BitcodeReader.cpp revision 96a74c57d9e8fe0595ba8308eec1276cf8bcf6b0
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> :
166  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    const Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                        NewOps.size());
297      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                         UserCS->getType()->isPacked());
300      } else if (isa<ConstantVector>(UserC)) {
301        NewC = ConstantVector::get(NewOps);
302      } else {
303        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
305      }
306
307      UserC->replaceAllUsesWith(NewC);
308      UserC->destroyConstant();
309      NewOps.clear();
310    }
311
312    // Update all ValueHandles, they should be the only users at this point.
313    Placeholder->replaceAllUsesWith(RealVal);
314    delete Placeholder;
315  }
316}
317
318void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319  if (Idx == size()) {
320    push_back(V);
321    return;
322  }
323
324  if (Idx >= size())
325    resize(Idx+1);
326
327  WeakVH &OldV = MDValuePtrs[Idx];
328  if (OldV == 0) {
329    OldV = V;
330    return;
331  }
332
333  // If there was a forward reference to this value, replace it.
334  MDNode *PrevVal = cast<MDNode>(OldV);
335  OldV->replaceAllUsesWith(V);
336  MDNode::deleteTemporary(PrevVal);
337  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338  // value for Idx.
339  MDValuePtrs[Idx] = V;
340}
341
342Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343  if (Idx >= size())
344    resize(Idx + 1);
345
346  if (Value *V = MDValuePtrs[Idx]) {
347    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348    return V;
349  }
350
351  // Create and return a placeholder, which will later be RAUW'd.
352  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
353  MDValuePtrs[Idx] = V;
354  return V;
355}
356
357const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358  // If the TypeID is in range, return it.
359  if (ID < TypeList.size())
360    return TypeList[ID].get();
361  if (!isTypeTable) return 0;
362
363  // The type table allows forward references.  Push as many Opaque types as
364  // needed to get up to ID.
365  while (TypeList.size() <= ID)
366    TypeList.push_back(OpaqueType::get(Context));
367  return TypeList.back().get();
368}
369
370//===----------------------------------------------------------------------===//
371//  Functions for parsing blocks from the bitcode file
372//===----------------------------------------------------------------------===//
373
374bool BitcodeReader::ParseAttributeBlock() {
375  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376    return Error("Malformed block record");
377
378  if (!MAttributes.empty())
379    return Error("Multiple PARAMATTR blocks found!");
380
381  SmallVector<uint64_t, 64> Record;
382
383  SmallVector<AttributeWithIndex, 8> Attrs;
384
385  // Read all the records.
386  while (1) {
387    unsigned Code = Stream.ReadCode();
388    if (Code == bitc::END_BLOCK) {
389      if (Stream.ReadBlockEnd())
390        return Error("Error at end of PARAMATTR block");
391      return false;
392    }
393
394    if (Code == bitc::ENTER_SUBBLOCK) {
395      // No known subblocks, always skip them.
396      Stream.ReadSubBlockID();
397      if (Stream.SkipBlock())
398        return Error("Malformed block record");
399      continue;
400    }
401
402    if (Code == bitc::DEFINE_ABBREV) {
403      Stream.ReadAbbrevRecord();
404      continue;
405    }
406
407    // Read a record.
408    Record.clear();
409    switch (Stream.ReadRecord(Code, Record)) {
410    default:  // Default behavior: ignore.
411      break;
412    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413      if (Record.size() & 1)
414        return Error("Invalid ENTRY record");
415
416      // FIXME : Remove this autoupgrade code in LLVM 3.0.
417      // If Function attributes are using index 0 then transfer them
418      // to index ~0. Index 0 is used for return value attributes but used to be
419      // used for function attributes.
420      Attributes RetAttribute = Attribute::None;
421      Attributes FnAttribute = Attribute::None;
422      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423        // FIXME: remove in LLVM 3.0
424        // The alignment is stored as a 16-bit raw value from bits 31--16.
425        // We shift the bits above 31 down by 11 bits.
426
427        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428        if (Alignment && !isPowerOf2_32(Alignment))
429          return Error("Alignment is not a power of two.");
430
431        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432        if (Alignment)
433          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435        Record[i+1] = ReconstitutedAttr;
436
437        if (Record[i] == 0)
438          RetAttribute = Record[i+1];
439        else if (Record[i] == ~0U)
440          FnAttribute = Record[i+1];
441      }
442
443      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                              Attribute::ReadOnly|Attribute::ReadNone);
445
446      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447          (RetAttribute & OldRetAttrs) != 0) {
448        if (FnAttribute == Attribute::None) { // add a slot so they get added.
449          Record.push_back(~0U);
450          Record.push_back(0);
451        }
452
453        FnAttribute  |= RetAttribute & OldRetAttrs;
454        RetAttribute &= ~OldRetAttrs;
455      }
456
457      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458        if (Record[i] == 0) {
459          if (RetAttribute != Attribute::None)
460            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461        } else if (Record[i] == ~0U) {
462          if (FnAttribute != Attribute::None)
463            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464        } else if (Record[i+1] != Attribute::None)
465          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466      }
467
468      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469      Attrs.clear();
470      break;
471    }
472    }
473  }
474}
475
476
477bool BitcodeReader::ParseTypeTable() {
478  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479    return Error("Malformed block record");
480
481  if (!TypeList.empty())
482    return Error("Multiple TYPE_BLOCKs found!");
483
484  SmallVector<uint64_t, 64> Record;
485  unsigned NumRecords = 0;
486
487  // Read all the records for this type table.
488  while (1) {
489    unsigned Code = Stream.ReadCode();
490    if (Code == bitc::END_BLOCK) {
491      if (NumRecords != TypeList.size())
492        return Error("Invalid type forward reference in TYPE_BLOCK");
493      if (Stream.ReadBlockEnd())
494        return Error("Error at end of type table block");
495      return false;
496    }
497
498    if (Code == bitc::ENTER_SUBBLOCK) {
499      // No known subblocks, always skip them.
500      Stream.ReadSubBlockID();
501      if (Stream.SkipBlock())
502        return Error("Malformed block record");
503      continue;
504    }
505
506    if (Code == bitc::DEFINE_ABBREV) {
507      Stream.ReadAbbrevRecord();
508      continue;
509    }
510
511    // Read a record.
512    Record.clear();
513    const Type *ResultTy = 0;
514    switch (Stream.ReadRecord(Code, Record)) {
515    default:  // Default behavior: unknown type.
516      ResultTy = 0;
517      break;
518    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520      // type list.  This allows us to reserve space.
521      if (Record.size() < 1)
522        return Error("Invalid TYPE_CODE_NUMENTRY record");
523      TypeList.reserve(Record[0]);
524      continue;
525    case bitc::TYPE_CODE_VOID:      // VOID
526      ResultTy = Type::getVoidTy(Context);
527      break;
528    case bitc::TYPE_CODE_FLOAT:     // FLOAT
529      ResultTy = Type::getFloatTy(Context);
530      break;
531    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532      ResultTy = Type::getDoubleTy(Context);
533      break;
534    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535      ResultTy = Type::getX86_FP80Ty(Context);
536      break;
537    case bitc::TYPE_CODE_FP128:     // FP128
538      ResultTy = Type::getFP128Ty(Context);
539      break;
540    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541      ResultTy = Type::getPPC_FP128Ty(Context);
542      break;
543    case bitc::TYPE_CODE_LABEL:     // LABEL
544      ResultTy = Type::getLabelTy(Context);
545      break;
546    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547      ResultTy = 0;
548      break;
549    case bitc::TYPE_CODE_METADATA:  // METADATA
550      ResultTy = Type::getMetadataTy(Context);
551      break;
552    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553      ResultTy = Type::getX86_MMXTy(Context);
554      break;
555    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556      if (Record.size() < 1)
557        return Error("Invalid Integer type record");
558
559      ResultTy = IntegerType::get(Context, Record[0]);
560      break;
561    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                    //          [pointee type, address space]
563      if (Record.size() < 1)
564        return Error("Invalid POINTER type record");
565      unsigned AddressSpace = 0;
566      if (Record.size() == 2)
567        AddressSpace = Record[1];
568      ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                        AddressSpace);
570      break;
571    }
572    case bitc::TYPE_CODE_FUNCTION: {
573      // FIXME: attrid is dead, remove it in LLVM 3.0
574      // FUNCTION: [vararg, attrid, retty, paramty x N]
575      if (Record.size() < 3)
576        return Error("Invalid FUNCTION type record");
577      std::vector<const Type*> ArgTys;
578      for (unsigned i = 3, e = Record.size(); i != e; ++i)
579        ArgTys.push_back(getTypeByID(Record[i], true));
580
581      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                   Record[0]);
583      break;
584    }
585    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586      if (Record.size() < 1)
587        return Error("Invalid STRUCT type record");
588      std::vector<const Type*> EltTys;
589      for (unsigned i = 1, e = Record.size(); i != e; ++i)
590        EltTys.push_back(getTypeByID(Record[i], true));
591      ResultTy = StructType::get(Context, EltTys, Record[0]);
592      break;
593    }
594    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid ARRAY type record");
597      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600      if (Record.size() < 2)
601        return Error("Invalid VECTOR type record");
602      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603      break;
604    }
605
606    if (NumRecords == TypeList.size()) {
607      // If this is a new type slot, just append it.
608      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609      ++NumRecords;
610    } else if (ResultTy == 0) {
611      // Otherwise, this was forward referenced, so an opaque type was created,
612      // but the result type is actually just an opaque.  Leave the one we
613      // created previously.
614      ++NumRecords;
615    } else {
616      // Otherwise, this was forward referenced, so an opaque type was created.
617      // Resolve the opaque type to the real type now.
618      assert(NumRecords < TypeList.size() && "Typelist imbalance");
619      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620
621      // Don't directly push the new type on the Tab. Instead we want to replace
622      // the opaque type we previously inserted with the new concrete value. The
623      // refinement from the abstract (opaque) type to the new type causes all
624      // uses of the abstract type to use the concrete type (NewTy). This will
625      // also cause the opaque type to be deleted.
626      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627
628      // This should have replaced the old opaque type with the new type in the
629      // value table... or with a preexisting type that was already in the
630      // system.  Let's just make sure it did.
631      assert(TypeList[NumRecords-1].get() != OldTy &&
632             "refineAbstractType didn't work!");
633    }
634  }
635}
636
637
638bool BitcodeReader::ParseTypeSymbolTable() {
639  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640    return Error("Malformed block record");
641
642  SmallVector<uint64_t, 64> Record;
643
644  // Read all the records for this type table.
645  std::string TypeName;
646  while (1) {
647    unsigned Code = Stream.ReadCode();
648    if (Code == bitc::END_BLOCK) {
649      if (Stream.ReadBlockEnd())
650        return Error("Error at end of type symbol table block");
651      return false;
652    }
653
654    if (Code == bitc::ENTER_SUBBLOCK) {
655      // No known subblocks, always skip them.
656      Stream.ReadSubBlockID();
657      if (Stream.SkipBlock())
658        return Error("Malformed block record");
659      continue;
660    }
661
662    if (Code == bitc::DEFINE_ABBREV) {
663      Stream.ReadAbbrevRecord();
664      continue;
665    }
666
667    // Read a record.
668    Record.clear();
669    switch (Stream.ReadRecord(Code, Record)) {
670    default:  // Default behavior: unknown type.
671      break;
672    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673      if (ConvertToString(Record, 1, TypeName))
674        return Error("Invalid TST_ENTRY record");
675      unsigned TypeID = Record[0];
676      if (TypeID >= TypeList.size())
677        return Error("Invalid Type ID in TST_ENTRY record");
678
679      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680      TypeName.clear();
681      break;
682    }
683  }
684}
685
686bool BitcodeReader::ParseValueSymbolTable() {
687  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688    return Error("Malformed block record");
689
690  SmallVector<uint64_t, 64> Record;
691
692  // Read all the records for this value table.
693  SmallString<128> ValueName;
694  while (1) {
695    unsigned Code = Stream.ReadCode();
696    if (Code == bitc::END_BLOCK) {
697      if (Stream.ReadBlockEnd())
698        return Error("Error at end of value symbol table block");
699      return false;
700    }
701    if (Code == bitc::ENTER_SUBBLOCK) {
702      // No known subblocks, always skip them.
703      Stream.ReadSubBlockID();
704      if (Stream.SkipBlock())
705        return Error("Malformed block record");
706      continue;
707    }
708
709    if (Code == bitc::DEFINE_ABBREV) {
710      Stream.ReadAbbrevRecord();
711      continue;
712    }
713
714    // Read a record.
715    Record.clear();
716    switch (Stream.ReadRecord(Code, Record)) {
717    default:  // Default behavior: unknown type.
718      break;
719    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720      if (ConvertToString(Record, 1, ValueName))
721        return Error("Invalid VST_ENTRY record");
722      unsigned ValueID = Record[0];
723      if (ValueID >= ValueList.size())
724        return Error("Invalid Value ID in VST_ENTRY record");
725      Value *V = ValueList[ValueID];
726
727      V->setName(StringRef(ValueName.data(), ValueName.size()));
728      ValueName.clear();
729      break;
730    }
731    case bitc::VST_CODE_BBENTRY: {
732      if (ConvertToString(Record, 1, ValueName))
733        return Error("Invalid VST_BBENTRY record");
734      BasicBlock *BB = getBasicBlock(Record[0]);
735      if (BB == 0)
736        return Error("Invalid BB ID in VST_BBENTRY record");
737
738      BB->setName(StringRef(ValueName.data(), ValueName.size()));
739      ValueName.clear();
740      break;
741    }
742    }
743  }
744}
745
746bool BitcodeReader::ParseMetadata() {
747  unsigned NextMDValueNo = MDValueList.size();
748
749  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750    return Error("Malformed block record");
751
752  SmallVector<uint64_t, 64> Record;
753
754  // Read all the records.
755  while (1) {
756    unsigned Code = Stream.ReadCode();
757    if (Code == bitc::END_BLOCK) {
758      if (Stream.ReadBlockEnd())
759        return Error("Error at end of PARAMATTR block");
760      return false;
761    }
762
763    if (Code == bitc::ENTER_SUBBLOCK) {
764      // No known subblocks, always skip them.
765      Stream.ReadSubBlockID();
766      if (Stream.SkipBlock())
767        return Error("Malformed block record");
768      continue;
769    }
770
771    if (Code == bitc::DEFINE_ABBREV) {
772      Stream.ReadAbbrevRecord();
773      continue;
774    }
775
776    bool IsFunctionLocal = false;
777    // Read a record.
778    Record.clear();
779    Code = Stream.ReadRecord(Code, Record);
780    switch (Code) {
781    default:  // Default behavior: ignore.
782      break;
783    case bitc::METADATA_NAME: {
784      // Read named of the named metadata.
785      unsigned NameLength = Record.size();
786      SmallString<8> Name;
787      Name.resize(NameLength);
788      for (unsigned i = 0; i != NameLength; ++i)
789        Name[i] = Record[i];
790      Record.clear();
791      Code = Stream.ReadCode();
792
793      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
794      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
795      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
796
797      // Read named metadata elements.
798      unsigned Size = Record.size();
799      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
800      for (unsigned i = 0; i != Size; ++i) {
801        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
802        if (MD == 0)
803          return Error("Malformed metadata record");
804        NMD->addOperand(MD);
805      }
806      break;
807    }
808    case bitc::METADATA_FN_NODE:
809      IsFunctionLocal = true;
810      // fall-through
811    case bitc::METADATA_NODE: {
812      if (Record.size() % 2 == 1)
813        return Error("Invalid METADATA_NODE record");
814
815      unsigned Size = Record.size();
816      SmallVector<Value*, 8> Elts;
817      for (unsigned i = 0; i != Size; i += 2) {
818        const Type *Ty = getTypeByID(Record[i]);
819        if (!Ty) return Error("Invalid METADATA_NODE record");
820        if (Ty->isMetadataTy())
821          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
822        else if (!Ty->isVoidTy())
823          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
824        else
825          Elts.push_back(NULL);
826      }
827      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
828      IsFunctionLocal = false;
829      MDValueList.AssignValue(V, NextMDValueNo++);
830      break;
831    }
832    case bitc::METADATA_STRING: {
833      unsigned MDStringLength = Record.size();
834      SmallString<8> String;
835      String.resize(MDStringLength);
836      for (unsigned i = 0; i != MDStringLength; ++i)
837        String[i] = Record[i];
838      Value *V = MDString::get(Context,
839                               StringRef(String.data(), String.size()));
840      MDValueList.AssignValue(V, NextMDValueNo++);
841      break;
842    }
843    case bitc::METADATA_KIND: {
844      unsigned RecordLength = Record.size();
845      if (Record.empty() || RecordLength < 2)
846        return Error("Invalid METADATA_KIND record");
847      SmallString<8> Name;
848      Name.resize(RecordLength-1);
849      unsigned Kind = Record[0];
850      for (unsigned i = 1; i != RecordLength; ++i)
851        Name[i-1] = Record[i];
852
853      unsigned NewKind = TheModule->getMDKindID(Name.str());
854      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
855        return Error("Conflicting METADATA_KIND records");
856      break;
857    }
858    }
859  }
860}
861
862/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
863/// the LSB for dense VBR encoding.
864static uint64_t DecodeSignRotatedValue(uint64_t V) {
865  if ((V & 1) == 0)
866    return V >> 1;
867  if (V != 1)
868    return -(V >> 1);
869  // There is no such thing as -0 with integers.  "-0" really means MININT.
870  return 1ULL << 63;
871}
872
873/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
874/// values and aliases that we can.
875bool BitcodeReader::ResolveGlobalAndAliasInits() {
876  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
877  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
878
879  GlobalInitWorklist.swap(GlobalInits);
880  AliasInitWorklist.swap(AliasInits);
881
882  while (!GlobalInitWorklist.empty()) {
883    unsigned ValID = GlobalInitWorklist.back().second;
884    if (ValID >= ValueList.size()) {
885      // Not ready to resolve this yet, it requires something later in the file.
886      GlobalInits.push_back(GlobalInitWorklist.back());
887    } else {
888      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
889        GlobalInitWorklist.back().first->setInitializer(C);
890      else
891        return Error("Global variable initializer is not a constant!");
892    }
893    GlobalInitWorklist.pop_back();
894  }
895
896  while (!AliasInitWorklist.empty()) {
897    unsigned ValID = AliasInitWorklist.back().second;
898    if (ValID >= ValueList.size()) {
899      AliasInits.push_back(AliasInitWorklist.back());
900    } else {
901      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
902        AliasInitWorklist.back().first->setAliasee(C);
903      else
904        return Error("Alias initializer is not a constant!");
905    }
906    AliasInitWorklist.pop_back();
907  }
908  return false;
909}
910
911bool BitcodeReader::ParseConstants() {
912  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
913    return Error("Malformed block record");
914
915  SmallVector<uint64_t, 64> Record;
916
917  // Read all the records for this value table.
918  const Type *CurTy = Type::getInt32Ty(Context);
919  unsigned NextCstNo = ValueList.size();
920  while (1) {
921    unsigned Code = Stream.ReadCode();
922    if (Code == bitc::END_BLOCK)
923      break;
924
925    if (Code == bitc::ENTER_SUBBLOCK) {
926      // No known subblocks, always skip them.
927      Stream.ReadSubBlockID();
928      if (Stream.SkipBlock())
929        return Error("Malformed block record");
930      continue;
931    }
932
933    if (Code == bitc::DEFINE_ABBREV) {
934      Stream.ReadAbbrevRecord();
935      continue;
936    }
937
938    // Read a record.
939    Record.clear();
940    Value *V = 0;
941    unsigned BitCode = Stream.ReadRecord(Code, Record);
942    switch (BitCode) {
943    default:  // Default behavior: unknown constant
944    case bitc::CST_CODE_UNDEF:     // UNDEF
945      V = UndefValue::get(CurTy);
946      break;
947    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
948      if (Record.empty())
949        return Error("Malformed CST_SETTYPE record");
950      if (Record[0] >= TypeList.size())
951        return Error("Invalid Type ID in CST_SETTYPE record");
952      CurTy = TypeList[Record[0]];
953      continue;  // Skip the ValueList manipulation.
954    case bitc::CST_CODE_NULL:      // NULL
955      V = Constant::getNullValue(CurTy);
956      break;
957    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
958      if (!CurTy->isIntegerTy() || Record.empty())
959        return Error("Invalid CST_INTEGER record");
960      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
961      break;
962    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
963      if (!CurTy->isIntegerTy() || Record.empty())
964        return Error("Invalid WIDE_INTEGER record");
965
966      unsigned NumWords = Record.size();
967      SmallVector<uint64_t, 8> Words;
968      Words.resize(NumWords);
969      for (unsigned i = 0; i != NumWords; ++i)
970        Words[i] = DecodeSignRotatedValue(Record[i]);
971      V = ConstantInt::get(Context,
972                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
973                           NumWords, &Words[0]));
974      break;
975    }
976    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
977      if (Record.empty())
978        return Error("Invalid FLOAT record");
979      if (CurTy->isFloatTy())
980        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
981      else if (CurTy->isDoubleTy())
982        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
983      else if (CurTy->isX86_FP80Ty()) {
984        // Bits are not stored the same way as a normal i80 APInt, compensate.
985        uint64_t Rearrange[2];
986        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
987        Rearrange[1] = Record[0] >> 48;
988        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
989      } else if (CurTy->isFP128Ty())
990        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
991      else if (CurTy->isPPC_FP128Ty())
992        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
993      else
994        V = UndefValue::get(CurTy);
995      break;
996    }
997
998    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
999      if (Record.empty())
1000        return Error("Invalid CST_AGGREGATE record");
1001
1002      unsigned Size = Record.size();
1003      std::vector<Constant*> Elts;
1004
1005      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1006        for (unsigned i = 0; i != Size; ++i)
1007          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1008                                                     STy->getElementType(i)));
1009        V = ConstantStruct::get(STy, Elts);
1010      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1011        const Type *EltTy = ATy->getElementType();
1012        for (unsigned i = 0; i != Size; ++i)
1013          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1014        V = ConstantArray::get(ATy, Elts);
1015      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1016        const Type *EltTy = VTy->getElementType();
1017        for (unsigned i = 0; i != Size; ++i)
1018          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1019        V = ConstantVector::get(Elts);
1020      } else {
1021        V = UndefValue::get(CurTy);
1022      }
1023      break;
1024    }
1025    case bitc::CST_CODE_STRING: { // STRING: [values]
1026      if (Record.empty())
1027        return Error("Invalid CST_AGGREGATE record");
1028
1029      const ArrayType *ATy = cast<ArrayType>(CurTy);
1030      const Type *EltTy = ATy->getElementType();
1031
1032      unsigned Size = Record.size();
1033      std::vector<Constant*> Elts;
1034      for (unsigned i = 0; i != Size; ++i)
1035        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1036      V = ConstantArray::get(ATy, Elts);
1037      break;
1038    }
1039    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1040      if (Record.empty())
1041        return Error("Invalid CST_AGGREGATE record");
1042
1043      const ArrayType *ATy = cast<ArrayType>(CurTy);
1044      const Type *EltTy = ATy->getElementType();
1045
1046      unsigned Size = Record.size();
1047      std::vector<Constant*> Elts;
1048      for (unsigned i = 0; i != Size; ++i)
1049        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1050      Elts.push_back(Constant::getNullValue(EltTy));
1051      V = ConstantArray::get(ATy, Elts);
1052      break;
1053    }
1054    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1055      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1056      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1057      if (Opc < 0) {
1058        V = UndefValue::get(CurTy);  // Unknown binop.
1059      } else {
1060        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1061        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1062        unsigned Flags = 0;
1063        if (Record.size() >= 4) {
1064          if (Opc == Instruction::Add ||
1065              Opc == Instruction::Sub ||
1066              Opc == Instruction::Mul ||
1067              Opc == Instruction::Shl) {
1068            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1069              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1070            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1071              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1072          } else if (Opc == Instruction::SDiv ||
1073                     Opc == Instruction::UDiv ||
1074                     Opc == Instruction::LShr ||
1075                     Opc == Instruction::AShr) {
1076            if (Record[3] & (1 << bitc::PEO_EXACT))
1077              Flags |= SDivOperator::IsExact;
1078          }
1079        }
1080        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1081      }
1082      break;
1083    }
1084    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1085      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1086      int Opc = GetDecodedCastOpcode(Record[0]);
1087      if (Opc < 0) {
1088        V = UndefValue::get(CurTy);  // Unknown cast.
1089      } else {
1090        const Type *OpTy = getTypeByID(Record[1]);
1091        if (!OpTy) return Error("Invalid CE_CAST record");
1092        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1093        V = ConstantExpr::getCast(Opc, Op, CurTy);
1094      }
1095      break;
1096    }
1097    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1098    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1099      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1100      SmallVector<Constant*, 16> Elts;
1101      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1102        const Type *ElTy = getTypeByID(Record[i]);
1103        if (!ElTy) return Error("Invalid CE_GEP record");
1104        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1105      }
1106      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1107        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1108                                                   Elts.size()-1);
1109      else
1110        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1111                                           Elts.size()-1);
1112      break;
1113    }
1114    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1115      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1116      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1117                                                              Type::getInt1Ty(Context)),
1118                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1119                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1120      break;
1121    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1122      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1123      const VectorType *OpTy =
1124        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1125      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1126      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1127      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1128      V = ConstantExpr::getExtractElement(Op0, Op1);
1129      break;
1130    }
1131    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1132      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1133      if (Record.size() < 3 || OpTy == 0)
1134        return Error("Invalid CE_INSERTELT record");
1135      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1136      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1137                                                  OpTy->getElementType());
1138      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1139      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1140      break;
1141    }
1142    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1143      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1144      if (Record.size() < 3 || OpTy == 0)
1145        return Error("Invalid CE_SHUFFLEVEC record");
1146      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1147      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1148      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1149                                                 OpTy->getNumElements());
1150      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1151      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1152      break;
1153    }
1154    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1155      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1156      const VectorType *OpTy =
1157        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1158      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1159        return Error("Invalid CE_SHUFVEC_EX record");
1160      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1161      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1162      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1163                                                 RTy->getNumElements());
1164      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1165      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1166      break;
1167    }
1168    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1169      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1170      const Type *OpTy = getTypeByID(Record[0]);
1171      if (OpTy == 0) return Error("Invalid CE_CMP record");
1172      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1173      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1174
1175      if (OpTy->isFPOrFPVectorTy())
1176        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1177      else
1178        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1179      break;
1180    }
1181    case bitc::CST_CODE_INLINEASM: {
1182      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1183      std::string AsmStr, ConstrStr;
1184      bool HasSideEffects = Record[0] & 1;
1185      bool IsAlignStack = Record[0] >> 1;
1186      unsigned AsmStrSize = Record[1];
1187      if (2+AsmStrSize >= Record.size())
1188        return Error("Invalid INLINEASM record");
1189      unsigned ConstStrSize = Record[2+AsmStrSize];
1190      if (3+AsmStrSize+ConstStrSize > Record.size())
1191        return Error("Invalid INLINEASM record");
1192
1193      for (unsigned i = 0; i != AsmStrSize; ++i)
1194        AsmStr += (char)Record[2+i];
1195      for (unsigned i = 0; i != ConstStrSize; ++i)
1196        ConstrStr += (char)Record[3+AsmStrSize+i];
1197      const PointerType *PTy = cast<PointerType>(CurTy);
1198      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1199                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1200      break;
1201    }
1202    case bitc::CST_CODE_BLOCKADDRESS:{
1203      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1204      const Type *FnTy = getTypeByID(Record[0]);
1205      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1206      Function *Fn =
1207        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1208      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1209
1210      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1211                                                  Type::getInt8Ty(Context),
1212                                            false, GlobalValue::InternalLinkage,
1213                                                  0, "");
1214      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1215      V = FwdRef;
1216      break;
1217    }
1218    }
1219
1220    ValueList.AssignValue(V, NextCstNo);
1221    ++NextCstNo;
1222  }
1223
1224  if (NextCstNo != ValueList.size())
1225    return Error("Invalid constant reference!");
1226
1227  if (Stream.ReadBlockEnd())
1228    return Error("Error at end of constants block");
1229
1230  // Once all the constants have been read, go through and resolve forward
1231  // references.
1232  ValueList.ResolveConstantForwardRefs();
1233  return false;
1234}
1235
1236/// RememberAndSkipFunctionBody - When we see the block for a function body,
1237/// remember where it is and then skip it.  This lets us lazily deserialize the
1238/// functions.
1239bool BitcodeReader::RememberAndSkipFunctionBody() {
1240  // Get the function we are talking about.
1241  if (FunctionsWithBodies.empty())
1242    return Error("Insufficient function protos");
1243
1244  Function *Fn = FunctionsWithBodies.back();
1245  FunctionsWithBodies.pop_back();
1246
1247  // Save the current stream state.
1248  uint64_t CurBit = Stream.GetCurrentBitNo();
1249  DeferredFunctionInfo[Fn] = CurBit;
1250
1251  // Skip over the function block for now.
1252  if (Stream.SkipBlock())
1253    return Error("Malformed block record");
1254  return false;
1255}
1256
1257bool BitcodeReader::ParseModule() {
1258  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1259    return Error("Malformed block record");
1260
1261  SmallVector<uint64_t, 64> Record;
1262  std::vector<std::string> SectionTable;
1263  std::vector<std::string> GCTable;
1264
1265  // Read all the records for this module.
1266  while (!Stream.AtEndOfStream()) {
1267    unsigned Code = Stream.ReadCode();
1268    if (Code == bitc::END_BLOCK) {
1269      if (Stream.ReadBlockEnd())
1270        return Error("Error at end of module block");
1271
1272      // Patch the initializers for globals and aliases up.
1273      ResolveGlobalAndAliasInits();
1274      if (!GlobalInits.empty() || !AliasInits.empty())
1275        return Error("Malformed global initializer set");
1276      if (!FunctionsWithBodies.empty())
1277        return Error("Too few function bodies found");
1278
1279      // Look for intrinsic functions which need to be upgraded at some point
1280      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1281           FI != FE; ++FI) {
1282        Function* NewFn;
1283        if (UpgradeIntrinsicFunction(FI, NewFn))
1284          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1285      }
1286
1287      // Look for global variables which need to be renamed.
1288      for (Module::global_iterator
1289             GI = TheModule->global_begin(), GE = TheModule->global_end();
1290           GI != GE; ++GI)
1291        UpgradeGlobalVariable(GI);
1292
1293      // Force deallocation of memory for these vectors to favor the client that
1294      // want lazy deserialization.
1295      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1296      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1297      std::vector<Function*>().swap(FunctionsWithBodies);
1298      return false;
1299    }
1300
1301    if (Code == bitc::ENTER_SUBBLOCK) {
1302      switch (Stream.ReadSubBlockID()) {
1303      default:  // Skip unknown content.
1304        if (Stream.SkipBlock())
1305          return Error("Malformed block record");
1306        break;
1307      case bitc::BLOCKINFO_BLOCK_ID:
1308        if (Stream.ReadBlockInfoBlock())
1309          return Error("Malformed BlockInfoBlock");
1310        break;
1311      case bitc::PARAMATTR_BLOCK_ID:
1312        if (ParseAttributeBlock())
1313          return true;
1314        break;
1315      case bitc::TYPE_BLOCK_ID:
1316        if (ParseTypeTable())
1317          return true;
1318        break;
1319      case bitc::TYPE_SYMTAB_BLOCK_ID:
1320        if (ParseTypeSymbolTable())
1321          return true;
1322        break;
1323      case bitc::VALUE_SYMTAB_BLOCK_ID:
1324        if (ParseValueSymbolTable())
1325          return true;
1326        break;
1327      case bitc::CONSTANTS_BLOCK_ID:
1328        if (ParseConstants() || ResolveGlobalAndAliasInits())
1329          return true;
1330        break;
1331      case bitc::METADATA_BLOCK_ID:
1332        if (ParseMetadata())
1333          return true;
1334        break;
1335      case bitc::FUNCTION_BLOCK_ID:
1336        // If this is the first function body we've seen, reverse the
1337        // FunctionsWithBodies list.
1338        if (!HasReversedFunctionsWithBodies) {
1339          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1340          HasReversedFunctionsWithBodies = true;
1341        }
1342
1343        if (RememberAndSkipFunctionBody())
1344          return true;
1345        break;
1346      }
1347      continue;
1348    }
1349
1350    if (Code == bitc::DEFINE_ABBREV) {
1351      Stream.ReadAbbrevRecord();
1352      continue;
1353    }
1354
1355    // Read a record.
1356    switch (Stream.ReadRecord(Code, Record)) {
1357    default: break;  // Default behavior, ignore unknown content.
1358    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1359      if (Record.size() < 1)
1360        return Error("Malformed MODULE_CODE_VERSION");
1361      // Only version #0 is supported so far.
1362      if (Record[0] != 0)
1363        return Error("Unknown bitstream version!");
1364      break;
1365    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1366      std::string S;
1367      if (ConvertToString(Record, 0, S))
1368        return Error("Invalid MODULE_CODE_TRIPLE record");
1369      TheModule->setTargetTriple(S);
1370      break;
1371    }
1372    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1373      std::string S;
1374      if (ConvertToString(Record, 0, S))
1375        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1376      TheModule->setDataLayout(S);
1377      break;
1378    }
1379    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1380      std::string S;
1381      if (ConvertToString(Record, 0, S))
1382        return Error("Invalid MODULE_CODE_ASM record");
1383      TheModule->setModuleInlineAsm(S);
1384      break;
1385    }
1386    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1387      std::string S;
1388      if (ConvertToString(Record, 0, S))
1389        return Error("Invalid MODULE_CODE_DEPLIB record");
1390      TheModule->addLibrary(S);
1391      break;
1392    }
1393    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1394      std::string S;
1395      if (ConvertToString(Record, 0, S))
1396        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1397      SectionTable.push_back(S);
1398      break;
1399    }
1400    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1401      std::string S;
1402      if (ConvertToString(Record, 0, S))
1403        return Error("Invalid MODULE_CODE_GCNAME record");
1404      GCTable.push_back(S);
1405      break;
1406    }
1407    // GLOBALVAR: [pointer type, isconst, initid,
1408    //             linkage, alignment, section, visibility, threadlocal,
1409    //             unnamed_addr]
1410    case bitc::MODULE_CODE_GLOBALVAR: {
1411      if (Record.size() < 6)
1412        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1413      const Type *Ty = getTypeByID(Record[0]);
1414      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1415      if (!Ty->isPointerTy())
1416        return Error("Global not a pointer type!");
1417      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1418      Ty = cast<PointerType>(Ty)->getElementType();
1419
1420      bool isConstant = Record[1];
1421      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1422      unsigned Alignment = (1 << Record[4]) >> 1;
1423      std::string Section;
1424      if (Record[5]) {
1425        if (Record[5]-1 >= SectionTable.size())
1426          return Error("Invalid section ID");
1427        Section = SectionTable[Record[5]-1];
1428      }
1429      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1430      if (Record.size() > 6)
1431        Visibility = GetDecodedVisibility(Record[6]);
1432      bool isThreadLocal = false;
1433      if (Record.size() > 7)
1434        isThreadLocal = Record[7];
1435
1436      bool UnnamedAddr = false;
1437      if (Record.size() > 8)
1438        UnnamedAddr = Record[8];
1439
1440      GlobalVariable *NewGV =
1441        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1442                           isThreadLocal, AddressSpace);
1443      NewGV->setAlignment(Alignment);
1444      if (!Section.empty())
1445        NewGV->setSection(Section);
1446      NewGV->setVisibility(Visibility);
1447      NewGV->setThreadLocal(isThreadLocal);
1448      NewGV->setUnnamedAddr(UnnamedAddr);
1449
1450      ValueList.push_back(NewGV);
1451
1452      // Remember which value to use for the global initializer.
1453      if (unsigned InitID = Record[2])
1454        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1455      break;
1456    }
1457    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1458    //             alignment, section, visibility, gc, unnamed_addr]
1459    case bitc::MODULE_CODE_FUNCTION: {
1460      if (Record.size() < 8)
1461        return Error("Invalid MODULE_CODE_FUNCTION record");
1462      const Type *Ty = getTypeByID(Record[0]);
1463      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1464      if (!Ty->isPointerTy())
1465        return Error("Function not a pointer type!");
1466      const FunctionType *FTy =
1467        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1468      if (!FTy)
1469        return Error("Function not a pointer to function type!");
1470
1471      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1472                                        "", TheModule);
1473
1474      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1475      bool isProto = Record[2];
1476      Func->setLinkage(GetDecodedLinkage(Record[3]));
1477      Func->setAttributes(getAttributes(Record[4]));
1478
1479      Func->setAlignment((1 << Record[5]) >> 1);
1480      if (Record[6]) {
1481        if (Record[6]-1 >= SectionTable.size())
1482          return Error("Invalid section ID");
1483        Func->setSection(SectionTable[Record[6]-1]);
1484      }
1485      Func->setVisibility(GetDecodedVisibility(Record[7]));
1486      if (Record.size() > 8 && Record[8]) {
1487        if (Record[8]-1 > GCTable.size())
1488          return Error("Invalid GC ID");
1489        Func->setGC(GCTable[Record[8]-1].c_str());
1490      }
1491      bool UnnamedAddr = false;
1492      if (Record.size() > 9)
1493        UnnamedAddr = Record[9];
1494      Func->setUnnamedAddr(UnnamedAddr);
1495      ValueList.push_back(Func);
1496
1497      // If this is a function with a body, remember the prototype we are
1498      // creating now, so that we can match up the body with them later.
1499      if (!isProto)
1500        FunctionsWithBodies.push_back(Func);
1501      break;
1502    }
1503    // ALIAS: [alias type, aliasee val#, linkage]
1504    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1505    case bitc::MODULE_CODE_ALIAS: {
1506      if (Record.size() < 3)
1507        return Error("Invalid MODULE_ALIAS record");
1508      const Type *Ty = getTypeByID(Record[0]);
1509      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1510      if (!Ty->isPointerTy())
1511        return Error("Function not a pointer type!");
1512
1513      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1514                                           "", 0, TheModule);
1515      // Old bitcode files didn't have visibility field.
1516      if (Record.size() > 3)
1517        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1518      ValueList.push_back(NewGA);
1519      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1520      break;
1521    }
1522    /// MODULE_CODE_PURGEVALS: [numvals]
1523    case bitc::MODULE_CODE_PURGEVALS:
1524      // Trim down the value list to the specified size.
1525      if (Record.size() < 1 || Record[0] > ValueList.size())
1526        return Error("Invalid MODULE_PURGEVALS record");
1527      ValueList.shrinkTo(Record[0]);
1528      break;
1529    }
1530    Record.clear();
1531  }
1532
1533  return Error("Premature end of bitstream");
1534}
1535
1536bool BitcodeReader::ParseBitcodeInto(Module *M) {
1537  TheModule = 0;
1538
1539  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1540  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1541
1542  if (Buffer->getBufferSize() & 3) {
1543    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1544      return Error("Invalid bitcode signature");
1545    else
1546      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1547  }
1548
1549  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1550  // The magic number is 0x0B17C0DE stored in little endian.
1551  if (isBitcodeWrapper(BufPtr, BufEnd))
1552    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1553      return Error("Invalid bitcode wrapper header");
1554
1555  StreamFile.init(BufPtr, BufEnd);
1556  Stream.init(StreamFile);
1557
1558  // Sniff for the signature.
1559  if (Stream.Read(8) != 'B' ||
1560      Stream.Read(8) != 'C' ||
1561      Stream.Read(4) != 0x0 ||
1562      Stream.Read(4) != 0xC ||
1563      Stream.Read(4) != 0xE ||
1564      Stream.Read(4) != 0xD)
1565    return Error("Invalid bitcode signature");
1566
1567  // We expect a number of well-defined blocks, though we don't necessarily
1568  // need to understand them all.
1569  while (!Stream.AtEndOfStream()) {
1570    unsigned Code = Stream.ReadCode();
1571
1572    if (Code != bitc::ENTER_SUBBLOCK) {
1573
1574      // The ranlib in xcode 4 will align archive members by appending newlines to the
1575      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1576      // ignore these final 4 bytes :-(
1577      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1578          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1579	  Stream.AtEndOfStream())
1580        return false;
1581
1582      return Error("Invalid record at top-level");
1583    }
1584
1585    unsigned BlockID = Stream.ReadSubBlockID();
1586
1587    // We only know the MODULE subblock ID.
1588    switch (BlockID) {
1589    case bitc::BLOCKINFO_BLOCK_ID:
1590      if (Stream.ReadBlockInfoBlock())
1591        return Error("Malformed BlockInfoBlock");
1592      break;
1593    case bitc::MODULE_BLOCK_ID:
1594      // Reject multiple MODULE_BLOCK's in a single bitstream.
1595      if (TheModule)
1596        return Error("Multiple MODULE_BLOCKs in same stream");
1597      TheModule = M;
1598      if (ParseModule())
1599        return true;
1600      break;
1601    default:
1602      if (Stream.SkipBlock())
1603        return Error("Malformed block record");
1604      break;
1605    }
1606  }
1607
1608  return false;
1609}
1610
1611bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1612  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1613    return Error("Malformed block record");
1614
1615  SmallVector<uint64_t, 64> Record;
1616
1617  // Read all the records for this module.
1618  while (!Stream.AtEndOfStream()) {
1619    unsigned Code = Stream.ReadCode();
1620    if (Code == bitc::END_BLOCK) {
1621      if (Stream.ReadBlockEnd())
1622        return Error("Error at end of module block");
1623
1624      return false;
1625    }
1626
1627    if (Code == bitc::ENTER_SUBBLOCK) {
1628      switch (Stream.ReadSubBlockID()) {
1629      default:  // Skip unknown content.
1630        if (Stream.SkipBlock())
1631          return Error("Malformed block record");
1632        break;
1633      }
1634      continue;
1635    }
1636
1637    if (Code == bitc::DEFINE_ABBREV) {
1638      Stream.ReadAbbrevRecord();
1639      continue;
1640    }
1641
1642    // Read a record.
1643    switch (Stream.ReadRecord(Code, Record)) {
1644    default: break;  // Default behavior, ignore unknown content.
1645    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1646      if (Record.size() < 1)
1647        return Error("Malformed MODULE_CODE_VERSION");
1648      // Only version #0 is supported so far.
1649      if (Record[0] != 0)
1650        return Error("Unknown bitstream version!");
1651      break;
1652    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1653      std::string S;
1654      if (ConvertToString(Record, 0, S))
1655        return Error("Invalid MODULE_CODE_TRIPLE record");
1656      Triple = S;
1657      break;
1658    }
1659    }
1660    Record.clear();
1661  }
1662
1663  return Error("Premature end of bitstream");
1664}
1665
1666bool BitcodeReader::ParseTriple(std::string &Triple) {
1667  if (Buffer->getBufferSize() & 3)
1668    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1669
1670  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1671  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1672
1673  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1674  // The magic number is 0x0B17C0DE stored in little endian.
1675  if (isBitcodeWrapper(BufPtr, BufEnd))
1676    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1677      return Error("Invalid bitcode wrapper header");
1678
1679  StreamFile.init(BufPtr, BufEnd);
1680  Stream.init(StreamFile);
1681
1682  // Sniff for the signature.
1683  if (Stream.Read(8) != 'B' ||
1684      Stream.Read(8) != 'C' ||
1685      Stream.Read(4) != 0x0 ||
1686      Stream.Read(4) != 0xC ||
1687      Stream.Read(4) != 0xE ||
1688      Stream.Read(4) != 0xD)
1689    return Error("Invalid bitcode signature");
1690
1691  // We expect a number of well-defined blocks, though we don't necessarily
1692  // need to understand them all.
1693  while (!Stream.AtEndOfStream()) {
1694    unsigned Code = Stream.ReadCode();
1695
1696    if (Code != bitc::ENTER_SUBBLOCK)
1697      return Error("Invalid record at top-level");
1698
1699    unsigned BlockID = Stream.ReadSubBlockID();
1700
1701    // We only know the MODULE subblock ID.
1702    switch (BlockID) {
1703    case bitc::MODULE_BLOCK_ID:
1704      if (ParseModuleTriple(Triple))
1705        return true;
1706      break;
1707    default:
1708      if (Stream.SkipBlock())
1709        return Error("Malformed block record");
1710      break;
1711    }
1712  }
1713
1714  return false;
1715}
1716
1717/// ParseMetadataAttachment - Parse metadata attachments.
1718bool BitcodeReader::ParseMetadataAttachment() {
1719  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1720    return Error("Malformed block record");
1721
1722  SmallVector<uint64_t, 64> Record;
1723  while(1) {
1724    unsigned Code = Stream.ReadCode();
1725    if (Code == bitc::END_BLOCK) {
1726      if (Stream.ReadBlockEnd())
1727        return Error("Error at end of PARAMATTR block");
1728      break;
1729    }
1730    if (Code == bitc::DEFINE_ABBREV) {
1731      Stream.ReadAbbrevRecord();
1732      continue;
1733    }
1734    // Read a metadata attachment record.
1735    Record.clear();
1736    switch (Stream.ReadRecord(Code, Record)) {
1737    default:  // Default behavior: ignore.
1738      break;
1739    case bitc::METADATA_ATTACHMENT: {
1740      unsigned RecordLength = Record.size();
1741      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1742        return Error ("Invalid METADATA_ATTACHMENT reader!");
1743      Instruction *Inst = InstructionList[Record[0]];
1744      for (unsigned i = 1; i != RecordLength; i = i+2) {
1745        unsigned Kind = Record[i];
1746        DenseMap<unsigned, unsigned>::iterator I =
1747          MDKindMap.find(Kind);
1748        if (I == MDKindMap.end())
1749          return Error("Invalid metadata kind ID");
1750        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1751        Inst->setMetadata(I->second, cast<MDNode>(Node));
1752      }
1753      break;
1754    }
1755    }
1756  }
1757  return false;
1758}
1759
1760/// ParseFunctionBody - Lazily parse the specified function body block.
1761bool BitcodeReader::ParseFunctionBody(Function *F) {
1762  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1763    return Error("Malformed block record");
1764
1765  InstructionList.clear();
1766  unsigned ModuleValueListSize = ValueList.size();
1767  unsigned ModuleMDValueListSize = MDValueList.size();
1768
1769  // Add all the function arguments to the value table.
1770  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1771    ValueList.push_back(I);
1772
1773  unsigned NextValueNo = ValueList.size();
1774  BasicBlock *CurBB = 0;
1775  unsigned CurBBNo = 0;
1776
1777  DebugLoc LastLoc;
1778
1779  // Read all the records.
1780  SmallVector<uint64_t, 64> Record;
1781  while (1) {
1782    unsigned Code = Stream.ReadCode();
1783    if (Code == bitc::END_BLOCK) {
1784      if (Stream.ReadBlockEnd())
1785        return Error("Error at end of function block");
1786      break;
1787    }
1788
1789    if (Code == bitc::ENTER_SUBBLOCK) {
1790      switch (Stream.ReadSubBlockID()) {
1791      default:  // Skip unknown content.
1792        if (Stream.SkipBlock())
1793          return Error("Malformed block record");
1794        break;
1795      case bitc::CONSTANTS_BLOCK_ID:
1796        if (ParseConstants()) return true;
1797        NextValueNo = ValueList.size();
1798        break;
1799      case bitc::VALUE_SYMTAB_BLOCK_ID:
1800        if (ParseValueSymbolTable()) return true;
1801        break;
1802      case bitc::METADATA_ATTACHMENT_ID:
1803        if (ParseMetadataAttachment()) return true;
1804        break;
1805      case bitc::METADATA_BLOCK_ID:
1806        if (ParseMetadata()) return true;
1807        break;
1808      }
1809      continue;
1810    }
1811
1812    if (Code == bitc::DEFINE_ABBREV) {
1813      Stream.ReadAbbrevRecord();
1814      continue;
1815    }
1816
1817    // Read a record.
1818    Record.clear();
1819    Instruction *I = 0;
1820    unsigned BitCode = Stream.ReadRecord(Code, Record);
1821    switch (BitCode) {
1822    default: // Default behavior: reject
1823      return Error("Unknown instruction");
1824    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1825      if (Record.size() < 1 || Record[0] == 0)
1826        return Error("Invalid DECLAREBLOCKS record");
1827      // Create all the basic blocks for the function.
1828      FunctionBBs.resize(Record[0]);
1829      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1830        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1831      CurBB = FunctionBBs[0];
1832      continue;
1833
1834    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1835      // This record indicates that the last instruction is at the same
1836      // location as the previous instruction with a location.
1837      I = 0;
1838
1839      // Get the last instruction emitted.
1840      if (CurBB && !CurBB->empty())
1841        I = &CurBB->back();
1842      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1843               !FunctionBBs[CurBBNo-1]->empty())
1844        I = &FunctionBBs[CurBBNo-1]->back();
1845
1846      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1847      I->setDebugLoc(LastLoc);
1848      I = 0;
1849      continue;
1850
1851    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1852      I = 0;     // Get the last instruction emitted.
1853      if (CurBB && !CurBB->empty())
1854        I = &CurBB->back();
1855      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1856               !FunctionBBs[CurBBNo-1]->empty())
1857        I = &FunctionBBs[CurBBNo-1]->back();
1858      if (I == 0 || Record.size() < 4)
1859        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1860
1861      unsigned Line = Record[0], Col = Record[1];
1862      unsigned ScopeID = Record[2], IAID = Record[3];
1863
1864      MDNode *Scope = 0, *IA = 0;
1865      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1866      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1867      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1868      I->setDebugLoc(LastLoc);
1869      I = 0;
1870      continue;
1871    }
1872
1873    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1874      unsigned OpNum = 0;
1875      Value *LHS, *RHS;
1876      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1877          getValue(Record, OpNum, LHS->getType(), RHS) ||
1878          OpNum+1 > Record.size())
1879        return Error("Invalid BINOP record");
1880
1881      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1882      if (Opc == -1) return Error("Invalid BINOP record");
1883      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1884      InstructionList.push_back(I);
1885      if (OpNum < Record.size()) {
1886        if (Opc == Instruction::Add ||
1887            Opc == Instruction::Sub ||
1888            Opc == Instruction::Mul ||
1889            Opc == Instruction::Shl) {
1890          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1891            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1892          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1893            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1894        } else if (Opc == Instruction::SDiv ||
1895                   Opc == Instruction::UDiv ||
1896                   Opc == Instruction::LShr ||
1897                   Opc == Instruction::AShr) {
1898          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1899            cast<BinaryOperator>(I)->setIsExact(true);
1900        }
1901      }
1902      break;
1903    }
1904    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1905      unsigned OpNum = 0;
1906      Value *Op;
1907      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1908          OpNum+2 != Record.size())
1909        return Error("Invalid CAST record");
1910
1911      const Type *ResTy = getTypeByID(Record[OpNum]);
1912      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1913      if (Opc == -1 || ResTy == 0)
1914        return Error("Invalid CAST record");
1915      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1916      InstructionList.push_back(I);
1917      break;
1918    }
1919    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1920    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1921      unsigned OpNum = 0;
1922      Value *BasePtr;
1923      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1924        return Error("Invalid GEP record");
1925
1926      SmallVector<Value*, 16> GEPIdx;
1927      while (OpNum != Record.size()) {
1928        Value *Op;
1929        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1930          return Error("Invalid GEP record");
1931        GEPIdx.push_back(Op);
1932      }
1933
1934      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1935      InstructionList.push_back(I);
1936      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1937        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1938      break;
1939    }
1940
1941    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1942                                       // EXTRACTVAL: [opty, opval, n x indices]
1943      unsigned OpNum = 0;
1944      Value *Agg;
1945      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1946        return Error("Invalid EXTRACTVAL record");
1947
1948      SmallVector<unsigned, 4> EXTRACTVALIdx;
1949      for (unsigned RecSize = Record.size();
1950           OpNum != RecSize; ++OpNum) {
1951        uint64_t Index = Record[OpNum];
1952        if ((unsigned)Index != Index)
1953          return Error("Invalid EXTRACTVAL index");
1954        EXTRACTVALIdx.push_back((unsigned)Index);
1955      }
1956
1957      I = ExtractValueInst::Create(Agg,
1958                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1959      InstructionList.push_back(I);
1960      break;
1961    }
1962
1963    case bitc::FUNC_CODE_INST_INSERTVAL: {
1964                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1965      unsigned OpNum = 0;
1966      Value *Agg;
1967      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1968        return Error("Invalid INSERTVAL record");
1969      Value *Val;
1970      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1971        return Error("Invalid INSERTVAL record");
1972
1973      SmallVector<unsigned, 4> INSERTVALIdx;
1974      for (unsigned RecSize = Record.size();
1975           OpNum != RecSize; ++OpNum) {
1976        uint64_t Index = Record[OpNum];
1977        if ((unsigned)Index != Index)
1978          return Error("Invalid INSERTVAL index");
1979        INSERTVALIdx.push_back((unsigned)Index);
1980      }
1981
1982      I = InsertValueInst::Create(Agg, Val,
1983                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1984      InstructionList.push_back(I);
1985      break;
1986    }
1987
1988    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1989      // obsolete form of select
1990      // handles select i1 ... in old bitcode
1991      unsigned OpNum = 0;
1992      Value *TrueVal, *FalseVal, *Cond;
1993      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1994          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1995          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1996        return Error("Invalid SELECT record");
1997
1998      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1999      InstructionList.push_back(I);
2000      break;
2001    }
2002
2003    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2004      // new form of select
2005      // handles select i1 or select [N x i1]
2006      unsigned OpNum = 0;
2007      Value *TrueVal, *FalseVal, *Cond;
2008      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2009          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2010          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2011        return Error("Invalid SELECT record");
2012
2013      // select condition can be either i1 or [N x i1]
2014      if (const VectorType* vector_type =
2015          dyn_cast<const VectorType>(Cond->getType())) {
2016        // expect <n x i1>
2017        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2018          return Error("Invalid SELECT condition type");
2019      } else {
2020        // expect i1
2021        if (Cond->getType() != Type::getInt1Ty(Context))
2022          return Error("Invalid SELECT condition type");
2023      }
2024
2025      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2026      InstructionList.push_back(I);
2027      break;
2028    }
2029
2030    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2031      unsigned OpNum = 0;
2032      Value *Vec, *Idx;
2033      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2034          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2035        return Error("Invalid EXTRACTELT record");
2036      I = ExtractElementInst::Create(Vec, Idx);
2037      InstructionList.push_back(I);
2038      break;
2039    }
2040
2041    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2042      unsigned OpNum = 0;
2043      Value *Vec, *Elt, *Idx;
2044      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2045          getValue(Record, OpNum,
2046                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2047          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2048        return Error("Invalid INSERTELT record");
2049      I = InsertElementInst::Create(Vec, Elt, Idx);
2050      InstructionList.push_back(I);
2051      break;
2052    }
2053
2054    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2055      unsigned OpNum = 0;
2056      Value *Vec1, *Vec2, *Mask;
2057      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2058          getValue(Record, OpNum, Vec1->getType(), Vec2))
2059        return Error("Invalid SHUFFLEVEC record");
2060
2061      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2062        return Error("Invalid SHUFFLEVEC record");
2063      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2064      InstructionList.push_back(I);
2065      break;
2066    }
2067
2068    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2069      // Old form of ICmp/FCmp returning bool
2070      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2071      // both legal on vectors but had different behaviour.
2072    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2073      // FCmp/ICmp returning bool or vector of bool
2074
2075      unsigned OpNum = 0;
2076      Value *LHS, *RHS;
2077      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2078          getValue(Record, OpNum, LHS->getType(), RHS) ||
2079          OpNum+1 != Record.size())
2080        return Error("Invalid CMP record");
2081
2082      if (LHS->getType()->isFPOrFPVectorTy())
2083        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2084      else
2085        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2086      InstructionList.push_back(I);
2087      break;
2088    }
2089
2090    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2091      {
2092        unsigned Size = Record.size();
2093        if (Size == 0) {
2094          I = ReturnInst::Create(Context);
2095          InstructionList.push_back(I);
2096          break;
2097        }
2098
2099        unsigned OpNum = 0;
2100        Value *Op = NULL;
2101        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2102          return Error("Invalid RET record");
2103        if (OpNum != Record.size())
2104          return Error("Invalid RET record");
2105
2106        I = ReturnInst::Create(Context, Op);
2107        InstructionList.push_back(I);
2108        break;
2109      }
2110    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2111      if (Record.size() != 1 && Record.size() != 3)
2112        return Error("Invalid BR record");
2113      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2114      if (TrueDest == 0)
2115        return Error("Invalid BR record");
2116
2117      if (Record.size() == 1) {
2118        I = BranchInst::Create(TrueDest);
2119        InstructionList.push_back(I);
2120      }
2121      else {
2122        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2123        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2124        if (FalseDest == 0 || Cond == 0)
2125          return Error("Invalid BR record");
2126        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2127        InstructionList.push_back(I);
2128      }
2129      break;
2130    }
2131    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2132      if (Record.size() < 3 || (Record.size() & 1) == 0)
2133        return Error("Invalid SWITCH record");
2134      const Type *OpTy = getTypeByID(Record[0]);
2135      Value *Cond = getFnValueByID(Record[1], OpTy);
2136      BasicBlock *Default = getBasicBlock(Record[2]);
2137      if (OpTy == 0 || Cond == 0 || Default == 0)
2138        return Error("Invalid SWITCH record");
2139      unsigned NumCases = (Record.size()-3)/2;
2140      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2141      InstructionList.push_back(SI);
2142      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2143        ConstantInt *CaseVal =
2144          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2145        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2146        if (CaseVal == 0 || DestBB == 0) {
2147          delete SI;
2148          return Error("Invalid SWITCH record!");
2149        }
2150        SI->addCase(CaseVal, DestBB);
2151      }
2152      I = SI;
2153      break;
2154    }
2155    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2156      if (Record.size() < 2)
2157        return Error("Invalid INDIRECTBR record");
2158      const Type *OpTy = getTypeByID(Record[0]);
2159      Value *Address = getFnValueByID(Record[1], OpTy);
2160      if (OpTy == 0 || Address == 0)
2161        return Error("Invalid INDIRECTBR record");
2162      unsigned NumDests = Record.size()-2;
2163      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2164      InstructionList.push_back(IBI);
2165      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2166        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2167          IBI->addDestination(DestBB);
2168        } else {
2169          delete IBI;
2170          return Error("Invalid INDIRECTBR record!");
2171        }
2172      }
2173      I = IBI;
2174      break;
2175    }
2176
2177    case bitc::FUNC_CODE_INST_INVOKE: {
2178      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2179      if (Record.size() < 4) return Error("Invalid INVOKE record");
2180      AttrListPtr PAL = getAttributes(Record[0]);
2181      unsigned CCInfo = Record[1];
2182      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2183      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2184
2185      unsigned OpNum = 4;
2186      Value *Callee;
2187      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2188        return Error("Invalid INVOKE record");
2189
2190      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2191      const FunctionType *FTy = !CalleeTy ? 0 :
2192        dyn_cast<FunctionType>(CalleeTy->getElementType());
2193
2194      // Check that the right number of fixed parameters are here.
2195      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2196          Record.size() < OpNum+FTy->getNumParams())
2197        return Error("Invalid INVOKE record");
2198
2199      SmallVector<Value*, 16> Ops;
2200      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2201        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2202        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2203      }
2204
2205      if (!FTy->isVarArg()) {
2206        if (Record.size() != OpNum)
2207          return Error("Invalid INVOKE record");
2208      } else {
2209        // Read type/value pairs for varargs params.
2210        while (OpNum != Record.size()) {
2211          Value *Op;
2212          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2213            return Error("Invalid INVOKE record");
2214          Ops.push_back(Op);
2215        }
2216      }
2217
2218      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2219                             Ops.begin(), Ops.end());
2220      InstructionList.push_back(I);
2221      cast<InvokeInst>(I)->setCallingConv(
2222        static_cast<CallingConv::ID>(CCInfo));
2223      cast<InvokeInst>(I)->setAttributes(PAL);
2224      break;
2225    }
2226    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2227      I = new UnwindInst(Context);
2228      InstructionList.push_back(I);
2229      break;
2230    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2231      I = new UnreachableInst(Context);
2232      InstructionList.push_back(I);
2233      break;
2234    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2235      if (Record.size() < 1 || ((Record.size()-1)&1))
2236        return Error("Invalid PHI record");
2237      const Type *Ty = getTypeByID(Record[0]);
2238      if (!Ty) return Error("Invalid PHI record");
2239
2240      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2241      InstructionList.push_back(PN);
2242
2243      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2244        Value *V = getFnValueByID(Record[1+i], Ty);
2245        BasicBlock *BB = getBasicBlock(Record[2+i]);
2246        if (!V || !BB) return Error("Invalid PHI record");
2247        PN->addIncoming(V, BB);
2248      }
2249      I = PN;
2250      break;
2251    }
2252
2253    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2254      if (Record.size() != 4)
2255        return Error("Invalid ALLOCA record");
2256      const PointerType *Ty =
2257        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2258      const Type *OpTy = getTypeByID(Record[1]);
2259      Value *Size = getFnValueByID(Record[2], OpTy);
2260      unsigned Align = Record[3];
2261      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2262      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2263      InstructionList.push_back(I);
2264      break;
2265    }
2266    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2267      unsigned OpNum = 0;
2268      Value *Op;
2269      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2270          OpNum+2 != Record.size())
2271        return Error("Invalid LOAD record");
2272
2273      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2274      InstructionList.push_back(I);
2275      break;
2276    }
2277    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2278      unsigned OpNum = 0;
2279      Value *Val, *Ptr;
2280      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2281          getValue(Record, OpNum,
2282                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2283          OpNum+2 != Record.size())
2284        return Error("Invalid STORE record");
2285
2286      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2287      InstructionList.push_back(I);
2288      break;
2289    }
2290    case bitc::FUNC_CODE_INST_CALL2: {
2291      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2292      if (Record.size() < 3)
2293        return Error("Invalid CALL record");
2294
2295      AttrListPtr PAL = getAttributes(Record[0]);
2296      unsigned CCInfo = Record[1];
2297
2298      unsigned OpNum = 2;
2299      Value *Callee;
2300      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2301        return Error("Invalid CALL record");
2302
2303      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2304      const FunctionType *FTy = 0;
2305      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2306      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2307        return Error("Invalid CALL record");
2308
2309      SmallVector<Value*, 16> Args;
2310      // Read the fixed params.
2311      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2312        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2313          Args.push_back(getBasicBlock(Record[OpNum]));
2314        else
2315          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2316        if (Args.back() == 0) return Error("Invalid CALL record");
2317      }
2318
2319      // Read type/value pairs for varargs params.
2320      if (!FTy->isVarArg()) {
2321        if (OpNum != Record.size())
2322          return Error("Invalid CALL record");
2323      } else {
2324        while (OpNum != Record.size()) {
2325          Value *Op;
2326          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2327            return Error("Invalid CALL record");
2328          Args.push_back(Op);
2329        }
2330      }
2331
2332      I = CallInst::Create(Callee, Args.begin(), Args.end());
2333      InstructionList.push_back(I);
2334      cast<CallInst>(I)->setCallingConv(
2335        static_cast<CallingConv::ID>(CCInfo>>1));
2336      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2337      cast<CallInst>(I)->setAttributes(PAL);
2338      break;
2339    }
2340    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2341      if (Record.size() < 3)
2342        return Error("Invalid VAARG record");
2343      const Type *OpTy = getTypeByID(Record[0]);
2344      Value *Op = getFnValueByID(Record[1], OpTy);
2345      const Type *ResTy = getTypeByID(Record[2]);
2346      if (!OpTy || !Op || !ResTy)
2347        return Error("Invalid VAARG record");
2348      I = new VAArgInst(Op, ResTy);
2349      InstructionList.push_back(I);
2350      break;
2351    }
2352    }
2353
2354    // Add instruction to end of current BB.  If there is no current BB, reject
2355    // this file.
2356    if (CurBB == 0) {
2357      delete I;
2358      return Error("Invalid instruction with no BB");
2359    }
2360    CurBB->getInstList().push_back(I);
2361
2362    // If this was a terminator instruction, move to the next block.
2363    if (isa<TerminatorInst>(I)) {
2364      ++CurBBNo;
2365      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2366    }
2367
2368    // Non-void values get registered in the value table for future use.
2369    if (I && !I->getType()->isVoidTy())
2370      ValueList.AssignValue(I, NextValueNo++);
2371  }
2372
2373  // Check the function list for unresolved values.
2374  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2375    if (A->getParent() == 0) {
2376      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2377      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2378        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2379          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2380          delete A;
2381        }
2382      }
2383      return Error("Never resolved value found in function!");
2384    }
2385  }
2386
2387  // FIXME: Check for unresolved forward-declared metadata references
2388  // and clean up leaks.
2389
2390  // See if anything took the address of blocks in this function.  If so,
2391  // resolve them now.
2392  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2393    BlockAddrFwdRefs.find(F);
2394  if (BAFRI != BlockAddrFwdRefs.end()) {
2395    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2396    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2397      unsigned BlockIdx = RefList[i].first;
2398      if (BlockIdx >= FunctionBBs.size())
2399        return Error("Invalid blockaddress block #");
2400
2401      GlobalVariable *FwdRef = RefList[i].second;
2402      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2403      FwdRef->eraseFromParent();
2404    }
2405
2406    BlockAddrFwdRefs.erase(BAFRI);
2407  }
2408
2409  // Trim the value list down to the size it was before we parsed this function.
2410  ValueList.shrinkTo(ModuleValueListSize);
2411  MDValueList.shrinkTo(ModuleMDValueListSize);
2412  std::vector<BasicBlock*>().swap(FunctionBBs);
2413  return false;
2414}
2415
2416//===----------------------------------------------------------------------===//
2417// GVMaterializer implementation
2418//===----------------------------------------------------------------------===//
2419
2420
2421bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2422  if (const Function *F = dyn_cast<Function>(GV)) {
2423    return F->isDeclaration() &&
2424      DeferredFunctionInfo.count(const_cast<Function*>(F));
2425  }
2426  return false;
2427}
2428
2429bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2430  Function *F = dyn_cast<Function>(GV);
2431  // If it's not a function or is already material, ignore the request.
2432  if (!F || !F->isMaterializable()) return false;
2433
2434  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2435  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2436
2437  // Move the bit stream to the saved position of the deferred function body.
2438  Stream.JumpToBit(DFII->second);
2439
2440  if (ParseFunctionBody(F)) {
2441    if (ErrInfo) *ErrInfo = ErrorString;
2442    return true;
2443  }
2444
2445  // Upgrade any old intrinsic calls in the function.
2446  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2447       E = UpgradedIntrinsics.end(); I != E; ++I) {
2448    if (I->first != I->second) {
2449      for (Value::use_iterator UI = I->first->use_begin(),
2450           UE = I->first->use_end(); UI != UE; ) {
2451        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2452          UpgradeIntrinsicCall(CI, I->second);
2453      }
2454    }
2455  }
2456
2457  return false;
2458}
2459
2460bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2461  const Function *F = dyn_cast<Function>(GV);
2462  if (!F || F->isDeclaration())
2463    return false;
2464  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2465}
2466
2467void BitcodeReader::Dematerialize(GlobalValue *GV) {
2468  Function *F = dyn_cast<Function>(GV);
2469  // If this function isn't dematerializable, this is a noop.
2470  if (!F || !isDematerializable(F))
2471    return;
2472
2473  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2474
2475  // Just forget the function body, we can remat it later.
2476  F->deleteBody();
2477}
2478
2479
2480bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2481  assert(M == TheModule &&
2482         "Can only Materialize the Module this BitcodeReader is attached to.");
2483  // Iterate over the module, deserializing any functions that are still on
2484  // disk.
2485  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2486       F != E; ++F)
2487    if (F->isMaterializable() &&
2488        Materialize(F, ErrInfo))
2489      return true;
2490
2491  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2492  // delete the old functions to clean up. We can't do this unless the entire
2493  // module is materialized because there could always be another function body
2494  // with calls to the old function.
2495  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2496       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2497    if (I->first != I->second) {
2498      for (Value::use_iterator UI = I->first->use_begin(),
2499           UE = I->first->use_end(); UI != UE; ) {
2500        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2501          UpgradeIntrinsicCall(CI, I->second);
2502      }
2503      if (!I->first->use_empty())
2504        I->first->replaceAllUsesWith(I->second);
2505      I->first->eraseFromParent();
2506    }
2507  }
2508  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2509
2510  // Check debug info intrinsics.
2511  CheckDebugInfoIntrinsics(TheModule);
2512
2513  return false;
2514}
2515
2516
2517//===----------------------------------------------------------------------===//
2518// External interface
2519//===----------------------------------------------------------------------===//
2520
2521/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2522///
2523Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2524                                   LLVMContext& Context,
2525                                   std::string *ErrMsg) {
2526  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2527  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2528  M->setMaterializer(R);
2529  if (R->ParseBitcodeInto(M)) {
2530    if (ErrMsg)
2531      *ErrMsg = R->getErrorString();
2532
2533    delete M;  // Also deletes R.
2534    return 0;
2535  }
2536  // Have the BitcodeReader dtor delete 'Buffer'.
2537  R->setBufferOwned(true);
2538  return M;
2539}
2540
2541/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2542/// If an error occurs, return null and fill in *ErrMsg if non-null.
2543Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2544                               std::string *ErrMsg){
2545  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2546  if (!M) return 0;
2547
2548  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2549  // there was an error.
2550  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2551
2552  // Read in the entire module, and destroy the BitcodeReader.
2553  if (M->MaterializeAllPermanently(ErrMsg)) {
2554    delete M;
2555    return 0;
2556  }
2557
2558  return M;
2559}
2560
2561std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2562                                         LLVMContext& Context,
2563                                         std::string *ErrMsg) {
2564  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2565  // Don't let the BitcodeReader dtor delete 'Buffer'.
2566  R->setBufferOwned(false);
2567
2568  std::string Triple("");
2569  if (R->ParseTriple(Triple))
2570    if (ErrMsg)
2571      *ErrMsg = R->getErrorString();
2572
2573  delete R;
2574  return Triple;
2575}
2576