BitcodeReader.cpp revision a3500da5592aee83675d6714d4f1e9d5ad96d1f2
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/MDNode.h"
22#include "llvm/Module.h"
23#include "llvm/Operator.h"
24#include "llvm/AutoUpgrade.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/MemoryBuffer.h"
29#include "llvm/OperandTraits.h"
30using namespace llvm;
31
32void BitcodeReader::FreeState() {
33  delete Buffer;
34  Buffer = 0;
35  std::vector<PATypeHolder>().swap(TypeList);
36  ValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42}
43
44//===----------------------------------------------------------------------===//
45//  Helper functions to implement forward reference resolution, etc.
46//===----------------------------------------------------------------------===//
47
48/// ConvertToString - Convert a string from a record into an std::string, return
49/// true on failure.
50template<typename StrTy>
51static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                            StrTy &Result) {
53  if (Idx > Record.size())
54    return true;
55
56  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57    Result += (char)Record[i];
58  return false;
59}
60
61static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62  switch (Val) {
63  default: // Map unknown/new linkages to external
64  case 0:  return GlobalValue::ExternalLinkage;
65  case 1:  return GlobalValue::WeakAnyLinkage;
66  case 2:  return GlobalValue::AppendingLinkage;
67  case 3:  return GlobalValue::InternalLinkage;
68  case 4:  return GlobalValue::LinkOnceAnyLinkage;
69  case 5:  return GlobalValue::DLLImportLinkage;
70  case 6:  return GlobalValue::DLLExportLinkage;
71  case 7:  return GlobalValue::ExternalWeakLinkage;
72  case 8:  return GlobalValue::CommonLinkage;
73  case 9:  return GlobalValue::PrivateLinkage;
74  case 10: return GlobalValue::WeakODRLinkage;
75  case 11: return GlobalValue::LinkOnceODRLinkage;
76  case 12: return GlobalValue::AvailableExternallyLinkage;
77  case 13: return GlobalValue::LinkerPrivateLinkage;
78  }
79}
80
81static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
82  switch (Val) {
83  default: // Map unknown visibilities to default.
84  case 0: return GlobalValue::DefaultVisibility;
85  case 1: return GlobalValue::HiddenVisibility;
86  case 2: return GlobalValue::ProtectedVisibility;
87  }
88}
89
90static int GetDecodedCastOpcode(unsigned Val) {
91  switch (Val) {
92  default: return -1;
93  case bitc::CAST_TRUNC   : return Instruction::Trunc;
94  case bitc::CAST_ZEXT    : return Instruction::ZExt;
95  case bitc::CAST_SEXT    : return Instruction::SExt;
96  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
97  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
98  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
99  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
100  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
101  case bitc::CAST_FPEXT   : return Instruction::FPExt;
102  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
103  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
104  case bitc::CAST_BITCAST : return Instruction::BitCast;
105  }
106}
107static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
108  switch (Val) {
109  default: return -1;
110  case bitc::BINOP_ADD:
111    return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
112  case bitc::BINOP_SUB:
113    return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
114  case bitc::BINOP_MUL:
115    return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
116  case bitc::BINOP_UDIV: return Instruction::UDiv;
117  case bitc::BINOP_SDIV:
118    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
119  case bitc::BINOP_UREM: return Instruction::URem;
120  case bitc::BINOP_SREM:
121    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
122  case bitc::BINOP_SHL:  return Instruction::Shl;
123  case bitc::BINOP_LSHR: return Instruction::LShr;
124  case bitc::BINOP_ASHR: return Instruction::AShr;
125  case bitc::BINOP_AND:  return Instruction::And;
126  case bitc::BINOP_OR:   return Instruction::Or;
127  case bitc::BINOP_XOR:  return Instruction::Xor;
128  }
129}
130
131namespace llvm {
132namespace {
133  /// @brief A class for maintaining the slot number definition
134  /// as a placeholder for the actual definition for forward constants defs.
135  class ConstantPlaceHolder : public ConstantExpr {
136    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
137    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
138  public:
139    // allocate space for exactly one operand
140    void *operator new(size_t s) {
141      return User::operator new(s, 1);
142    }
143    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
144      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
145      Op<0>() = Context.getUndef(Type::Int32Ty);
146    }
147
148    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
149    static inline bool classof(const ConstantPlaceHolder *) { return true; }
150    static bool classof(const Value *V) {
151      return isa<ConstantExpr>(V) &&
152             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
153    }
154
155
156    /// Provide fast operand accessors
157    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
158  };
159}
160
161// FIXME: can we inherit this from ConstantExpr?
162template <>
163struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
164};
165}
166
167
168void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
169  if (Idx == size()) {
170    push_back(V);
171    return;
172  }
173
174  if (Idx >= size())
175    resize(Idx+1);
176
177  WeakVH &OldV = ValuePtrs[Idx];
178  if (OldV == 0) {
179    OldV = V;
180    return;
181  }
182
183  // Handle constants and non-constants (e.g. instrs) differently for
184  // efficiency.
185  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
186    ResolveConstants.push_back(std::make_pair(PHC, Idx));
187    OldV = V;
188  } else {
189    // If there was a forward reference to this value, replace it.
190    Value *PrevVal = OldV;
191    OldV->replaceAllUsesWith(V);
192    delete PrevVal;
193  }
194}
195
196
197Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
198                                                    const Type *Ty) {
199  if (Idx >= size())
200    resize(Idx + 1);
201
202  if (Value *V = ValuePtrs[Idx]) {
203    assert(Ty == V->getType() && "Type mismatch in constant table!");
204    return cast<Constant>(V);
205  }
206
207  // Create and return a placeholder, which will later be RAUW'd.
208  Constant *C = new ConstantPlaceHolder(Ty, Context);
209  ValuePtrs[Idx] = C;
210  return C;
211}
212
213Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
214  if (Idx >= size())
215    resize(Idx + 1);
216
217  if (Value *V = ValuePtrs[Idx]) {
218    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
219    return V;
220  }
221
222  // No type specified, must be invalid reference.
223  if (Ty == 0) return 0;
224
225  // Create and return a placeholder, which will later be RAUW'd.
226  Value *V = new Argument(Ty);
227  ValuePtrs[Idx] = V;
228  return V;
229}
230
231/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
232/// resolves any forward references.  The idea behind this is that we sometimes
233/// get constants (such as large arrays) which reference *many* forward ref
234/// constants.  Replacing each of these causes a lot of thrashing when
235/// building/reuniquing the constant.  Instead of doing this, we look at all the
236/// uses and rewrite all the place holders at once for any constant that uses
237/// a placeholder.
238void BitcodeReaderValueList::ResolveConstantForwardRefs() {
239  // Sort the values by-pointer so that they are efficient to look up with a
240  // binary search.
241  std::sort(ResolveConstants.begin(), ResolveConstants.end());
242
243  SmallVector<Constant*, 64> NewOps;
244
245  while (!ResolveConstants.empty()) {
246    Value *RealVal = operator[](ResolveConstants.back().second);
247    Constant *Placeholder = ResolveConstants.back().first;
248    ResolveConstants.pop_back();
249
250    // Loop over all users of the placeholder, updating them to reference the
251    // new value.  If they reference more than one placeholder, update them all
252    // at once.
253    while (!Placeholder->use_empty()) {
254      Value::use_iterator UI = Placeholder->use_begin();
255
256      // If the using object isn't uniqued, just update the operands.  This
257      // handles instructions and initializers for global variables.
258      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
259        UI.getUse().set(RealVal);
260        continue;
261      }
262
263      // Otherwise, we have a constant that uses the placeholder.  Replace that
264      // constant with a new constant that has *all* placeholder uses updated.
265      Constant *UserC = cast<Constant>(*UI);
266      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
267           I != E; ++I) {
268        Value *NewOp;
269        if (!isa<ConstantPlaceHolder>(*I)) {
270          // Not a placeholder reference.
271          NewOp = *I;
272        } else if (*I == Placeholder) {
273          // Common case is that it just references this one placeholder.
274          NewOp = RealVal;
275        } else {
276          // Otherwise, look up the placeholder in ResolveConstants.
277          ResolveConstantsTy::iterator It =
278            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
279                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
280                                                            0));
281          assert(It != ResolveConstants.end() && It->first == *I);
282          NewOp = operator[](It->second);
283        }
284
285        NewOps.push_back(cast<Constant>(NewOp));
286      }
287
288      // Make the new constant.
289      Constant *NewC;
290      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
291        NewC = Context.getConstantArray(UserCA->getType(), &NewOps[0],
292                                        NewOps.size());
293      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
294        NewC = Context.getConstantStruct(&NewOps[0], NewOps.size(),
295                                         UserCS->getType()->isPacked());
296      } else if (isa<ConstantVector>(UserC)) {
297        NewC = Context.getConstantVector(&NewOps[0], NewOps.size());
298      } else {
299        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
300        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
301                                                          NewOps.size());
302      }
303
304      UserC->replaceAllUsesWith(NewC);
305      UserC->destroyConstant();
306      NewOps.clear();
307    }
308
309    // Update all ValueHandles, they should be the only users at this point.
310    Placeholder->replaceAllUsesWith(RealVal);
311    delete Placeholder;
312  }
313}
314
315
316const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
317  // If the TypeID is in range, return it.
318  if (ID < TypeList.size())
319    return TypeList[ID].get();
320  if (!isTypeTable) return 0;
321
322  // The type table allows forward references.  Push as many Opaque types as
323  // needed to get up to ID.
324  while (TypeList.size() <= ID)
325    TypeList.push_back(Context.getOpaqueType());
326  return TypeList.back().get();
327}
328
329//===----------------------------------------------------------------------===//
330//  Functions for parsing blocks from the bitcode file
331//===----------------------------------------------------------------------===//
332
333bool BitcodeReader::ParseAttributeBlock() {
334  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
335    return Error("Malformed block record");
336
337  if (!MAttributes.empty())
338    return Error("Multiple PARAMATTR blocks found!");
339
340  SmallVector<uint64_t, 64> Record;
341
342  SmallVector<AttributeWithIndex, 8> Attrs;
343
344  // Read all the records.
345  while (1) {
346    unsigned Code = Stream.ReadCode();
347    if (Code == bitc::END_BLOCK) {
348      if (Stream.ReadBlockEnd())
349        return Error("Error at end of PARAMATTR block");
350      return false;
351    }
352
353    if (Code == bitc::ENTER_SUBBLOCK) {
354      // No known subblocks, always skip them.
355      Stream.ReadSubBlockID();
356      if (Stream.SkipBlock())
357        return Error("Malformed block record");
358      continue;
359    }
360
361    if (Code == bitc::DEFINE_ABBREV) {
362      Stream.ReadAbbrevRecord();
363      continue;
364    }
365
366    // Read a record.
367    Record.clear();
368    switch (Stream.ReadRecord(Code, Record)) {
369    default:  // Default behavior: ignore.
370      break;
371    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
372      if (Record.size() & 1)
373        return Error("Invalid ENTRY record");
374
375      // FIXME : Remove this autoupgrade code in LLVM 3.0.
376      // If Function attributes are using index 0 then transfer them
377      // to index ~0. Index 0 is used for return value attributes but used to be
378      // used for function attributes.
379      Attributes RetAttribute = Attribute::None;
380      Attributes FnAttribute = Attribute::None;
381      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
382        // FIXME: remove in LLVM 3.0
383        // The alignment is stored as a 16-bit raw value from bits 31--16.
384        // We shift the bits above 31 down by 11 bits.
385
386        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
387        if (Alignment && !isPowerOf2_32(Alignment))
388          return Error("Alignment is not a power of two.");
389
390        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
391        if (Alignment)
392          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
393        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
394        Record[i+1] = ReconstitutedAttr;
395
396        if (Record[i] == 0)
397          RetAttribute = Record[i+1];
398        else if (Record[i] == ~0U)
399          FnAttribute = Record[i+1];
400      }
401
402      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
403                              Attribute::ReadOnly|Attribute::ReadNone);
404
405      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
406          (RetAttribute & OldRetAttrs) != 0) {
407        if (FnAttribute == Attribute::None) { // add a slot so they get added.
408          Record.push_back(~0U);
409          Record.push_back(0);
410        }
411
412        FnAttribute  |= RetAttribute & OldRetAttrs;
413        RetAttribute &= ~OldRetAttrs;
414      }
415
416      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
417        if (Record[i] == 0) {
418          if (RetAttribute != Attribute::None)
419            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
420        } else if (Record[i] == ~0U) {
421          if (FnAttribute != Attribute::None)
422            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
423        } else if (Record[i+1] != Attribute::None)
424          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
425      }
426
427      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
428      Attrs.clear();
429      break;
430    }
431    }
432  }
433}
434
435
436bool BitcodeReader::ParseTypeTable() {
437  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
438    return Error("Malformed block record");
439
440  if (!TypeList.empty())
441    return Error("Multiple TYPE_BLOCKs found!");
442
443  SmallVector<uint64_t, 64> Record;
444  unsigned NumRecords = 0;
445
446  // Read all the records for this type table.
447  while (1) {
448    unsigned Code = Stream.ReadCode();
449    if (Code == bitc::END_BLOCK) {
450      if (NumRecords != TypeList.size())
451        return Error("Invalid type forward reference in TYPE_BLOCK");
452      if (Stream.ReadBlockEnd())
453        return Error("Error at end of type table block");
454      return false;
455    }
456
457    if (Code == bitc::ENTER_SUBBLOCK) {
458      // No known subblocks, always skip them.
459      Stream.ReadSubBlockID();
460      if (Stream.SkipBlock())
461        return Error("Malformed block record");
462      continue;
463    }
464
465    if (Code == bitc::DEFINE_ABBREV) {
466      Stream.ReadAbbrevRecord();
467      continue;
468    }
469
470    // Read a record.
471    Record.clear();
472    const Type *ResultTy = 0;
473    switch (Stream.ReadRecord(Code, Record)) {
474    default:  // Default behavior: unknown type.
475      ResultTy = 0;
476      break;
477    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
478      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
479      // type list.  This allows us to reserve space.
480      if (Record.size() < 1)
481        return Error("Invalid TYPE_CODE_NUMENTRY record");
482      TypeList.reserve(Record[0]);
483      continue;
484    case bitc::TYPE_CODE_VOID:      // VOID
485      ResultTy = Type::VoidTy;
486      break;
487    case bitc::TYPE_CODE_FLOAT:     // FLOAT
488      ResultTy = Type::FloatTy;
489      break;
490    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
491      ResultTy = Type::DoubleTy;
492      break;
493    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
494      ResultTy = Type::X86_FP80Ty;
495      break;
496    case bitc::TYPE_CODE_FP128:     // FP128
497      ResultTy = Type::FP128Ty;
498      break;
499    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
500      ResultTy = Type::PPC_FP128Ty;
501      break;
502    case bitc::TYPE_CODE_LABEL:     // LABEL
503      ResultTy = Type::LabelTy;
504      break;
505    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
506      ResultTy = 0;
507      break;
508    case bitc::TYPE_CODE_METADATA:  // METADATA
509      ResultTy = Type::MetadataTy;
510      break;
511    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
512      if (Record.size() < 1)
513        return Error("Invalid Integer type record");
514
515      ResultTy = Context.getIntegerType(Record[0]);
516      break;
517    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
518                                    //          [pointee type, address space]
519      if (Record.size() < 1)
520        return Error("Invalid POINTER type record");
521      unsigned AddressSpace = 0;
522      if (Record.size() == 2)
523        AddressSpace = Record[1];
524      ResultTy = Context.getPointerType(getTypeByID(Record[0], true),
525                                        AddressSpace);
526      break;
527    }
528    case bitc::TYPE_CODE_FUNCTION: {
529      // FIXME: attrid is dead, remove it in LLVM 3.0
530      // FUNCTION: [vararg, attrid, retty, paramty x N]
531      if (Record.size() < 3)
532        return Error("Invalid FUNCTION type record");
533      std::vector<const Type*> ArgTys;
534      for (unsigned i = 3, e = Record.size(); i != e; ++i)
535        ArgTys.push_back(getTypeByID(Record[i], true));
536
537      ResultTy = Context.getFunctionType(getTypeByID(Record[2], true), ArgTys,
538                                   Record[0]);
539      break;
540    }
541    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
542      if (Record.size() < 1)
543        return Error("Invalid STRUCT type record");
544      std::vector<const Type*> EltTys;
545      for (unsigned i = 1, e = Record.size(); i != e; ++i)
546        EltTys.push_back(getTypeByID(Record[i], true));
547      ResultTy = Context.getStructType(EltTys, Record[0]);
548      break;
549    }
550    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
551      if (Record.size() < 2)
552        return Error("Invalid ARRAY type record");
553      ResultTy = Context.getArrayType(getTypeByID(Record[1], true), Record[0]);
554      break;
555    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
556      if (Record.size() < 2)
557        return Error("Invalid VECTOR type record");
558      ResultTy = Context.getVectorType(getTypeByID(Record[1], true), Record[0]);
559      break;
560    }
561
562    if (NumRecords == TypeList.size()) {
563      // If this is a new type slot, just append it.
564      TypeList.push_back(ResultTy ? ResultTy : Context.getOpaqueType());
565      ++NumRecords;
566    } else if (ResultTy == 0) {
567      // Otherwise, this was forward referenced, so an opaque type was created,
568      // but the result type is actually just an opaque.  Leave the one we
569      // created previously.
570      ++NumRecords;
571    } else {
572      // Otherwise, this was forward referenced, so an opaque type was created.
573      // Resolve the opaque type to the real type now.
574      assert(NumRecords < TypeList.size() && "Typelist imbalance");
575      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
576
577      // Don't directly push the new type on the Tab. Instead we want to replace
578      // the opaque type we previously inserted with the new concrete value. The
579      // refinement from the abstract (opaque) type to the new type causes all
580      // uses of the abstract type to use the concrete type (NewTy). This will
581      // also cause the opaque type to be deleted.
582      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
583
584      // This should have replaced the old opaque type with the new type in the
585      // value table... or with a preexisting type that was already in the
586      // system.  Let's just make sure it did.
587      assert(TypeList[NumRecords-1].get() != OldTy &&
588             "refineAbstractType didn't work!");
589    }
590  }
591}
592
593
594bool BitcodeReader::ParseTypeSymbolTable() {
595  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
596    return Error("Malformed block record");
597
598  SmallVector<uint64_t, 64> Record;
599
600  // Read all the records for this type table.
601  std::string TypeName;
602  while (1) {
603    unsigned Code = Stream.ReadCode();
604    if (Code == bitc::END_BLOCK) {
605      if (Stream.ReadBlockEnd())
606        return Error("Error at end of type symbol table block");
607      return false;
608    }
609
610    if (Code == bitc::ENTER_SUBBLOCK) {
611      // No known subblocks, always skip them.
612      Stream.ReadSubBlockID();
613      if (Stream.SkipBlock())
614        return Error("Malformed block record");
615      continue;
616    }
617
618    if (Code == bitc::DEFINE_ABBREV) {
619      Stream.ReadAbbrevRecord();
620      continue;
621    }
622
623    // Read a record.
624    Record.clear();
625    switch (Stream.ReadRecord(Code, Record)) {
626    default:  // Default behavior: unknown type.
627      break;
628    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
629      if (ConvertToString(Record, 1, TypeName))
630        return Error("Invalid TST_ENTRY record");
631      unsigned TypeID = Record[0];
632      if (TypeID >= TypeList.size())
633        return Error("Invalid Type ID in TST_ENTRY record");
634
635      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
636      TypeName.clear();
637      break;
638    }
639  }
640}
641
642bool BitcodeReader::ParseValueSymbolTable() {
643  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
644    return Error("Malformed block record");
645
646  SmallVector<uint64_t, 64> Record;
647
648  // Read all the records for this value table.
649  SmallString<128> ValueName;
650  while (1) {
651    unsigned Code = Stream.ReadCode();
652    if (Code == bitc::END_BLOCK) {
653      if (Stream.ReadBlockEnd())
654        return Error("Error at end of value symbol table block");
655      return false;
656    }
657    if (Code == bitc::ENTER_SUBBLOCK) {
658      // No known subblocks, always skip them.
659      Stream.ReadSubBlockID();
660      if (Stream.SkipBlock())
661        return Error("Malformed block record");
662      continue;
663    }
664
665    if (Code == bitc::DEFINE_ABBREV) {
666      Stream.ReadAbbrevRecord();
667      continue;
668    }
669
670    // Read a record.
671    Record.clear();
672    switch (Stream.ReadRecord(Code, Record)) {
673    default:  // Default behavior: unknown type.
674      break;
675    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
676      if (ConvertToString(Record, 1, ValueName))
677        return Error("Invalid VST_ENTRY record");
678      unsigned ValueID = Record[0];
679      if (ValueID >= ValueList.size())
680        return Error("Invalid Value ID in VST_ENTRY record");
681      Value *V = ValueList[ValueID];
682
683      V->setName(&ValueName[0], ValueName.size());
684      ValueName.clear();
685      break;
686    }
687    case bitc::VST_CODE_BBENTRY: {
688      if (ConvertToString(Record, 1, ValueName))
689        return Error("Invalid VST_BBENTRY record");
690      BasicBlock *BB = getBasicBlock(Record[0]);
691      if (BB == 0)
692        return Error("Invalid BB ID in VST_BBENTRY record");
693
694      BB->setName(&ValueName[0], ValueName.size());
695      ValueName.clear();
696      break;
697    }
698    }
699  }
700}
701
702bool BitcodeReader::ParseMetadata() {
703  unsigned NextValueNo = ValueList.size();
704
705  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
706    return Error("Malformed block record");
707
708  SmallVector<uint64_t, 64> Record;
709
710  // Read all the records.
711  while (1) {
712    unsigned Code = Stream.ReadCode();
713    if (Code == bitc::END_BLOCK) {
714      if (Stream.ReadBlockEnd())
715        return Error("Error at end of PARAMATTR block");
716      return false;
717    }
718
719    if (Code == bitc::ENTER_SUBBLOCK) {
720      // No known subblocks, always skip them.
721      Stream.ReadSubBlockID();
722      if (Stream.SkipBlock())
723        return Error("Malformed block record");
724      continue;
725    }
726
727    if (Code == bitc::DEFINE_ABBREV) {
728      Stream.ReadAbbrevRecord();
729      continue;
730    }
731
732    // Read a record.
733    Record.clear();
734    switch (Stream.ReadRecord(Code, Record)) {
735    default:  // Default behavior: ignore.
736      break;
737    case bitc::METADATA_NODE: {
738      if (Record.empty() || Record.size() % 2 == 1)
739        return Error("Invalid METADATA_NODE record");
740
741      unsigned Size = Record.size();
742      SmallVector<Value*, 8> Elts;
743      for (unsigned i = 0; i != Size; i += 2) {
744        const Type *Ty = getTypeByID(Record[i], false);
745        if (Ty != Type::VoidTy)
746          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
747        else
748          Elts.push_back(NULL);
749      }
750      Value *V = Context.getMDNode(&Elts[0], Elts.size());
751      ValueList.AssignValue(V, NextValueNo++);
752      break;
753    }
754    case bitc::METADATA_STRING: {
755      unsigned MDStringLength = Record.size();
756      SmallString<8> String;
757      String.resize(MDStringLength);
758      for (unsigned i = 0; i != MDStringLength; ++i)
759        String[i] = Record[i];
760      Value *V =
761        Context.getMDString(String.c_str(), MDStringLength);
762      ValueList.AssignValue(V, NextValueNo++);
763      break;
764    }
765    }
766  }
767}
768
769/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
770/// the LSB for dense VBR encoding.
771static uint64_t DecodeSignRotatedValue(uint64_t V) {
772  if ((V & 1) == 0)
773    return V >> 1;
774  if (V != 1)
775    return -(V >> 1);
776  // There is no such thing as -0 with integers.  "-0" really means MININT.
777  return 1ULL << 63;
778}
779
780/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
781/// values and aliases that we can.
782bool BitcodeReader::ResolveGlobalAndAliasInits() {
783  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
784  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
785
786  GlobalInitWorklist.swap(GlobalInits);
787  AliasInitWorklist.swap(AliasInits);
788
789  while (!GlobalInitWorklist.empty()) {
790    unsigned ValID = GlobalInitWorklist.back().second;
791    if (ValID >= ValueList.size()) {
792      // Not ready to resolve this yet, it requires something later in the file.
793      GlobalInits.push_back(GlobalInitWorklist.back());
794    } else {
795      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
796        GlobalInitWorklist.back().first->setInitializer(C);
797      else
798        return Error("Global variable initializer is not a constant!");
799    }
800    GlobalInitWorklist.pop_back();
801  }
802
803  while (!AliasInitWorklist.empty()) {
804    unsigned ValID = AliasInitWorklist.back().second;
805    if (ValID >= ValueList.size()) {
806      AliasInits.push_back(AliasInitWorklist.back());
807    } else {
808      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
809        AliasInitWorklist.back().first->setAliasee(C);
810      else
811        return Error("Alias initializer is not a constant!");
812    }
813    AliasInitWorklist.pop_back();
814  }
815  return false;
816}
817
818static void SetOptimizationFlags(Value *V, uint64_t Flags) {
819  if (OverflowingBinaryOperator *OBO =
820        dyn_cast<OverflowingBinaryOperator>(V)) {
821    if (Flags & (1 << bitc::OBO_NO_SIGNED_OVERFLOW))
822      OBO->setHasNoSignedOverflow(true);
823    if (Flags & (1 << bitc::OBO_NO_UNSIGNED_OVERFLOW))
824      OBO->setHasNoUnsignedOverflow(true);
825  } else if (SDivOperator *Div = dyn_cast<SDivOperator>(V)) {
826    if (Flags & (1 << bitc::SDIV_EXACT))
827      Div->setIsExact(true);
828  }
829}
830
831bool BitcodeReader::ParseConstants() {
832  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
833    return Error("Malformed block record");
834
835  SmallVector<uint64_t, 64> Record;
836
837  // Read all the records for this value table.
838  const Type *CurTy = Type::Int32Ty;
839  unsigned NextCstNo = ValueList.size();
840  while (1) {
841    unsigned Code = Stream.ReadCode();
842    if (Code == bitc::END_BLOCK)
843      break;
844
845    if (Code == bitc::ENTER_SUBBLOCK) {
846      // No known subblocks, always skip them.
847      Stream.ReadSubBlockID();
848      if (Stream.SkipBlock())
849        return Error("Malformed block record");
850      continue;
851    }
852
853    if (Code == bitc::DEFINE_ABBREV) {
854      Stream.ReadAbbrevRecord();
855      continue;
856    }
857
858    // Read a record.
859    Record.clear();
860    Value *V = 0;
861    unsigned BitCode = Stream.ReadRecord(Code, Record);
862    switch (BitCode) {
863    default:  // Default behavior: unknown constant
864    case bitc::CST_CODE_UNDEF:     // UNDEF
865      V = Context.getUndef(CurTy);
866      break;
867    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
868      if (Record.empty())
869        return Error("Malformed CST_SETTYPE record");
870      if (Record[0] >= TypeList.size())
871        return Error("Invalid Type ID in CST_SETTYPE record");
872      CurTy = TypeList[Record[0]];
873      continue;  // Skip the ValueList manipulation.
874    case bitc::CST_CODE_NULL:      // NULL
875      V = Context.getNullValue(CurTy);
876      break;
877    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
878      if (!isa<IntegerType>(CurTy) || Record.empty())
879        return Error("Invalid CST_INTEGER record");
880      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
881      break;
882    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
883      if (!isa<IntegerType>(CurTy) || Record.empty())
884        return Error("Invalid WIDE_INTEGER record");
885
886      unsigned NumWords = Record.size();
887      SmallVector<uint64_t, 8> Words;
888      Words.resize(NumWords);
889      for (unsigned i = 0; i != NumWords; ++i)
890        Words[i] = DecodeSignRotatedValue(Record[i]);
891      V = ConstantInt::get(Context,
892                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
893                           NumWords, &Words[0]));
894      break;
895    }
896    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
897      if (Record.empty())
898        return Error("Invalid FLOAT record");
899      if (CurTy == Type::FloatTy)
900        V = Context.getConstantFP(APFloat(APInt(32, (uint32_t)Record[0])));
901      else if (CurTy == Type::DoubleTy)
902        V = Context.getConstantFP(APFloat(APInt(64, Record[0])));
903      else if (CurTy == Type::X86_FP80Ty) {
904        // Bits are not stored the same way as a normal i80 APInt, compensate.
905        uint64_t Rearrange[2];
906        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
907        Rearrange[1] = Record[0] >> 48;
908        V = Context.getConstantFP(APFloat(APInt(80, 2, Rearrange)));
909      } else if (CurTy == Type::FP128Ty)
910        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0]), true));
911      else if (CurTy == Type::PPC_FP128Ty)
912        V = Context.getConstantFP(APFloat(APInt(128, 2, &Record[0])));
913      else
914        V = Context.getUndef(CurTy);
915      break;
916    }
917
918    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
919      if (Record.empty())
920        return Error("Invalid CST_AGGREGATE record");
921
922      unsigned Size = Record.size();
923      std::vector<Constant*> Elts;
924
925      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
926        for (unsigned i = 0; i != Size; ++i)
927          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
928                                                     STy->getElementType(i)));
929        V = Context.getConstantStruct(STy, Elts);
930      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
931        const Type *EltTy = ATy->getElementType();
932        for (unsigned i = 0; i != Size; ++i)
933          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
934        V = Context.getConstantArray(ATy, Elts);
935      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
936        const Type *EltTy = VTy->getElementType();
937        for (unsigned i = 0; i != Size; ++i)
938          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
939        V = Context.getConstantVector(Elts);
940      } else {
941        V = Context.getUndef(CurTy);
942      }
943      break;
944    }
945    case bitc::CST_CODE_STRING: { // STRING: [values]
946      if (Record.empty())
947        return Error("Invalid CST_AGGREGATE record");
948
949      const ArrayType *ATy = cast<ArrayType>(CurTy);
950      const Type *EltTy = ATy->getElementType();
951
952      unsigned Size = Record.size();
953      std::vector<Constant*> Elts;
954      for (unsigned i = 0; i != Size; ++i)
955        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
956      V = Context.getConstantArray(ATy, Elts);
957      break;
958    }
959    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
960      if (Record.empty())
961        return Error("Invalid CST_AGGREGATE record");
962
963      const ArrayType *ATy = cast<ArrayType>(CurTy);
964      const Type *EltTy = ATy->getElementType();
965
966      unsigned Size = Record.size();
967      std::vector<Constant*> Elts;
968      for (unsigned i = 0; i != Size; ++i)
969        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
970      Elts.push_back(Context.getNullValue(EltTy));
971      V = Context.getConstantArray(ATy, Elts);
972      break;
973    }
974    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
975      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
976      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
977      if (Opc < 0) {
978        V = Context.getUndef(CurTy);  // Unknown binop.
979      } else {
980        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
981        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
982        V = Context.getConstantExpr(Opc, LHS, RHS);
983      }
984      if (Record.size() >= 4)
985        SetOptimizationFlags(V, Record[3]);
986      break;
987    }
988    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
989      if (Record.size() < 3) return Error("Invalid CE_CAST record");
990      int Opc = GetDecodedCastOpcode(Record[0]);
991      if (Opc < 0) {
992        V = Context.getUndef(CurTy);  // Unknown cast.
993      } else {
994        const Type *OpTy = getTypeByID(Record[1]);
995        if (!OpTy) return Error("Invalid CE_CAST record");
996        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
997        V = Context.getConstantExprCast(Opc, Op, CurTy);
998      }
999      break;
1000    }
1001    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1002      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1003      SmallVector<Constant*, 16> Elts;
1004      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1005        const Type *ElTy = getTypeByID(Record[i]);
1006        if (!ElTy) return Error("Invalid CE_GEP record");
1007        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1008      }
1009      V = Context.getConstantExprGetElementPtr(Elts[0], &Elts[1],
1010                                               Elts.size()-1);
1011      break;
1012    }
1013    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1014      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1015      V = Context.getConstantExprSelect(ValueList.getConstantFwdRef(Record[0],
1016                                                              Type::Int1Ty),
1017                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1018                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1019      break;
1020    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1021      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1022      const VectorType *OpTy =
1023        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1024      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1025      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1026      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1027      V = Context.getConstantExprExtractElement(Op0, Op1);
1028      break;
1029    }
1030    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1031      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1032      if (Record.size() < 3 || OpTy == 0)
1033        return Error("Invalid CE_INSERTELT record");
1034      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1035      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1036                                                  OpTy->getElementType());
1037      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
1038      V = Context.getConstantExprInsertElement(Op0, Op1, Op2);
1039      break;
1040    }
1041    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1042      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1043      if (Record.size() < 3 || OpTy == 0)
1044        return Error("Invalid CE_SHUFFLEVEC record");
1045      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1046      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1047      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1048                                                 OpTy->getNumElements());
1049      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1050      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1051      break;
1052    }
1053    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1054      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1055      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1056      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1057        return Error("Invalid CE_SHUFVEC_EX record");
1058      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1059      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1060      const Type *ShufTy = Context.getVectorType(Type::Int32Ty,
1061                                                 RTy->getNumElements());
1062      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1063      V = Context.getConstantExprShuffleVector(Op0, Op1, Op2);
1064      break;
1065    }
1066    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1067      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1068      const Type *OpTy = getTypeByID(Record[0]);
1069      if (OpTy == 0) return Error("Invalid CE_CMP record");
1070      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1071      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1072
1073      if (OpTy->isFloatingPoint())
1074        V = Context.getConstantExprFCmp(Record[3], Op0, Op1);
1075      else
1076        V = Context.getConstantExprICmp(Record[3], Op0, Op1);
1077      break;
1078    }
1079    case bitc::CST_CODE_INLINEASM: {
1080      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1081      std::string AsmStr, ConstrStr;
1082      bool HasSideEffects = Record[0];
1083      unsigned AsmStrSize = Record[1];
1084      if (2+AsmStrSize >= Record.size())
1085        return Error("Invalid INLINEASM record");
1086      unsigned ConstStrSize = Record[2+AsmStrSize];
1087      if (3+AsmStrSize+ConstStrSize > Record.size())
1088        return Error("Invalid INLINEASM record");
1089
1090      for (unsigned i = 0; i != AsmStrSize; ++i)
1091        AsmStr += (char)Record[2+i];
1092      for (unsigned i = 0; i != ConstStrSize; ++i)
1093        ConstrStr += (char)Record[3+AsmStrSize+i];
1094      const PointerType *PTy = cast<PointerType>(CurTy);
1095      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1096                         AsmStr, ConstrStr, HasSideEffects);
1097      break;
1098    }
1099    }
1100
1101    ValueList.AssignValue(V, NextCstNo);
1102    ++NextCstNo;
1103  }
1104
1105  if (NextCstNo != ValueList.size())
1106    return Error("Invalid constant reference!");
1107
1108  if (Stream.ReadBlockEnd())
1109    return Error("Error at end of constants block");
1110
1111  // Once all the constants have been read, go through and resolve forward
1112  // references.
1113  ValueList.ResolveConstantForwardRefs();
1114  return false;
1115}
1116
1117/// RememberAndSkipFunctionBody - When we see the block for a function body,
1118/// remember where it is and then skip it.  This lets us lazily deserialize the
1119/// functions.
1120bool BitcodeReader::RememberAndSkipFunctionBody() {
1121  // Get the function we are talking about.
1122  if (FunctionsWithBodies.empty())
1123    return Error("Insufficient function protos");
1124
1125  Function *Fn = FunctionsWithBodies.back();
1126  FunctionsWithBodies.pop_back();
1127
1128  // Save the current stream state.
1129  uint64_t CurBit = Stream.GetCurrentBitNo();
1130  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1131
1132  // Set the functions linkage to GhostLinkage so we know it is lazily
1133  // deserialized.
1134  Fn->setLinkage(GlobalValue::GhostLinkage);
1135
1136  // Skip over the function block for now.
1137  if (Stream.SkipBlock())
1138    return Error("Malformed block record");
1139  return false;
1140}
1141
1142bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1143  // Reject multiple MODULE_BLOCK's in a single bitstream.
1144  if (TheModule)
1145    return Error("Multiple MODULE_BLOCKs in same stream");
1146
1147  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1148    return Error("Malformed block record");
1149
1150  // Otherwise, create the module.
1151  TheModule = new Module(ModuleID, Context);
1152
1153  SmallVector<uint64_t, 64> Record;
1154  std::vector<std::string> SectionTable;
1155  std::vector<std::string> GCTable;
1156
1157  // Read all the records for this module.
1158  while (!Stream.AtEndOfStream()) {
1159    unsigned Code = Stream.ReadCode();
1160    if (Code == bitc::END_BLOCK) {
1161      if (Stream.ReadBlockEnd())
1162        return Error("Error at end of module block");
1163
1164      // Patch the initializers for globals and aliases up.
1165      ResolveGlobalAndAliasInits();
1166      if (!GlobalInits.empty() || !AliasInits.empty())
1167        return Error("Malformed global initializer set");
1168      if (!FunctionsWithBodies.empty())
1169        return Error("Too few function bodies found");
1170
1171      // Look for intrinsic functions which need to be upgraded at some point
1172      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1173           FI != FE; ++FI) {
1174        Function* NewFn;
1175        if (UpgradeIntrinsicFunction(FI, NewFn))
1176          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1177      }
1178
1179      // Force deallocation of memory for these vectors to favor the client that
1180      // want lazy deserialization.
1181      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1182      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1183      std::vector<Function*>().swap(FunctionsWithBodies);
1184      return false;
1185    }
1186
1187    if (Code == bitc::ENTER_SUBBLOCK) {
1188      switch (Stream.ReadSubBlockID()) {
1189      default:  // Skip unknown content.
1190        if (Stream.SkipBlock())
1191          return Error("Malformed block record");
1192        break;
1193      case bitc::BLOCKINFO_BLOCK_ID:
1194        if (Stream.ReadBlockInfoBlock())
1195          return Error("Malformed BlockInfoBlock");
1196        break;
1197      case bitc::PARAMATTR_BLOCK_ID:
1198        if (ParseAttributeBlock())
1199          return true;
1200        break;
1201      case bitc::TYPE_BLOCK_ID:
1202        if (ParseTypeTable())
1203          return true;
1204        break;
1205      case bitc::TYPE_SYMTAB_BLOCK_ID:
1206        if (ParseTypeSymbolTable())
1207          return true;
1208        break;
1209      case bitc::VALUE_SYMTAB_BLOCK_ID:
1210        if (ParseValueSymbolTable())
1211          return true;
1212        break;
1213      case bitc::CONSTANTS_BLOCK_ID:
1214        if (ParseConstants() || ResolveGlobalAndAliasInits())
1215          return true;
1216        break;
1217      case bitc::METADATA_BLOCK_ID:
1218        if (ParseMetadata())
1219          return true;
1220        break;
1221      case bitc::FUNCTION_BLOCK_ID:
1222        // If this is the first function body we've seen, reverse the
1223        // FunctionsWithBodies list.
1224        if (!HasReversedFunctionsWithBodies) {
1225          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1226          HasReversedFunctionsWithBodies = true;
1227        }
1228
1229        if (RememberAndSkipFunctionBody())
1230          return true;
1231        break;
1232      }
1233      continue;
1234    }
1235
1236    if (Code == bitc::DEFINE_ABBREV) {
1237      Stream.ReadAbbrevRecord();
1238      continue;
1239    }
1240
1241    // Read a record.
1242    switch (Stream.ReadRecord(Code, Record)) {
1243    default: break;  // Default behavior, ignore unknown content.
1244    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1245      if (Record.size() < 1)
1246        return Error("Malformed MODULE_CODE_VERSION");
1247      // Only version #0 is supported so far.
1248      if (Record[0] != 0)
1249        return Error("Unknown bitstream version!");
1250      break;
1251    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1252      std::string S;
1253      if (ConvertToString(Record, 0, S))
1254        return Error("Invalid MODULE_CODE_TRIPLE record");
1255      TheModule->setTargetTriple(S);
1256      break;
1257    }
1258    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1259      std::string S;
1260      if (ConvertToString(Record, 0, S))
1261        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1262      TheModule->setDataLayout(S);
1263      break;
1264    }
1265    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1266      std::string S;
1267      if (ConvertToString(Record, 0, S))
1268        return Error("Invalid MODULE_CODE_ASM record");
1269      TheModule->setModuleInlineAsm(S);
1270      break;
1271    }
1272    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1273      std::string S;
1274      if (ConvertToString(Record, 0, S))
1275        return Error("Invalid MODULE_CODE_DEPLIB record");
1276      TheModule->addLibrary(S);
1277      break;
1278    }
1279    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1280      std::string S;
1281      if (ConvertToString(Record, 0, S))
1282        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1283      SectionTable.push_back(S);
1284      break;
1285    }
1286    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1287      std::string S;
1288      if (ConvertToString(Record, 0, S))
1289        return Error("Invalid MODULE_CODE_GCNAME record");
1290      GCTable.push_back(S);
1291      break;
1292    }
1293    // GLOBALVAR: [pointer type, isconst, initid,
1294    //             linkage, alignment, section, visibility, threadlocal]
1295    case bitc::MODULE_CODE_GLOBALVAR: {
1296      if (Record.size() < 6)
1297        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1298      const Type *Ty = getTypeByID(Record[0]);
1299      if (!isa<PointerType>(Ty))
1300        return Error("Global not a pointer type!");
1301      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1302      Ty = cast<PointerType>(Ty)->getElementType();
1303
1304      bool isConstant = Record[1];
1305      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1306      unsigned Alignment = (1 << Record[4]) >> 1;
1307      std::string Section;
1308      if (Record[5]) {
1309        if (Record[5]-1 >= SectionTable.size())
1310          return Error("Invalid section ID");
1311        Section = SectionTable[Record[5]-1];
1312      }
1313      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1314      if (Record.size() > 6)
1315        Visibility = GetDecodedVisibility(Record[6]);
1316      bool isThreadLocal = false;
1317      if (Record.size() > 7)
1318        isThreadLocal = Record[7];
1319
1320      GlobalVariable *NewGV =
1321        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1322                           isThreadLocal, AddressSpace);
1323      NewGV->setAlignment(Alignment);
1324      if (!Section.empty())
1325        NewGV->setSection(Section);
1326      NewGV->setVisibility(Visibility);
1327      NewGV->setThreadLocal(isThreadLocal);
1328
1329      ValueList.push_back(NewGV);
1330
1331      // Remember which value to use for the global initializer.
1332      if (unsigned InitID = Record[2])
1333        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1334      break;
1335    }
1336    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1337    //             alignment, section, visibility, gc]
1338    case bitc::MODULE_CODE_FUNCTION: {
1339      if (Record.size() < 8)
1340        return Error("Invalid MODULE_CODE_FUNCTION record");
1341      const Type *Ty = getTypeByID(Record[0]);
1342      if (!isa<PointerType>(Ty))
1343        return Error("Function not a pointer type!");
1344      const FunctionType *FTy =
1345        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1346      if (!FTy)
1347        return Error("Function not a pointer to function type!");
1348
1349      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1350                                        "", TheModule);
1351
1352      Func->setCallingConv(Record[1]);
1353      bool isProto = Record[2];
1354      Func->setLinkage(GetDecodedLinkage(Record[3]));
1355      Func->setAttributes(getAttributes(Record[4]));
1356
1357      Func->setAlignment((1 << Record[5]) >> 1);
1358      if (Record[6]) {
1359        if (Record[6]-1 >= SectionTable.size())
1360          return Error("Invalid section ID");
1361        Func->setSection(SectionTable[Record[6]-1]);
1362      }
1363      Func->setVisibility(GetDecodedVisibility(Record[7]));
1364      if (Record.size() > 8 && Record[8]) {
1365        if (Record[8]-1 > GCTable.size())
1366          return Error("Invalid GC ID");
1367        Func->setGC(GCTable[Record[8]-1].c_str());
1368      }
1369      ValueList.push_back(Func);
1370
1371      // If this is a function with a body, remember the prototype we are
1372      // creating now, so that we can match up the body with them later.
1373      if (!isProto)
1374        FunctionsWithBodies.push_back(Func);
1375      break;
1376    }
1377    // ALIAS: [alias type, aliasee val#, linkage]
1378    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1379    case bitc::MODULE_CODE_ALIAS: {
1380      if (Record.size() < 3)
1381        return Error("Invalid MODULE_ALIAS record");
1382      const Type *Ty = getTypeByID(Record[0]);
1383      if (!isa<PointerType>(Ty))
1384        return Error("Function not a pointer type!");
1385
1386      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1387                                           "", 0, TheModule);
1388      // Old bitcode files didn't have visibility field.
1389      if (Record.size() > 3)
1390        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1391      ValueList.push_back(NewGA);
1392      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1393      break;
1394    }
1395    /// MODULE_CODE_PURGEVALS: [numvals]
1396    case bitc::MODULE_CODE_PURGEVALS:
1397      // Trim down the value list to the specified size.
1398      if (Record.size() < 1 || Record[0] > ValueList.size())
1399        return Error("Invalid MODULE_PURGEVALS record");
1400      ValueList.shrinkTo(Record[0]);
1401      break;
1402    }
1403    Record.clear();
1404  }
1405
1406  return Error("Premature end of bitstream");
1407}
1408
1409bool BitcodeReader::ParseBitcode() {
1410  TheModule = 0;
1411
1412  if (Buffer->getBufferSize() & 3)
1413    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1414
1415  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1416  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1417
1418  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1419  // The magic number is 0x0B17C0DE stored in little endian.
1420  if (isBitcodeWrapper(BufPtr, BufEnd))
1421    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1422      return Error("Invalid bitcode wrapper header");
1423
1424  StreamFile.init(BufPtr, BufEnd);
1425  Stream.init(StreamFile);
1426
1427  // Sniff for the signature.
1428  if (Stream.Read(8) != 'B' ||
1429      Stream.Read(8) != 'C' ||
1430      Stream.Read(4) != 0x0 ||
1431      Stream.Read(4) != 0xC ||
1432      Stream.Read(4) != 0xE ||
1433      Stream.Read(4) != 0xD)
1434    return Error("Invalid bitcode signature");
1435
1436  // We expect a number of well-defined blocks, though we don't necessarily
1437  // need to understand them all.
1438  while (!Stream.AtEndOfStream()) {
1439    unsigned Code = Stream.ReadCode();
1440
1441    if (Code != bitc::ENTER_SUBBLOCK)
1442      return Error("Invalid record at top-level");
1443
1444    unsigned BlockID = Stream.ReadSubBlockID();
1445
1446    // We only know the MODULE subblock ID.
1447    switch (BlockID) {
1448    case bitc::BLOCKINFO_BLOCK_ID:
1449      if (Stream.ReadBlockInfoBlock())
1450        return Error("Malformed BlockInfoBlock");
1451      break;
1452    case bitc::MODULE_BLOCK_ID:
1453      if (ParseModule(Buffer->getBufferIdentifier()))
1454        return true;
1455      break;
1456    default:
1457      if (Stream.SkipBlock())
1458        return Error("Malformed block record");
1459      break;
1460    }
1461  }
1462
1463  return false;
1464}
1465
1466
1467/// ParseFunctionBody - Lazily parse the specified function body block.
1468bool BitcodeReader::ParseFunctionBody(Function *F) {
1469  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1470    return Error("Malformed block record");
1471
1472  unsigned ModuleValueListSize = ValueList.size();
1473
1474  // Add all the function arguments to the value table.
1475  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1476    ValueList.push_back(I);
1477
1478  unsigned NextValueNo = ValueList.size();
1479  BasicBlock *CurBB = 0;
1480  unsigned CurBBNo = 0;
1481
1482  // Read all the records.
1483  SmallVector<uint64_t, 64> Record;
1484  while (1) {
1485    unsigned Code = Stream.ReadCode();
1486    if (Code == bitc::END_BLOCK) {
1487      if (Stream.ReadBlockEnd())
1488        return Error("Error at end of function block");
1489      break;
1490    }
1491
1492    if (Code == bitc::ENTER_SUBBLOCK) {
1493      switch (Stream.ReadSubBlockID()) {
1494      default:  // Skip unknown content.
1495        if (Stream.SkipBlock())
1496          return Error("Malformed block record");
1497        break;
1498      case bitc::CONSTANTS_BLOCK_ID:
1499        if (ParseConstants()) return true;
1500        NextValueNo = ValueList.size();
1501        break;
1502      case bitc::VALUE_SYMTAB_BLOCK_ID:
1503        if (ParseValueSymbolTable()) return true;
1504        break;
1505      }
1506      continue;
1507    }
1508
1509    if (Code == bitc::DEFINE_ABBREV) {
1510      Stream.ReadAbbrevRecord();
1511      continue;
1512    }
1513
1514    // Read a record.
1515    Record.clear();
1516    Instruction *I = 0;
1517    unsigned BitCode = Stream.ReadRecord(Code, Record);
1518    switch (BitCode) {
1519    default: // Default behavior: reject
1520      return Error("Unknown instruction");
1521    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1522      if (Record.size() < 1 || Record[0] == 0)
1523        return Error("Invalid DECLAREBLOCKS record");
1524      // Create all the basic blocks for the function.
1525      FunctionBBs.resize(Record[0]);
1526      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1527        FunctionBBs[i] = BasicBlock::Create("", F);
1528      CurBB = FunctionBBs[0];
1529      continue;
1530
1531    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1532      unsigned OpNum = 0;
1533      Value *LHS, *RHS;
1534      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1535          getValue(Record, OpNum, LHS->getType(), RHS) ||
1536          OpNum+1 > Record.size())
1537        return Error("Invalid BINOP record");
1538
1539      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1540      if (Opc == -1) return Error("Invalid BINOP record");
1541      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1542      if (OpNum < Record.size())
1543        SetOptimizationFlags(I, Record[3]);
1544      break;
1545    }
1546    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1547      unsigned OpNum = 0;
1548      Value *Op;
1549      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1550          OpNum+2 != Record.size())
1551        return Error("Invalid CAST record");
1552
1553      const Type *ResTy = getTypeByID(Record[OpNum]);
1554      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1555      if (Opc == -1 || ResTy == 0)
1556        return Error("Invalid CAST record");
1557      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1558      break;
1559    }
1560    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1561      unsigned OpNum = 0;
1562      Value *BasePtr;
1563      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1564        return Error("Invalid GEP record");
1565
1566      SmallVector<Value*, 16> GEPIdx;
1567      while (OpNum != Record.size()) {
1568        Value *Op;
1569        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1570          return Error("Invalid GEP record");
1571        GEPIdx.push_back(Op);
1572      }
1573
1574      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1575      break;
1576    }
1577
1578    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1579                                       // EXTRACTVAL: [opty, opval, n x indices]
1580      unsigned OpNum = 0;
1581      Value *Agg;
1582      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1583        return Error("Invalid EXTRACTVAL record");
1584
1585      SmallVector<unsigned, 4> EXTRACTVALIdx;
1586      for (unsigned RecSize = Record.size();
1587           OpNum != RecSize; ++OpNum) {
1588        uint64_t Index = Record[OpNum];
1589        if ((unsigned)Index != Index)
1590          return Error("Invalid EXTRACTVAL index");
1591        EXTRACTVALIdx.push_back((unsigned)Index);
1592      }
1593
1594      I = ExtractValueInst::Create(Agg,
1595                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1596      break;
1597    }
1598
1599    case bitc::FUNC_CODE_INST_INSERTVAL: {
1600                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1601      unsigned OpNum = 0;
1602      Value *Agg;
1603      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1604        return Error("Invalid INSERTVAL record");
1605      Value *Val;
1606      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1607        return Error("Invalid INSERTVAL record");
1608
1609      SmallVector<unsigned, 4> INSERTVALIdx;
1610      for (unsigned RecSize = Record.size();
1611           OpNum != RecSize; ++OpNum) {
1612        uint64_t Index = Record[OpNum];
1613        if ((unsigned)Index != Index)
1614          return Error("Invalid INSERTVAL index");
1615        INSERTVALIdx.push_back((unsigned)Index);
1616      }
1617
1618      I = InsertValueInst::Create(Agg, Val,
1619                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1620      break;
1621    }
1622
1623    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1624      // obsolete form of select
1625      // handles select i1 ... in old bitcode
1626      unsigned OpNum = 0;
1627      Value *TrueVal, *FalseVal, *Cond;
1628      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1629          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1630          getValue(Record, OpNum, Type::Int1Ty, Cond))
1631        return Error("Invalid SELECT record");
1632
1633      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1634      break;
1635    }
1636
1637    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1638      // new form of select
1639      // handles select i1 or select [N x i1]
1640      unsigned OpNum = 0;
1641      Value *TrueVal, *FalseVal, *Cond;
1642      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1643          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1644          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1645        return Error("Invalid SELECT record");
1646
1647      // select condition can be either i1 or [N x i1]
1648      if (const VectorType* vector_type =
1649          dyn_cast<const VectorType>(Cond->getType())) {
1650        // expect <n x i1>
1651        if (vector_type->getElementType() != Type::Int1Ty)
1652          return Error("Invalid SELECT condition type");
1653      } else {
1654        // expect i1
1655        if (Cond->getType() != Type::Int1Ty)
1656          return Error("Invalid SELECT condition type");
1657      }
1658
1659      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1660      break;
1661    }
1662
1663    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1664      unsigned OpNum = 0;
1665      Value *Vec, *Idx;
1666      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1667          getValue(Record, OpNum, Type::Int32Ty, Idx))
1668        return Error("Invalid EXTRACTELT record");
1669      I = ExtractElementInst::Create(Vec, Idx);
1670      break;
1671    }
1672
1673    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1674      unsigned OpNum = 0;
1675      Value *Vec, *Elt, *Idx;
1676      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1677          getValue(Record, OpNum,
1678                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1679          getValue(Record, OpNum, Type::Int32Ty, Idx))
1680        return Error("Invalid INSERTELT record");
1681      I = InsertElementInst::Create(Vec, Elt, Idx);
1682      break;
1683    }
1684
1685    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1686      unsigned OpNum = 0;
1687      Value *Vec1, *Vec2, *Mask;
1688      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1689          getValue(Record, OpNum, Vec1->getType(), Vec2))
1690        return Error("Invalid SHUFFLEVEC record");
1691
1692      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1693        return Error("Invalid SHUFFLEVEC record");
1694      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1695      break;
1696    }
1697
1698    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1699      // Old form of ICmp/FCmp returning bool
1700      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1701      // both legal on vectors but had different behaviour.
1702    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1703      // FCmp/ICmp returning bool or vector of bool
1704
1705      unsigned OpNum = 0;
1706      Value *LHS, *RHS;
1707      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1708          getValue(Record, OpNum, LHS->getType(), RHS) ||
1709          OpNum+1 != Record.size())
1710        return Error("Invalid CMP record");
1711
1712      if (LHS->getType()->isFPOrFPVector())
1713        I = new FCmpInst(Context, (FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1714      else
1715        I = new ICmpInst(Context, (ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1716      break;
1717    }
1718
1719    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1720      if (Record.size() != 2)
1721        return Error("Invalid GETRESULT record");
1722      unsigned OpNum = 0;
1723      Value *Op;
1724      getValueTypePair(Record, OpNum, NextValueNo, Op);
1725      unsigned Index = Record[1];
1726      I = ExtractValueInst::Create(Op, Index);
1727      break;
1728    }
1729
1730    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1731      {
1732        unsigned Size = Record.size();
1733        if (Size == 0) {
1734          I = ReturnInst::Create();
1735          break;
1736        }
1737
1738        unsigned OpNum = 0;
1739        SmallVector<Value *,4> Vs;
1740        do {
1741          Value *Op = NULL;
1742          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1743            return Error("Invalid RET record");
1744          Vs.push_back(Op);
1745        } while(OpNum != Record.size());
1746
1747        const Type *ReturnType = F->getReturnType();
1748        if (Vs.size() > 1 ||
1749            (isa<StructType>(ReturnType) &&
1750             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1751          Value *RV = Context.getUndef(ReturnType);
1752          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1753            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1754            CurBB->getInstList().push_back(I);
1755            ValueList.AssignValue(I, NextValueNo++);
1756            RV = I;
1757          }
1758          I = ReturnInst::Create(RV);
1759          break;
1760        }
1761
1762        I = ReturnInst::Create(Vs[0]);
1763        break;
1764      }
1765    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1766      if (Record.size() != 1 && Record.size() != 3)
1767        return Error("Invalid BR record");
1768      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1769      if (TrueDest == 0)
1770        return Error("Invalid BR record");
1771
1772      if (Record.size() == 1)
1773        I = BranchInst::Create(TrueDest);
1774      else {
1775        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1776        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1777        if (FalseDest == 0 || Cond == 0)
1778          return Error("Invalid BR record");
1779        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1780      }
1781      break;
1782    }
1783    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1784      if (Record.size() < 3 || (Record.size() & 1) == 0)
1785        return Error("Invalid SWITCH record");
1786      const Type *OpTy = getTypeByID(Record[0]);
1787      Value *Cond = getFnValueByID(Record[1], OpTy);
1788      BasicBlock *Default = getBasicBlock(Record[2]);
1789      if (OpTy == 0 || Cond == 0 || Default == 0)
1790        return Error("Invalid SWITCH record");
1791      unsigned NumCases = (Record.size()-3)/2;
1792      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1793      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1794        ConstantInt *CaseVal =
1795          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1796        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1797        if (CaseVal == 0 || DestBB == 0) {
1798          delete SI;
1799          return Error("Invalid SWITCH record!");
1800        }
1801        SI->addCase(CaseVal, DestBB);
1802      }
1803      I = SI;
1804      break;
1805    }
1806
1807    case bitc::FUNC_CODE_INST_INVOKE: {
1808      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1809      if (Record.size() < 4) return Error("Invalid INVOKE record");
1810      AttrListPtr PAL = getAttributes(Record[0]);
1811      unsigned CCInfo = Record[1];
1812      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1813      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1814
1815      unsigned OpNum = 4;
1816      Value *Callee;
1817      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1818        return Error("Invalid INVOKE record");
1819
1820      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1821      const FunctionType *FTy = !CalleeTy ? 0 :
1822        dyn_cast<FunctionType>(CalleeTy->getElementType());
1823
1824      // Check that the right number of fixed parameters are here.
1825      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1826          Record.size() < OpNum+FTy->getNumParams())
1827        return Error("Invalid INVOKE record");
1828
1829      SmallVector<Value*, 16> Ops;
1830      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1831        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1832        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1833      }
1834
1835      if (!FTy->isVarArg()) {
1836        if (Record.size() != OpNum)
1837          return Error("Invalid INVOKE record");
1838      } else {
1839        // Read type/value pairs for varargs params.
1840        while (OpNum != Record.size()) {
1841          Value *Op;
1842          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1843            return Error("Invalid INVOKE record");
1844          Ops.push_back(Op);
1845        }
1846      }
1847
1848      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1849                             Ops.begin(), Ops.end());
1850      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1851      cast<InvokeInst>(I)->setAttributes(PAL);
1852      break;
1853    }
1854    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1855      I = new UnwindInst();
1856      break;
1857    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1858      I = new UnreachableInst();
1859      break;
1860    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1861      if (Record.size() < 1 || ((Record.size()-1)&1))
1862        return Error("Invalid PHI record");
1863      const Type *Ty = getTypeByID(Record[0]);
1864      if (!Ty) return Error("Invalid PHI record");
1865
1866      PHINode *PN = PHINode::Create(Ty);
1867      PN->reserveOperandSpace((Record.size()-1)/2);
1868
1869      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1870        Value *V = getFnValueByID(Record[1+i], Ty);
1871        BasicBlock *BB = getBasicBlock(Record[2+i]);
1872        if (!V || !BB) return Error("Invalid PHI record");
1873        PN->addIncoming(V, BB);
1874      }
1875      I = PN;
1876      break;
1877    }
1878
1879    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1880      if (Record.size() < 3)
1881        return Error("Invalid MALLOC record");
1882      const PointerType *Ty =
1883        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1884      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1885      unsigned Align = Record[2];
1886      if (!Ty || !Size) return Error("Invalid MALLOC record");
1887      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1888      break;
1889    }
1890    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1891      unsigned OpNum = 0;
1892      Value *Op;
1893      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1894          OpNum != Record.size())
1895        return Error("Invalid FREE record");
1896      I = new FreeInst(Op);
1897      break;
1898    }
1899    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1900      if (Record.size() < 3)
1901        return Error("Invalid ALLOCA record");
1902      const PointerType *Ty =
1903        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1904      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1905      unsigned Align = Record[2];
1906      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1907      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1908      break;
1909    }
1910    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1911      unsigned OpNum = 0;
1912      Value *Op;
1913      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1914          OpNum+2 != Record.size())
1915        return Error("Invalid LOAD record");
1916
1917      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1918      break;
1919    }
1920    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1921      unsigned OpNum = 0;
1922      Value *Val, *Ptr;
1923      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1924          getValue(Record, OpNum,
1925                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1926          OpNum+2 != Record.size())
1927        return Error("Invalid STORE record");
1928
1929      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1930      break;
1931    }
1932    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1933      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1934      unsigned OpNum = 0;
1935      Value *Val, *Ptr;
1936      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1937          getValue(Record, OpNum,
1938                   Context.getPointerTypeUnqual(Val->getType()), Ptr)||
1939          OpNum+2 != Record.size())
1940        return Error("Invalid STORE record");
1941
1942      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1943      break;
1944    }
1945    case bitc::FUNC_CODE_INST_CALL: {
1946      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1947      if (Record.size() < 3)
1948        return Error("Invalid CALL record");
1949
1950      AttrListPtr PAL = getAttributes(Record[0]);
1951      unsigned CCInfo = Record[1];
1952
1953      unsigned OpNum = 2;
1954      Value *Callee;
1955      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1956        return Error("Invalid CALL record");
1957
1958      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1959      const FunctionType *FTy = 0;
1960      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1961      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1962        return Error("Invalid CALL record");
1963
1964      SmallVector<Value*, 16> Args;
1965      // Read the fixed params.
1966      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1967        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1968          Args.push_back(getBasicBlock(Record[OpNum]));
1969        else
1970          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1971        if (Args.back() == 0) return Error("Invalid CALL record");
1972      }
1973
1974      // Read type/value pairs for varargs params.
1975      if (!FTy->isVarArg()) {
1976        if (OpNum != Record.size())
1977          return Error("Invalid CALL record");
1978      } else {
1979        while (OpNum != Record.size()) {
1980          Value *Op;
1981          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1982            return Error("Invalid CALL record");
1983          Args.push_back(Op);
1984        }
1985      }
1986
1987      I = CallInst::Create(Callee, Args.begin(), Args.end());
1988      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1989      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1990      cast<CallInst>(I)->setAttributes(PAL);
1991      break;
1992    }
1993    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1994      if (Record.size() < 3)
1995        return Error("Invalid VAARG record");
1996      const Type *OpTy = getTypeByID(Record[0]);
1997      Value *Op = getFnValueByID(Record[1], OpTy);
1998      const Type *ResTy = getTypeByID(Record[2]);
1999      if (!OpTy || !Op || !ResTy)
2000        return Error("Invalid VAARG record");
2001      I = new VAArgInst(Op, ResTy);
2002      break;
2003    }
2004    }
2005
2006    // Add instruction to end of current BB.  If there is no current BB, reject
2007    // this file.
2008    if (CurBB == 0) {
2009      delete I;
2010      return Error("Invalid instruction with no BB");
2011    }
2012    CurBB->getInstList().push_back(I);
2013
2014    // If this was a terminator instruction, move to the next block.
2015    if (isa<TerminatorInst>(I)) {
2016      ++CurBBNo;
2017      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2018    }
2019
2020    // Non-void values get registered in the value table for future use.
2021    if (I && I->getType() != Type::VoidTy)
2022      ValueList.AssignValue(I, NextValueNo++);
2023  }
2024
2025  // Check the function list for unresolved values.
2026  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2027    if (A->getParent() == 0) {
2028      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2029      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2030        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2031          A->replaceAllUsesWith(Context.getUndef(A->getType()));
2032          delete A;
2033        }
2034      }
2035      return Error("Never resolved value found in function!");
2036    }
2037  }
2038
2039  // Trim the value list down to the size it was before we parsed this function.
2040  ValueList.shrinkTo(ModuleValueListSize);
2041  std::vector<BasicBlock*>().swap(FunctionBBs);
2042
2043  return false;
2044}
2045
2046//===----------------------------------------------------------------------===//
2047// ModuleProvider implementation
2048//===----------------------------------------------------------------------===//
2049
2050
2051bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
2052  // If it already is material, ignore the request.
2053  if (!F->hasNotBeenReadFromBitcode()) return false;
2054
2055  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
2056    DeferredFunctionInfo.find(F);
2057  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2058
2059  // Move the bit stream to the saved position of the deferred function body and
2060  // restore the real linkage type for the function.
2061  Stream.JumpToBit(DFII->second.first);
2062  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2063
2064  if (ParseFunctionBody(F)) {
2065    if (ErrInfo) *ErrInfo = ErrorString;
2066    return true;
2067  }
2068
2069  // Upgrade any old intrinsic calls in the function.
2070  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2071       E = UpgradedIntrinsics.end(); I != E; ++I) {
2072    if (I->first != I->second) {
2073      for (Value::use_iterator UI = I->first->use_begin(),
2074           UE = I->first->use_end(); UI != UE; ) {
2075        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2076          UpgradeIntrinsicCall(CI, I->second);
2077      }
2078    }
2079  }
2080
2081  return false;
2082}
2083
2084void BitcodeReader::dematerializeFunction(Function *F) {
2085  // If this function isn't materialized, or if it is a proto, this is a noop.
2086  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2087    return;
2088
2089  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2090
2091  // Just forget the function body, we can remat it later.
2092  F->deleteBody();
2093  F->setLinkage(GlobalValue::GhostLinkage);
2094}
2095
2096
2097Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2098  // Iterate over the module, deserializing any functions that are still on
2099  // disk.
2100  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2101       F != E; ++F)
2102    if (F->hasNotBeenReadFromBitcode() &&
2103        materializeFunction(F, ErrInfo))
2104      return 0;
2105
2106  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2107  // delete the old functions to clean up. We can't do this unless the entire
2108  // module is materialized because there could always be another function body
2109  // with calls to the old function.
2110  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2111       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2112    if (I->first != I->second) {
2113      for (Value::use_iterator UI = I->first->use_begin(),
2114           UE = I->first->use_end(); UI != UE; ) {
2115        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2116          UpgradeIntrinsicCall(CI, I->second);
2117      }
2118      if (!I->first->use_empty())
2119        I->first->replaceAllUsesWith(I->second);
2120      I->first->eraseFromParent();
2121    }
2122  }
2123  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2124
2125  return TheModule;
2126}
2127
2128
2129/// This method is provided by the parent ModuleProvde class and overriden
2130/// here. It simply releases the module from its provided and frees up our
2131/// state.
2132/// @brief Release our hold on the generated module
2133Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2134  // Since we're losing control of this Module, we must hand it back complete
2135  Module *M = ModuleProvider::releaseModule(ErrInfo);
2136  FreeState();
2137  return M;
2138}
2139
2140
2141//===----------------------------------------------------------------------===//
2142// External interface
2143//===----------------------------------------------------------------------===//
2144
2145/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2146///
2147ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2148                                               LLVMContext& Context,
2149                                               std::string *ErrMsg) {
2150  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2151  if (R->ParseBitcode()) {
2152    if (ErrMsg)
2153      *ErrMsg = R->getErrorString();
2154
2155    // Don't let the BitcodeReader dtor delete 'Buffer'.
2156    R->releaseMemoryBuffer();
2157    delete R;
2158    return 0;
2159  }
2160  return R;
2161}
2162
2163/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2164/// If an error occurs, return null and fill in *ErrMsg if non-null.
2165Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2166                               std::string *ErrMsg){
2167  BitcodeReader *R;
2168  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, Context,
2169                                                           ErrMsg));
2170  if (!R) return 0;
2171
2172  // Read in the entire module.
2173  Module *M = R->materializeModule(ErrMsg);
2174
2175  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2176  // there was an error.
2177  R->releaseMemoryBuffer();
2178
2179  // If there was no error, tell ModuleProvider not to delete it when its dtor
2180  // is run.
2181  if (M)
2182    M = R->releaseModule(ErrMsg);
2183
2184  delete R;
2185  return M;
2186}
2187