BitcodeReader.cpp revision 8b3b34f410f2bd05943e1c6f9b0514209731421d
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42}
43
44//===----------------------------------------------------------------------===//
45//  Helper functions to implement forward reference resolution, etc.
46//===----------------------------------------------------------------------===//
47
48/// ConvertToString - Convert a string from a record into an std::string, return
49/// true on failure.
50template<typename StrTy>
51static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                            StrTy &Result) {
53  if (Idx > Record.size())
54    return true;
55
56  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57    Result += (char)Record[i];
58  return false;
59}
60
61static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62  switch (Val) {
63  default: // Map unknown/new linkages to external
64  case 0:  return GlobalValue::ExternalLinkage;
65  case 1:  return GlobalValue::WeakAnyLinkage;
66  case 2:  return GlobalValue::AppendingLinkage;
67  case 3:  return GlobalValue::InternalLinkage;
68  case 4:  return GlobalValue::LinkOnceAnyLinkage;
69  case 5:  return GlobalValue::DLLImportLinkage;
70  case 6:  return GlobalValue::DLLExportLinkage;
71  case 7:  return GlobalValue::ExternalWeakLinkage;
72  case 8:  return GlobalValue::CommonLinkage;
73  case 9:  return GlobalValue::PrivateLinkage;
74  case 10: return GlobalValue::WeakODRLinkage;
75  case 11: return GlobalValue::LinkOnceODRLinkage;
76  case 12: return GlobalValue::AvailableExternallyLinkage;
77  case 13: return GlobalValue::LinkerPrivateLinkage;
78  }
79}
80
81static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
82  switch (Val) {
83  default: // Map unknown visibilities to default.
84  case 0: return GlobalValue::DefaultVisibility;
85  case 1: return GlobalValue::HiddenVisibility;
86  case 2: return GlobalValue::ProtectedVisibility;
87  }
88}
89
90static int GetDecodedCastOpcode(unsigned Val) {
91  switch (Val) {
92  default: return -1;
93  case bitc::CAST_TRUNC   : return Instruction::Trunc;
94  case bitc::CAST_ZEXT    : return Instruction::ZExt;
95  case bitc::CAST_SEXT    : return Instruction::SExt;
96  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
97  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
98  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
99  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
100  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
101  case bitc::CAST_FPEXT   : return Instruction::FPExt;
102  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
103  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
104  case bitc::CAST_BITCAST : return Instruction::BitCast;
105  }
106}
107static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
108  switch (Val) {
109  default: return -1;
110  case bitc::BINOP_ADD:
111    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
112  case bitc::BINOP_SUB:
113    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
114  case bitc::BINOP_MUL:
115    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
116  case bitc::BINOP_UDIV: return Instruction::UDiv;
117  case bitc::BINOP_SDIV:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
119  case bitc::BINOP_UREM: return Instruction::URem;
120  case bitc::BINOP_SREM:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
122  case bitc::BINOP_SHL:  return Instruction::Shl;
123  case bitc::BINOP_LSHR: return Instruction::LShr;
124  case bitc::BINOP_ASHR: return Instruction::AShr;
125  case bitc::BINOP_AND:  return Instruction::And;
126  case bitc::BINOP_OR:   return Instruction::Or;
127  case bitc::BINOP_XOR:  return Instruction::Xor;
128  }
129}
130
131namespace llvm {
132namespace {
133  /// @brief A class for maintaining the slot number definition
134  /// as a placeholder for the actual definition for forward constants defs.
135  class ConstantPlaceHolder : public ConstantExpr {
136    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
137    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
138  public:
139    // allocate space for exactly one operand
140    void *operator new(size_t s) {
141      return User::operator new(s, 1);
142    }
143    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
144      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
145      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
146    }
147
148    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
149    static inline bool classof(const ConstantPlaceHolder *) { return true; }
150    static bool classof(const Value *V) {
151      return isa<ConstantExpr>(V) &&
152             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
153    }
154
155
156    /// Provide fast operand accessors
157    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
158  };
159}
160
161// FIXME: can we inherit this from ConstantExpr?
162template <>
163struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
164};
165}
166
167
168void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
169  if (Idx == size()) {
170    push_back(V);
171    return;
172  }
173
174  if (Idx >= size())
175    resize(Idx+1);
176
177  WeakVH &OldV = ValuePtrs[Idx];
178  if (OldV == 0) {
179    OldV = V;
180    return;
181  }
182
183  // Handle constants and non-constants (e.g. instrs) differently for
184  // efficiency.
185  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
186    ResolveConstants.push_back(std::make_pair(PHC, Idx));
187    OldV = V;
188  } else {
189    // If there was a forward reference to this value, replace it.
190    Value *PrevVal = OldV;
191    OldV->replaceAllUsesWith(V);
192    delete PrevVal;
193  }
194}
195
196
197Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
198                                                    const Type *Ty) {
199  if (Idx >= size())
200    resize(Idx + 1);
201
202  if (Value *V = ValuePtrs[Idx]) {
203    assert(Ty == V->getType() && "Type mismatch in constant table!");
204    return cast<Constant>(V);
205  }
206
207  // Create and return a placeholder, which will later be RAUW'd.
208  Constant *C = new ConstantPlaceHolder(Ty, Context);
209  ValuePtrs[Idx] = C;
210  return C;
211}
212
213Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
214  if (Idx >= size())
215    resize(Idx + 1);
216
217  if (Value *V = ValuePtrs[Idx]) {
218    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
219    return V;
220  }
221
222  // No type specified, must be invalid reference.
223  if (Ty == 0) return 0;
224
225  // Create and return a placeholder, which will later be RAUW'd.
226  Value *V = new Argument(Ty);
227  ValuePtrs[Idx] = V;
228  return V;
229}
230
231/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
232/// resolves any forward references.  The idea behind this is that we sometimes
233/// get constants (such as large arrays) which reference *many* forward ref
234/// constants.  Replacing each of these causes a lot of thrashing when
235/// building/reuniquing the constant.  Instead of doing this, we look at all the
236/// uses and rewrite all the place holders at once for any constant that uses
237/// a placeholder.
238void BitcodeReaderValueList::ResolveConstantForwardRefs() {
239  // Sort the values by-pointer so that they are efficient to look up with a
240  // binary search.
241  std::sort(ResolveConstants.begin(), ResolveConstants.end());
242
243  SmallVector<Constant*, 64> NewOps;
244
245  while (!ResolveConstants.empty()) {
246    Value *RealVal = operator[](ResolveConstants.back().second);
247    Constant *Placeholder = ResolveConstants.back().first;
248    ResolveConstants.pop_back();
249
250    // Loop over all users of the placeholder, updating them to reference the
251    // new value.  If they reference more than one placeholder, update them all
252    // at once.
253    while (!Placeholder->use_empty()) {
254      Value::use_iterator UI = Placeholder->use_begin();
255
256      // If the using object isn't uniqued, just update the operands.  This
257      // handles instructions and initializers for global variables.
258      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
259        UI.getUse().set(RealVal);
260        continue;
261      }
262
263      // Otherwise, we have a constant that uses the placeholder.  Replace that
264      // constant with a new constant that has *all* placeholder uses updated.
265      Constant *UserC = cast<Constant>(*UI);
266      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
267           I != E; ++I) {
268        Value *NewOp;
269        if (!isa<ConstantPlaceHolder>(*I)) {
270          // Not a placeholder reference.
271          NewOp = *I;
272        } else if (*I == Placeholder) {
273          // Common case is that it just references this one placeholder.
274          NewOp = RealVal;
275        } else {
276          // Otherwise, look up the placeholder in ResolveConstants.
277          ResolveConstantsTy::iterator It =
278            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
279                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
280                                                            0));
281          assert(It != ResolveConstants.end() && It->first == *I);
282          NewOp = operator[](It->second);
283        }
284
285        NewOps.push_back(cast<Constant>(NewOp));
286      }
287
288      // Make the new constant.
289      Constant *NewC;
290      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
291        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
292                                        NewOps.size());
293      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
294        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
295                                         UserCS->getType()->isPacked());
296      } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
297        NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
298      } else if (isa<ConstantVector>(UserC)) {
299        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
300      } else {
301        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
302        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
303                                                          NewOps.size());
304      }
305
306      UserC->replaceAllUsesWith(NewC);
307      UserC->destroyConstant();
308      NewOps.clear();
309    }
310
311    // Update all ValueHandles, they should be the only users at this point.
312    Placeholder->replaceAllUsesWith(RealVal);
313    delete Placeholder;
314  }
315}
316
317void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
318  if (Idx == size()) {
319    push_back(V);
320    return;
321  }
322
323  if (Idx >= size())
324    resize(Idx+1);
325
326  WeakVH &OldV = MDValuePtrs[Idx];
327  if (OldV == 0) {
328    OldV = V;
329    return;
330  }
331
332  // If there was a forward reference to this value, replace it.
333  Value *PrevVal = OldV;
334  OldV->replaceAllUsesWith(V);
335  delete PrevVal;
336  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
337  // value for Idx.
338  MDValuePtrs[Idx] = V;
339}
340
341Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
342  if (Idx >= size())
343    resize(Idx + 1);
344
345  if (Value *V = MDValuePtrs[Idx]) {
346    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
347    return V;
348  }
349
350  // Create and return a placeholder, which will later be RAUW'd.
351  Value *V = new Argument(Type::getMetadataTy(Context));
352  MDValuePtrs[Idx] = V;
353  return V;
354}
355
356const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
357  // If the TypeID is in range, return it.
358  if (ID < TypeList.size())
359    return TypeList[ID].get();
360  if (!isTypeTable) return 0;
361
362  // The type table allows forward references.  Push as many Opaque types as
363  // needed to get up to ID.
364  while (TypeList.size() <= ID)
365    TypeList.push_back(OpaqueType::get(Context));
366  return TypeList.back().get();
367}
368
369//===----------------------------------------------------------------------===//
370//  Functions for parsing blocks from the bitcode file
371//===----------------------------------------------------------------------===//
372
373bool BitcodeReader::ParseAttributeBlock() {
374  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
375    return Error("Malformed block record");
376
377  if (!MAttributes.empty())
378    return Error("Multiple PARAMATTR blocks found!");
379
380  SmallVector<uint64_t, 64> Record;
381
382  SmallVector<AttributeWithIndex, 8> Attrs;
383
384  // Read all the records.
385  while (1) {
386    unsigned Code = Stream.ReadCode();
387    if (Code == bitc::END_BLOCK) {
388      if (Stream.ReadBlockEnd())
389        return Error("Error at end of PARAMATTR block");
390      return false;
391    }
392
393    if (Code == bitc::ENTER_SUBBLOCK) {
394      // No known subblocks, always skip them.
395      Stream.ReadSubBlockID();
396      if (Stream.SkipBlock())
397        return Error("Malformed block record");
398      continue;
399    }
400
401    if (Code == bitc::DEFINE_ABBREV) {
402      Stream.ReadAbbrevRecord();
403      continue;
404    }
405
406    // Read a record.
407    Record.clear();
408    switch (Stream.ReadRecord(Code, Record)) {
409    default:  // Default behavior: ignore.
410      break;
411    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
412      if (Record.size() & 1)
413        return Error("Invalid ENTRY record");
414
415      // FIXME : Remove this autoupgrade code in LLVM 3.0.
416      // If Function attributes are using index 0 then transfer them
417      // to index ~0. Index 0 is used for return value attributes but used to be
418      // used for function attributes.
419      Attributes RetAttribute = Attribute::None;
420      Attributes FnAttribute = Attribute::None;
421      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
422        // FIXME: remove in LLVM 3.0
423        // The alignment is stored as a 16-bit raw value from bits 31--16.
424        // We shift the bits above 31 down by 11 bits.
425
426        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
427        if (Alignment && !isPowerOf2_32(Alignment))
428          return Error("Alignment is not a power of two.");
429
430        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
431        if (Alignment)
432          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
433        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
434        Record[i+1] = ReconstitutedAttr;
435
436        if (Record[i] == 0)
437          RetAttribute = Record[i+1];
438        else if (Record[i] == ~0U)
439          FnAttribute = Record[i+1];
440      }
441
442      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
443                              Attribute::ReadOnly|Attribute::ReadNone);
444
445      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
446          (RetAttribute & OldRetAttrs) != 0) {
447        if (FnAttribute == Attribute::None) { // add a slot so they get added.
448          Record.push_back(~0U);
449          Record.push_back(0);
450        }
451
452        FnAttribute  |= RetAttribute & OldRetAttrs;
453        RetAttribute &= ~OldRetAttrs;
454      }
455
456      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
457        if (Record[i] == 0) {
458          if (RetAttribute != Attribute::None)
459            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
460        } else if (Record[i] == ~0U) {
461          if (FnAttribute != Attribute::None)
462            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
463        } else if (Record[i+1] != Attribute::None)
464          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
465      }
466
467      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
468      Attrs.clear();
469      break;
470    }
471    }
472  }
473}
474
475
476bool BitcodeReader::ParseTypeTable() {
477  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
478    return Error("Malformed block record");
479
480  if (!TypeList.empty())
481    return Error("Multiple TYPE_BLOCKs found!");
482
483  SmallVector<uint64_t, 64> Record;
484  unsigned NumRecords = 0;
485
486  // Read all the records for this type table.
487  while (1) {
488    unsigned Code = Stream.ReadCode();
489    if (Code == bitc::END_BLOCK) {
490      if (NumRecords != TypeList.size())
491        return Error("Invalid type forward reference in TYPE_BLOCK");
492      if (Stream.ReadBlockEnd())
493        return Error("Error at end of type table block");
494      return false;
495    }
496
497    if (Code == bitc::ENTER_SUBBLOCK) {
498      // No known subblocks, always skip them.
499      Stream.ReadSubBlockID();
500      if (Stream.SkipBlock())
501        return Error("Malformed block record");
502      continue;
503    }
504
505    if (Code == bitc::DEFINE_ABBREV) {
506      Stream.ReadAbbrevRecord();
507      continue;
508    }
509
510    // Read a record.
511    Record.clear();
512    const Type *ResultTy = 0;
513    switch (Stream.ReadRecord(Code, Record)) {
514    default:  // Default behavior: unknown type.
515      ResultTy = 0;
516      break;
517    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
518      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
519      // type list.  This allows us to reserve space.
520      if (Record.size() < 1)
521        return Error("Invalid TYPE_CODE_NUMENTRY record");
522      TypeList.reserve(Record[0]);
523      continue;
524    case bitc::TYPE_CODE_VOID:      // VOID
525      ResultTy = Type::getVoidTy(Context);
526      break;
527    case bitc::TYPE_CODE_FLOAT:     // FLOAT
528      ResultTy = Type::getFloatTy(Context);
529      break;
530    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
531      ResultTy = Type::getDoubleTy(Context);
532      break;
533    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
534      ResultTy = Type::getX86_FP80Ty(Context);
535      break;
536    case bitc::TYPE_CODE_FP128:     // FP128
537      ResultTy = Type::getFP128Ty(Context);
538      break;
539    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
540      ResultTy = Type::getPPC_FP128Ty(Context);
541      break;
542    case bitc::TYPE_CODE_LABEL:     // LABEL
543      ResultTy = Type::getLabelTy(Context);
544      break;
545    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
546      ResultTy = 0;
547      break;
548    case bitc::TYPE_CODE_METADATA:  // METADATA
549      ResultTy = Type::getMetadataTy(Context);
550      break;
551    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
552      if (Record.size() < 1)
553        return Error("Invalid Integer type record");
554
555      ResultTy = IntegerType::get(Context, Record[0]);
556      break;
557    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
558                                    //          [pointee type, address space]
559      if (Record.size() < 1)
560        return Error("Invalid POINTER type record");
561      unsigned AddressSpace = 0;
562      if (Record.size() == 2)
563        AddressSpace = Record[1];
564      ResultTy = PointerType::get(getTypeByID(Record[0], true),
565                                        AddressSpace);
566      break;
567    }
568    case bitc::TYPE_CODE_FUNCTION: {
569      // FIXME: attrid is dead, remove it in LLVM 3.0
570      // FUNCTION: [vararg, attrid, retty, paramty x N]
571      if (Record.size() < 3)
572        return Error("Invalid FUNCTION type record");
573      std::vector<const Type*> ArgTys;
574      for (unsigned i = 3, e = Record.size(); i != e; ++i)
575        ArgTys.push_back(getTypeByID(Record[i], true));
576
577      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
578                                   Record[0]);
579      break;
580    }
581    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
582      if (Record.size() < 1)
583        return Error("Invalid STRUCT type record");
584      std::vector<const Type*> EltTys;
585      for (unsigned i = 1, e = Record.size(); i != e; ++i)
586        EltTys.push_back(getTypeByID(Record[i], true));
587      ResultTy = StructType::get(Context, EltTys, Record[0]);
588      break;
589    }
590    case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
591      SmallVector<const Type*, 8> EltTys;
592      for (unsigned i = 0, e = Record.size(); i != e; ++i)
593        EltTys.push_back(getTypeByID(Record[i], true));
594      ResultTy = UnionType::get(&EltTys[0], EltTys.size());
595      break;
596    }
597    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
598      if (Record.size() < 2)
599        return Error("Invalid ARRAY type record");
600      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
601      break;
602    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
603      if (Record.size() < 2)
604        return Error("Invalid VECTOR type record");
605      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
606      break;
607    }
608
609    if (NumRecords == TypeList.size()) {
610      // If this is a new type slot, just append it.
611      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
612      ++NumRecords;
613    } else if (ResultTy == 0) {
614      // Otherwise, this was forward referenced, so an opaque type was created,
615      // but the result type is actually just an opaque.  Leave the one we
616      // created previously.
617      ++NumRecords;
618    } else {
619      // Otherwise, this was forward referenced, so an opaque type was created.
620      // Resolve the opaque type to the real type now.
621      assert(NumRecords < TypeList.size() && "Typelist imbalance");
622      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
623
624      // Don't directly push the new type on the Tab. Instead we want to replace
625      // the opaque type we previously inserted with the new concrete value. The
626      // refinement from the abstract (opaque) type to the new type causes all
627      // uses of the abstract type to use the concrete type (NewTy). This will
628      // also cause the opaque type to be deleted.
629      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
630
631      // This should have replaced the old opaque type with the new type in the
632      // value table... or with a preexisting type that was already in the
633      // system.  Let's just make sure it did.
634      assert(TypeList[NumRecords-1].get() != OldTy &&
635             "refineAbstractType didn't work!");
636    }
637  }
638}
639
640
641bool BitcodeReader::ParseTypeSymbolTable() {
642  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
643    return Error("Malformed block record");
644
645  SmallVector<uint64_t, 64> Record;
646
647  // Read all the records for this type table.
648  std::string TypeName;
649  while (1) {
650    unsigned Code = Stream.ReadCode();
651    if (Code == bitc::END_BLOCK) {
652      if (Stream.ReadBlockEnd())
653        return Error("Error at end of type symbol table block");
654      return false;
655    }
656
657    if (Code == bitc::ENTER_SUBBLOCK) {
658      // No known subblocks, always skip them.
659      Stream.ReadSubBlockID();
660      if (Stream.SkipBlock())
661        return Error("Malformed block record");
662      continue;
663    }
664
665    if (Code == bitc::DEFINE_ABBREV) {
666      Stream.ReadAbbrevRecord();
667      continue;
668    }
669
670    // Read a record.
671    Record.clear();
672    switch (Stream.ReadRecord(Code, Record)) {
673    default:  // Default behavior: unknown type.
674      break;
675    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
676      if (ConvertToString(Record, 1, TypeName))
677        return Error("Invalid TST_ENTRY record");
678      unsigned TypeID = Record[0];
679      if (TypeID >= TypeList.size())
680        return Error("Invalid Type ID in TST_ENTRY record");
681
682      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
683      TypeName.clear();
684      break;
685    }
686  }
687}
688
689bool BitcodeReader::ParseValueSymbolTable() {
690  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
691    return Error("Malformed block record");
692
693  SmallVector<uint64_t, 64> Record;
694
695  // Read all the records for this value table.
696  SmallString<128> ValueName;
697  while (1) {
698    unsigned Code = Stream.ReadCode();
699    if (Code == bitc::END_BLOCK) {
700      if (Stream.ReadBlockEnd())
701        return Error("Error at end of value symbol table block");
702      return false;
703    }
704    if (Code == bitc::ENTER_SUBBLOCK) {
705      // No known subblocks, always skip them.
706      Stream.ReadSubBlockID();
707      if (Stream.SkipBlock())
708        return Error("Malformed block record");
709      continue;
710    }
711
712    if (Code == bitc::DEFINE_ABBREV) {
713      Stream.ReadAbbrevRecord();
714      continue;
715    }
716
717    // Read a record.
718    Record.clear();
719    switch (Stream.ReadRecord(Code, Record)) {
720    default:  // Default behavior: unknown type.
721      break;
722    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
723      if (ConvertToString(Record, 1, ValueName))
724        return Error("Invalid VST_ENTRY record");
725      unsigned ValueID = Record[0];
726      if (ValueID >= ValueList.size())
727        return Error("Invalid Value ID in VST_ENTRY record");
728      Value *V = ValueList[ValueID];
729
730      V->setName(StringRef(ValueName.data(), ValueName.size()));
731      ValueName.clear();
732      break;
733    }
734    case bitc::VST_CODE_BBENTRY: {
735      if (ConvertToString(Record, 1, ValueName))
736        return Error("Invalid VST_BBENTRY record");
737      BasicBlock *BB = getBasicBlock(Record[0]);
738      if (BB == 0)
739        return Error("Invalid BB ID in VST_BBENTRY record");
740
741      BB->setName(StringRef(ValueName.data(), ValueName.size()));
742      ValueName.clear();
743      break;
744    }
745    }
746  }
747}
748
749bool BitcodeReader::ParseMetadata() {
750  unsigned NextMDValueNo = MDValueList.size();
751
752  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
753    return Error("Malformed block record");
754
755  SmallVector<uint64_t, 64> Record;
756
757  // Read all the records.
758  while (1) {
759    unsigned Code = Stream.ReadCode();
760    if (Code == bitc::END_BLOCK) {
761      if (Stream.ReadBlockEnd())
762        return Error("Error at end of PARAMATTR block");
763      return false;
764    }
765
766    if (Code == bitc::ENTER_SUBBLOCK) {
767      // No known subblocks, always skip them.
768      Stream.ReadSubBlockID();
769      if (Stream.SkipBlock())
770        return Error("Malformed block record");
771      continue;
772    }
773
774    if (Code == bitc::DEFINE_ABBREV) {
775      Stream.ReadAbbrevRecord();
776      continue;
777    }
778
779    bool IsFunctionLocal = false;
780    // Read a record.
781    Record.clear();
782    switch (Stream.ReadRecord(Code, Record)) {
783    default:  // Default behavior: ignore.
784      break;
785    case bitc::METADATA_NAME: {
786      // Read named of the named metadata.
787      unsigned NameLength = Record.size();
788      SmallString<8> Name;
789      Name.resize(NameLength);
790      for (unsigned i = 0; i != NameLength; ++i)
791        Name[i] = Record[i];
792      Record.clear();
793      Code = Stream.ReadCode();
794
795      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
796      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
797        assert ( 0 && "Inavlid Named Metadata record");
798
799      // Read named metadata elements.
800      unsigned Size = Record.size();
801      SmallVector<MDNode *, 8> Elts;
802      for (unsigned i = 0; i != Size; ++i) {
803        if (Record[i] == ~0U) {
804          Elts.push_back(NULL);
805          continue;
806        }
807        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
808        if (MD == 0)
809          return Error("Malformed metadata record");
810        Elts.push_back(MD);
811      }
812      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
813                                     Elts.size(), TheModule);
814      MDValueList.AssignValue(V, NextMDValueNo++);
815      break;
816    }
817    case bitc::METADATA_FN_NODE:
818      IsFunctionLocal = true;
819      // fall-through
820    case bitc::METADATA_NODE: {
821      if (Record.empty() || Record.size() % 2 == 1)
822        return Error("Invalid METADATA_NODE record");
823
824      unsigned Size = Record.size();
825      SmallVector<Value*, 8> Elts;
826      for (unsigned i = 0; i != Size; i += 2) {
827        const Type *Ty = getTypeByID(Record[i], false);
828        if (Ty->isMetadataTy())
829          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
830        else if (!Ty->isVoidTy())
831          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
832        else
833          Elts.push_back(NULL);
834      }
835      Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
836                                               IsFunctionLocal);
837      IsFunctionLocal = false;
838      MDValueList.AssignValue(V, NextMDValueNo++);
839      break;
840    }
841    case bitc::METADATA_STRING: {
842      unsigned MDStringLength = Record.size();
843      SmallString<8> String;
844      String.resize(MDStringLength);
845      for (unsigned i = 0; i != MDStringLength; ++i)
846        String[i] = Record[i];
847      Value *V = MDString::get(Context,
848                               StringRef(String.data(), String.size()));
849      MDValueList.AssignValue(V, NextMDValueNo++);
850      break;
851    }
852    case bitc::METADATA_KIND: {
853      unsigned RecordLength = Record.size();
854      if (Record.empty() || RecordLength < 2)
855        return Error("Invalid METADATA_KIND record");
856      SmallString<8> Name;
857      Name.resize(RecordLength-1);
858      unsigned Kind = Record[0];
859      (void) Kind;
860      for (unsigned i = 1; i != RecordLength; ++i)
861        Name[i-1] = Record[i];
862
863      unsigned NewKind = TheModule->getMDKindID(Name.str());
864      assert(Kind == NewKind &&
865             "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
866      break;
867    }
868    }
869  }
870}
871
872/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
873/// the LSB for dense VBR encoding.
874static uint64_t DecodeSignRotatedValue(uint64_t V) {
875  if ((V & 1) == 0)
876    return V >> 1;
877  if (V != 1)
878    return -(V >> 1);
879  // There is no such thing as -0 with integers.  "-0" really means MININT.
880  return 1ULL << 63;
881}
882
883/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
884/// values and aliases that we can.
885bool BitcodeReader::ResolveGlobalAndAliasInits() {
886  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
887  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
888
889  GlobalInitWorklist.swap(GlobalInits);
890  AliasInitWorklist.swap(AliasInits);
891
892  while (!GlobalInitWorklist.empty()) {
893    unsigned ValID = GlobalInitWorklist.back().second;
894    if (ValID >= ValueList.size()) {
895      // Not ready to resolve this yet, it requires something later in the file.
896      GlobalInits.push_back(GlobalInitWorklist.back());
897    } else {
898      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
899        GlobalInitWorklist.back().first->setInitializer(C);
900      else
901        return Error("Global variable initializer is not a constant!");
902    }
903    GlobalInitWorklist.pop_back();
904  }
905
906  while (!AliasInitWorklist.empty()) {
907    unsigned ValID = AliasInitWorklist.back().second;
908    if (ValID >= ValueList.size()) {
909      AliasInits.push_back(AliasInitWorklist.back());
910    } else {
911      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
912        AliasInitWorklist.back().first->setAliasee(C);
913      else
914        return Error("Alias initializer is not a constant!");
915    }
916    AliasInitWorklist.pop_back();
917  }
918  return false;
919}
920
921bool BitcodeReader::ParseConstants() {
922  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
923    return Error("Malformed block record");
924
925  SmallVector<uint64_t, 64> Record;
926
927  // Read all the records for this value table.
928  const Type *CurTy = Type::getInt32Ty(Context);
929  unsigned NextCstNo = ValueList.size();
930  while (1) {
931    unsigned Code = Stream.ReadCode();
932    if (Code == bitc::END_BLOCK)
933      break;
934
935    if (Code == bitc::ENTER_SUBBLOCK) {
936      // No known subblocks, always skip them.
937      Stream.ReadSubBlockID();
938      if (Stream.SkipBlock())
939        return Error("Malformed block record");
940      continue;
941    }
942
943    if (Code == bitc::DEFINE_ABBREV) {
944      Stream.ReadAbbrevRecord();
945      continue;
946    }
947
948    // Read a record.
949    Record.clear();
950    Value *V = 0;
951    unsigned BitCode = Stream.ReadRecord(Code, Record);
952    switch (BitCode) {
953    default:  // Default behavior: unknown constant
954    case bitc::CST_CODE_UNDEF:     // UNDEF
955      V = UndefValue::get(CurTy);
956      break;
957    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
958      if (Record.empty())
959        return Error("Malformed CST_SETTYPE record");
960      if (Record[0] >= TypeList.size())
961        return Error("Invalid Type ID in CST_SETTYPE record");
962      CurTy = TypeList[Record[0]];
963      continue;  // Skip the ValueList manipulation.
964    case bitc::CST_CODE_NULL:      // NULL
965      V = Constant::getNullValue(CurTy);
966      break;
967    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
968      if (!CurTy->isIntegerTy() || Record.empty())
969        return Error("Invalid CST_INTEGER record");
970      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
971      break;
972    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
973      if (!CurTy->isIntegerTy() || Record.empty())
974        return Error("Invalid WIDE_INTEGER record");
975
976      unsigned NumWords = Record.size();
977      SmallVector<uint64_t, 8> Words;
978      Words.resize(NumWords);
979      for (unsigned i = 0; i != NumWords; ++i)
980        Words[i] = DecodeSignRotatedValue(Record[i]);
981      V = ConstantInt::get(Context,
982                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
983                           NumWords, &Words[0]));
984      break;
985    }
986    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
987      if (Record.empty())
988        return Error("Invalid FLOAT record");
989      if (CurTy->isFloatTy())
990        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
991      else if (CurTy->isDoubleTy())
992        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
993      else if (CurTy->isX86_FP80Ty()) {
994        // Bits are not stored the same way as a normal i80 APInt, compensate.
995        uint64_t Rearrange[2];
996        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
997        Rearrange[1] = Record[0] >> 48;
998        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
999      } else if (CurTy->isFP128Ty())
1000        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1001      else if (CurTy->isPPC_FP128Ty())
1002        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1003      else
1004        V = UndefValue::get(CurTy);
1005      break;
1006    }
1007
1008    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1009      if (Record.empty())
1010        return Error("Invalid CST_AGGREGATE record");
1011
1012      unsigned Size = Record.size();
1013      std::vector<Constant*> Elts;
1014
1015      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1016        for (unsigned i = 0; i != Size; ++i)
1017          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1018                                                     STy->getElementType(i)));
1019        V = ConstantStruct::get(STy, Elts);
1020      } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
1021        uint64_t Index = Record[0];
1022        Constant *Val = ValueList.getConstantFwdRef(Record[1],
1023                                        UnTy->getElementType(Index));
1024        V = ConstantUnion::get(UnTy, Val);
1025      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1026        const Type *EltTy = ATy->getElementType();
1027        for (unsigned i = 0; i != Size; ++i)
1028          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1029        V = ConstantArray::get(ATy, Elts);
1030      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1031        const Type *EltTy = VTy->getElementType();
1032        for (unsigned i = 0; i != Size; ++i)
1033          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1034        V = ConstantVector::get(Elts);
1035      } else {
1036        V = UndefValue::get(CurTy);
1037      }
1038      break;
1039    }
1040    case bitc::CST_CODE_STRING: { // STRING: [values]
1041      if (Record.empty())
1042        return Error("Invalid CST_AGGREGATE record");
1043
1044      const ArrayType *ATy = cast<ArrayType>(CurTy);
1045      const Type *EltTy = ATy->getElementType();
1046
1047      unsigned Size = Record.size();
1048      std::vector<Constant*> Elts;
1049      for (unsigned i = 0; i != Size; ++i)
1050        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1051      V = ConstantArray::get(ATy, Elts);
1052      break;
1053    }
1054    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1055      if (Record.empty())
1056        return Error("Invalid CST_AGGREGATE record");
1057
1058      const ArrayType *ATy = cast<ArrayType>(CurTy);
1059      const Type *EltTy = ATy->getElementType();
1060
1061      unsigned Size = Record.size();
1062      std::vector<Constant*> Elts;
1063      for (unsigned i = 0; i != Size; ++i)
1064        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1065      Elts.push_back(Constant::getNullValue(EltTy));
1066      V = ConstantArray::get(ATy, Elts);
1067      break;
1068    }
1069    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1070      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1071      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1072      if (Opc < 0) {
1073        V = UndefValue::get(CurTy);  // Unknown binop.
1074      } else {
1075        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1076        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1077        unsigned Flags = 0;
1078        if (Record.size() >= 4) {
1079          if (Opc == Instruction::Add ||
1080              Opc == Instruction::Sub ||
1081              Opc == Instruction::Mul) {
1082            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1083              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1084            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1085              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1086          } else if (Opc == Instruction::SDiv) {
1087            if (Record[3] & (1 << bitc::SDIV_EXACT))
1088              Flags |= SDivOperator::IsExact;
1089          }
1090        }
1091        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1092      }
1093      break;
1094    }
1095    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1096      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1097      int Opc = GetDecodedCastOpcode(Record[0]);
1098      if (Opc < 0) {
1099        V = UndefValue::get(CurTy);  // Unknown cast.
1100      } else {
1101        const Type *OpTy = getTypeByID(Record[1]);
1102        if (!OpTy) return Error("Invalid CE_CAST record");
1103        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1104        V = ConstantExpr::getCast(Opc, Op, CurTy);
1105      }
1106      break;
1107    }
1108    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1109    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1110      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1111      SmallVector<Constant*, 16> Elts;
1112      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1113        const Type *ElTy = getTypeByID(Record[i]);
1114        if (!ElTy) return Error("Invalid CE_GEP record");
1115        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1116      }
1117      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1118        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1119                                                   Elts.size()-1);
1120      else
1121        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1122                                           Elts.size()-1);
1123      break;
1124    }
1125    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1126      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1127      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1128                                                              Type::getInt1Ty(Context)),
1129                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1130                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1131      break;
1132    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1133      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1134      const VectorType *OpTy =
1135        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1136      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1137      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1138      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1139      V = ConstantExpr::getExtractElement(Op0, Op1);
1140      break;
1141    }
1142    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1143      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1144      if (Record.size() < 3 || OpTy == 0)
1145        return Error("Invalid CE_INSERTELT record");
1146      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1147      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1148                                                  OpTy->getElementType());
1149      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1150      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1151      break;
1152    }
1153    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1154      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1155      if (Record.size() < 3 || OpTy == 0)
1156        return Error("Invalid CE_SHUFFLEVEC record");
1157      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1158      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1159      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1160                                                 OpTy->getNumElements());
1161      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1162      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1163      break;
1164    }
1165    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1166      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1167      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1168      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1169        return Error("Invalid CE_SHUFVEC_EX record");
1170      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1171      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1172      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1173                                                 RTy->getNumElements());
1174      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1175      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1176      break;
1177    }
1178    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1179      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1180      const Type *OpTy = getTypeByID(Record[0]);
1181      if (OpTy == 0) return Error("Invalid CE_CMP record");
1182      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1183      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1184
1185      if (OpTy->isFPOrFPVectorTy())
1186        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1187      else
1188        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1189      break;
1190    }
1191    case bitc::CST_CODE_INLINEASM: {
1192      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1193      std::string AsmStr, ConstrStr;
1194      bool HasSideEffects = Record[0] & 1;
1195      bool IsAlignStack = Record[0] >> 1;
1196      unsigned AsmStrSize = Record[1];
1197      if (2+AsmStrSize >= Record.size())
1198        return Error("Invalid INLINEASM record");
1199      unsigned ConstStrSize = Record[2+AsmStrSize];
1200      if (3+AsmStrSize+ConstStrSize > Record.size())
1201        return Error("Invalid INLINEASM record");
1202
1203      for (unsigned i = 0; i != AsmStrSize; ++i)
1204        AsmStr += (char)Record[2+i];
1205      for (unsigned i = 0; i != ConstStrSize; ++i)
1206        ConstrStr += (char)Record[3+AsmStrSize+i];
1207      const PointerType *PTy = cast<PointerType>(CurTy);
1208      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1209                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1210      break;
1211    }
1212    case bitc::CST_CODE_BLOCKADDRESS:{
1213      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1214      const Type *FnTy = getTypeByID(Record[0]);
1215      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1216      Function *Fn =
1217        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1218      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1219
1220      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1221                                                  Type::getInt8Ty(Context),
1222                                            false, GlobalValue::InternalLinkage,
1223                                                  0, "");
1224      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1225      V = FwdRef;
1226      break;
1227    }
1228    }
1229
1230    ValueList.AssignValue(V, NextCstNo);
1231    ++NextCstNo;
1232  }
1233
1234  if (NextCstNo != ValueList.size())
1235    return Error("Invalid constant reference!");
1236
1237  if (Stream.ReadBlockEnd())
1238    return Error("Error at end of constants block");
1239
1240  // Once all the constants have been read, go through and resolve forward
1241  // references.
1242  ValueList.ResolveConstantForwardRefs();
1243  return false;
1244}
1245
1246/// RememberAndSkipFunctionBody - When we see the block for a function body,
1247/// remember where it is and then skip it.  This lets us lazily deserialize the
1248/// functions.
1249bool BitcodeReader::RememberAndSkipFunctionBody() {
1250  // Get the function we are talking about.
1251  if (FunctionsWithBodies.empty())
1252    return Error("Insufficient function protos");
1253
1254  Function *Fn = FunctionsWithBodies.back();
1255  FunctionsWithBodies.pop_back();
1256
1257  // Save the current stream state.
1258  uint64_t CurBit = Stream.GetCurrentBitNo();
1259  DeferredFunctionInfo[Fn] = CurBit;
1260
1261  // Skip over the function block for now.
1262  if (Stream.SkipBlock())
1263    return Error("Malformed block record");
1264  return false;
1265}
1266
1267bool BitcodeReader::ParseModule() {
1268  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1269    return Error("Malformed block record");
1270
1271  SmallVector<uint64_t, 64> Record;
1272  std::vector<std::string> SectionTable;
1273  std::vector<std::string> GCTable;
1274
1275  // Read all the records for this module.
1276  while (!Stream.AtEndOfStream()) {
1277    unsigned Code = Stream.ReadCode();
1278    if (Code == bitc::END_BLOCK) {
1279      if (Stream.ReadBlockEnd())
1280        return Error("Error at end of module block");
1281
1282      // Patch the initializers for globals and aliases up.
1283      ResolveGlobalAndAliasInits();
1284      if (!GlobalInits.empty() || !AliasInits.empty())
1285        return Error("Malformed global initializer set");
1286      if (!FunctionsWithBodies.empty())
1287        return Error("Too few function bodies found");
1288
1289      // Look for intrinsic functions which need to be upgraded at some point
1290      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1291           FI != FE; ++FI) {
1292        Function* NewFn;
1293        if (UpgradeIntrinsicFunction(FI, NewFn))
1294          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1295      }
1296
1297      // Force deallocation of memory for these vectors to favor the client that
1298      // want lazy deserialization.
1299      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1300      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1301      std::vector<Function*>().swap(FunctionsWithBodies);
1302      return false;
1303    }
1304
1305    if (Code == bitc::ENTER_SUBBLOCK) {
1306      switch (Stream.ReadSubBlockID()) {
1307      default:  // Skip unknown content.
1308        if (Stream.SkipBlock())
1309          return Error("Malformed block record");
1310        break;
1311      case bitc::BLOCKINFO_BLOCK_ID:
1312        if (Stream.ReadBlockInfoBlock())
1313          return Error("Malformed BlockInfoBlock");
1314        break;
1315      case bitc::PARAMATTR_BLOCK_ID:
1316        if (ParseAttributeBlock())
1317          return true;
1318        break;
1319      case bitc::TYPE_BLOCK_ID:
1320        if (ParseTypeTable())
1321          return true;
1322        break;
1323      case bitc::TYPE_SYMTAB_BLOCK_ID:
1324        if (ParseTypeSymbolTable())
1325          return true;
1326        break;
1327      case bitc::VALUE_SYMTAB_BLOCK_ID:
1328        if (ParseValueSymbolTable())
1329          return true;
1330        break;
1331      case bitc::CONSTANTS_BLOCK_ID:
1332        if (ParseConstants() || ResolveGlobalAndAliasInits())
1333          return true;
1334        break;
1335      case bitc::METADATA_BLOCK_ID:
1336        if (ParseMetadata())
1337          return true;
1338        break;
1339      case bitc::FUNCTION_BLOCK_ID:
1340        // If this is the first function body we've seen, reverse the
1341        // FunctionsWithBodies list.
1342        if (!HasReversedFunctionsWithBodies) {
1343          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1344          HasReversedFunctionsWithBodies = true;
1345        }
1346
1347        if (RememberAndSkipFunctionBody())
1348          return true;
1349        break;
1350      }
1351      continue;
1352    }
1353
1354    if (Code == bitc::DEFINE_ABBREV) {
1355      Stream.ReadAbbrevRecord();
1356      continue;
1357    }
1358
1359    // Read a record.
1360    switch (Stream.ReadRecord(Code, Record)) {
1361    default: break;  // Default behavior, ignore unknown content.
1362    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1363      if (Record.size() < 1)
1364        return Error("Malformed MODULE_CODE_VERSION");
1365      // Only version #0 is supported so far.
1366      if (Record[0] != 0)
1367        return Error("Unknown bitstream version!");
1368      break;
1369    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1370      std::string S;
1371      if (ConvertToString(Record, 0, S))
1372        return Error("Invalid MODULE_CODE_TRIPLE record");
1373      TheModule->setTargetTriple(S);
1374      break;
1375    }
1376    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1377      std::string S;
1378      if (ConvertToString(Record, 0, S))
1379        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1380      TheModule->setDataLayout(S);
1381      break;
1382    }
1383    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1384      std::string S;
1385      if (ConvertToString(Record, 0, S))
1386        return Error("Invalid MODULE_CODE_ASM record");
1387      TheModule->setModuleInlineAsm(S);
1388      break;
1389    }
1390    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1391      std::string S;
1392      if (ConvertToString(Record, 0, S))
1393        return Error("Invalid MODULE_CODE_DEPLIB record");
1394      TheModule->addLibrary(S);
1395      break;
1396    }
1397    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1398      std::string S;
1399      if (ConvertToString(Record, 0, S))
1400        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1401      SectionTable.push_back(S);
1402      break;
1403    }
1404    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1405      std::string S;
1406      if (ConvertToString(Record, 0, S))
1407        return Error("Invalid MODULE_CODE_GCNAME record");
1408      GCTable.push_back(S);
1409      break;
1410    }
1411    // GLOBALVAR: [pointer type, isconst, initid,
1412    //             linkage, alignment, section, visibility, threadlocal]
1413    case bitc::MODULE_CODE_GLOBALVAR: {
1414      if (Record.size() < 6)
1415        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1416      const Type *Ty = getTypeByID(Record[0]);
1417      if (!Ty->isPointerTy())
1418        return Error("Global not a pointer type!");
1419      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1420      Ty = cast<PointerType>(Ty)->getElementType();
1421
1422      bool isConstant = Record[1];
1423      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1424      unsigned Alignment = (1 << Record[4]) >> 1;
1425      std::string Section;
1426      if (Record[5]) {
1427        if (Record[5]-1 >= SectionTable.size())
1428          return Error("Invalid section ID");
1429        Section = SectionTable[Record[5]-1];
1430      }
1431      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1432      if (Record.size() > 6)
1433        Visibility = GetDecodedVisibility(Record[6]);
1434      bool isThreadLocal = false;
1435      if (Record.size() > 7)
1436        isThreadLocal = Record[7];
1437
1438      GlobalVariable *NewGV =
1439        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1440                           isThreadLocal, AddressSpace);
1441      NewGV->setAlignment(Alignment);
1442      if (!Section.empty())
1443        NewGV->setSection(Section);
1444      NewGV->setVisibility(Visibility);
1445      NewGV->setThreadLocal(isThreadLocal);
1446
1447      ValueList.push_back(NewGV);
1448
1449      // Remember which value to use for the global initializer.
1450      if (unsigned InitID = Record[2])
1451        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1452      break;
1453    }
1454    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1455    //             alignment, section, visibility, gc]
1456    case bitc::MODULE_CODE_FUNCTION: {
1457      if (Record.size() < 8)
1458        return Error("Invalid MODULE_CODE_FUNCTION record");
1459      const Type *Ty = getTypeByID(Record[0]);
1460      if (!Ty->isPointerTy())
1461        return Error("Function not a pointer type!");
1462      const FunctionType *FTy =
1463        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1464      if (!FTy)
1465        return Error("Function not a pointer to function type!");
1466
1467      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1468                                        "", TheModule);
1469
1470      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1471      bool isProto = Record[2];
1472      Func->setLinkage(GetDecodedLinkage(Record[3]));
1473      Func->setAttributes(getAttributes(Record[4]));
1474
1475      Func->setAlignment((1 << Record[5]) >> 1);
1476      if (Record[6]) {
1477        if (Record[6]-1 >= SectionTable.size())
1478          return Error("Invalid section ID");
1479        Func->setSection(SectionTable[Record[6]-1]);
1480      }
1481      Func->setVisibility(GetDecodedVisibility(Record[7]));
1482      if (Record.size() > 8 && Record[8]) {
1483        if (Record[8]-1 > GCTable.size())
1484          return Error("Invalid GC ID");
1485        Func->setGC(GCTable[Record[8]-1].c_str());
1486      }
1487      ValueList.push_back(Func);
1488
1489      // If this is a function with a body, remember the prototype we are
1490      // creating now, so that we can match up the body with them later.
1491      if (!isProto)
1492        FunctionsWithBodies.push_back(Func);
1493      break;
1494    }
1495    // ALIAS: [alias type, aliasee val#, linkage]
1496    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1497    case bitc::MODULE_CODE_ALIAS: {
1498      if (Record.size() < 3)
1499        return Error("Invalid MODULE_ALIAS record");
1500      const Type *Ty = getTypeByID(Record[0]);
1501      if (!Ty->isPointerTy())
1502        return Error("Function not a pointer type!");
1503
1504      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1505                                           "", 0, TheModule);
1506      // Old bitcode files didn't have visibility field.
1507      if (Record.size() > 3)
1508        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1509      ValueList.push_back(NewGA);
1510      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1511      break;
1512    }
1513    /// MODULE_CODE_PURGEVALS: [numvals]
1514    case bitc::MODULE_CODE_PURGEVALS:
1515      // Trim down the value list to the specified size.
1516      if (Record.size() < 1 || Record[0] > ValueList.size())
1517        return Error("Invalid MODULE_PURGEVALS record");
1518      ValueList.shrinkTo(Record[0]);
1519      break;
1520    }
1521    Record.clear();
1522  }
1523
1524  return Error("Premature end of bitstream");
1525}
1526
1527bool BitcodeReader::ParseBitcodeInto(Module *M) {
1528  TheModule = 0;
1529
1530  if (Buffer->getBufferSize() & 3)
1531    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1532
1533  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1534  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1535
1536  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1537  // The magic number is 0x0B17C0DE stored in little endian.
1538  if (isBitcodeWrapper(BufPtr, BufEnd))
1539    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1540      return Error("Invalid bitcode wrapper header");
1541
1542  StreamFile.init(BufPtr, BufEnd);
1543  Stream.init(StreamFile);
1544
1545  // Sniff for the signature.
1546  if (Stream.Read(8) != 'B' ||
1547      Stream.Read(8) != 'C' ||
1548      Stream.Read(4) != 0x0 ||
1549      Stream.Read(4) != 0xC ||
1550      Stream.Read(4) != 0xE ||
1551      Stream.Read(4) != 0xD)
1552    return Error("Invalid bitcode signature");
1553
1554  // We expect a number of well-defined blocks, though we don't necessarily
1555  // need to understand them all.
1556  while (!Stream.AtEndOfStream()) {
1557    unsigned Code = Stream.ReadCode();
1558
1559    if (Code != bitc::ENTER_SUBBLOCK)
1560      return Error("Invalid record at top-level");
1561
1562    unsigned BlockID = Stream.ReadSubBlockID();
1563
1564    // We only know the MODULE subblock ID.
1565    switch (BlockID) {
1566    case bitc::BLOCKINFO_BLOCK_ID:
1567      if (Stream.ReadBlockInfoBlock())
1568        return Error("Malformed BlockInfoBlock");
1569      break;
1570    case bitc::MODULE_BLOCK_ID:
1571      // Reject multiple MODULE_BLOCK's in a single bitstream.
1572      if (TheModule)
1573        return Error("Multiple MODULE_BLOCKs in same stream");
1574      TheModule = M;
1575      if (ParseModule())
1576        return true;
1577      break;
1578    default:
1579      if (Stream.SkipBlock())
1580        return Error("Malformed block record");
1581      break;
1582    }
1583  }
1584
1585  return false;
1586}
1587
1588/// ParseMetadataAttachment - Parse metadata attachments.
1589bool BitcodeReader::ParseMetadataAttachment() {
1590  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1591    return Error("Malformed block record");
1592
1593  SmallVector<uint64_t, 64> Record;
1594  while(1) {
1595    unsigned Code = Stream.ReadCode();
1596    if (Code == bitc::END_BLOCK) {
1597      if (Stream.ReadBlockEnd())
1598        return Error("Error at end of PARAMATTR block");
1599      break;
1600    }
1601    if (Code == bitc::DEFINE_ABBREV) {
1602      Stream.ReadAbbrevRecord();
1603      continue;
1604    }
1605    // Read a metadata attachment record.
1606    Record.clear();
1607    switch (Stream.ReadRecord(Code, Record)) {
1608    default:  // Default behavior: ignore.
1609      break;
1610    case bitc::METADATA_ATTACHMENT: {
1611      unsigned RecordLength = Record.size();
1612      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1613        return Error ("Invalid METADATA_ATTACHMENT reader!");
1614      Instruction *Inst = InstructionList[Record[0]];
1615      for (unsigned i = 1; i != RecordLength; i = i+2) {
1616        unsigned Kind = Record[i];
1617        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1618        Inst->setMetadata(Kind, cast<MDNode>(Node));
1619      }
1620      break;
1621    }
1622    }
1623  }
1624  return false;
1625}
1626
1627/// ParseFunctionBody - Lazily parse the specified function body block.
1628bool BitcodeReader::ParseFunctionBody(Function *F) {
1629  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1630    return Error("Malformed block record");
1631
1632  InstructionList.clear();
1633  unsigned ModuleValueListSize = ValueList.size();
1634
1635  // Add all the function arguments to the value table.
1636  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1637    ValueList.push_back(I);
1638
1639  unsigned NextValueNo = ValueList.size();
1640  BasicBlock *CurBB = 0;
1641  unsigned CurBBNo = 0;
1642
1643  // Read all the records.
1644  SmallVector<uint64_t, 64> Record;
1645  while (1) {
1646    unsigned Code = Stream.ReadCode();
1647    if (Code == bitc::END_BLOCK) {
1648      if (Stream.ReadBlockEnd())
1649        return Error("Error at end of function block");
1650      break;
1651    }
1652
1653    if (Code == bitc::ENTER_SUBBLOCK) {
1654      switch (Stream.ReadSubBlockID()) {
1655      default:  // Skip unknown content.
1656        if (Stream.SkipBlock())
1657          return Error("Malformed block record");
1658        break;
1659      case bitc::CONSTANTS_BLOCK_ID:
1660        if (ParseConstants()) return true;
1661        NextValueNo = ValueList.size();
1662        break;
1663      case bitc::VALUE_SYMTAB_BLOCK_ID:
1664        if (ParseValueSymbolTable()) return true;
1665        break;
1666      case bitc::METADATA_ATTACHMENT_ID:
1667        if (ParseMetadataAttachment()) return true;
1668        break;
1669      case bitc::METADATA_BLOCK_ID:
1670        if (ParseMetadata()) return true;
1671        break;
1672      }
1673      continue;
1674    }
1675
1676    if (Code == bitc::DEFINE_ABBREV) {
1677      Stream.ReadAbbrevRecord();
1678      continue;
1679    }
1680
1681    // Read a record.
1682    Record.clear();
1683    Instruction *I = 0;
1684    unsigned BitCode = Stream.ReadRecord(Code, Record);
1685    switch (BitCode) {
1686    default: // Default behavior: reject
1687      return Error("Unknown instruction");
1688    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1689      if (Record.size() < 1 || Record[0] == 0)
1690        return Error("Invalid DECLAREBLOCKS record");
1691      // Create all the basic blocks for the function.
1692      FunctionBBs.resize(Record[0]);
1693      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1694        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1695      CurBB = FunctionBBs[0];
1696      continue;
1697
1698    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1699      unsigned OpNum = 0;
1700      Value *LHS, *RHS;
1701      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1702          getValue(Record, OpNum, LHS->getType(), RHS) ||
1703          OpNum+1 > Record.size())
1704        return Error("Invalid BINOP record");
1705
1706      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1707      if (Opc == -1) return Error("Invalid BINOP record");
1708      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1709      InstructionList.push_back(I);
1710      if (OpNum < Record.size()) {
1711        if (Opc == Instruction::Add ||
1712            Opc == Instruction::Sub ||
1713            Opc == Instruction::Mul) {
1714          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1715            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1716          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1717            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1718        } else if (Opc == Instruction::SDiv) {
1719          if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1720            cast<BinaryOperator>(I)->setIsExact(true);
1721        }
1722      }
1723      break;
1724    }
1725    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1726      unsigned OpNum = 0;
1727      Value *Op;
1728      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1729          OpNum+2 != Record.size())
1730        return Error("Invalid CAST record");
1731
1732      const Type *ResTy = getTypeByID(Record[OpNum]);
1733      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1734      if (Opc == -1 || ResTy == 0)
1735        return Error("Invalid CAST record");
1736      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1737      InstructionList.push_back(I);
1738      break;
1739    }
1740    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1741    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1742      unsigned OpNum = 0;
1743      Value *BasePtr;
1744      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1745        return Error("Invalid GEP record");
1746
1747      SmallVector<Value*, 16> GEPIdx;
1748      while (OpNum != Record.size()) {
1749        Value *Op;
1750        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1751          return Error("Invalid GEP record");
1752        GEPIdx.push_back(Op);
1753      }
1754
1755      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1756      InstructionList.push_back(I);
1757      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1758        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1759      break;
1760    }
1761
1762    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1763                                       // EXTRACTVAL: [opty, opval, n x indices]
1764      unsigned OpNum = 0;
1765      Value *Agg;
1766      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1767        return Error("Invalid EXTRACTVAL record");
1768
1769      SmallVector<unsigned, 4> EXTRACTVALIdx;
1770      for (unsigned RecSize = Record.size();
1771           OpNum != RecSize; ++OpNum) {
1772        uint64_t Index = Record[OpNum];
1773        if ((unsigned)Index != Index)
1774          return Error("Invalid EXTRACTVAL index");
1775        EXTRACTVALIdx.push_back((unsigned)Index);
1776      }
1777
1778      I = ExtractValueInst::Create(Agg,
1779                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1780      InstructionList.push_back(I);
1781      break;
1782    }
1783
1784    case bitc::FUNC_CODE_INST_INSERTVAL: {
1785                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1786      unsigned OpNum = 0;
1787      Value *Agg;
1788      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1789        return Error("Invalid INSERTVAL record");
1790      Value *Val;
1791      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1792        return Error("Invalid INSERTVAL record");
1793
1794      SmallVector<unsigned, 4> INSERTVALIdx;
1795      for (unsigned RecSize = Record.size();
1796           OpNum != RecSize; ++OpNum) {
1797        uint64_t Index = Record[OpNum];
1798        if ((unsigned)Index != Index)
1799          return Error("Invalid INSERTVAL index");
1800        INSERTVALIdx.push_back((unsigned)Index);
1801      }
1802
1803      I = InsertValueInst::Create(Agg, Val,
1804                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1805      InstructionList.push_back(I);
1806      break;
1807    }
1808
1809    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1810      // obsolete form of select
1811      // handles select i1 ... in old bitcode
1812      unsigned OpNum = 0;
1813      Value *TrueVal, *FalseVal, *Cond;
1814      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1815          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1816          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1817        return Error("Invalid SELECT record");
1818
1819      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1820      InstructionList.push_back(I);
1821      break;
1822    }
1823
1824    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1825      // new form of select
1826      // handles select i1 or select [N x i1]
1827      unsigned OpNum = 0;
1828      Value *TrueVal, *FalseVal, *Cond;
1829      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1830          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1831          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1832        return Error("Invalid SELECT record");
1833
1834      // select condition can be either i1 or [N x i1]
1835      if (const VectorType* vector_type =
1836          dyn_cast<const VectorType>(Cond->getType())) {
1837        // expect <n x i1>
1838        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1839          return Error("Invalid SELECT condition type");
1840      } else {
1841        // expect i1
1842        if (Cond->getType() != Type::getInt1Ty(Context))
1843          return Error("Invalid SELECT condition type");
1844      }
1845
1846      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1847      InstructionList.push_back(I);
1848      break;
1849    }
1850
1851    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1852      unsigned OpNum = 0;
1853      Value *Vec, *Idx;
1854      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1855          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1856        return Error("Invalid EXTRACTELT record");
1857      I = ExtractElementInst::Create(Vec, Idx);
1858      InstructionList.push_back(I);
1859      break;
1860    }
1861
1862    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1863      unsigned OpNum = 0;
1864      Value *Vec, *Elt, *Idx;
1865      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1866          getValue(Record, OpNum,
1867                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1868          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1869        return Error("Invalid INSERTELT record");
1870      I = InsertElementInst::Create(Vec, Elt, Idx);
1871      InstructionList.push_back(I);
1872      break;
1873    }
1874
1875    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1876      unsigned OpNum = 0;
1877      Value *Vec1, *Vec2, *Mask;
1878      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1879          getValue(Record, OpNum, Vec1->getType(), Vec2))
1880        return Error("Invalid SHUFFLEVEC record");
1881
1882      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1883        return Error("Invalid SHUFFLEVEC record");
1884      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1885      InstructionList.push_back(I);
1886      break;
1887    }
1888
1889    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1890      // Old form of ICmp/FCmp returning bool
1891      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1892      // both legal on vectors but had different behaviour.
1893    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1894      // FCmp/ICmp returning bool or vector of bool
1895
1896      unsigned OpNum = 0;
1897      Value *LHS, *RHS;
1898      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1899          getValue(Record, OpNum, LHS->getType(), RHS) ||
1900          OpNum+1 != Record.size())
1901        return Error("Invalid CMP record");
1902
1903      if (LHS->getType()->isFPOrFPVectorTy())
1904        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1905      else
1906        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1907      InstructionList.push_back(I);
1908      break;
1909    }
1910
1911    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1912      if (Record.size() != 2)
1913        return Error("Invalid GETRESULT record");
1914      unsigned OpNum = 0;
1915      Value *Op;
1916      getValueTypePair(Record, OpNum, NextValueNo, Op);
1917      unsigned Index = Record[1];
1918      I = ExtractValueInst::Create(Op, Index);
1919      InstructionList.push_back(I);
1920      break;
1921    }
1922
1923    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1924      {
1925        unsigned Size = Record.size();
1926        if (Size == 0) {
1927          I = ReturnInst::Create(Context);
1928          InstructionList.push_back(I);
1929          break;
1930        }
1931
1932        unsigned OpNum = 0;
1933        SmallVector<Value *,4> Vs;
1934        do {
1935          Value *Op = NULL;
1936          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1937            return Error("Invalid RET record");
1938          Vs.push_back(Op);
1939        } while(OpNum != Record.size());
1940
1941        const Type *ReturnType = F->getReturnType();
1942        if (Vs.size() > 1 ||
1943            (ReturnType->isStructTy() &&
1944             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1945          Value *RV = UndefValue::get(ReturnType);
1946          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1947            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1948            InstructionList.push_back(I);
1949            CurBB->getInstList().push_back(I);
1950            ValueList.AssignValue(I, NextValueNo++);
1951            RV = I;
1952          }
1953          I = ReturnInst::Create(Context, RV);
1954          InstructionList.push_back(I);
1955          break;
1956        }
1957
1958        I = ReturnInst::Create(Context, Vs[0]);
1959        InstructionList.push_back(I);
1960        break;
1961      }
1962    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1963      if (Record.size() != 1 && Record.size() != 3)
1964        return Error("Invalid BR record");
1965      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1966      if (TrueDest == 0)
1967        return Error("Invalid BR record");
1968
1969      if (Record.size() == 1) {
1970        I = BranchInst::Create(TrueDest);
1971        InstructionList.push_back(I);
1972      }
1973      else {
1974        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1975        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1976        if (FalseDest == 0 || Cond == 0)
1977          return Error("Invalid BR record");
1978        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1979        InstructionList.push_back(I);
1980      }
1981      break;
1982    }
1983    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1984      if (Record.size() < 3 || (Record.size() & 1) == 0)
1985        return Error("Invalid SWITCH record");
1986      const Type *OpTy = getTypeByID(Record[0]);
1987      Value *Cond = getFnValueByID(Record[1], OpTy);
1988      BasicBlock *Default = getBasicBlock(Record[2]);
1989      if (OpTy == 0 || Cond == 0 || Default == 0)
1990        return Error("Invalid SWITCH record");
1991      unsigned NumCases = (Record.size()-3)/2;
1992      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1993      InstructionList.push_back(SI);
1994      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1995        ConstantInt *CaseVal =
1996          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1997        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1998        if (CaseVal == 0 || DestBB == 0) {
1999          delete SI;
2000          return Error("Invalid SWITCH record!");
2001        }
2002        SI->addCase(CaseVal, DestBB);
2003      }
2004      I = SI;
2005      break;
2006    }
2007    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2008      if (Record.size() < 2)
2009        return Error("Invalid INDIRECTBR record");
2010      const Type *OpTy = getTypeByID(Record[0]);
2011      Value *Address = getFnValueByID(Record[1], OpTy);
2012      if (OpTy == 0 || Address == 0)
2013        return Error("Invalid INDIRECTBR record");
2014      unsigned NumDests = Record.size()-2;
2015      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2016      InstructionList.push_back(IBI);
2017      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2018        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2019          IBI->addDestination(DestBB);
2020        } else {
2021          delete IBI;
2022          return Error("Invalid INDIRECTBR record!");
2023        }
2024      }
2025      I = IBI;
2026      break;
2027    }
2028
2029    case bitc::FUNC_CODE_INST_INVOKE: {
2030      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2031      if (Record.size() < 4) return Error("Invalid INVOKE record");
2032      AttrListPtr PAL = getAttributes(Record[0]);
2033      unsigned CCInfo = Record[1];
2034      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2035      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2036
2037      unsigned OpNum = 4;
2038      Value *Callee;
2039      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2040        return Error("Invalid INVOKE record");
2041
2042      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2043      const FunctionType *FTy = !CalleeTy ? 0 :
2044        dyn_cast<FunctionType>(CalleeTy->getElementType());
2045
2046      // Check that the right number of fixed parameters are here.
2047      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2048          Record.size() < OpNum+FTy->getNumParams())
2049        return Error("Invalid INVOKE record");
2050
2051      SmallVector<Value*, 16> Ops;
2052      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2053        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2054        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2055      }
2056
2057      if (!FTy->isVarArg()) {
2058        if (Record.size() != OpNum)
2059          return Error("Invalid INVOKE record");
2060      } else {
2061        // Read type/value pairs for varargs params.
2062        while (OpNum != Record.size()) {
2063          Value *Op;
2064          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2065            return Error("Invalid INVOKE record");
2066          Ops.push_back(Op);
2067        }
2068      }
2069
2070      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2071                             Ops.begin(), Ops.end());
2072      InstructionList.push_back(I);
2073      cast<InvokeInst>(I)->setCallingConv(
2074        static_cast<CallingConv::ID>(CCInfo));
2075      cast<InvokeInst>(I)->setAttributes(PAL);
2076      break;
2077    }
2078    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2079      I = new UnwindInst(Context);
2080      InstructionList.push_back(I);
2081      break;
2082    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2083      I = new UnreachableInst(Context);
2084      InstructionList.push_back(I);
2085      break;
2086    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2087      if (Record.size() < 1 || ((Record.size()-1)&1))
2088        return Error("Invalid PHI record");
2089      const Type *Ty = getTypeByID(Record[0]);
2090      if (!Ty) return Error("Invalid PHI record");
2091
2092      PHINode *PN = PHINode::Create(Ty);
2093      InstructionList.push_back(PN);
2094      PN->reserveOperandSpace((Record.size()-1)/2);
2095
2096      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2097        Value *V = getFnValueByID(Record[1+i], Ty);
2098        BasicBlock *BB = getBasicBlock(Record[2+i]);
2099        if (!V || !BB) return Error("Invalid PHI record");
2100        PN->addIncoming(V, BB);
2101      }
2102      I = PN;
2103      break;
2104    }
2105
2106    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2107      // Autoupgrade malloc instruction to malloc call.
2108      // FIXME: Remove in LLVM 3.0.
2109      if (Record.size() < 3)
2110        return Error("Invalid MALLOC record");
2111      const PointerType *Ty =
2112        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2113      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2114      if (!Ty || !Size) return Error("Invalid MALLOC record");
2115      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2116      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2117      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2118      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2119      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2120                                 AllocSize, Size, NULL);
2121      InstructionList.push_back(I);
2122      break;
2123    }
2124    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2125      unsigned OpNum = 0;
2126      Value *Op;
2127      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2128          OpNum != Record.size())
2129        return Error("Invalid FREE record");
2130      if (!CurBB) return Error("Invalid free instruction with no BB");
2131      I = CallInst::CreateFree(Op, CurBB);
2132      InstructionList.push_back(I);
2133      break;
2134    }
2135    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2136      if (Record.size() < 3)
2137        return Error("Invalid ALLOCA record");
2138      const PointerType *Ty =
2139        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2140      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2141      unsigned Align = Record[2];
2142      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2143      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2144      InstructionList.push_back(I);
2145      break;
2146    }
2147    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2148      unsigned OpNum = 0;
2149      Value *Op;
2150      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2151          OpNum+2 != Record.size())
2152        return Error("Invalid LOAD record");
2153
2154      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2155      InstructionList.push_back(I);
2156      break;
2157    }
2158    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2159      unsigned OpNum = 0;
2160      Value *Val, *Ptr;
2161      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2162          getValue(Record, OpNum,
2163                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2164          OpNum+2 != Record.size())
2165        return Error("Invalid STORE record");
2166
2167      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2168      InstructionList.push_back(I);
2169      break;
2170    }
2171    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2172      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2173      unsigned OpNum = 0;
2174      Value *Val, *Ptr;
2175      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2176          getValue(Record, OpNum,
2177                   PointerType::getUnqual(Val->getType()), Ptr)||
2178          OpNum+2 != Record.size())
2179        return Error("Invalid STORE record");
2180
2181      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2182      InstructionList.push_back(I);
2183      break;
2184    }
2185    case bitc::FUNC_CODE_INST_CALL: {
2186      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2187      if (Record.size() < 3)
2188        return Error("Invalid CALL record");
2189
2190      AttrListPtr PAL = getAttributes(Record[0]);
2191      unsigned CCInfo = Record[1];
2192
2193      unsigned OpNum = 2;
2194      Value *Callee;
2195      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2196        return Error("Invalid CALL record");
2197
2198      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2199      const FunctionType *FTy = 0;
2200      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2201      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2202        return Error("Invalid CALL record");
2203
2204      SmallVector<Value*, 16> Args;
2205      // Read the fixed params.
2206      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2207        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2208          Args.push_back(getBasicBlock(Record[OpNum]));
2209        else
2210          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2211        if (Args.back() == 0) return Error("Invalid CALL record");
2212      }
2213
2214      // Read type/value pairs for varargs params.
2215      if (!FTy->isVarArg()) {
2216        if (OpNum != Record.size())
2217          return Error("Invalid CALL record");
2218      } else {
2219        while (OpNum != Record.size()) {
2220          Value *Op;
2221          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2222            return Error("Invalid CALL record");
2223          Args.push_back(Op);
2224        }
2225      }
2226
2227      I = CallInst::Create(Callee, Args.begin(), Args.end());
2228      InstructionList.push_back(I);
2229      cast<CallInst>(I)->setCallingConv(
2230        static_cast<CallingConv::ID>(CCInfo>>1));
2231      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2232      cast<CallInst>(I)->setAttributes(PAL);
2233      break;
2234    }
2235    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2236      if (Record.size() < 3)
2237        return Error("Invalid VAARG record");
2238      const Type *OpTy = getTypeByID(Record[0]);
2239      Value *Op = getFnValueByID(Record[1], OpTy);
2240      const Type *ResTy = getTypeByID(Record[2]);
2241      if (!OpTy || !Op || !ResTy)
2242        return Error("Invalid VAARG record");
2243      I = new VAArgInst(Op, ResTy);
2244      InstructionList.push_back(I);
2245      break;
2246    }
2247    }
2248
2249    // Add instruction to end of current BB.  If there is no current BB, reject
2250    // this file.
2251    if (CurBB == 0) {
2252      delete I;
2253      return Error("Invalid instruction with no BB");
2254    }
2255    CurBB->getInstList().push_back(I);
2256
2257    // If this was a terminator instruction, move to the next block.
2258    if (isa<TerminatorInst>(I)) {
2259      ++CurBBNo;
2260      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2261    }
2262
2263    // Non-void values get registered in the value table for future use.
2264    if (I && !I->getType()->isVoidTy())
2265      ValueList.AssignValue(I, NextValueNo++);
2266  }
2267
2268  // Check the function list for unresolved values.
2269  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2270    if (A->getParent() == 0) {
2271      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2272      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2273        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2274          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2275          delete A;
2276        }
2277      }
2278      return Error("Never resolved value found in function!");
2279    }
2280  }
2281
2282  // See if anything took the address of blocks in this function.  If so,
2283  // resolve them now.
2284  /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2285  /// are resolved lazily when functions are loaded.
2286  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2287    BlockAddrFwdRefs.find(F);
2288  if (BAFRI != BlockAddrFwdRefs.end()) {
2289    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2290    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2291      unsigned BlockIdx = RefList[i].first;
2292      if (BlockIdx >= FunctionBBs.size())
2293        return Error("Invalid blockaddress block #");
2294
2295      GlobalVariable *FwdRef = RefList[i].second;
2296      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2297      FwdRef->eraseFromParent();
2298    }
2299
2300    BlockAddrFwdRefs.erase(BAFRI);
2301  }
2302
2303  // Trim the value list down to the size it was before we parsed this function.
2304  ValueList.shrinkTo(ModuleValueListSize);
2305  std::vector<BasicBlock*>().swap(FunctionBBs);
2306
2307  return false;
2308}
2309
2310//===----------------------------------------------------------------------===//
2311// GVMaterializer implementation
2312//===----------------------------------------------------------------------===//
2313
2314
2315bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2316  if (const Function *F = dyn_cast<Function>(GV)) {
2317    return F->isDeclaration() &&
2318      DeferredFunctionInfo.count(const_cast<Function*>(F));
2319  }
2320  return false;
2321}
2322
2323bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2324  Function *F = dyn_cast<Function>(GV);
2325  // If it's not a function or is already material, ignore the request.
2326  if (!F || !F->isMaterializable()) return false;
2327
2328  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2329  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2330
2331  // Move the bit stream to the saved position of the deferred function body.
2332  Stream.JumpToBit(DFII->second);
2333
2334  if (ParseFunctionBody(F)) {
2335    if (ErrInfo) *ErrInfo = ErrorString;
2336    return true;
2337  }
2338
2339  // Upgrade any old intrinsic calls in the function.
2340  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2341       E = UpgradedIntrinsics.end(); I != E; ++I) {
2342    if (I->first != I->second) {
2343      for (Value::use_iterator UI = I->first->use_begin(),
2344           UE = I->first->use_end(); UI != UE; ) {
2345        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2346          UpgradeIntrinsicCall(CI, I->second);
2347      }
2348    }
2349  }
2350
2351  return false;
2352}
2353
2354bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2355  const Function *F = dyn_cast<Function>(GV);
2356  if (!F || F->isDeclaration())
2357    return false;
2358  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2359}
2360
2361void BitcodeReader::Dematerialize(GlobalValue *GV) {
2362  Function *F = dyn_cast<Function>(GV);
2363  // If this function isn't dematerializable, this is a noop.
2364  if (!F || !isDematerializable(F))
2365    return;
2366
2367  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2368
2369  // Just forget the function body, we can remat it later.
2370  F->deleteBody();
2371}
2372
2373
2374bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2375  assert(M == TheModule &&
2376         "Can only Materialize the Module this BitcodeReader is attached to.");
2377  // Iterate over the module, deserializing any functions that are still on
2378  // disk.
2379  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2380       F != E; ++F)
2381    if (F->isMaterializable() &&
2382        Materialize(F, ErrInfo))
2383      return true;
2384
2385  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2386  // delete the old functions to clean up. We can't do this unless the entire
2387  // module is materialized because there could always be another function body
2388  // with calls to the old function.
2389  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2390       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2391    if (I->first != I->second) {
2392      for (Value::use_iterator UI = I->first->use_begin(),
2393           UE = I->first->use_end(); UI != UE; ) {
2394        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2395          UpgradeIntrinsicCall(CI, I->second);
2396      }
2397      if (!I->first->use_empty())
2398        I->first->replaceAllUsesWith(I->second);
2399      I->first->eraseFromParent();
2400    }
2401  }
2402  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2403
2404  // Check debug info intrinsics.
2405  CheckDebugInfoIntrinsics(TheModule);
2406
2407  return false;
2408}
2409
2410
2411//===----------------------------------------------------------------------===//
2412// External interface
2413//===----------------------------------------------------------------------===//
2414
2415/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2416///
2417Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2418                                   LLVMContext& Context,
2419                                   std::string *ErrMsg) {
2420  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2421  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2422  M->setMaterializer(R);
2423  if (R->ParseBitcodeInto(M)) {
2424    if (ErrMsg)
2425      *ErrMsg = R->getErrorString();
2426
2427    delete M;  // Also deletes R.
2428    return 0;
2429  }
2430  // Have the BitcodeReader dtor delete 'Buffer'.
2431  R->setBufferOwned(true);
2432  return M;
2433}
2434
2435/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2436/// If an error occurs, return null and fill in *ErrMsg if non-null.
2437Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2438                               std::string *ErrMsg){
2439  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2440  if (!M) return 0;
2441
2442  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2443  // there was an error.
2444  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2445
2446  // Read in the entire module, and destroy the BitcodeReader.
2447  if (M->MaterializeAllPermanently(ErrMsg)) {
2448    delete M;
2449    return NULL;
2450  }
2451  return M;
2452}
2453