0 :
2031        dyn_cast<FunctionType>(CalleeTy->getElementType());
2032
2033      // Check that the right number of fixed parameters are here.
2034      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2035          Record.size() < OpNum+FTy->getNumParams())
2036        return Error("Invalid INVOKE record");
2037
2038      SmallVector<Value*, 16> Ops;
2039      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2040        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2041        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2042      }
2043
2044      if (!FTy->isVarArg()) {
2045        if (Record.size() != OpNum)
2046          return Error("Invalid INVOKE record");
2047      } else {
2048        // Read type/value pairs for varargs params.
2049        while (OpNum != Record.size()) {
2050          Value *Op;
2051          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2052            return Error("Invalid INVOKE record");
2053          Ops.push_back(Op);
2054        }
2055      }
2056
2057      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2058                             Ops.begin(), Ops.end());
2059      InstructionList.push_back(I);
2060      cast<InvokeInst>(I)->setCallingConv(
2061        static_cast<CallingConv::ID>(CCInfo));
2062      cast<InvokeInst>(I)->setAttributes(PAL);
2063      break;
2064    }
2065    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2066      I = new UnwindInst(Context);
2067      InstructionList.push_back(I);
2068      break;
2069    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2070      I = new UnreachableInst(Context);
2071      InstructionList.push_back(I);
2072      break;
2073    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2074      if (Record.size() < 1 || ((Record.size()-1)&1))
2075        return Error("Invalid PHI record");
2076      const Type *Ty = getTypeByID(Record[0]);
2077      if (!Ty) return Error("Invalid PHI record");
2078
2079      PHINode *PN = PHINode::Create(Ty);
2080      InstructionList.push_back(PN);
2081      PN->reserveOperandSpace((Record.size()-1)/2);
2082
2083      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2084        Value *V = getFnValueByID(Record[1+i], Ty);
2085        BasicBlock *BB = getBasicBlock(Record[2+i]);
2086        if (!V || !BB) return Error("Invalid PHI record");
2087        PN->addIncoming(V, BB);
2088      }
2089      I = PN;
2090      break;
2091    }
2092
2093    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2094      // Autoupgrade malloc instruction to malloc call.
2095      // FIXME: Remove in LLVM 3.0.
2096      if (Record.size() < 3)
2097        return Error("Invalid MALLOC record");
2098      const PointerType *Ty =
2099        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2100      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2101      if (!Ty || !Size) return Error("Invalid MALLOC record");
2102      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2103      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2104      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2105                                 Size, NULL);
2106      InstructionList.push_back(I);
2107      break;
2108    }
2109    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2110      unsigned OpNum = 0;
2111      Value *Op;
2112      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2113          OpNum != Record.size())
2114        return Error("Invalid FREE record");
2115      if (!CurBB) return Error("Invalid free instruction with no BB");
2116      I = CallInst::CreateFree(Op, CurBB);
2117      InstructionList.push_back(I);
2118      break;
2119    }
2120    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2121      if (Record.size() < 3)
2122        return Error("Invalid ALLOCA record");
2123      const PointerType *Ty =
2124        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2125      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2126      unsigned Align = Record[2];
2127      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2128      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2129      InstructionList.push_back(I);
2130      break;
2131    }
2132    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2133      unsigned OpNum = 0;
2134      Value *Op;
2135      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2136          OpNum+2 != Record.size())
2137        return Error("Invalid LOAD record");
2138
2139      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2140      InstructionList.push_back(I);
2141      break;
2142    }
2143    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2144      unsigned OpNum = 0;
2145      Value *Val, *Ptr;
2146      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2147          getValue(Record, OpNum,
2148                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2149          OpNum+2 != Record.size())
2150        return Error("Invalid STORE record");
2151
2152      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2153      InstructionList.push_back(I);
2154      break;
2155    }
2156    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2157      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2158      unsigned OpNum = 0;
2159      Value *Val, *Ptr;
2160      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2161          getValue(Record, OpNum,
2162                   PointerType::getUnqual(Val->getType()), Ptr)||
2163          OpNum+2 != Record.size())
2164        return Error("Invalid STORE record");
2165
2166      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2167      InstructionList.push_back(I);
2168      break;
2169    }
2170    case bitc::FUNC_CODE_INST_CALL: {
2171      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2172      if (Record.size() < 3)
2173        return Error("Invalid CALL record");
2174
2175      AttrListPtr PAL = getAttributes(Record[0]);
2176      unsigned CCInfo = Record[1];
2177
2178      unsigned OpNum = 2;
2179      Value *Callee;
2180      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2181        return Error("Invalid CALL record");
2182
2183      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2184      const FunctionType *FTy = 0;
2185      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2186      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2187        return Error("Invalid CALL record");
2188
2189      SmallVector<Value*, 16> Args;
2190      // Read the fixed params.
2191      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2192        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2193          Args.push_back(getBasicBlock(Record[OpNum]));
2194        else
2195          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2196        if (Args.back() == 0) return Error("Invalid CALL record");
2197      }
2198
2199      // Read type/value pairs for varargs params.
2200      if (!FTy->isVarArg()) {
2201        if (OpNum != Record.size())
2202          return Error("Invalid CALL record");
2203      } else {
2204        while (OpNum != Record.size()) {
2205          Value *Op;
2206          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2207            return Error("Invalid CALL record");
2208          Args.push_back(Op);
2209        }
2210      }
2211
2212      I = CallInst::Create(Callee, Args.begin(), Args.end());
2213      InstructionList.push_back(I);
2214      cast<CallInst>(I)->setCallingConv(
2215        static_cast<CallingConv::ID>(CCInfo>>1));
2216      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2217      cast<CallInst>(I)->setAttributes(PAL);
2218      break;
2219    }
2220    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2221      if (Record.size() < 3)
2222        return Error("Invalid VAARG record");
2223      const Type *OpTy = getTypeByID(Record[0]);
2224      Value *Op = getFnValueByID(Record[1], OpTy);
2225      const Type *ResTy = getTypeByID(Record[2]);
2226      if (!OpTy || !Op || !ResTy)
2227        return Error("Invalid VAARG record");
2228      I = new VAArgInst(Op, ResTy);
2229      InstructionList.push_back(I);
2230      break;
2231    }
2232    }
2233
2234    // Add instruction to end of current BB.  If there is no current BB, reject
2235    // this file.
2236    if (CurBB == 0) {
2237      delete I;
2238      return Error("Invalid instruction with no BB");
2239    }
2240    CurBB->getInstList().push_back(I);
2241
2242    // If this was a terminator instruction, move to the next block.
2243    if (isa<TerminatorInst>(I)) {
2244      ++CurBBNo;
2245      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2246    }
2247
2248    // Non-void values get registered in the value table for future use.
2249    if (I && I->getType() != Type::getVoidTy(Context))
2250      ValueList.AssignValue(I, NextValueNo++);
2251  }
2252
2253  // Check the function list for unresolved values.
2254  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2255    if (A->getParent() == 0) {
2256      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2257      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2258        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2259          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2260          delete A;
2261        }
2262      }
2263      return Error("Never resolved value found in function!");
2264    }
2265  }
2266
2267  // See if anything took the address of blocks in this function.  If so,
2268  // resolve them now.
2269  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2270  /// are resolved lazily when functions are loaded.
2271  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2272    BlockAddrFwdRefs.find(F);
2273  if (BAFRI != BlockAddrFwdRefs.end()) {
2274    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2275    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2276      unsigned BlockIdx = RefList[i].first;
2277      if (BlockIdx > FunctionBBs.size())
2278        return Error("Invalid blockaddress block #");
2279
2280      GlobalVariable *FwdRef = RefList[i].second;
2281      BasicBlock *BB = BlockIdx == 0 ? 0 : FunctionBBs[BlockIdx-1];
2282      FwdRef->replaceAllUsesWith(BlockAddress::get(F, BB));
2283      FwdRef->eraseFromParent();
2284    }
2285
2286    BlockAddrFwdRefs.erase(BAFRI);
2287  }
2288
2289  // Trim the value list down to the size it was before we parsed this function.
2290  ValueList.shrinkTo(ModuleValueListSize);
2291  std::vector<BasicBlock*>().swap(FunctionBBs);
2292
2293  return false;
2294}
2295
2296//===----------------------------------------------------------------------===//
2297// ModuleProvider implementation
2298//===----------------------------------------------------------------------===//
2299
2300
2301bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2302  // If it already is material, ignore the request.
2303  if (!F->hasNotBeenReadFromBitcode()) return false;
2304
2305  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2306    DeferredFunctionInfo.find(F);
2307  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2308
2309  // Move the bit stream to the saved position of the deferred function body and
2310  // restore the real linkage type for the function.
2311  Stream.JumpToBit(DFII->second.first);
2312  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2313
2314  if (ParseFunctionBody(F)) {
2315    if (ErrInfo) *ErrInfo = ErrorString;
2316    return true;
2317  }
2318
2319  // Upgrade any old intrinsic calls in the function.
2320  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2321       E = UpgradedIntrinsics.end(); I != E; ++I) {
2322    if (I->first != I->second) {
2323      for (Value::use_iterator UI = I->first->use_begin(),
2324           UE = I->first->use_end(); UI != UE; ) {
2325        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2326          UpgradeIntrinsicCall(CI, I->second);
2327      }
2328    }
2329  }
2330
2331  return false;
2332}
2333
2334void BitcodeReader::dematerializeFunction(Function *F) {
2335  // If this function isn't materialized, or if it is a proto, this is a noop.
2336  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2337    return;
2338
2339  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2340
2341  // Just forget the function body, we can remat it later.
2342  F->deleteBody();
2343  F->setLinkage(GlobalValue::GhostLinkage);
2344}
2345
2346
2347Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2348  // Iterate over the module, deserializing any functions that are still on
2349  // disk.
2350  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2351       F != E; ++F)
2352    if (F->hasNotBeenReadFromBitcode() &&
2353        materializeFunction(F, ErrInfo))
2354      return 0;
2355
2356  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2357  // delete the old functions to clean up. We can't do this unless the entire
2358  // module is materialized because there could always be another function body
2359  // with calls to the old function.
2360  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2361       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2362    if (I->first != I->second) {
2363      for (Value::use_iterator UI = I->first->use_begin(),
2364           UE = I->first->use_end(); UI != UE; ) {
2365        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2366          UpgradeIntrinsicCall(CI, I->second);
2367      }
2368      if (!I->first->use_empty())
2369        I->first->replaceAllUsesWith(I->second);
2370      I->first->eraseFromParent();
2371    }
2372  }
2373  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2374
2375  // Check debug info intrinsics.
2376  CheckDebugInfoIntrinsics(TheModule);
2377
2378  return TheModule;
2379}
2380
2381
2382/// This method is provided by the parent ModuleProvde class and overriden
2383/// here. It simply releases the module from its provided and frees up our
2384/// state.
2385/// @brief Release our hold on the generated module
2386Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2387  // Since we're losing control of this Module, we must hand it back complete
2388  Module *M = ModuleProvider::releaseModule(ErrInfo);
2389  FreeState();
2390  return M;
2391}
2392
2393
2394//===----------------------------------------------------------------------===//
2395// External interface
2396//===----------------------------------------------------------------------===//
2397
2398/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2399///
2400ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2401                                               LLVMContext& Context,
2402                                               std::string *ErrMsg) {
2403  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2404  if (R->ParseBitcode()) {
2405    if (ErrMsg)
2406      *ErrMsg = R->getErrorString();
2407
2408    // Don't let the BitcodeReader dtor delete 'Buffer'.
2409    R->releaseMemoryBuffer();
2410    delete R;
2411    return 0;
2412  }
2413  return R;
2414}
2415
2416/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2417/// If an error occurs, return null and fill in *ErrMsg if non-null.
2418Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2419                               std::string *ErrMsg){
2420  BitcodeReader *R;
2421  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2422                                                           ErrMsg));
2423  if (!R) return 0;
2424
2425  // Read in the entire module.
2426  Module *M = R->materializeModule(ErrMsg);
2427
2428  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2429  // there was an error.
2430  R->releaseMemoryBuffer();
2431
2432  // If there was no error, tell ModuleProvider not to delete it when its dtor
2433  // is run.
2434  if (M)
2435    M = R->releaseModule(ErrMsg);
2436
2437  delete R;
2438  return M;
2439}
2440