BitcodeReader.cpp revision 859fff476dfe8d83abdf4621b1d20062c0daa85c
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/Metadata.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37  MDValueList.clear();
38
39  std::vector<AttrListPtr>().swap(MAttributes);
40  std::vector<BasicBlock*>().swap(FunctionBBs);
41  std::vector<Function*>().swap(FunctionsWithBodies);
42  DeferredFunctionInfo.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  }
80}
81
82static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83  switch (Val) {
84  default: // Map unknown visibilities to default.
85  case 0: return GlobalValue::DefaultVisibility;
86  case 1: return GlobalValue::HiddenVisibility;
87  case 2: return GlobalValue::ProtectedVisibility;
88  }
89}
90
91static int GetDecodedCastOpcode(unsigned Val) {
92  switch (Val) {
93  default: return -1;
94  case bitc::CAST_TRUNC   : return Instruction::Trunc;
95  case bitc::CAST_ZEXT    : return Instruction::ZExt;
96  case bitc::CAST_SEXT    : return Instruction::SExt;
97  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102  case bitc::CAST_FPEXT   : return Instruction::FPExt;
103  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105  case bitc::CAST_BITCAST : return Instruction::BitCast;
106  }
107}
108static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109  switch (Val) {
110  default: return -1;
111  case bitc::BINOP_ADD:
112    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
113  case bitc::BINOP_SUB:
114    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
115  case bitc::BINOP_MUL:
116    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
117  case bitc::BINOP_UDIV: return Instruction::UDiv;
118  case bitc::BINOP_SDIV:
119    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
120  case bitc::BINOP_UREM: return Instruction::URem;
121  case bitc::BINOP_SREM:
122    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
123  case bitc::BINOP_SHL:  return Instruction::Shl;
124  case bitc::BINOP_LSHR: return Instruction::LShr;
125  case bitc::BINOP_ASHR: return Instruction::AShr;
126  case bitc::BINOP_AND:  return Instruction::And;
127  case bitc::BINOP_OR:   return Instruction::Or;
128  case bitc::BINOP_XOR:  return Instruction::Xor;
129  }
130}
131
132namespace llvm {
133namespace {
134  /// @brief A class for maintaining the slot number definition
135  /// as a placeholder for the actual definition for forward constants defs.
136  class ConstantPlaceHolder : public ConstantExpr {
137    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139  public:
140    // allocate space for exactly one operand
141    void *operator new(size_t s) {
142      return User::operator new(s, 1);
143    }
144    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147    }
148
149    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150    static inline bool classof(const ConstantPlaceHolder *) { return true; }
151    static bool classof(const Value *V) {
152      return isa<ConstantExpr>(V) &&
153             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154    }
155
156
157    /// Provide fast operand accessors
158    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159  };
160}
161
162// FIXME: can we inherit this from ConstantExpr?
163template <>
164struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
165};
166}
167
168
169void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170  if (Idx == size()) {
171    push_back(V);
172    return;
173  }
174
175  if (Idx >= size())
176    resize(Idx+1);
177
178  WeakVH &OldV = ValuePtrs[Idx];
179  if (OldV == 0) {
180    OldV = V;
181    return;
182  }
183
184  // Handle constants and non-constants (e.g. instrs) differently for
185  // efficiency.
186  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187    ResolveConstants.push_back(std::make_pair(PHC, Idx));
188    OldV = V;
189  } else {
190    // If there was a forward reference to this value, replace it.
191    Value *PrevVal = OldV;
192    OldV->replaceAllUsesWith(V);
193    delete PrevVal;
194  }
195}
196
197
198Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                    const Type *Ty) {
200  if (Idx >= size())
201    resize(Idx + 1);
202
203  if (Value *V = ValuePtrs[Idx]) {
204    assert(Ty == V->getType() && "Type mismatch in constant table!");
205    return cast<Constant>(V);
206  }
207
208  // Create and return a placeholder, which will later be RAUW'd.
209  Constant *C = new ConstantPlaceHolder(Ty, Context);
210  ValuePtrs[Idx] = C;
211  return C;
212}
213
214Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215  if (Idx >= size())
216    resize(Idx + 1);
217
218  if (Value *V = ValuePtrs[Idx]) {
219    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220    return V;
221  }
222
223  // No type specified, must be invalid reference.
224  if (Ty == 0) return 0;
225
226  // Create and return a placeholder, which will later be RAUW'd.
227  Value *V = new Argument(Ty);
228  ValuePtrs[Idx] = V;
229  return V;
230}
231
232/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233/// resolves any forward references.  The idea behind this is that we sometimes
234/// get constants (such as large arrays) which reference *many* forward ref
235/// constants.  Replacing each of these causes a lot of thrashing when
236/// building/reuniquing the constant.  Instead of doing this, we look at all the
237/// uses and rewrite all the place holders at once for any constant that uses
238/// a placeholder.
239void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240  // Sort the values by-pointer so that they are efficient to look up with a
241  // binary search.
242  std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244  SmallVector<Constant*, 64> NewOps;
245
246  while (!ResolveConstants.empty()) {
247    Value *RealVal = operator[](ResolveConstants.back().second);
248    Constant *Placeholder = ResolveConstants.back().first;
249    ResolveConstants.pop_back();
250
251    // Loop over all users of the placeholder, updating them to reference the
252    // new value.  If they reference more than one placeholder, update them all
253    // at once.
254    while (!Placeholder->use_empty()) {
255      Value::use_iterator UI = Placeholder->use_begin();
256
257      // If the using object isn't uniqued, just update the operands.  This
258      // handles instructions and initializers for global variables.
259      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
260        UI.getUse().set(RealVal);
261        continue;
262      }
263
264      // Otherwise, we have a constant that uses the placeholder.  Replace that
265      // constant with a new constant that has *all* placeholder uses updated.
266      Constant *UserC = cast<Constant>(*UI);
267      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
268           I != E; ++I) {
269        Value *NewOp;
270        if (!isa<ConstantPlaceHolder>(*I)) {
271          // Not a placeholder reference.
272          NewOp = *I;
273        } else if (*I == Placeholder) {
274          // Common case is that it just references this one placeholder.
275          NewOp = RealVal;
276        } else {
277          // Otherwise, look up the placeholder in ResolveConstants.
278          ResolveConstantsTy::iterator It =
279            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
280                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
281                                                            0));
282          assert(It != ResolveConstants.end() && It->first == *I);
283          NewOp = operator[](It->second);
284        }
285
286        NewOps.push_back(cast<Constant>(NewOp));
287      }
288
289      // Make the new constant.
290      Constant *NewC;
291      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
292        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
293                                        NewOps.size());
294      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
295        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
296                                         UserCS->getType()->isPacked());
297      } else if (isa<ConstantVector>(UserC)) {
298        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
299      } else {
300        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
301        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
302                                                          NewOps.size());
303      }
304
305      UserC->replaceAllUsesWith(NewC);
306      UserC->destroyConstant();
307      NewOps.clear();
308    }
309
310    // Update all ValueHandles, they should be the only users at this point.
311    Placeholder->replaceAllUsesWith(RealVal);
312    delete Placeholder;
313  }
314}
315
316void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
317  if (Idx == size()) {
318    push_back(V);
319    return;
320  }
321
322  if (Idx >= size())
323    resize(Idx+1);
324
325  WeakVH &OldV = MDValuePtrs[Idx];
326  if (OldV == 0) {
327    OldV = V;
328    return;
329  }
330
331  // If there was a forward reference to this value, replace it.
332  Value *PrevVal = OldV;
333  OldV->replaceAllUsesWith(V);
334  delete PrevVal;
335  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
336  // value for Idx.
337  MDValuePtrs[Idx] = V;
338}
339
340Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
341  if (Idx >= size())
342    resize(Idx + 1);
343
344  if (Value *V = MDValuePtrs[Idx]) {
345    assert(V->getType() == Type::getMetadataTy(Context) && "Type mismatch in value table!");
346    return V;
347  }
348
349  // Create and return a placeholder, which will later be RAUW'd.
350  Value *V = new Argument(Type::getMetadataTy(Context));
351  MDValuePtrs[Idx] = V;
352  return V;
353}
354
355const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
356  // If the TypeID is in range, return it.
357  if (ID < TypeList.size())
358    return TypeList[ID].get();
359  if (!isTypeTable) return 0;
360
361  // The type table allows forward references.  Push as many Opaque types as
362  // needed to get up to ID.
363  while (TypeList.size() <= ID)
364    TypeList.push_back(OpaqueType::get(Context));
365  return TypeList.back().get();
366}
367
368//===----------------------------------------------------------------------===//
369//  Functions for parsing blocks from the bitcode file
370//===----------------------------------------------------------------------===//
371
372bool BitcodeReader::ParseAttributeBlock() {
373  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
374    return Error("Malformed block record");
375
376  if (!MAttributes.empty())
377    return Error("Multiple PARAMATTR blocks found!");
378
379  SmallVector<uint64_t, 64> Record;
380
381  SmallVector<AttributeWithIndex, 8> Attrs;
382
383  // Read all the records.
384  while (1) {
385    unsigned Code = Stream.ReadCode();
386    if (Code == bitc::END_BLOCK) {
387      if (Stream.ReadBlockEnd())
388        return Error("Error at end of PARAMATTR block");
389      return false;
390    }
391
392    if (Code == bitc::ENTER_SUBBLOCK) {
393      // No known subblocks, always skip them.
394      Stream.ReadSubBlockID();
395      if (Stream.SkipBlock())
396        return Error("Malformed block record");
397      continue;
398    }
399
400    if (Code == bitc::DEFINE_ABBREV) {
401      Stream.ReadAbbrevRecord();
402      continue;
403    }
404
405    // Read a record.
406    Record.clear();
407    switch (Stream.ReadRecord(Code, Record)) {
408    default:  // Default behavior: ignore.
409      break;
410    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
411      if (Record.size() & 1)
412        return Error("Invalid ENTRY record");
413
414      // FIXME : Remove this autoupgrade code in LLVM 3.0.
415      // If Function attributes are using index 0 then transfer them
416      // to index ~0. Index 0 is used for return value attributes but used to be
417      // used for function attributes.
418      Attributes RetAttribute = Attribute::None;
419      Attributes FnAttribute = Attribute::None;
420      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
421        // FIXME: remove in LLVM 3.0
422        // The alignment is stored as a 16-bit raw value from bits 31--16.
423        // We shift the bits above 31 down by 11 bits.
424
425        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
426        if (Alignment && !isPowerOf2_32(Alignment))
427          return Error("Alignment is not a power of two.");
428
429        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
430        if (Alignment)
431          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
432        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
433        Record[i+1] = ReconstitutedAttr;
434
435        if (Record[i] == 0)
436          RetAttribute = Record[i+1];
437        else if (Record[i] == ~0U)
438          FnAttribute = Record[i+1];
439      }
440
441      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
442                              Attribute::ReadOnly|Attribute::ReadNone);
443
444      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
445          (RetAttribute & OldRetAttrs) != 0) {
446        if (FnAttribute == Attribute::None) { // add a slot so they get added.
447          Record.push_back(~0U);
448          Record.push_back(0);
449        }
450
451        FnAttribute  |= RetAttribute & OldRetAttrs;
452        RetAttribute &= ~OldRetAttrs;
453      }
454
455      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
456        if (Record[i] == 0) {
457          if (RetAttribute != Attribute::None)
458            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
459        } else if (Record[i] == ~0U) {
460          if (FnAttribute != Attribute::None)
461            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
462        } else if (Record[i+1] != Attribute::None)
463          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
464      }
465
466      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
467      Attrs.clear();
468      break;
469    }
470    }
471  }
472}
473
474
475bool BitcodeReader::ParseTypeTable() {
476  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
477    return Error("Malformed block record");
478
479  if (!TypeList.empty())
480    return Error("Multiple TYPE_BLOCKs found!");
481
482  SmallVector<uint64_t, 64> Record;
483  unsigned NumRecords = 0;
484
485  // Read all the records for this type table.
486  while (1) {
487    unsigned Code = Stream.ReadCode();
488    if (Code == bitc::END_BLOCK) {
489      if (NumRecords != TypeList.size())
490        return Error("Invalid type forward reference in TYPE_BLOCK");
491      if (Stream.ReadBlockEnd())
492        return Error("Error at end of type table block");
493      return false;
494    }
495
496    if (Code == bitc::ENTER_SUBBLOCK) {
497      // No known subblocks, always skip them.
498      Stream.ReadSubBlockID();
499      if (Stream.SkipBlock())
500        return Error("Malformed block record");
501      continue;
502    }
503
504    if (Code == bitc::DEFINE_ABBREV) {
505      Stream.ReadAbbrevRecord();
506      continue;
507    }
508
509    // Read a record.
510    Record.clear();
511    const Type *ResultTy = 0;
512    switch (Stream.ReadRecord(Code, Record)) {
513    default:  // Default behavior: unknown type.
514      ResultTy = 0;
515      break;
516    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
517      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
518      // type list.  This allows us to reserve space.
519      if (Record.size() < 1)
520        return Error("Invalid TYPE_CODE_NUMENTRY record");
521      TypeList.reserve(Record[0]);
522      continue;
523    case bitc::TYPE_CODE_VOID:      // VOID
524      ResultTy = Type::getVoidTy(Context);
525      break;
526    case bitc::TYPE_CODE_FLOAT:     // FLOAT
527      ResultTy = Type::getFloatTy(Context);
528      break;
529    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
530      ResultTy = Type::getDoubleTy(Context);
531      break;
532    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
533      ResultTy = Type::getX86_FP80Ty(Context);
534      break;
535    case bitc::TYPE_CODE_FP128:     // FP128
536      ResultTy = Type::getFP128Ty(Context);
537      break;
538    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
539      ResultTy = Type::getPPC_FP128Ty(Context);
540      break;
541    case bitc::TYPE_CODE_LABEL:     // LABEL
542      ResultTy = Type::getLabelTy(Context);
543      break;
544    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
545      ResultTy = 0;
546      break;
547    case bitc::TYPE_CODE_METADATA:  // METADATA
548      ResultTy = Type::getMetadataTy(Context);
549      break;
550    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
551      if (Record.size() < 1)
552        return Error("Invalid Integer type record");
553
554      ResultTy = IntegerType::get(Context, Record[0]);
555      break;
556    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
557                                    //          [pointee type, address space]
558      if (Record.size() < 1)
559        return Error("Invalid POINTER type record");
560      unsigned AddressSpace = 0;
561      if (Record.size() == 2)
562        AddressSpace = Record[1];
563      ResultTy = PointerType::get(getTypeByID(Record[0], true),
564                                        AddressSpace);
565      break;
566    }
567    case bitc::TYPE_CODE_FUNCTION: {
568      // FIXME: attrid is dead, remove it in LLVM 3.0
569      // FUNCTION: [vararg, attrid, retty, paramty x N]
570      if (Record.size() < 3)
571        return Error("Invalid FUNCTION type record");
572      std::vector<const Type*> ArgTys;
573      for (unsigned i = 3, e = Record.size(); i != e; ++i)
574        ArgTys.push_back(getTypeByID(Record[i], true));
575
576      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
577                                   Record[0]);
578      break;
579    }
580    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
581      if (Record.size() < 1)
582        return Error("Invalid STRUCT type record");
583      std::vector<const Type*> EltTys;
584      for (unsigned i = 1, e = Record.size(); i != e; ++i)
585        EltTys.push_back(getTypeByID(Record[i], true));
586      ResultTy = StructType::get(Context, EltTys, Record[0]);
587      break;
588    }
589    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
590      if (Record.size() < 2)
591        return Error("Invalid ARRAY type record");
592      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
593      break;
594    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid VECTOR type record");
597      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    }
600
601    if (NumRecords == TypeList.size()) {
602      // If this is a new type slot, just append it.
603      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
604      ++NumRecords;
605    } else if (ResultTy == 0) {
606      // Otherwise, this was forward referenced, so an opaque type was created,
607      // but the result type is actually just an opaque.  Leave the one we
608      // created previously.
609      ++NumRecords;
610    } else {
611      // Otherwise, this was forward referenced, so an opaque type was created.
612      // Resolve the opaque type to the real type now.
613      assert(NumRecords < TypeList.size() && "Typelist imbalance");
614      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
615
616      // Don't directly push the new type on the Tab. Instead we want to replace
617      // the opaque type we previously inserted with the new concrete value. The
618      // refinement from the abstract (opaque) type to the new type causes all
619      // uses of the abstract type to use the concrete type (NewTy). This will
620      // also cause the opaque type to be deleted.
621      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
622
623      // This should have replaced the old opaque type with the new type in the
624      // value table... or with a preexisting type that was already in the
625      // system.  Let's just make sure it did.
626      assert(TypeList[NumRecords-1].get() != OldTy &&
627             "refineAbstractType didn't work!");
628    }
629  }
630}
631
632
633bool BitcodeReader::ParseTypeSymbolTable() {
634  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
635    return Error("Malformed block record");
636
637  SmallVector<uint64_t, 64> Record;
638
639  // Read all the records for this type table.
640  std::string TypeName;
641  while (1) {
642    unsigned Code = Stream.ReadCode();
643    if (Code == bitc::END_BLOCK) {
644      if (Stream.ReadBlockEnd())
645        return Error("Error at end of type symbol table block");
646      return false;
647    }
648
649    if (Code == bitc::ENTER_SUBBLOCK) {
650      // No known subblocks, always skip them.
651      Stream.ReadSubBlockID();
652      if (Stream.SkipBlock())
653        return Error("Malformed block record");
654      continue;
655    }
656
657    if (Code == bitc::DEFINE_ABBREV) {
658      Stream.ReadAbbrevRecord();
659      continue;
660    }
661
662    // Read a record.
663    Record.clear();
664    switch (Stream.ReadRecord(Code, Record)) {
665    default:  // Default behavior: unknown type.
666      break;
667    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
668      if (ConvertToString(Record, 1, TypeName))
669        return Error("Invalid TST_ENTRY record");
670      unsigned TypeID = Record[0];
671      if (TypeID >= TypeList.size())
672        return Error("Invalid Type ID in TST_ENTRY record");
673
674      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
675      TypeName.clear();
676      break;
677    }
678  }
679}
680
681bool BitcodeReader::ParseValueSymbolTable() {
682  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
683    return Error("Malformed block record");
684
685  SmallVector<uint64_t, 64> Record;
686
687  // Read all the records for this value table.
688  SmallString<128> ValueName;
689  while (1) {
690    unsigned Code = Stream.ReadCode();
691    if (Code == bitc::END_BLOCK) {
692      if (Stream.ReadBlockEnd())
693        return Error("Error at end of value symbol table block");
694      return false;
695    }
696    if (Code == bitc::ENTER_SUBBLOCK) {
697      // No known subblocks, always skip them.
698      Stream.ReadSubBlockID();
699      if (Stream.SkipBlock())
700        return Error("Malformed block record");
701      continue;
702    }
703
704    if (Code == bitc::DEFINE_ABBREV) {
705      Stream.ReadAbbrevRecord();
706      continue;
707    }
708
709    // Read a record.
710    Record.clear();
711    switch (Stream.ReadRecord(Code, Record)) {
712    default:  // Default behavior: unknown type.
713      break;
714    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
715      if (ConvertToString(Record, 1, ValueName))
716        return Error("Invalid VST_ENTRY record");
717      unsigned ValueID = Record[0];
718      if (ValueID >= ValueList.size())
719        return Error("Invalid Value ID in VST_ENTRY record");
720      Value *V = ValueList[ValueID];
721
722      V->setName(StringRef(ValueName.data(), ValueName.size()));
723      ValueName.clear();
724      break;
725    }
726    case bitc::VST_CODE_BBENTRY: {
727      if (ConvertToString(Record, 1, ValueName))
728        return Error("Invalid VST_BBENTRY record");
729      BasicBlock *BB = getBasicBlock(Record[0]);
730      if (BB == 0)
731        return Error("Invalid BB ID in VST_BBENTRY record");
732
733      BB->setName(StringRef(ValueName.data(), ValueName.size()));
734      ValueName.clear();
735      break;
736    }
737    }
738  }
739}
740
741bool BitcodeReader::ParseMetadata() {
742  unsigned NextValueNo = MDValueList.size();
743
744  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
745    return Error("Malformed block record");
746
747  SmallVector<uint64_t, 64> Record;
748
749  // Read all the records.
750  while (1) {
751    unsigned Code = Stream.ReadCode();
752    if (Code == bitc::END_BLOCK) {
753      if (Stream.ReadBlockEnd())
754        return Error("Error at end of PARAMATTR block");
755      return false;
756    }
757
758    if (Code == bitc::ENTER_SUBBLOCK) {
759      // No known subblocks, always skip them.
760      Stream.ReadSubBlockID();
761      if (Stream.SkipBlock())
762        return Error("Malformed block record");
763      continue;
764    }
765
766    if (Code == bitc::DEFINE_ABBREV) {
767      Stream.ReadAbbrevRecord();
768      continue;
769    }
770
771    // Read a record.
772    Record.clear();
773    switch (Stream.ReadRecord(Code, Record)) {
774    default:  // Default behavior: ignore.
775      break;
776    case bitc::METADATA_NAME: {
777      // Read named of the named metadata.
778      unsigned NameLength = Record.size();
779      SmallString<8> Name;
780      Name.resize(NameLength);
781      for (unsigned i = 0; i != NameLength; ++i)
782        Name[i] = Record[i];
783      Record.clear();
784      Code = Stream.ReadCode();
785
786      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788        assert ( 0 && "Inavlid Named Metadata record");
789
790      // Read named metadata elements.
791      unsigned Size = Record.size();
792      SmallVector<MetadataBase*, 8> Elts;
793      for (unsigned i = 0; i != Size; ++i) {
794        Value *MD = MDValueList.getValueFwdRef(Record[i]);
795        if (MetadataBase *B = dyn_cast<MetadataBase>(MD))
796        Elts.push_back(B);
797      }
798      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
799                                     Elts.size(), TheModule);
800      MDValueList.AssignValue(V, NextValueNo++);
801      break;
802    }
803    case bitc::METADATA_NODE: {
804      if (Record.empty() || Record.size() % 2 == 1)
805        return Error("Invalid METADATA_NODE record");
806
807      unsigned Size = Record.size();
808      SmallVector<Value*, 8> Elts;
809      for (unsigned i = 0; i != Size; i += 2) {
810        const Type *Ty = getTypeByID(Record[i], false);
811        if (Ty == Type::getMetadataTy(Context))
812          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
813        else if (Ty != Type::getVoidTy(Context))
814          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
815        else
816          Elts.push_back(NULL);
817      }
818      Value *V = MDNode::get(Context, &Elts[0], Elts.size());
819      MDValueList.AssignValue(V, NextValueNo++);
820      break;
821    }
822    case bitc::METADATA_STRING: {
823      unsigned MDStringLength = Record.size();
824      SmallString<8> String;
825      String.resize(MDStringLength);
826      for (unsigned i = 0; i != MDStringLength; ++i)
827        String[i] = Record[i];
828      Value *V = MDString::get(Context,
829                               StringRef(String.data(), String.size()));
830      MDValueList.AssignValue(V, NextValueNo++);
831      break;
832    }
833    }
834  }
835}
836
837/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
838/// the LSB for dense VBR encoding.
839static uint64_t DecodeSignRotatedValue(uint64_t V) {
840  if ((V & 1) == 0)
841    return V >> 1;
842  if (V != 1)
843    return -(V >> 1);
844  // There is no such thing as -0 with integers.  "-0" really means MININT.
845  return 1ULL << 63;
846}
847
848/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
849/// values and aliases that we can.
850bool BitcodeReader::ResolveGlobalAndAliasInits() {
851  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
852  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
853
854  GlobalInitWorklist.swap(GlobalInits);
855  AliasInitWorklist.swap(AliasInits);
856
857  while (!GlobalInitWorklist.empty()) {
858    unsigned ValID = GlobalInitWorklist.back().second;
859    if (ValID >= ValueList.size()) {
860      // Not ready to resolve this yet, it requires something later in the file.
861      GlobalInits.push_back(GlobalInitWorklist.back());
862    } else {
863      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
864        GlobalInitWorklist.back().first->setInitializer(C);
865      else
866        return Error("Global variable initializer is not a constant!");
867    }
868    GlobalInitWorklist.pop_back();
869  }
870
871  while (!AliasInitWorklist.empty()) {
872    unsigned ValID = AliasInitWorklist.back().second;
873    if (ValID >= ValueList.size()) {
874      AliasInits.push_back(AliasInitWorklist.back());
875    } else {
876      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
877        AliasInitWorklist.back().first->setAliasee(C);
878      else
879        return Error("Alias initializer is not a constant!");
880    }
881    AliasInitWorklist.pop_back();
882  }
883  return false;
884}
885
886bool BitcodeReader::ParseConstants() {
887  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
888    return Error("Malformed block record");
889
890  SmallVector<uint64_t, 64> Record;
891
892  // Read all the records for this value table.
893  const Type *CurTy = Type::getInt32Ty(Context);
894  unsigned NextCstNo = ValueList.size();
895  while (1) {
896    unsigned Code = Stream.ReadCode();
897    if (Code == bitc::END_BLOCK)
898      break;
899
900    if (Code == bitc::ENTER_SUBBLOCK) {
901      // No known subblocks, always skip them.
902      Stream.ReadSubBlockID();
903      if (Stream.SkipBlock())
904        return Error("Malformed block record");
905      continue;
906    }
907
908    if (Code == bitc::DEFINE_ABBREV) {
909      Stream.ReadAbbrevRecord();
910      continue;
911    }
912
913    // Read a record.
914    Record.clear();
915    Value *V = 0;
916    unsigned BitCode = Stream.ReadRecord(Code, Record);
917    switch (BitCode) {
918    default:  // Default behavior: unknown constant
919    case bitc::CST_CODE_UNDEF:     // UNDEF
920      V = UndefValue::get(CurTy);
921      break;
922    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
923      if (Record.empty())
924        return Error("Malformed CST_SETTYPE record");
925      if (Record[0] >= TypeList.size())
926        return Error("Invalid Type ID in CST_SETTYPE record");
927      CurTy = TypeList[Record[0]];
928      continue;  // Skip the ValueList manipulation.
929    case bitc::CST_CODE_NULL:      // NULL
930      V = Constant::getNullValue(CurTy);
931      break;
932    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
933      if (!isa<IntegerType>(CurTy) || Record.empty())
934        return Error("Invalid CST_INTEGER record");
935      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
936      break;
937    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
938      if (!isa<IntegerType>(CurTy) || Record.empty())
939        return Error("Invalid WIDE_INTEGER record");
940
941      unsigned NumWords = Record.size();
942      SmallVector<uint64_t, 8> Words;
943      Words.resize(NumWords);
944      for (unsigned i = 0; i != NumWords; ++i)
945        Words[i] = DecodeSignRotatedValue(Record[i]);
946      V = ConstantInt::get(Context,
947                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
948                           NumWords, &Words[0]));
949      break;
950    }
951    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
952      if (Record.empty())
953        return Error("Invalid FLOAT record");
954      if (CurTy == Type::getFloatTy(Context))
955        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
956      else if (CurTy == Type::getDoubleTy(Context))
957        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
958      else if (CurTy == Type::getX86_FP80Ty(Context)) {
959        // Bits are not stored the same way as a normal i80 APInt, compensate.
960        uint64_t Rearrange[2];
961        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
962        Rearrange[1] = Record[0] >> 48;
963        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
964      } else if (CurTy == Type::getFP128Ty(Context))
965        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
966      else if (CurTy == Type::getPPC_FP128Ty(Context))
967        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
968      else
969        V = UndefValue::get(CurTy);
970      break;
971    }
972
973    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
974      if (Record.empty())
975        return Error("Invalid CST_AGGREGATE record");
976
977      unsigned Size = Record.size();
978      std::vector<Constant*> Elts;
979
980      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
981        for (unsigned i = 0; i != Size; ++i)
982          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
983                                                     STy->getElementType(i)));
984        V = ConstantStruct::get(STy, Elts);
985      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
986        const Type *EltTy = ATy->getElementType();
987        for (unsigned i = 0; i != Size; ++i)
988          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
989        V = ConstantArray::get(ATy, Elts);
990      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
991        const Type *EltTy = VTy->getElementType();
992        for (unsigned i = 0; i != Size; ++i)
993          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
994        V = ConstantVector::get(Elts);
995      } else {
996        V = UndefValue::get(CurTy);
997      }
998      break;
999    }
1000    case bitc::CST_CODE_STRING: { // STRING: [values]
1001      if (Record.empty())
1002        return Error("Invalid CST_AGGREGATE record");
1003
1004      const ArrayType *ATy = cast<ArrayType>(CurTy);
1005      const Type *EltTy = ATy->getElementType();
1006
1007      unsigned Size = Record.size();
1008      std::vector<Constant*> Elts;
1009      for (unsigned i = 0; i != Size; ++i)
1010        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1011      V = ConstantArray::get(ATy, Elts);
1012      break;
1013    }
1014    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1015      if (Record.empty())
1016        return Error("Invalid CST_AGGREGATE record");
1017
1018      const ArrayType *ATy = cast<ArrayType>(CurTy);
1019      const Type *EltTy = ATy->getElementType();
1020
1021      unsigned Size = Record.size();
1022      std::vector<Constant*> Elts;
1023      for (unsigned i = 0; i != Size; ++i)
1024        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1025      Elts.push_back(Constant::getNullValue(EltTy));
1026      V = ConstantArray::get(ATy, Elts);
1027      break;
1028    }
1029    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1030      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1031      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1032      if (Opc < 0) {
1033        V = UndefValue::get(CurTy);  // Unknown binop.
1034      } else {
1035        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1036        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1037        unsigned Flags = 0;
1038        if (Record.size() >= 4) {
1039          if (Opc == Instruction::Add ||
1040              Opc == Instruction::Sub ||
1041              Opc == Instruction::Mul) {
1042            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1043              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1044            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1045              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1046          } else if (Opc == Instruction::SDiv) {
1047            if (Record[3] & (1 << bitc::SDIV_EXACT))
1048              Flags |= SDivOperator::IsExact;
1049          }
1050        }
1051        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1052      }
1053      break;
1054    }
1055    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1056      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1057      int Opc = GetDecodedCastOpcode(Record[0]);
1058      if (Opc < 0) {
1059        V = UndefValue::get(CurTy);  // Unknown cast.
1060      } else {
1061        const Type *OpTy = getTypeByID(Record[1]);
1062        if (!OpTy) return Error("Invalid CE_CAST record");
1063        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1064        V = ConstantExpr::getCast(Opc, Op, CurTy);
1065      }
1066      break;
1067    }
1068    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1069    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1070      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1071      SmallVector<Constant*, 16> Elts;
1072      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1073        const Type *ElTy = getTypeByID(Record[i]);
1074        if (!ElTy) return Error("Invalid CE_GEP record");
1075        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1076      }
1077      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1078        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1079                                                   Elts.size()-1);
1080      else
1081        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1082                                           Elts.size()-1);
1083      break;
1084    }
1085    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1086      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1087      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1088                                                              Type::getInt1Ty(Context)),
1089                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1090                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1091      break;
1092    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1093      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1094      const VectorType *OpTy =
1095        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1096      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1097      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1098      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1099      V = ConstantExpr::getExtractElement(Op0, Op1);
1100      break;
1101    }
1102    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1103      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1104      if (Record.size() < 3 || OpTy == 0)
1105        return Error("Invalid CE_INSERTELT record");
1106      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1107      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1108                                                  OpTy->getElementType());
1109      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1110      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1111      break;
1112    }
1113    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1114      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1115      if (Record.size() < 3 || OpTy == 0)
1116        return Error("Invalid CE_SHUFFLEVEC record");
1117      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1118      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1119      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1120                                                 OpTy->getNumElements());
1121      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1122      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1123      break;
1124    }
1125    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1126      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1127      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1128      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1129        return Error("Invalid CE_SHUFVEC_EX record");
1130      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1131      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1132      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1133                                                 RTy->getNumElements());
1134      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1135      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1136      break;
1137    }
1138    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1139      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1140      const Type *OpTy = getTypeByID(Record[0]);
1141      if (OpTy == 0) return Error("Invalid CE_CMP record");
1142      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1143      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1144
1145      if (OpTy->isFloatingPoint())
1146        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1147      else
1148        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1149      break;
1150    }
1151    case bitc::CST_CODE_INLINEASM: {
1152      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1153      std::string AsmStr, ConstrStr;
1154      bool HasSideEffects = Record[0];
1155      unsigned AsmStrSize = Record[1];
1156      if (2+AsmStrSize >= Record.size())
1157        return Error("Invalid INLINEASM record");
1158      unsigned ConstStrSize = Record[2+AsmStrSize];
1159      if (3+AsmStrSize+ConstStrSize > Record.size())
1160        return Error("Invalid INLINEASM record");
1161
1162      for (unsigned i = 0; i != AsmStrSize; ++i)
1163        AsmStr += (char)Record[2+i];
1164      for (unsigned i = 0; i != ConstStrSize; ++i)
1165        ConstrStr += (char)Record[3+AsmStrSize+i];
1166      const PointerType *PTy = cast<PointerType>(CurTy);
1167      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1168                         AsmStr, ConstrStr, HasSideEffects);
1169      break;
1170    }
1171    }
1172
1173    ValueList.AssignValue(V, NextCstNo);
1174    ++NextCstNo;
1175  }
1176
1177  if (NextCstNo != ValueList.size())
1178    return Error("Invalid constant reference!");
1179
1180  if (Stream.ReadBlockEnd())
1181    return Error("Error at end of constants block");
1182
1183  // Once all the constants have been read, go through and resolve forward
1184  // references.
1185  ValueList.ResolveConstantForwardRefs();
1186  return false;
1187}
1188
1189/// RememberAndSkipFunctionBody - When we see the block for a function body,
1190/// remember where it is and then skip it.  This lets us lazily deserialize the
1191/// functions.
1192bool BitcodeReader::RememberAndSkipFunctionBody() {
1193  // Get the function we are talking about.
1194  if (FunctionsWithBodies.empty())
1195    return Error("Insufficient function protos");
1196
1197  Function *Fn = FunctionsWithBodies.back();
1198  FunctionsWithBodies.pop_back();
1199
1200  // Save the current stream state.
1201  uint64_t CurBit = Stream.GetCurrentBitNo();
1202  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1203
1204  // Set the functions linkage to GhostLinkage so we know it is lazily
1205  // deserialized.
1206  Fn->setLinkage(GlobalValue::GhostLinkage);
1207
1208  // Skip over the function block for now.
1209  if (Stream.SkipBlock())
1210    return Error("Malformed block record");
1211  return false;
1212}
1213
1214bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1215  // Reject multiple MODULE_BLOCK's in a single bitstream.
1216  if (TheModule)
1217    return Error("Multiple MODULE_BLOCKs in same stream");
1218
1219  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1220    return Error("Malformed block record");
1221
1222  // Otherwise, create the module.
1223  TheModule = new Module(ModuleID, Context);
1224
1225  SmallVector<uint64_t, 64> Record;
1226  std::vector<std::string> SectionTable;
1227  std::vector<std::string> GCTable;
1228
1229  // Read all the records for this module.
1230  while (!Stream.AtEndOfStream()) {
1231    unsigned Code = Stream.ReadCode();
1232    if (Code == bitc::END_BLOCK) {
1233      if (Stream.ReadBlockEnd())
1234        return Error("Error at end of module block");
1235
1236      // Patch the initializers for globals and aliases up.
1237      ResolveGlobalAndAliasInits();
1238      if (!GlobalInits.empty() || !AliasInits.empty())
1239        return Error("Malformed global initializer set");
1240      if (!FunctionsWithBodies.empty())
1241        return Error("Too few function bodies found");
1242
1243      // Look for intrinsic functions which need to be upgraded at some point
1244      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1245           FI != FE; ++FI) {
1246        Function* NewFn;
1247        if (UpgradeIntrinsicFunction(FI, NewFn))
1248          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1249      }
1250
1251      // Force deallocation of memory for these vectors to favor the client that
1252      // want lazy deserialization.
1253      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1254      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1255      std::vector<Function*>().swap(FunctionsWithBodies);
1256      return false;
1257    }
1258
1259    if (Code == bitc::ENTER_SUBBLOCK) {
1260      switch (Stream.ReadSubBlockID()) {
1261      default:  // Skip unknown content.
1262        if (Stream.SkipBlock())
1263          return Error("Malformed block record");
1264        break;
1265      case bitc::BLOCKINFO_BLOCK_ID:
1266        if (Stream.ReadBlockInfoBlock())
1267          return Error("Malformed BlockInfoBlock");
1268        break;
1269      case bitc::PARAMATTR_BLOCK_ID:
1270        if (ParseAttributeBlock())
1271          return true;
1272        break;
1273      case bitc::TYPE_BLOCK_ID:
1274        if (ParseTypeTable())
1275          return true;
1276        break;
1277      case bitc::TYPE_SYMTAB_BLOCK_ID:
1278        if (ParseTypeSymbolTable())
1279          return true;
1280        break;
1281      case bitc::VALUE_SYMTAB_BLOCK_ID:
1282        if (ParseValueSymbolTable())
1283          return true;
1284        break;
1285      case bitc::CONSTANTS_BLOCK_ID:
1286        if (ParseConstants() || ResolveGlobalAndAliasInits())
1287          return true;
1288        break;
1289      case bitc::METADATA_BLOCK_ID:
1290        if (ParseMetadata())
1291          return true;
1292        break;
1293      case bitc::FUNCTION_BLOCK_ID:
1294        // If this is the first function body we've seen, reverse the
1295        // FunctionsWithBodies list.
1296        if (!HasReversedFunctionsWithBodies) {
1297          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1298          HasReversedFunctionsWithBodies = true;
1299        }
1300
1301        if (RememberAndSkipFunctionBody())
1302          return true;
1303        break;
1304      }
1305      continue;
1306    }
1307
1308    if (Code == bitc::DEFINE_ABBREV) {
1309      Stream.ReadAbbrevRecord();
1310      continue;
1311    }
1312
1313    // Read a record.
1314    switch (Stream.ReadRecord(Code, Record)) {
1315    default: break;  // Default behavior, ignore unknown content.
1316    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1317      if (Record.size() < 1)
1318        return Error("Malformed MODULE_CODE_VERSION");
1319      // Only version #0 is supported so far.
1320      if (Record[0] != 0)
1321        return Error("Unknown bitstream version!");
1322      break;
1323    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1324      std::string S;
1325      if (ConvertToString(Record, 0, S))
1326        return Error("Invalid MODULE_CODE_TRIPLE record");
1327      TheModule->setTargetTriple(S);
1328      break;
1329    }
1330    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1331      std::string S;
1332      if (ConvertToString(Record, 0, S))
1333        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1334      TheModule->setDataLayout(S);
1335      break;
1336    }
1337    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1338      std::string S;
1339      if (ConvertToString(Record, 0, S))
1340        return Error("Invalid MODULE_CODE_ASM record");
1341      TheModule->setModuleInlineAsm(S);
1342      break;
1343    }
1344    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1345      std::string S;
1346      if (ConvertToString(Record, 0, S))
1347        return Error("Invalid MODULE_CODE_DEPLIB record");
1348      TheModule->addLibrary(S);
1349      break;
1350    }
1351    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1352      std::string S;
1353      if (ConvertToString(Record, 0, S))
1354        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1355      SectionTable.push_back(S);
1356      break;
1357    }
1358    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1359      std::string S;
1360      if (ConvertToString(Record, 0, S))
1361        return Error("Invalid MODULE_CODE_GCNAME record");
1362      GCTable.push_back(S);
1363      break;
1364    }
1365    // GLOBALVAR: [pointer type, isconst, initid,
1366    //             linkage, alignment, section, visibility, threadlocal]
1367    case bitc::MODULE_CODE_GLOBALVAR: {
1368      if (Record.size() < 6)
1369        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1370      const Type *Ty = getTypeByID(Record[0]);
1371      if (!isa<PointerType>(Ty))
1372        return Error("Global not a pointer type!");
1373      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1374      Ty = cast<PointerType>(Ty)->getElementType();
1375
1376      bool isConstant = Record[1];
1377      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1378      unsigned Alignment = (1 << Record[4]) >> 1;
1379      std::string Section;
1380      if (Record[5]) {
1381        if (Record[5]-1 >= SectionTable.size())
1382          return Error("Invalid section ID");
1383        Section = SectionTable[Record[5]-1];
1384      }
1385      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1386      if (Record.size() > 6)
1387        Visibility = GetDecodedVisibility(Record[6]);
1388      bool isThreadLocal = false;
1389      if (Record.size() > 7)
1390        isThreadLocal = Record[7];
1391
1392      GlobalVariable *NewGV =
1393        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1394                           isThreadLocal, AddressSpace);
1395      NewGV->setAlignment(Alignment);
1396      if (!Section.empty())
1397        NewGV->setSection(Section);
1398      NewGV->setVisibility(Visibility);
1399      NewGV->setThreadLocal(isThreadLocal);
1400
1401      ValueList.push_back(NewGV);
1402
1403      // Remember which value to use for the global initializer.
1404      if (unsigned InitID = Record[2])
1405        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1406      break;
1407    }
1408    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1409    //             alignment, section, visibility, gc]
1410    case bitc::MODULE_CODE_FUNCTION: {
1411      if (Record.size() < 8)
1412        return Error("Invalid MODULE_CODE_FUNCTION record");
1413      const Type *Ty = getTypeByID(Record[0]);
1414      if (!isa<PointerType>(Ty))
1415        return Error("Function not a pointer type!");
1416      const FunctionType *FTy =
1417        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1418      if (!FTy)
1419        return Error("Function not a pointer to function type!");
1420
1421      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1422                                        "", TheModule);
1423
1424      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1425      bool isProto = Record[2];
1426      Func->setLinkage(GetDecodedLinkage(Record[3]));
1427      Func->setAttributes(getAttributes(Record[4]));
1428
1429      Func->setAlignment((1 << Record[5]) >> 1);
1430      if (Record[6]) {
1431        if (Record[6]-1 >= SectionTable.size())
1432          return Error("Invalid section ID");
1433        Func->setSection(SectionTable[Record[6]-1]);
1434      }
1435      Func->setVisibility(GetDecodedVisibility(Record[7]));
1436      if (Record.size() > 8 && Record[8]) {
1437        if (Record[8]-1 > GCTable.size())
1438          return Error("Invalid GC ID");
1439        Func->setGC(GCTable[Record[8]-1].c_str());
1440      }
1441      ValueList.push_back(Func);
1442
1443      // If this is a function with a body, remember the prototype we are
1444      // creating now, so that we can match up the body with them later.
1445      if (!isProto)
1446        FunctionsWithBodies.push_back(Func);
1447      break;
1448    }
1449    // ALIAS: [alias type, aliasee val#, linkage]
1450    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1451    case bitc::MODULE_CODE_ALIAS: {
1452      if (Record.size() < 3)
1453        return Error("Invalid MODULE_ALIAS record");
1454      const Type *Ty = getTypeByID(Record[0]);
1455      if (!isa<PointerType>(Ty))
1456        return Error("Function not a pointer type!");
1457
1458      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1459                                           "", 0, TheModule);
1460      // Old bitcode files didn't have visibility field.
1461      if (Record.size() > 3)
1462        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1463      ValueList.push_back(NewGA);
1464      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1465      break;
1466    }
1467    /// MODULE_CODE_PURGEVALS: [numvals]
1468    case bitc::MODULE_CODE_PURGEVALS:
1469      // Trim down the value list to the specified size.
1470      if (Record.size() < 1 || Record[0] > ValueList.size())
1471        return Error("Invalid MODULE_PURGEVALS record");
1472      ValueList.shrinkTo(Record[0]);
1473      break;
1474    }
1475    Record.clear();
1476  }
1477
1478  return Error("Premature end of bitstream");
1479}
1480
1481bool BitcodeReader::ParseBitcode() {
1482  TheModule = 0;
1483
1484  if (Buffer->getBufferSize() & 3)
1485    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1486
1487  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1488  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1489
1490  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1491  // The magic number is 0x0B17C0DE stored in little endian.
1492  if (isBitcodeWrapper(BufPtr, BufEnd))
1493    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1494      return Error("Invalid bitcode wrapper header");
1495
1496  StreamFile.init(BufPtr, BufEnd);
1497  Stream.init(StreamFile);
1498
1499  // Sniff for the signature.
1500  if (Stream.Read(8) != 'B' ||
1501      Stream.Read(8) != 'C' ||
1502      Stream.Read(4) != 0x0 ||
1503      Stream.Read(4) != 0xC ||
1504      Stream.Read(4) != 0xE ||
1505      Stream.Read(4) != 0xD)
1506    return Error("Invalid bitcode signature");
1507
1508  // We expect a number of well-defined blocks, though we don't necessarily
1509  // need to understand them all.
1510  while (!Stream.AtEndOfStream()) {
1511    unsigned Code = Stream.ReadCode();
1512
1513    if (Code != bitc::ENTER_SUBBLOCK)
1514      return Error("Invalid record at top-level");
1515
1516    unsigned BlockID = Stream.ReadSubBlockID();
1517
1518    // We only know the MODULE subblock ID.
1519    switch (BlockID) {
1520    case bitc::BLOCKINFO_BLOCK_ID:
1521      if (Stream.ReadBlockInfoBlock())
1522        return Error("Malformed BlockInfoBlock");
1523      break;
1524    case bitc::MODULE_BLOCK_ID:
1525      if (ParseModule(Buffer->getBufferIdentifier()))
1526        return true;
1527      break;
1528    default:
1529      if (Stream.SkipBlock())
1530        return Error("Malformed block record");
1531      break;
1532    }
1533  }
1534
1535  return false;
1536}
1537
1538
1539/// ParseFunctionBody - Lazily parse the specified function body block.
1540bool BitcodeReader::ParseFunctionBody(Function *F) {
1541  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1542    return Error("Malformed block record");
1543
1544  unsigned ModuleValueListSize = ValueList.size();
1545
1546  // Add all the function arguments to the value table.
1547  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1548    ValueList.push_back(I);
1549
1550  unsigned NextValueNo = ValueList.size();
1551  BasicBlock *CurBB = 0;
1552  unsigned CurBBNo = 0;
1553
1554  // Read all the records.
1555  SmallVector<uint64_t, 64> Record;
1556  while (1) {
1557    unsigned Code = Stream.ReadCode();
1558    if (Code == bitc::END_BLOCK) {
1559      if (Stream.ReadBlockEnd())
1560        return Error("Error at end of function block");
1561      break;
1562    }
1563
1564    if (Code == bitc::ENTER_SUBBLOCK) {
1565      switch (Stream.ReadSubBlockID()) {
1566      default:  // Skip unknown content.
1567        if (Stream.SkipBlock())
1568          return Error("Malformed block record");
1569        break;
1570      case bitc::CONSTANTS_BLOCK_ID:
1571        if (ParseConstants()) return true;
1572        NextValueNo = ValueList.size();
1573        break;
1574      case bitc::VALUE_SYMTAB_BLOCK_ID:
1575        if (ParseValueSymbolTable()) return true;
1576        break;
1577      }
1578      continue;
1579    }
1580
1581    if (Code == bitc::DEFINE_ABBREV) {
1582      Stream.ReadAbbrevRecord();
1583      continue;
1584    }
1585
1586    // Read a record.
1587    Record.clear();
1588    Instruction *I = 0;
1589    unsigned BitCode = Stream.ReadRecord(Code, Record);
1590    switch (BitCode) {
1591    default: // Default behavior: reject
1592      return Error("Unknown instruction");
1593    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1594      if (Record.size() < 1 || Record[0] == 0)
1595        return Error("Invalid DECLAREBLOCKS record");
1596      // Create all the basic blocks for the function.
1597      FunctionBBs.resize(Record[0]);
1598      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1599        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1600      CurBB = FunctionBBs[0];
1601      continue;
1602
1603    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1604      unsigned OpNum = 0;
1605      Value *LHS, *RHS;
1606      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1607          getValue(Record, OpNum, LHS->getType(), RHS) ||
1608          OpNum+1 > Record.size())
1609        return Error("Invalid BINOP record");
1610
1611      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1612      if (Opc == -1) return Error("Invalid BINOP record");
1613      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1614      if (OpNum < Record.size()) {
1615        if (Opc == Instruction::Add ||
1616            Opc == Instruction::Sub ||
1617            Opc == Instruction::Mul) {
1618          if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1619            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1620          if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1621            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1622        } else if (Opc == Instruction::SDiv) {
1623          if (Record[3] & (1 << bitc::SDIV_EXACT))
1624            cast<BinaryOperator>(I)->setIsExact(true);
1625        }
1626      }
1627      break;
1628    }
1629    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1630      unsigned OpNum = 0;
1631      Value *Op;
1632      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1633          OpNum+2 != Record.size())
1634        return Error("Invalid CAST record");
1635
1636      const Type *ResTy = getTypeByID(Record[OpNum]);
1637      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1638      if (Opc == -1 || ResTy == 0)
1639        return Error("Invalid CAST record");
1640      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1641      break;
1642    }
1643    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1644    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1645      unsigned OpNum = 0;
1646      Value *BasePtr;
1647      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1648        return Error("Invalid GEP record");
1649
1650      SmallVector<Value*, 16> GEPIdx;
1651      while (OpNum != Record.size()) {
1652        Value *Op;
1653        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1654          return Error("Invalid GEP record");
1655        GEPIdx.push_back(Op);
1656      }
1657
1658      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1659      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1660        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1661      break;
1662    }
1663
1664    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1665                                       // EXTRACTVAL: [opty, opval, n x indices]
1666      unsigned OpNum = 0;
1667      Value *Agg;
1668      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1669        return Error("Invalid EXTRACTVAL record");
1670
1671      SmallVector<unsigned, 4> EXTRACTVALIdx;
1672      for (unsigned RecSize = Record.size();
1673           OpNum != RecSize; ++OpNum) {
1674        uint64_t Index = Record[OpNum];
1675        if ((unsigned)Index != Index)
1676          return Error("Invalid EXTRACTVAL index");
1677        EXTRACTVALIdx.push_back((unsigned)Index);
1678      }
1679
1680      I = ExtractValueInst::Create(Agg,
1681                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1682      break;
1683    }
1684
1685    case bitc::FUNC_CODE_INST_INSERTVAL: {
1686                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1687      unsigned OpNum = 0;
1688      Value *Agg;
1689      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1690        return Error("Invalid INSERTVAL record");
1691      Value *Val;
1692      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1693        return Error("Invalid INSERTVAL record");
1694
1695      SmallVector<unsigned, 4> INSERTVALIdx;
1696      for (unsigned RecSize = Record.size();
1697           OpNum != RecSize; ++OpNum) {
1698        uint64_t Index = Record[OpNum];
1699        if ((unsigned)Index != Index)
1700          return Error("Invalid INSERTVAL index");
1701        INSERTVALIdx.push_back((unsigned)Index);
1702      }
1703
1704      I = InsertValueInst::Create(Agg, Val,
1705                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1706      break;
1707    }
1708
1709    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1710      // obsolete form of select
1711      // handles select i1 ... in old bitcode
1712      unsigned OpNum = 0;
1713      Value *TrueVal, *FalseVal, *Cond;
1714      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1715          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1716          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1717        return Error("Invalid SELECT record");
1718
1719      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1720      break;
1721    }
1722
1723    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1724      // new form of select
1725      // handles select i1 or select [N x i1]
1726      unsigned OpNum = 0;
1727      Value *TrueVal, *FalseVal, *Cond;
1728      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1729          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1730          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1731        return Error("Invalid SELECT record");
1732
1733      // select condition can be either i1 or [N x i1]
1734      if (const VectorType* vector_type =
1735          dyn_cast<const VectorType>(Cond->getType())) {
1736        // expect <n x i1>
1737        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1738          return Error("Invalid SELECT condition type");
1739      } else {
1740        // expect i1
1741        if (Cond->getType() != Type::getInt1Ty(Context))
1742          return Error("Invalid SELECT condition type");
1743      }
1744
1745      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1746      break;
1747    }
1748
1749    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1750      unsigned OpNum = 0;
1751      Value *Vec, *Idx;
1752      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1753          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1754        return Error("Invalid EXTRACTELT record");
1755      I = ExtractElementInst::Create(Vec, Idx);
1756      break;
1757    }
1758
1759    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1760      unsigned OpNum = 0;
1761      Value *Vec, *Elt, *Idx;
1762      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1763          getValue(Record, OpNum,
1764                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1765          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1766        return Error("Invalid INSERTELT record");
1767      I = InsertElementInst::Create(Vec, Elt, Idx);
1768      break;
1769    }
1770
1771    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1772      unsigned OpNum = 0;
1773      Value *Vec1, *Vec2, *Mask;
1774      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1775          getValue(Record, OpNum, Vec1->getType(), Vec2))
1776        return Error("Invalid SHUFFLEVEC record");
1777
1778      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1779        return Error("Invalid SHUFFLEVEC record");
1780      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1781      break;
1782    }
1783
1784    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1785      // Old form of ICmp/FCmp returning bool
1786      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1787      // both legal on vectors but had different behaviour.
1788    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1789      // FCmp/ICmp returning bool or vector of bool
1790
1791      unsigned OpNum = 0;
1792      Value *LHS, *RHS;
1793      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1794          getValue(Record, OpNum, LHS->getType(), RHS) ||
1795          OpNum+1 != Record.size())
1796        return Error("Invalid CMP record");
1797
1798      if (LHS->getType()->isFPOrFPVector())
1799        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1800      else
1801        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1802      break;
1803    }
1804
1805    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1806      if (Record.size() != 2)
1807        return Error("Invalid GETRESULT record");
1808      unsigned OpNum = 0;
1809      Value *Op;
1810      getValueTypePair(Record, OpNum, NextValueNo, Op);
1811      unsigned Index = Record[1];
1812      I = ExtractValueInst::Create(Op, Index);
1813      break;
1814    }
1815
1816    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1817      {
1818        unsigned Size = Record.size();
1819        if (Size == 0) {
1820          I = ReturnInst::Create(Context);
1821          break;
1822        }
1823
1824        unsigned OpNum = 0;
1825        SmallVector<Value *,4> Vs;
1826        do {
1827          Value *Op = NULL;
1828          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1829            return Error("Invalid RET record");
1830          Vs.push_back(Op);
1831        } while(OpNum != Record.size());
1832
1833        const Type *ReturnType = F->getReturnType();
1834        if (Vs.size() > 1 ||
1835            (isa<StructType>(ReturnType) &&
1836             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1837          Value *RV = UndefValue::get(ReturnType);
1838          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1839            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1840            CurBB->getInstList().push_back(I);
1841            ValueList.AssignValue(I, NextValueNo++);
1842            RV = I;
1843          }
1844          I = ReturnInst::Create(Context, RV);
1845          break;
1846        }
1847
1848        I = ReturnInst::Create(Context, Vs[0]);
1849        break;
1850      }
1851    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1852      if (Record.size() != 1 && Record.size() != 3)
1853        return Error("Invalid BR record");
1854      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1855      if (TrueDest == 0)
1856        return Error("Invalid BR record");
1857
1858      if (Record.size() == 1)
1859        I = BranchInst::Create(TrueDest);
1860      else {
1861        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1862        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1863        if (FalseDest == 0 || Cond == 0)
1864          return Error("Invalid BR record");
1865        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1866      }
1867      break;
1868    }
1869    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1870      if (Record.size() < 3 || (Record.size() & 1) == 0)
1871        return Error("Invalid SWITCH record");
1872      const Type *OpTy = getTypeByID(Record[0]);
1873      Value *Cond = getFnValueByID(Record[1], OpTy);
1874      BasicBlock *Default = getBasicBlock(Record[2]);
1875      if (OpTy == 0 || Cond == 0 || Default == 0)
1876        return Error("Invalid SWITCH record");
1877      unsigned NumCases = (Record.size()-3)/2;
1878      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1879      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1880        ConstantInt *CaseVal =
1881          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1882        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1883        if (CaseVal == 0 || DestBB == 0) {
1884          delete SI;
1885          return Error("Invalid SWITCH record!");
1886        }
1887        SI->addCase(CaseVal, DestBB);
1888      }
1889      I = SI;
1890      break;
1891    }
1892
1893    case bitc::FUNC_CODE_INST_INVOKE: {
1894      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1895      if (Record.size() < 4) return Error("Invalid INVOKE record");
1896      AttrListPtr PAL = getAttributes(Record[0]);
1897      unsigned CCInfo = Record[1];
1898      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1899      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1900
1901      unsigned OpNum = 4;
1902      Value *Callee;
1903      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1904        return Error("Invalid INVOKE record");
1905
1906      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1907      const FunctionType *FTy = !CalleeTy ? 0 :
1908        dyn_cast<FunctionType>(CalleeTy->getElementType());
1909
1910      // Check that the right number of fixed parameters are here.
1911      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1912          Record.size() < OpNum+FTy->getNumParams())
1913        return Error("Invalid INVOKE record");
1914
1915      SmallVector<Value*, 16> Ops;
1916      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1917        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1918        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1919      }
1920
1921      if (!FTy->isVarArg()) {
1922        if (Record.size() != OpNum)
1923          return Error("Invalid INVOKE record");
1924      } else {
1925        // Read type/value pairs for varargs params.
1926        while (OpNum != Record.size()) {
1927          Value *Op;
1928          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1929            return Error("Invalid INVOKE record");
1930          Ops.push_back(Op);
1931        }
1932      }
1933
1934      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1935                             Ops.begin(), Ops.end());
1936      cast<InvokeInst>(I)->setCallingConv(
1937        static_cast<CallingConv::ID>(CCInfo));
1938      cast<InvokeInst>(I)->setAttributes(PAL);
1939      break;
1940    }
1941    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1942      I = new UnwindInst(Context);
1943      break;
1944    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1945      I = new UnreachableInst(Context);
1946      break;
1947    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1948      if (Record.size() < 1 || ((Record.size()-1)&1))
1949        return Error("Invalid PHI record");
1950      const Type *Ty = getTypeByID(Record[0]);
1951      if (!Ty) return Error("Invalid PHI record");
1952
1953      PHINode *PN = PHINode::Create(Ty);
1954      PN->reserveOperandSpace((Record.size()-1)/2);
1955
1956      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1957        Value *V = getFnValueByID(Record[1+i], Ty);
1958        BasicBlock *BB = getBasicBlock(Record[2+i]);
1959        if (!V || !BB) return Error("Invalid PHI record");
1960        PN->addIncoming(V, BB);
1961      }
1962      I = PN;
1963      break;
1964    }
1965
1966    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1967      if (Record.size() < 3)
1968        return Error("Invalid MALLOC record");
1969      const PointerType *Ty =
1970        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1971      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1972      unsigned Align = Record[2];
1973      if (!Ty || !Size) return Error("Invalid MALLOC record");
1974      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1975      break;
1976    }
1977    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1978      unsigned OpNum = 0;
1979      Value *Op;
1980      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1981          OpNum != Record.size())
1982        return Error("Invalid FREE record");
1983      I = new FreeInst(Op);
1984      break;
1985    }
1986    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1987      if (Record.size() < 3)
1988        return Error("Invalid ALLOCA record");
1989      const PointerType *Ty =
1990        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1991      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
1992      unsigned Align = Record[2];
1993      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1994      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1995      break;
1996    }
1997    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1998      unsigned OpNum = 0;
1999      Value *Op;
2000      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2001          OpNum+2 != Record.size())
2002        return Error("Invalid LOAD record");
2003
2004      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2005      break;
2006    }
2007    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2008      unsigned OpNum = 0;
2009      Value *Val, *Ptr;
2010      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2011          getValue(Record, OpNum,
2012                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2013          OpNum+2 != Record.size())
2014        return Error("Invalid STORE record");
2015
2016      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2017      break;
2018    }
2019    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2020      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2021      unsigned OpNum = 0;
2022      Value *Val, *Ptr;
2023      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2024          getValue(Record, OpNum,
2025                   PointerType::getUnqual(Val->getType()), Ptr)||
2026          OpNum+2 != Record.size())
2027        return Error("Invalid STORE record");
2028
2029      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2030      break;
2031    }
2032    case bitc::FUNC_CODE_INST_CALL: {
2033      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2034      if (Record.size() < 3)
2035        return Error("Invalid CALL record");
2036
2037      AttrListPtr PAL = getAttributes(Record[0]);
2038      unsigned CCInfo = Record[1];
2039
2040      unsigned OpNum = 2;
2041      Value *Callee;
2042      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2043        return Error("Invalid CALL record");
2044
2045      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2046      const FunctionType *FTy = 0;
2047      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2048      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2049        return Error("Invalid CALL record");
2050
2051      SmallVector<Value*, 16> Args;
2052      // Read the fixed params.
2053      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2054        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2055          Args.push_back(getBasicBlock(Record[OpNum]));
2056        else
2057          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2058        if (Args.back() == 0) return Error("Invalid CALL record");
2059      }
2060
2061      // Read type/value pairs for varargs params.
2062      if (!FTy->isVarArg()) {
2063        if (OpNum != Record.size())
2064          return Error("Invalid CALL record");
2065      } else {
2066        while (OpNum != Record.size()) {
2067          Value *Op;
2068          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2069            return Error("Invalid CALL record");
2070          Args.push_back(Op);
2071        }
2072      }
2073
2074      I = CallInst::Create(Callee, Args.begin(), Args.end());
2075      cast<CallInst>(I)->setCallingConv(
2076        static_cast<CallingConv::ID>(CCInfo>>1));
2077      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2078      cast<CallInst>(I)->setAttributes(PAL);
2079      break;
2080    }
2081    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2082      if (Record.size() < 3)
2083        return Error("Invalid VAARG record");
2084      const Type *OpTy = getTypeByID(Record[0]);
2085      Value *Op = getFnValueByID(Record[1], OpTy);
2086      const Type *ResTy = getTypeByID(Record[2]);
2087      if (!OpTy || !Op || !ResTy)
2088        return Error("Invalid VAARG record");
2089      I = new VAArgInst(Op, ResTy);
2090      break;
2091    }
2092    }
2093
2094    // Add instruction to end of current BB.  If there is no current BB, reject
2095    // this file.
2096    if (CurBB == 0) {
2097      delete I;
2098      return Error("Invalid instruction with no BB");
2099    }
2100    CurBB->getInstList().push_back(I);
2101
2102    // If this was a terminator instruction, move to the next block.
2103    if (isa<TerminatorInst>(I)) {
2104      ++CurBBNo;
2105      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2106    }
2107
2108    // Non-void values get registered in the value table for future use.
2109    if (I && I->getType() != Type::getVoidTy(Context))
2110      ValueList.AssignValue(I, NextValueNo++);
2111  }
2112
2113  // Check the function list for unresolved values.
2114  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2115    if (A->getParent() == 0) {
2116      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2117      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2118        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2119          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2120          delete A;
2121        }
2122      }
2123      return Error("Never resolved value found in function!");
2124    }
2125  }
2126
2127  // Trim the value list down to the size it was before we parsed this function.
2128  ValueList.shrinkTo(ModuleValueListSize);
2129  std::vector<BasicBlock*>().swap(FunctionBBs);
2130
2131  return false;
2132}
2133
2134//===----------------------------------------------------------------------===//
2135// ModuleProvider implementation
2136//===----------------------------------------------------------------------===//
2137
2138
2139bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2140  // If it already is material, ignore the request.
2141  if (!F->hasNotBeenReadFromBitcode()) return false;
2142
2143  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2144    DeferredFunctionInfo.find(F);
2145  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2146
2147  // Move the bit stream to the saved position of the deferred function body and
2148  // restore the real linkage type for the function.
2149  Stream.JumpToBit(DFII->second.first);
2150  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2151
2152  if (ParseFunctionBody(F)) {
2153    if (ErrInfo) *ErrInfo = ErrorString;
2154    return true;
2155  }
2156
2157  // Upgrade any old intrinsic calls in the function.
2158  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2159       E = UpgradedIntrinsics.end(); I != E; ++I) {
2160    if (I->first != I->second) {
2161      for (Value::use_iterator UI = I->first->use_begin(),
2162           UE = I->first->use_end(); UI != UE; ) {
2163        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2164          UpgradeIntrinsicCall(CI, I->second);
2165      }
2166    }
2167  }
2168
2169  return false;
2170}
2171
2172void BitcodeReader::dematerializeFunction(Function *F) {
2173  // If this function isn't materialized, or if it is a proto, this is a noop.
2174  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2175    return;
2176
2177  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2178
2179  // Just forget the function body, we can remat it later.
2180  F->deleteBody();
2181  F->setLinkage(GlobalValue::GhostLinkage);
2182}
2183
2184
2185Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2186  // Iterate over the module, deserializing any functions that are still on
2187  // disk.
2188  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2189       F != E; ++F)
2190    if (F->hasNotBeenReadFromBitcode() &&
2191        materializeFunction(F, ErrInfo))
2192      return 0;
2193
2194  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2195  // delete the old functions to clean up. We can't do this unless the entire
2196  // module is materialized because there could always be another function body
2197  // with calls to the old function.
2198  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2199       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2200    if (I->first != I->second) {
2201      for (Value::use_iterator UI = I->first->use_begin(),
2202           UE = I->first->use_end(); UI != UE; ) {
2203        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2204          UpgradeIntrinsicCall(CI, I->second);
2205      }
2206      if (!I->first->use_empty())
2207        I->first->replaceAllUsesWith(I->second);
2208      I->first->eraseFromParent();
2209    }
2210  }
2211  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2212
2213  // Check debug info intrinsics.
2214  CheckDebugInfoIntrinsics(TheModule);
2215
2216  return TheModule;
2217}
2218
2219
2220/// This method is provided by the parent ModuleProvde class and overriden
2221/// here. It simply releases the module from its provided and frees up our
2222/// state.
2223/// @brief Release our hold on the generated module
2224Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2225  // Since we're losing control of this Module, we must hand it back complete
2226  Module *M = ModuleProvider::releaseModule(ErrInfo);
2227  FreeState();
2228  return M;
2229}
2230
2231
2232//===----------------------------------------------------------------------===//
2233// External interface
2234//===----------------------------------------------------------------------===//
2235
2236/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2237///
2238ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2239                                               LLVMContext& Context,
2240                                               std::string *ErrMsg) {
2241  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2242  if (R->ParseBitcode()) {
2243    if (ErrMsg)
2244      *ErrMsg = R->getErrorString();
2245
2246    // Don't let the BitcodeReader dtor delete 'Buffer'.
2247    R->releaseMemoryBuffer();
2248    delete R;
2249    return 0;
2250  }
2251  return R;
2252}
2253
2254/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2255/// If an error occurs, return null and fill in *ErrMsg if non-null.
2256Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2257                               std::string *ErrMsg){
2258  BitcodeReader *R;
2259  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2260                                                           ErrMsg));
2261  if (!R) return 0;
2262
2263  // Read in the entire module.
2264  Module *M = R->materializeModule(ErrMsg);
2265
2266  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2267  // there was an error.
2268  R->releaseMemoryBuffer();
2269
2270  // If there was no error, tell ModuleProvider not to delete it when its dtor
2271  // is run.
2272  if (M)
2273    M = R->releaseModule(ErrMsg);
2274
2275  delete R;
2276  return M;
2277}
2278