BitcodeReader.cpp revision ac80975ea4103fcceab38cde69d98d3fb3b01db4
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42}
43
44//===----------------------------------------------------------------------===//
45//  Helper functions to implement forward reference resolution, etc.
46//===----------------------------------------------------------------------===//
47
48/// ConvertToString - Convert a string from a record into an std::string, return
49/// true on failure.
50template<typename StrTy>
51static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                            StrTy &Result) {
53  if (Idx > Record.size())
54    return true;
55
56  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57    Result += (char)Record[i];
58  return false;
59}
60
61static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62  switch (Val) {
63  default: // Map unknown/new linkages to external
64  case 0:  return GlobalValue::ExternalLinkage;
65  case 1:  return GlobalValue::WeakAnyLinkage;
66  case 2:  return GlobalValue::AppendingLinkage;
67  case 3:  return GlobalValue::InternalLinkage;
68  case 4:  return GlobalValue::LinkOnceAnyLinkage;
69  case 5:  return GlobalValue::DLLImportLinkage;
70  case 6:  return GlobalValue::DLLExportLinkage;
71  case 7:  return GlobalValue::ExternalWeakLinkage;
72  case 8:  return GlobalValue::CommonLinkage;
73  case 9:  return GlobalValue::PrivateLinkage;
74  case 10: return GlobalValue::WeakODRLinkage;
75  case 11: return GlobalValue::LinkOnceODRLinkage;
76  case 12: return GlobalValue::AvailableExternallyLinkage;
77  case 13: return GlobalValue::LinkerPrivateLinkage;
78  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
79  }
80}
81
82static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83  switch (Val) {
84  default: // Map unknown visibilities to default.
85  case 0: return GlobalValue::DefaultVisibility;
86  case 1: return GlobalValue::HiddenVisibility;
87  case 2: return GlobalValue::ProtectedVisibility;
88  }
89}
90
91static int GetDecodedCastOpcode(unsigned Val) {
92  switch (Val) {
93  default: return -1;
94  case bitc::CAST_TRUNC   : return Instruction::Trunc;
95  case bitc::CAST_ZEXT    : return Instruction::ZExt;
96  case bitc::CAST_SEXT    : return Instruction::SExt;
97  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102  case bitc::CAST_FPEXT   : return Instruction::FPExt;
103  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105  case bitc::CAST_BITCAST : return Instruction::BitCast;
106  }
107}
108static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109  switch (Val) {
110  default: return -1;
111  case bitc::BINOP_ADD:
112    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
113  case bitc::BINOP_SUB:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
115  case bitc::BINOP_MUL:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
117  case bitc::BINOP_UDIV: return Instruction::UDiv;
118  case bitc::BINOP_SDIV:
119    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
120  case bitc::BINOP_UREM: return Instruction::URem;
121  case bitc::BINOP_SREM:
122    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
123  case bitc::BINOP_SHL:  return Instruction::Shl;
124  case bitc::BINOP_LSHR: return Instruction::LShr;
125  case bitc::BINOP_ASHR: return Instruction::AShr;
126  case bitc::BINOP_AND:  return Instruction::And;
127  case bitc::BINOP_OR:   return Instruction::Or;
128  case bitc::BINOP_XOR:  return Instruction::Xor;
129  }
130}
131
132namespace llvm {
133namespace {
134  /// @brief A class for maintaining the slot number definition
135  /// as a placeholder for the actual definition for forward constants defs.
136  class ConstantPlaceHolder : public ConstantExpr {
137    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139  public:
140    // allocate space for exactly one operand
141    void *operator new(size_t s) {
142      return User::operator new(s, 1);
143    }
144    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147    }
148
149    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150    static inline bool classof(const ConstantPlaceHolder *) { return true; }
151    static bool classof(const Value *V) {
152      return isa<ConstantExpr>(V) &&
153             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154    }
155
156
157    /// Provide fast operand accessors
158    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159  };
160}
161
162// FIXME: can we inherit this from ConstantExpr?
163template <>
164struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165};
166}
167
168
169void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170  if (Idx == size()) {
171    push_back(V);
172    return;
173  }
174
175  if (Idx >= size())
176    resize(Idx+1);
177
178  WeakVH &OldV = ValuePtrs[Idx];
179  if (OldV == 0) {
180    OldV = V;
181    return;
182  }
183
184  // Handle constants and non-constants (e.g. instrs) differently for
185  // efficiency.
186  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187    ResolveConstants.push_back(std::make_pair(PHC, Idx));
188    OldV = V;
189  } else {
190    // If there was a forward reference to this value, replace it.
191    Value *PrevVal = OldV;
192    OldV->replaceAllUsesWith(V);
193    delete PrevVal;
194  }
195}
196
197
198Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                    const Type *Ty) {
200  if (Idx >= size())
201    resize(Idx + 1);
202
203  if (Value *V = ValuePtrs[Idx]) {
204    assert(Ty == V->getType() && "Type mismatch in constant table!");
205    return cast<Constant>(V);
206  }
207
208  // Create and return a placeholder, which will later be RAUW'd.
209  Constant *C = new ConstantPlaceHolder(Ty, Context);
210  ValuePtrs[Idx] = C;
211  return C;
212}
213
214Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215  if (Idx >= size())
216    resize(Idx + 1);
217
218  if (Value *V = ValuePtrs[Idx]) {
219    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220    return V;
221  }
222
223  // No type specified, must be invalid reference.
224  if (Ty == 0) return 0;
225
226  // Create and return a placeholder, which will later be RAUW'd.
227  Value *V = new Argument(Ty);
228  ValuePtrs[Idx] = V;
229  return V;
230}
231
232/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233/// resolves any forward references.  The idea behind this is that we sometimes
234/// get constants (such as large arrays) which reference *many* forward ref
235/// constants.  Replacing each of these causes a lot of thrashing when
236/// building/reuniquing the constant.  Instead of doing this, we look at all the
237/// uses and rewrite all the place holders at once for any constant that uses
238/// a placeholder.
239void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240  // Sort the values by-pointer so that they are efficient to look up with a
241  // binary search.
242  std::sort(ResolveConstants.begin(), ResolveConstants.end());
243
244  SmallVector<Constant*, 64> NewOps;
245
246  while (!ResolveConstants.empty()) {
247    Value *RealVal = operator[](ResolveConstants.back().second);
248    Constant *Placeholder = ResolveConstants.back().first;
249    ResolveConstants.pop_back();
250
251    // Loop over all users of the placeholder, updating them to reference the
252    // new value.  If they reference more than one placeholder, update them all
253    // at once.
254    while (!Placeholder->use_empty()) {
255      Value::use_iterator UI = Placeholder->use_begin();
256      User *U = *UI;
257
258      // If the using object isn't uniqued, just update the operands.  This
259      // handles instructions and initializers for global variables.
260      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
261        UI.getUse().set(RealVal);
262        continue;
263      }
264
265      // Otherwise, we have a constant that uses the placeholder.  Replace that
266      // constant with a new constant that has *all* placeholder uses updated.
267      Constant *UserC = cast<Constant>(U);
268      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
269           I != E; ++I) {
270        Value *NewOp;
271        if (!isa<ConstantPlaceHolder>(*I)) {
272          // Not a placeholder reference.
273          NewOp = *I;
274        } else if (*I == Placeholder) {
275          // Common case is that it just references this one placeholder.
276          NewOp = RealVal;
277        } else {
278          // Otherwise, look up the placeholder in ResolveConstants.
279          ResolveConstantsTy::iterator It =
280            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
281                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
282                                                            0));
283          assert(It != ResolveConstants.end() && It->first == *I);
284          NewOp = operator[](It->second);
285        }
286
287        NewOps.push_back(cast<Constant>(NewOp));
288      }
289
290      // Make the new constant.
291      Constant *NewC;
292      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
293        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
294                                        NewOps.size());
295      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
296        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
297                                         UserCS->getType()->isPacked());
298      } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
299        NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
300      } else if (isa<ConstantVector>(UserC)) {
301        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302      } else {
303        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                          NewOps.size());
306      }
307
308      UserC->replaceAllUsesWith(NewC);
309      UserC->destroyConstant();
310      NewOps.clear();
311    }
312
313    // Update all ValueHandles, they should be the only users at this point.
314    Placeholder->replaceAllUsesWith(RealVal);
315    delete Placeholder;
316  }
317}
318
319void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320  if (Idx == size()) {
321    push_back(V);
322    return;
323  }
324
325  if (Idx >= size())
326    resize(Idx+1);
327
328  WeakVH &OldV = MDValuePtrs[Idx];
329  if (OldV == 0) {
330    OldV = V;
331    return;
332  }
333
334  // If there was a forward reference to this value, replace it.
335  Value *PrevVal = OldV;
336  OldV->replaceAllUsesWith(V);
337  delete PrevVal;
338  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339  // value for Idx.
340  MDValuePtrs[Idx] = V;
341}
342
343Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344  if (Idx >= size())
345    resize(Idx + 1);
346
347  if (Value *V = MDValuePtrs[Idx]) {
348    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349    return V;
350  }
351
352  // Create and return a placeholder, which will later be RAUW'd.
353  Value *V = new Argument(Type::getMetadataTy(Context));
354  MDValuePtrs[Idx] = V;
355  return V;
356}
357
358const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359  // If the TypeID is in range, return it.
360  if (ID < TypeList.size())
361    return TypeList[ID].get();
362  if (!isTypeTable) return 0;
363
364  // The type table allows forward references.  Push as many Opaque types as
365  // needed to get up to ID.
366  while (TypeList.size() <= ID)
367    TypeList.push_back(OpaqueType::get(Context));
368  return TypeList.back().get();
369}
370
371//===----------------------------------------------------------------------===//
372//  Functions for parsing blocks from the bitcode file
373//===----------------------------------------------------------------------===//
374
375bool BitcodeReader::ParseAttributeBlock() {
376  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377    return Error("Malformed block record");
378
379  if (!MAttributes.empty())
380    return Error("Multiple PARAMATTR blocks found!");
381
382  SmallVector<uint64_t, 64> Record;
383
384  SmallVector<AttributeWithIndex, 8> Attrs;
385
386  // Read all the records.
387  while (1) {
388    unsigned Code = Stream.ReadCode();
389    if (Code == bitc::END_BLOCK) {
390      if (Stream.ReadBlockEnd())
391        return Error("Error at end of PARAMATTR block");
392      return false;
393    }
394
395    if (Code == bitc::ENTER_SUBBLOCK) {
396      // No known subblocks, always skip them.
397      Stream.ReadSubBlockID();
398      if (Stream.SkipBlock())
399        return Error("Malformed block record");
400      continue;
401    }
402
403    if (Code == bitc::DEFINE_ABBREV) {
404      Stream.ReadAbbrevRecord();
405      continue;
406    }
407
408    // Read a record.
409    Record.clear();
410    switch (Stream.ReadRecord(Code, Record)) {
411    default:  // Default behavior: ignore.
412      break;
413    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414      if (Record.size() & 1)
415        return Error("Invalid ENTRY record");
416
417      // FIXME : Remove this autoupgrade code in LLVM 3.0.
418      // If Function attributes are using index 0 then transfer them
419      // to index ~0. Index 0 is used for return value attributes but used to be
420      // used for function attributes.
421      Attributes RetAttribute = Attribute::None;
422      Attributes FnAttribute = Attribute::None;
423      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424        // FIXME: remove in LLVM 3.0
425        // The alignment is stored as a 16-bit raw value from bits 31--16.
426        // We shift the bits above 31 down by 11 bits.
427
428        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429        if (Alignment && !isPowerOf2_32(Alignment))
430          return Error("Alignment is not a power of two.");
431
432        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433        if (Alignment)
434          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436        Record[i+1] = ReconstitutedAttr;
437
438        if (Record[i] == 0)
439          RetAttribute = Record[i+1];
440        else if (Record[i] == ~0U)
441          FnAttribute = Record[i+1];
442      }
443
444      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                              Attribute::ReadOnly|Attribute::ReadNone);
446
447      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448          (RetAttribute & OldRetAttrs) != 0) {
449        if (FnAttribute == Attribute::None) { // add a slot so they get added.
450          Record.push_back(~0U);
451          Record.push_back(0);
452        }
453
454        FnAttribute  |= RetAttribute & OldRetAttrs;
455        RetAttribute &= ~OldRetAttrs;
456      }
457
458      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459        if (Record[i] == 0) {
460          if (RetAttribute != Attribute::None)
461            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462        } else if (Record[i] == ~0U) {
463          if (FnAttribute != Attribute::None)
464            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465        } else if (Record[i+1] != Attribute::None)
466          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467      }
468
469      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470      Attrs.clear();
471      break;
472    }
473    }
474  }
475}
476
477
478bool BitcodeReader::ParseTypeTable() {
479  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480    return Error("Malformed block record");
481
482  if (!TypeList.empty())
483    return Error("Multiple TYPE_BLOCKs found!");
484
485  SmallVector<uint64_t, 64> Record;
486  unsigned NumRecords = 0;
487
488  // Read all the records for this type table.
489  while (1) {
490    unsigned Code = Stream.ReadCode();
491    if (Code == bitc::END_BLOCK) {
492      if (NumRecords != TypeList.size())
493        return Error("Invalid type forward reference in TYPE_BLOCK");
494      if (Stream.ReadBlockEnd())
495        return Error("Error at end of type table block");
496      return false;
497    }
498
499    if (Code == bitc::ENTER_SUBBLOCK) {
500      // No known subblocks, always skip them.
501      Stream.ReadSubBlockID();
502      if (Stream.SkipBlock())
503        return Error("Malformed block record");
504      continue;
505    }
506
507    if (Code == bitc::DEFINE_ABBREV) {
508      Stream.ReadAbbrevRecord();
509      continue;
510    }
511
512    // Read a record.
513    Record.clear();
514    const Type *ResultTy = 0;
515    switch (Stream.ReadRecord(Code, Record)) {
516    default:  // Default behavior: unknown type.
517      ResultTy = 0;
518      break;
519    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521      // type list.  This allows us to reserve space.
522      if (Record.size() < 1)
523        return Error("Invalid TYPE_CODE_NUMENTRY record");
524      TypeList.reserve(Record[0]);
525      continue;
526    case bitc::TYPE_CODE_VOID:      // VOID
527      ResultTy = Type::getVoidTy(Context);
528      break;
529    case bitc::TYPE_CODE_FLOAT:     // FLOAT
530      ResultTy = Type::getFloatTy(Context);
531      break;
532    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533      ResultTy = Type::getDoubleTy(Context);
534      break;
535    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536      ResultTy = Type::getX86_FP80Ty(Context);
537      break;
538    case bitc::TYPE_CODE_FP128:     // FP128
539      ResultTy = Type::getFP128Ty(Context);
540      break;
541    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542      ResultTy = Type::getPPC_FP128Ty(Context);
543      break;
544    case bitc::TYPE_CODE_LABEL:     // LABEL
545      ResultTy = Type::getLabelTy(Context);
546      break;
547    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548      ResultTy = 0;
549      break;
550    case bitc::TYPE_CODE_METADATA:  // METADATA
551      ResultTy = Type::getMetadataTy(Context);
552      break;
553    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
554      if (Record.size() < 1)
555        return Error("Invalid Integer type record");
556
557      ResultTy = IntegerType::get(Context, Record[0]);
558      break;
559    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
560                                    //          [pointee type, address space]
561      if (Record.size() < 1)
562        return Error("Invalid POINTER type record");
563      unsigned AddressSpace = 0;
564      if (Record.size() == 2)
565        AddressSpace = Record[1];
566      ResultTy = PointerType::get(getTypeByID(Record[0], true),
567                                        AddressSpace);
568      break;
569    }
570    case bitc::TYPE_CODE_FUNCTION: {
571      // FIXME: attrid is dead, remove it in LLVM 3.0
572      // FUNCTION: [vararg, attrid, retty, paramty x N]
573      if (Record.size() < 3)
574        return Error("Invalid FUNCTION type record");
575      std::vector<const Type*> ArgTys;
576      for (unsigned i = 3, e = Record.size(); i != e; ++i)
577        ArgTys.push_back(getTypeByID(Record[i], true));
578
579      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
580                                   Record[0]);
581      break;
582    }
583    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
584      if (Record.size() < 1)
585        return Error("Invalid STRUCT type record");
586      std::vector<const Type*> EltTys;
587      for (unsigned i = 1, e = Record.size(); i != e; ++i)
588        EltTys.push_back(getTypeByID(Record[i], true));
589      ResultTy = StructType::get(Context, EltTys, Record[0]);
590      break;
591    }
592    case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
593      SmallVector<const Type*, 8> EltTys;
594      for (unsigned i = 0, e = Record.size(); i != e; ++i)
595        EltTys.push_back(getTypeByID(Record[i], true));
596      ResultTy = UnionType::get(&EltTys[0], EltTys.size());
597      break;
598    }
599    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
600      if (Record.size() < 2)
601        return Error("Invalid ARRAY type record");
602      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
603      break;
604    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
605      if (Record.size() < 2)
606        return Error("Invalid VECTOR type record");
607      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
608      break;
609    }
610
611    if (NumRecords == TypeList.size()) {
612      // If this is a new type slot, just append it.
613      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
614      ++NumRecords;
615    } else if (ResultTy == 0) {
616      // Otherwise, this was forward referenced, so an opaque type was created,
617      // but the result type is actually just an opaque.  Leave the one we
618      // created previously.
619      ++NumRecords;
620    } else {
621      // Otherwise, this was forward referenced, so an opaque type was created.
622      // Resolve the opaque type to the real type now.
623      assert(NumRecords < TypeList.size() && "Typelist imbalance");
624      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
625
626      // Don't directly push the new type on the Tab. Instead we want to replace
627      // the opaque type we previously inserted with the new concrete value. The
628      // refinement from the abstract (opaque) type to the new type causes all
629      // uses of the abstract type to use the concrete type (NewTy). This will
630      // also cause the opaque type to be deleted.
631      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
632
633      // This should have replaced the old opaque type with the new type in the
634      // value table... or with a preexisting type that was already in the
635      // system.  Let's just make sure it did.
636      assert(TypeList[NumRecords-1].get() != OldTy &&
637             "refineAbstractType didn't work!");
638    }
639  }
640}
641
642
643bool BitcodeReader::ParseTypeSymbolTable() {
644  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
645    return Error("Malformed block record");
646
647  SmallVector<uint64_t, 64> Record;
648
649  // Read all the records for this type table.
650  std::string TypeName;
651  while (1) {
652    unsigned Code = Stream.ReadCode();
653    if (Code == bitc::END_BLOCK) {
654      if (Stream.ReadBlockEnd())
655        return Error("Error at end of type symbol table block");
656      return false;
657    }
658
659    if (Code == bitc::ENTER_SUBBLOCK) {
660      // No known subblocks, always skip them.
661      Stream.ReadSubBlockID();
662      if (Stream.SkipBlock())
663        return Error("Malformed block record");
664      continue;
665    }
666
667    if (Code == bitc::DEFINE_ABBREV) {
668      Stream.ReadAbbrevRecord();
669      continue;
670    }
671
672    // Read a record.
673    Record.clear();
674    switch (Stream.ReadRecord(Code, Record)) {
675    default:  // Default behavior: unknown type.
676      break;
677    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
678      if (ConvertToString(Record, 1, TypeName))
679        return Error("Invalid TST_ENTRY record");
680      unsigned TypeID = Record[0];
681      if (TypeID >= TypeList.size())
682        return Error("Invalid Type ID in TST_ENTRY record");
683
684      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
685      TypeName.clear();
686      break;
687    }
688  }
689}
690
691bool BitcodeReader::ParseValueSymbolTable() {
692  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
693    return Error("Malformed block record");
694
695  SmallVector<uint64_t, 64> Record;
696
697  // Read all the records for this value table.
698  SmallString<128> ValueName;
699  while (1) {
700    unsigned Code = Stream.ReadCode();
701    if (Code == bitc::END_BLOCK) {
702      if (Stream.ReadBlockEnd())
703        return Error("Error at end of value symbol table block");
704      return false;
705    }
706    if (Code == bitc::ENTER_SUBBLOCK) {
707      // No known subblocks, always skip them.
708      Stream.ReadSubBlockID();
709      if (Stream.SkipBlock())
710        return Error("Malformed block record");
711      continue;
712    }
713
714    if (Code == bitc::DEFINE_ABBREV) {
715      Stream.ReadAbbrevRecord();
716      continue;
717    }
718
719    // Read a record.
720    Record.clear();
721    switch (Stream.ReadRecord(Code, Record)) {
722    default:  // Default behavior: unknown type.
723      break;
724    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
725      if (ConvertToString(Record, 1, ValueName))
726        return Error("Invalid VST_ENTRY record");
727      unsigned ValueID = Record[0];
728      if (ValueID >= ValueList.size())
729        return Error("Invalid Value ID in VST_ENTRY record");
730      Value *V = ValueList[ValueID];
731
732      V->setName(StringRef(ValueName.data(), ValueName.size()));
733      ValueName.clear();
734      break;
735    }
736    case bitc::VST_CODE_BBENTRY: {
737      if (ConvertToString(Record, 1, ValueName))
738        return Error("Invalid VST_BBENTRY record");
739      BasicBlock *BB = getBasicBlock(Record[0]);
740      if (BB == 0)
741        return Error("Invalid BB ID in VST_BBENTRY record");
742
743      BB->setName(StringRef(ValueName.data(), ValueName.size()));
744      ValueName.clear();
745      break;
746    }
747    }
748  }
749}
750
751bool BitcodeReader::ParseMetadata() {
752  unsigned NextMDValueNo = MDValueList.size();
753
754  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
755    return Error("Malformed block record");
756
757  SmallVector<uint64_t, 64> Record;
758
759  // Read all the records.
760  while (1) {
761    unsigned Code = Stream.ReadCode();
762    if (Code == bitc::END_BLOCK) {
763      if (Stream.ReadBlockEnd())
764        return Error("Error at end of PARAMATTR block");
765      return false;
766    }
767
768    if (Code == bitc::ENTER_SUBBLOCK) {
769      // No known subblocks, always skip them.
770      Stream.ReadSubBlockID();
771      if (Stream.SkipBlock())
772        return Error("Malformed block record");
773      continue;
774    }
775
776    if (Code == bitc::DEFINE_ABBREV) {
777      Stream.ReadAbbrevRecord();
778      continue;
779    }
780
781    bool IsFunctionLocal = false;
782    // Read a record.
783    Record.clear();
784    switch (Stream.ReadRecord(Code, Record)) {
785    default:  // Default behavior: ignore.
786      break;
787    case bitc::METADATA_NAME: {
788      // Read named of the named metadata.
789      unsigned NameLength = Record.size();
790      SmallString<8> Name;
791      Name.resize(NameLength);
792      for (unsigned i = 0; i != NameLength; ++i)
793        Name[i] = Record[i];
794      Record.clear();
795      Code = Stream.ReadCode();
796
797      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
798      if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
799        assert ( 0 && "Inavlid Named Metadata record");
800
801      // Read named metadata elements.
802      unsigned Size = Record.size();
803      SmallVector<MDNode *, 8> Elts;
804      for (unsigned i = 0; i != Size; ++i) {
805        if (Record[i] == ~0U) {
806          Elts.push_back(NULL);
807          continue;
808        }
809        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
810        if (MD == 0)
811          return Error("Malformed metadata record");
812        Elts.push_back(MD);
813      }
814      Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
815                                     Elts.size(), TheModule);
816      MDValueList.AssignValue(V, NextMDValueNo++);
817      break;
818    }
819    case bitc::METADATA_FN_NODE:
820      IsFunctionLocal = true;
821      // fall-through
822    case bitc::METADATA_NODE: {
823      if (Record.size() % 2 == 1)
824        return Error("Invalid METADATA_NODE record");
825
826      unsigned Size = Record.size();
827      SmallVector<Value*, 8> Elts;
828      for (unsigned i = 0; i != Size; i += 2) {
829        const Type *Ty = getTypeByID(Record[i], false);
830        if (Ty->isMetadataTy())
831          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
832        else if (!Ty->isVoidTy())
833          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
834        else
835          Elts.push_back(NULL);
836      }
837      Value *V = MDNode::getWhenValsUnresolved(Context,
838                                               Elts.data(), Elts.size(),
839                                               IsFunctionLocal);
840      IsFunctionLocal = false;
841      MDValueList.AssignValue(V, NextMDValueNo++);
842      break;
843    }
844    case bitc::METADATA_STRING: {
845      unsigned MDStringLength = Record.size();
846      SmallString<8> String;
847      String.resize(MDStringLength);
848      for (unsigned i = 0; i != MDStringLength; ++i)
849        String[i] = Record[i];
850      Value *V = MDString::get(Context,
851                               StringRef(String.data(), String.size()));
852      MDValueList.AssignValue(V, NextMDValueNo++);
853      break;
854    }
855    case bitc::METADATA_KIND: {
856      unsigned RecordLength = Record.size();
857      if (Record.empty() || RecordLength < 2)
858        return Error("Invalid METADATA_KIND record");
859      SmallString<8> Name;
860      Name.resize(RecordLength-1);
861      unsigned Kind = Record[0];
862      (void) Kind;
863      for (unsigned i = 1; i != RecordLength; ++i)
864        Name[i-1] = Record[i];
865
866      unsigned NewKind = TheModule->getMDKindID(Name.str());
867      assert(Kind == NewKind &&
868             "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
869      break;
870    }
871    }
872  }
873}
874
875/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
876/// the LSB for dense VBR encoding.
877static uint64_t DecodeSignRotatedValue(uint64_t V) {
878  if ((V & 1) == 0)
879    return V >> 1;
880  if (V != 1)
881    return -(V >> 1);
882  // There is no such thing as -0 with integers.  "-0" really means MININT.
883  return 1ULL << 63;
884}
885
886/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
887/// values and aliases that we can.
888bool BitcodeReader::ResolveGlobalAndAliasInits() {
889  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
890  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
891
892  GlobalInitWorklist.swap(GlobalInits);
893  AliasInitWorklist.swap(AliasInits);
894
895  while (!GlobalInitWorklist.empty()) {
896    unsigned ValID = GlobalInitWorklist.back().second;
897    if (ValID >= ValueList.size()) {
898      // Not ready to resolve this yet, it requires something later in the file.
899      GlobalInits.push_back(GlobalInitWorklist.back());
900    } else {
901      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
902        GlobalInitWorklist.back().first->setInitializer(C);
903      else
904        return Error("Global variable initializer is not a constant!");
905    }
906    GlobalInitWorklist.pop_back();
907  }
908
909  while (!AliasInitWorklist.empty()) {
910    unsigned ValID = AliasInitWorklist.back().second;
911    if (ValID >= ValueList.size()) {
912      AliasInits.push_back(AliasInitWorklist.back());
913    } else {
914      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
915        AliasInitWorklist.back().first->setAliasee(C);
916      else
917        return Error("Alias initializer is not a constant!");
918    }
919    AliasInitWorklist.pop_back();
920  }
921  return false;
922}
923
924bool BitcodeReader::ParseConstants() {
925  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
926    return Error("Malformed block record");
927
928  SmallVector<uint64_t, 64> Record;
929
930  // Read all the records for this value table.
931  const Type *CurTy = Type::getInt32Ty(Context);
932  unsigned NextCstNo = ValueList.size();
933  while (1) {
934    unsigned Code = Stream.ReadCode();
935    if (Code == bitc::END_BLOCK)
936      break;
937
938    if (Code == bitc::ENTER_SUBBLOCK) {
939      // No known subblocks, always skip them.
940      Stream.ReadSubBlockID();
941      if (Stream.SkipBlock())
942        return Error("Malformed block record");
943      continue;
944    }
945
946    if (Code == bitc::DEFINE_ABBREV) {
947      Stream.ReadAbbrevRecord();
948      continue;
949    }
950
951    // Read a record.
952    Record.clear();
953    Value *V = 0;
954    unsigned BitCode = Stream.ReadRecord(Code, Record);
955    switch (BitCode) {
956    default:  // Default behavior: unknown constant
957    case bitc::CST_CODE_UNDEF:     // UNDEF
958      V = UndefValue::get(CurTy);
959      break;
960    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
961      if (Record.empty())
962        return Error("Malformed CST_SETTYPE record");
963      if (Record[0] >= TypeList.size())
964        return Error("Invalid Type ID in CST_SETTYPE record");
965      CurTy = TypeList[Record[0]];
966      continue;  // Skip the ValueList manipulation.
967    case bitc::CST_CODE_NULL:      // NULL
968      V = Constant::getNullValue(CurTy);
969      break;
970    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
971      if (!CurTy->isIntegerTy() || Record.empty())
972        return Error("Invalid CST_INTEGER record");
973      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
974      break;
975    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
976      if (!CurTy->isIntegerTy() || Record.empty())
977        return Error("Invalid WIDE_INTEGER record");
978
979      unsigned NumWords = Record.size();
980      SmallVector<uint64_t, 8> Words;
981      Words.resize(NumWords);
982      for (unsigned i = 0; i != NumWords; ++i)
983        Words[i] = DecodeSignRotatedValue(Record[i]);
984      V = ConstantInt::get(Context,
985                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
986                           NumWords, &Words[0]));
987      break;
988    }
989    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
990      if (Record.empty())
991        return Error("Invalid FLOAT record");
992      if (CurTy->isFloatTy())
993        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
994      else if (CurTy->isDoubleTy())
995        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
996      else if (CurTy->isX86_FP80Ty()) {
997        // Bits are not stored the same way as a normal i80 APInt, compensate.
998        uint64_t Rearrange[2];
999        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1000        Rearrange[1] = Record[0] >> 48;
1001        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1002      } else if (CurTy->isFP128Ty())
1003        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1004      else if (CurTy->isPPC_FP128Ty())
1005        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1006      else
1007        V = UndefValue::get(CurTy);
1008      break;
1009    }
1010
1011    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1012      if (Record.empty())
1013        return Error("Invalid CST_AGGREGATE record");
1014
1015      unsigned Size = Record.size();
1016      std::vector<Constant*> Elts;
1017
1018      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1019        for (unsigned i = 0; i != Size; ++i)
1020          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1021                                                     STy->getElementType(i)));
1022        V = ConstantStruct::get(STy, Elts);
1023      } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
1024        uint64_t Index = Record[0];
1025        Constant *Val = ValueList.getConstantFwdRef(Record[1],
1026                                        UnTy->getElementType(Index));
1027        V = ConstantUnion::get(UnTy, Val);
1028      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1029        const Type *EltTy = ATy->getElementType();
1030        for (unsigned i = 0; i != Size; ++i)
1031          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1032        V = ConstantArray::get(ATy, Elts);
1033      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1034        const Type *EltTy = VTy->getElementType();
1035        for (unsigned i = 0; i != Size; ++i)
1036          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1037        V = ConstantVector::get(Elts);
1038      } else {
1039        V = UndefValue::get(CurTy);
1040      }
1041      break;
1042    }
1043    case bitc::CST_CODE_STRING: { // STRING: [values]
1044      if (Record.empty())
1045        return Error("Invalid CST_AGGREGATE record");
1046
1047      const ArrayType *ATy = cast<ArrayType>(CurTy);
1048      const Type *EltTy = ATy->getElementType();
1049
1050      unsigned Size = Record.size();
1051      std::vector<Constant*> Elts;
1052      for (unsigned i = 0; i != Size; ++i)
1053        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1054      V = ConstantArray::get(ATy, Elts);
1055      break;
1056    }
1057    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1058      if (Record.empty())
1059        return Error("Invalid CST_AGGREGATE record");
1060
1061      const ArrayType *ATy = cast<ArrayType>(CurTy);
1062      const Type *EltTy = ATy->getElementType();
1063
1064      unsigned Size = Record.size();
1065      std::vector<Constant*> Elts;
1066      for (unsigned i = 0; i != Size; ++i)
1067        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1068      Elts.push_back(Constant::getNullValue(EltTy));
1069      V = ConstantArray::get(ATy, Elts);
1070      break;
1071    }
1072    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1073      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1074      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1075      if (Opc < 0) {
1076        V = UndefValue::get(CurTy);  // Unknown binop.
1077      } else {
1078        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1079        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1080        unsigned Flags = 0;
1081        if (Record.size() >= 4) {
1082          if (Opc == Instruction::Add ||
1083              Opc == Instruction::Sub ||
1084              Opc == Instruction::Mul) {
1085            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1086              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1087            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1088              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1089          } else if (Opc == Instruction::SDiv) {
1090            if (Record[3] & (1 << bitc::SDIV_EXACT))
1091              Flags |= SDivOperator::IsExact;
1092          }
1093        }
1094        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1095      }
1096      break;
1097    }
1098    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1099      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1100      int Opc = GetDecodedCastOpcode(Record[0]);
1101      if (Opc < 0) {
1102        V = UndefValue::get(CurTy);  // Unknown cast.
1103      } else {
1104        const Type *OpTy = getTypeByID(Record[1]);
1105        if (!OpTy) return Error("Invalid CE_CAST record");
1106        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1107        V = ConstantExpr::getCast(Opc, Op, CurTy);
1108      }
1109      break;
1110    }
1111    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1112    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1113      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1114      SmallVector<Constant*, 16> Elts;
1115      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1116        const Type *ElTy = getTypeByID(Record[i]);
1117        if (!ElTy) return Error("Invalid CE_GEP record");
1118        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1119      }
1120      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1121        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1122                                                   Elts.size()-1);
1123      else
1124        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1125                                           Elts.size()-1);
1126      break;
1127    }
1128    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1129      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1130      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1131                                                              Type::getInt1Ty(Context)),
1132                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1133                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1134      break;
1135    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1136      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1137      const VectorType *OpTy =
1138        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1139      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1140      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1141      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1142      V = ConstantExpr::getExtractElement(Op0, Op1);
1143      break;
1144    }
1145    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1146      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1147      if (Record.size() < 3 || OpTy == 0)
1148        return Error("Invalid CE_INSERTELT record");
1149      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1150      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1151                                                  OpTy->getElementType());
1152      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1153      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1154      break;
1155    }
1156    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1157      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1158      if (Record.size() < 3 || OpTy == 0)
1159        return Error("Invalid CE_SHUFFLEVEC record");
1160      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1161      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1162      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1163                                                 OpTy->getNumElements());
1164      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1165      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1166      break;
1167    }
1168    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1169      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1170      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1171      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1172        return Error("Invalid CE_SHUFVEC_EX record");
1173      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1174      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1175      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1176                                                 RTy->getNumElements());
1177      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1178      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1179      break;
1180    }
1181    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1182      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1183      const Type *OpTy = getTypeByID(Record[0]);
1184      if (OpTy == 0) return Error("Invalid CE_CMP record");
1185      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1186      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1187
1188      if (OpTy->isFPOrFPVectorTy())
1189        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1190      else
1191        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1192      break;
1193    }
1194    case bitc::CST_CODE_INLINEASM: {
1195      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1196      std::string AsmStr, ConstrStr;
1197      bool HasSideEffects = Record[0] & 1;
1198      bool IsAlignStack = Record[0] >> 1;
1199      unsigned AsmStrSize = Record[1];
1200      if (2+AsmStrSize >= Record.size())
1201        return Error("Invalid INLINEASM record");
1202      unsigned ConstStrSize = Record[2+AsmStrSize];
1203      if (3+AsmStrSize+ConstStrSize > Record.size())
1204        return Error("Invalid INLINEASM record");
1205
1206      for (unsigned i = 0; i != AsmStrSize; ++i)
1207        AsmStr += (char)Record[2+i];
1208      for (unsigned i = 0; i != ConstStrSize; ++i)
1209        ConstrStr += (char)Record[3+AsmStrSize+i];
1210      const PointerType *PTy = cast<PointerType>(CurTy);
1211      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1212                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1213      break;
1214    }
1215    case bitc::CST_CODE_BLOCKADDRESS:{
1216      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1217      const Type *FnTy = getTypeByID(Record[0]);
1218      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1219      Function *Fn =
1220        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1221      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1222
1223      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1224                                                  Type::getInt8Ty(Context),
1225                                            false, GlobalValue::InternalLinkage,
1226                                                  0, "");
1227      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1228      V = FwdRef;
1229      break;
1230    }
1231    }
1232
1233    ValueList.AssignValue(V, NextCstNo);
1234    ++NextCstNo;
1235  }
1236
1237  if (NextCstNo != ValueList.size())
1238    return Error("Invalid constant reference!");
1239
1240  if (Stream.ReadBlockEnd())
1241    return Error("Error at end of constants block");
1242
1243  // Once all the constants have been read, go through and resolve forward
1244  // references.
1245  ValueList.ResolveConstantForwardRefs();
1246  return false;
1247}
1248
1249/// RememberAndSkipFunctionBody - When we see the block for a function body,
1250/// remember where it is and then skip it.  This lets us lazily deserialize the
1251/// functions.
1252bool BitcodeReader::RememberAndSkipFunctionBody() {
1253  // Get the function we are talking about.
1254  if (FunctionsWithBodies.empty())
1255    return Error("Insufficient function protos");
1256
1257  Function *Fn = FunctionsWithBodies.back();
1258  FunctionsWithBodies.pop_back();
1259
1260  // Save the current stream state.
1261  uint64_t CurBit = Stream.GetCurrentBitNo();
1262  DeferredFunctionInfo[Fn] = CurBit;
1263
1264  // Skip over the function block for now.
1265  if (Stream.SkipBlock())
1266    return Error("Malformed block record");
1267  return false;
1268}
1269
1270bool BitcodeReader::ParseModule() {
1271  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1272    return Error("Malformed block record");
1273
1274  SmallVector<uint64_t, 64> Record;
1275  std::vector<std::string> SectionTable;
1276  std::vector<std::string> GCTable;
1277
1278  // Read all the records for this module.
1279  while (!Stream.AtEndOfStream()) {
1280    unsigned Code = Stream.ReadCode();
1281    if (Code == bitc::END_BLOCK) {
1282      if (Stream.ReadBlockEnd())
1283        return Error("Error at end of module block");
1284
1285      // Patch the initializers for globals and aliases up.
1286      ResolveGlobalAndAliasInits();
1287      if (!GlobalInits.empty() || !AliasInits.empty())
1288        return Error("Malformed global initializer set");
1289      if (!FunctionsWithBodies.empty())
1290        return Error("Too few function bodies found");
1291
1292      // Look for intrinsic functions which need to be upgraded at some point
1293      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1294           FI != FE; ++FI) {
1295        Function* NewFn;
1296        if (UpgradeIntrinsicFunction(FI, NewFn))
1297          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1298      }
1299
1300      // Force deallocation of memory for these vectors to favor the client that
1301      // want lazy deserialization.
1302      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1303      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1304      std::vector<Function*>().swap(FunctionsWithBodies);
1305      return false;
1306    }
1307
1308    if (Code == bitc::ENTER_SUBBLOCK) {
1309      switch (Stream.ReadSubBlockID()) {
1310      default:  // Skip unknown content.
1311        if (Stream.SkipBlock())
1312          return Error("Malformed block record");
1313        break;
1314      case bitc::BLOCKINFO_BLOCK_ID:
1315        if (Stream.ReadBlockInfoBlock())
1316          return Error("Malformed BlockInfoBlock");
1317        break;
1318      case bitc::PARAMATTR_BLOCK_ID:
1319        if (ParseAttributeBlock())
1320          return true;
1321        break;
1322      case bitc::TYPE_BLOCK_ID:
1323        if (ParseTypeTable())
1324          return true;
1325        break;
1326      case bitc::TYPE_SYMTAB_BLOCK_ID:
1327        if (ParseTypeSymbolTable())
1328          return true;
1329        break;
1330      case bitc::VALUE_SYMTAB_BLOCK_ID:
1331        if (ParseValueSymbolTable())
1332          return true;
1333        break;
1334      case bitc::CONSTANTS_BLOCK_ID:
1335        if (ParseConstants() || ResolveGlobalAndAliasInits())
1336          return true;
1337        break;
1338      case bitc::METADATA_BLOCK_ID:
1339        if (ParseMetadata())
1340          return true;
1341        break;
1342      case bitc::FUNCTION_BLOCK_ID:
1343        // If this is the first function body we've seen, reverse the
1344        // FunctionsWithBodies list.
1345        if (!HasReversedFunctionsWithBodies) {
1346          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1347          HasReversedFunctionsWithBodies = true;
1348        }
1349
1350        if (RememberAndSkipFunctionBody())
1351          return true;
1352        break;
1353      }
1354      continue;
1355    }
1356
1357    if (Code == bitc::DEFINE_ABBREV) {
1358      Stream.ReadAbbrevRecord();
1359      continue;
1360    }
1361
1362    // Read a record.
1363    switch (Stream.ReadRecord(Code, Record)) {
1364    default: break;  // Default behavior, ignore unknown content.
1365    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1366      if (Record.size() < 1)
1367        return Error("Malformed MODULE_CODE_VERSION");
1368      // Only version #0 is supported so far.
1369      if (Record[0] != 0)
1370        return Error("Unknown bitstream version!");
1371      break;
1372    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1373      std::string S;
1374      if (ConvertToString(Record, 0, S))
1375        return Error("Invalid MODULE_CODE_TRIPLE record");
1376      TheModule->setTargetTriple(S);
1377      break;
1378    }
1379    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1380      std::string S;
1381      if (ConvertToString(Record, 0, S))
1382        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1383      TheModule->setDataLayout(S);
1384      break;
1385    }
1386    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1387      std::string S;
1388      if (ConvertToString(Record, 0, S))
1389        return Error("Invalid MODULE_CODE_ASM record");
1390      TheModule->setModuleInlineAsm(S);
1391      break;
1392    }
1393    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1394      std::string S;
1395      if (ConvertToString(Record, 0, S))
1396        return Error("Invalid MODULE_CODE_DEPLIB record");
1397      TheModule->addLibrary(S);
1398      break;
1399    }
1400    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1401      std::string S;
1402      if (ConvertToString(Record, 0, S))
1403        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1404      SectionTable.push_back(S);
1405      break;
1406    }
1407    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1408      std::string S;
1409      if (ConvertToString(Record, 0, S))
1410        return Error("Invalid MODULE_CODE_GCNAME record");
1411      GCTable.push_back(S);
1412      break;
1413    }
1414    // GLOBALVAR: [pointer type, isconst, initid,
1415    //             linkage, alignment, section, visibility, threadlocal]
1416    case bitc::MODULE_CODE_GLOBALVAR: {
1417      if (Record.size() < 6)
1418        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1419      const Type *Ty = getTypeByID(Record[0]);
1420      if (!Ty->isPointerTy())
1421        return Error("Global not a pointer type!");
1422      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1423      Ty = cast<PointerType>(Ty)->getElementType();
1424
1425      bool isConstant = Record[1];
1426      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1427      unsigned Alignment = (1 << Record[4]) >> 1;
1428      std::string Section;
1429      if (Record[5]) {
1430        if (Record[5]-1 >= SectionTable.size())
1431          return Error("Invalid section ID");
1432        Section = SectionTable[Record[5]-1];
1433      }
1434      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1435      if (Record.size() > 6)
1436        Visibility = GetDecodedVisibility(Record[6]);
1437      bool isThreadLocal = false;
1438      if (Record.size() > 7)
1439        isThreadLocal = Record[7];
1440
1441      GlobalVariable *NewGV =
1442        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1443                           isThreadLocal, AddressSpace);
1444      NewGV->setAlignment(Alignment);
1445      if (!Section.empty())
1446        NewGV->setSection(Section);
1447      NewGV->setVisibility(Visibility);
1448      NewGV->setThreadLocal(isThreadLocal);
1449
1450      ValueList.push_back(NewGV);
1451
1452      // Remember which value to use for the global initializer.
1453      if (unsigned InitID = Record[2])
1454        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1455      break;
1456    }
1457    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1458    //             alignment, section, visibility, gc]
1459    case bitc::MODULE_CODE_FUNCTION: {
1460      if (Record.size() < 8)
1461        return Error("Invalid MODULE_CODE_FUNCTION record");
1462      const Type *Ty = getTypeByID(Record[0]);
1463      if (!Ty->isPointerTy())
1464        return Error("Function not a pointer type!");
1465      const FunctionType *FTy =
1466        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1467      if (!FTy)
1468        return Error("Function not a pointer to function type!");
1469
1470      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1471                                        "", TheModule);
1472
1473      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1474      bool isProto = Record[2];
1475      Func->setLinkage(GetDecodedLinkage(Record[3]));
1476      Func->setAttributes(getAttributes(Record[4]));
1477
1478      Func->setAlignment((1 << Record[5]) >> 1);
1479      if (Record[6]) {
1480        if (Record[6]-1 >= SectionTable.size())
1481          return Error("Invalid section ID");
1482        Func->setSection(SectionTable[Record[6]-1]);
1483      }
1484      Func->setVisibility(GetDecodedVisibility(Record[7]));
1485      if (Record.size() > 8 && Record[8]) {
1486        if (Record[8]-1 > GCTable.size())
1487          return Error("Invalid GC ID");
1488        Func->setGC(GCTable[Record[8]-1].c_str());
1489      }
1490      ValueList.push_back(Func);
1491
1492      // If this is a function with a body, remember the prototype we are
1493      // creating now, so that we can match up the body with them later.
1494      if (!isProto)
1495        FunctionsWithBodies.push_back(Func);
1496      break;
1497    }
1498    // ALIAS: [alias type, aliasee val#, linkage]
1499    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1500    case bitc::MODULE_CODE_ALIAS: {
1501      if (Record.size() < 3)
1502        return Error("Invalid MODULE_ALIAS record");
1503      const Type *Ty = getTypeByID(Record[0]);
1504      if (!Ty->isPointerTy())
1505        return Error("Function not a pointer type!");
1506
1507      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1508                                           "", 0, TheModule);
1509      // Old bitcode files didn't have visibility field.
1510      if (Record.size() > 3)
1511        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1512      ValueList.push_back(NewGA);
1513      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1514      break;
1515    }
1516    /// MODULE_CODE_PURGEVALS: [numvals]
1517    case bitc::MODULE_CODE_PURGEVALS:
1518      // Trim down the value list to the specified size.
1519      if (Record.size() < 1 || Record[0] > ValueList.size())
1520        return Error("Invalid MODULE_PURGEVALS record");
1521      ValueList.shrinkTo(Record[0]);
1522      break;
1523    }
1524    Record.clear();
1525  }
1526
1527  return Error("Premature end of bitstream");
1528}
1529
1530bool BitcodeReader::ParseBitcodeInto(Module *M) {
1531  TheModule = 0;
1532
1533  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1534  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1535
1536  if (Buffer->getBufferSize() & 3) {
1537    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1538      return Error("Invalid bitcode signature");
1539    else
1540      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1541  }
1542
1543  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1544  // The magic number is 0x0B17C0DE stored in little endian.
1545  if (isBitcodeWrapper(BufPtr, BufEnd))
1546    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1547      return Error("Invalid bitcode wrapper header");
1548
1549  StreamFile.init(BufPtr, BufEnd);
1550  Stream.init(StreamFile);
1551
1552  // Sniff for the signature.
1553  if (Stream.Read(8) != 'B' ||
1554      Stream.Read(8) != 'C' ||
1555      Stream.Read(4) != 0x0 ||
1556      Stream.Read(4) != 0xC ||
1557      Stream.Read(4) != 0xE ||
1558      Stream.Read(4) != 0xD)
1559    return Error("Invalid bitcode signature");
1560
1561  // We expect a number of well-defined blocks, though we don't necessarily
1562  // need to understand them all.
1563  while (!Stream.AtEndOfStream()) {
1564    unsigned Code = Stream.ReadCode();
1565
1566    if (Code != bitc::ENTER_SUBBLOCK)
1567      return Error("Invalid record at top-level");
1568
1569    unsigned BlockID = Stream.ReadSubBlockID();
1570
1571    // We only know the MODULE subblock ID.
1572    switch (BlockID) {
1573    case bitc::BLOCKINFO_BLOCK_ID:
1574      if (Stream.ReadBlockInfoBlock())
1575        return Error("Malformed BlockInfoBlock");
1576      break;
1577    case bitc::MODULE_BLOCK_ID:
1578      // Reject multiple MODULE_BLOCK's in a single bitstream.
1579      if (TheModule)
1580        return Error("Multiple MODULE_BLOCKs in same stream");
1581      TheModule = M;
1582      if (ParseModule())
1583        return true;
1584      break;
1585    default:
1586      if (Stream.SkipBlock())
1587        return Error("Malformed block record");
1588      break;
1589    }
1590  }
1591
1592  return false;
1593}
1594
1595/// ParseMetadataAttachment - Parse metadata attachments.
1596bool BitcodeReader::ParseMetadataAttachment() {
1597  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1598    return Error("Malformed block record");
1599
1600  SmallVector<uint64_t, 64> Record;
1601  while(1) {
1602    unsigned Code = Stream.ReadCode();
1603    if (Code == bitc::END_BLOCK) {
1604      if (Stream.ReadBlockEnd())
1605        return Error("Error at end of PARAMATTR block");
1606      break;
1607    }
1608    if (Code == bitc::DEFINE_ABBREV) {
1609      Stream.ReadAbbrevRecord();
1610      continue;
1611    }
1612    // Read a metadata attachment record.
1613    Record.clear();
1614    switch (Stream.ReadRecord(Code, Record)) {
1615    default:  // Default behavior: ignore.
1616      break;
1617    case bitc::METADATA_ATTACHMENT: {
1618      unsigned RecordLength = Record.size();
1619      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1620        return Error ("Invalid METADATA_ATTACHMENT reader!");
1621      Instruction *Inst = InstructionList[Record[0]];
1622      for (unsigned i = 1; i != RecordLength; i = i+2) {
1623        unsigned Kind = Record[i];
1624        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1625        Inst->setMetadata(Kind, cast<MDNode>(Node));
1626      }
1627      break;
1628    }
1629    }
1630  }
1631  return false;
1632}
1633
1634/// ParseFunctionBody - Lazily parse the specified function body block.
1635bool BitcodeReader::ParseFunctionBody(Function *F) {
1636  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1637    return Error("Malformed block record");
1638
1639  InstructionList.clear();
1640  unsigned ModuleValueListSize = ValueList.size();
1641
1642  // Add all the function arguments to the value table.
1643  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1644    ValueList.push_back(I);
1645
1646  unsigned NextValueNo = ValueList.size();
1647  BasicBlock *CurBB = 0;
1648  unsigned CurBBNo = 0;
1649
1650  DebugLoc LastLoc;
1651
1652  // Read all the records.
1653  SmallVector<uint64_t, 64> Record;
1654  while (1) {
1655    unsigned Code = Stream.ReadCode();
1656    if (Code == bitc::END_BLOCK) {
1657      if (Stream.ReadBlockEnd())
1658        return Error("Error at end of function block");
1659      break;
1660    }
1661
1662    if (Code == bitc::ENTER_SUBBLOCK) {
1663      switch (Stream.ReadSubBlockID()) {
1664      default:  // Skip unknown content.
1665        if (Stream.SkipBlock())
1666          return Error("Malformed block record");
1667        break;
1668      case bitc::CONSTANTS_BLOCK_ID:
1669        if (ParseConstants()) return true;
1670        NextValueNo = ValueList.size();
1671        break;
1672      case bitc::VALUE_SYMTAB_BLOCK_ID:
1673        if (ParseValueSymbolTable()) return true;
1674        break;
1675      case bitc::METADATA_ATTACHMENT_ID:
1676        if (ParseMetadataAttachment()) return true;
1677        break;
1678      case bitc::METADATA_BLOCK_ID:
1679        if (ParseMetadata()) return true;
1680        break;
1681      }
1682      continue;
1683    }
1684
1685    if (Code == bitc::DEFINE_ABBREV) {
1686      Stream.ReadAbbrevRecord();
1687      continue;
1688    }
1689
1690    // Read a record.
1691    Record.clear();
1692    Instruction *I = 0;
1693    unsigned BitCode = Stream.ReadRecord(Code, Record);
1694    switch (BitCode) {
1695    default: // Default behavior: reject
1696      return Error("Unknown instruction");
1697    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1698      if (Record.size() < 1 || Record[0] == 0)
1699        return Error("Invalid DECLAREBLOCKS record");
1700      // Create all the basic blocks for the function.
1701      FunctionBBs.resize(Record[0]);
1702      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1703        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1704      CurBB = FunctionBBs[0];
1705      continue;
1706
1707
1708    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1709      // This record indicates that the last instruction is at the same
1710      // location as the previous instruction with a location.
1711      I = 0;
1712
1713      // Get the last instruction emitted.
1714      if (CurBB && !CurBB->empty())
1715        I = &CurBB->back();
1716      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1717               !FunctionBBs[CurBBNo-1]->empty())
1718        I = &FunctionBBs[CurBBNo-1]->back();
1719
1720      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1721      I->setDebugLoc(LastLoc);
1722      I = 0;
1723      continue;
1724
1725    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1726      I = 0;     // Get the last instruction emitted.
1727      if (CurBB && !CurBB->empty())
1728        I = &CurBB->back();
1729      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1730               !FunctionBBs[CurBBNo-1]->empty())
1731        I = &FunctionBBs[CurBBNo-1]->back();
1732      if (I == 0 || Record.size() < 4)
1733        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1734
1735      unsigned Line = Record[0], Col = Record[1];
1736      unsigned ScopeID = Record[2], IAID = Record[3];
1737
1738      MDNode *Scope = 0, *IA = 0;
1739      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1740      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1741      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1742      I->setDebugLoc(LastLoc);
1743      I = 0;
1744      continue;
1745    }
1746
1747    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1748      unsigned OpNum = 0;
1749      Value *LHS, *RHS;
1750      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1751          getValue(Record, OpNum, LHS->getType(), RHS) ||
1752          OpNum+1 > Record.size())
1753        return Error("Invalid BINOP record");
1754
1755      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1756      if (Opc == -1) return Error("Invalid BINOP record");
1757      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1758      InstructionList.push_back(I);
1759      if (OpNum < Record.size()) {
1760        if (Opc == Instruction::Add ||
1761            Opc == Instruction::Sub ||
1762            Opc == Instruction::Mul) {
1763          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1764            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1765          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1766            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1767        } else if (Opc == Instruction::SDiv) {
1768          if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1769            cast<BinaryOperator>(I)->setIsExact(true);
1770        }
1771      }
1772      break;
1773    }
1774    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1775      unsigned OpNum = 0;
1776      Value *Op;
1777      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1778          OpNum+2 != Record.size())
1779        return Error("Invalid CAST record");
1780
1781      const Type *ResTy = getTypeByID(Record[OpNum]);
1782      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1783      if (Opc == -1 || ResTy == 0)
1784        return Error("Invalid CAST record");
1785      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1786      InstructionList.push_back(I);
1787      break;
1788    }
1789    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1790    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1791      unsigned OpNum = 0;
1792      Value *BasePtr;
1793      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1794        return Error("Invalid GEP record");
1795
1796      SmallVector<Value*, 16> GEPIdx;
1797      while (OpNum != Record.size()) {
1798        Value *Op;
1799        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1800          return Error("Invalid GEP record");
1801        GEPIdx.push_back(Op);
1802      }
1803
1804      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1805      InstructionList.push_back(I);
1806      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1807        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1808      break;
1809    }
1810
1811    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1812                                       // EXTRACTVAL: [opty, opval, n x indices]
1813      unsigned OpNum = 0;
1814      Value *Agg;
1815      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1816        return Error("Invalid EXTRACTVAL record");
1817
1818      SmallVector<unsigned, 4> EXTRACTVALIdx;
1819      for (unsigned RecSize = Record.size();
1820           OpNum != RecSize; ++OpNum) {
1821        uint64_t Index = Record[OpNum];
1822        if ((unsigned)Index != Index)
1823          return Error("Invalid EXTRACTVAL index");
1824        EXTRACTVALIdx.push_back((unsigned)Index);
1825      }
1826
1827      I = ExtractValueInst::Create(Agg,
1828                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1829      InstructionList.push_back(I);
1830      break;
1831    }
1832
1833    case bitc::FUNC_CODE_INST_INSERTVAL: {
1834                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1835      unsigned OpNum = 0;
1836      Value *Agg;
1837      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1838        return Error("Invalid INSERTVAL record");
1839      Value *Val;
1840      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1841        return Error("Invalid INSERTVAL record");
1842
1843      SmallVector<unsigned, 4> INSERTVALIdx;
1844      for (unsigned RecSize = Record.size();
1845           OpNum != RecSize; ++OpNum) {
1846        uint64_t Index = Record[OpNum];
1847        if ((unsigned)Index != Index)
1848          return Error("Invalid INSERTVAL index");
1849        INSERTVALIdx.push_back((unsigned)Index);
1850      }
1851
1852      I = InsertValueInst::Create(Agg, Val,
1853                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1854      InstructionList.push_back(I);
1855      break;
1856    }
1857
1858    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1859      // obsolete form of select
1860      // handles select i1 ... in old bitcode
1861      unsigned OpNum = 0;
1862      Value *TrueVal, *FalseVal, *Cond;
1863      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1864          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1865          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1866        return Error("Invalid SELECT record");
1867
1868      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1869      InstructionList.push_back(I);
1870      break;
1871    }
1872
1873    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1874      // new form of select
1875      // handles select i1 or select [N x i1]
1876      unsigned OpNum = 0;
1877      Value *TrueVal, *FalseVal, *Cond;
1878      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1879          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1880          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1881        return Error("Invalid SELECT record");
1882
1883      // select condition can be either i1 or [N x i1]
1884      if (const VectorType* vector_type =
1885          dyn_cast<const VectorType>(Cond->getType())) {
1886        // expect <n x i1>
1887        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1888          return Error("Invalid SELECT condition type");
1889      } else {
1890        // expect i1
1891        if (Cond->getType() != Type::getInt1Ty(Context))
1892          return Error("Invalid SELECT condition type");
1893      }
1894
1895      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1896      InstructionList.push_back(I);
1897      break;
1898    }
1899
1900    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1901      unsigned OpNum = 0;
1902      Value *Vec, *Idx;
1903      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1904          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1905        return Error("Invalid EXTRACTELT record");
1906      I = ExtractElementInst::Create(Vec, Idx);
1907      InstructionList.push_back(I);
1908      break;
1909    }
1910
1911    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1912      unsigned OpNum = 0;
1913      Value *Vec, *Elt, *Idx;
1914      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1915          getValue(Record, OpNum,
1916                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1917          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1918        return Error("Invalid INSERTELT record");
1919      I = InsertElementInst::Create(Vec, Elt, Idx);
1920      InstructionList.push_back(I);
1921      break;
1922    }
1923
1924    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1925      unsigned OpNum = 0;
1926      Value *Vec1, *Vec2, *Mask;
1927      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1928          getValue(Record, OpNum, Vec1->getType(), Vec2))
1929        return Error("Invalid SHUFFLEVEC record");
1930
1931      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1932        return Error("Invalid SHUFFLEVEC record");
1933      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1934      InstructionList.push_back(I);
1935      break;
1936    }
1937
1938    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1939      // Old form of ICmp/FCmp returning bool
1940      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1941      // both legal on vectors but had different behaviour.
1942    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1943      // FCmp/ICmp returning bool or vector of bool
1944
1945      unsigned OpNum = 0;
1946      Value *LHS, *RHS;
1947      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1948          getValue(Record, OpNum, LHS->getType(), RHS) ||
1949          OpNum+1 != Record.size())
1950        return Error("Invalid CMP record");
1951
1952      if (LHS->getType()->isFPOrFPVectorTy())
1953        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1954      else
1955        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1956      InstructionList.push_back(I);
1957      break;
1958    }
1959
1960    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1961      if (Record.size() != 2)
1962        return Error("Invalid GETRESULT record");
1963      unsigned OpNum = 0;
1964      Value *Op;
1965      getValueTypePair(Record, OpNum, NextValueNo, Op);
1966      unsigned Index = Record[1];
1967      I = ExtractValueInst::Create(Op, Index);
1968      InstructionList.push_back(I);
1969      break;
1970    }
1971
1972    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1973      {
1974        unsigned Size = Record.size();
1975        if (Size == 0) {
1976          I = ReturnInst::Create(Context);
1977          InstructionList.push_back(I);
1978          break;
1979        }
1980
1981        unsigned OpNum = 0;
1982        SmallVector<Value *,4> Vs;
1983        do {
1984          Value *Op = NULL;
1985          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1986            return Error("Invalid RET record");
1987          Vs.push_back(Op);
1988        } while(OpNum != Record.size());
1989
1990        const Type *ReturnType = F->getReturnType();
1991        if (Vs.size() > 1 ||
1992            (ReturnType->isStructTy() &&
1993             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1994          Value *RV = UndefValue::get(ReturnType);
1995          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1996            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1997            InstructionList.push_back(I);
1998            CurBB->getInstList().push_back(I);
1999            ValueList.AssignValue(I, NextValueNo++);
2000            RV = I;
2001          }
2002          I = ReturnInst::Create(Context, RV);
2003          InstructionList.push_back(I);
2004          break;
2005        }
2006
2007        I = ReturnInst::Create(Context, Vs[0]);
2008        InstructionList.push_back(I);
2009        break;
2010      }
2011    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2012      if (Record.size() != 1 && Record.size() != 3)
2013        return Error("Invalid BR record");
2014      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2015      if (TrueDest == 0)
2016        return Error("Invalid BR record");
2017
2018      if (Record.size() == 1) {
2019        I = BranchInst::Create(TrueDest);
2020        InstructionList.push_back(I);
2021      }
2022      else {
2023        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2024        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2025        if (FalseDest == 0 || Cond == 0)
2026          return Error("Invalid BR record");
2027        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2028        InstructionList.push_back(I);
2029      }
2030      break;
2031    }
2032    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2033      if (Record.size() < 3 || (Record.size() & 1) == 0)
2034        return Error("Invalid SWITCH record");
2035      const Type *OpTy = getTypeByID(Record[0]);
2036      Value *Cond = getFnValueByID(Record[1], OpTy);
2037      BasicBlock *Default = getBasicBlock(Record[2]);
2038      if (OpTy == 0 || Cond == 0 || Default == 0)
2039        return Error("Invalid SWITCH record");
2040      unsigned NumCases = (Record.size()-3)/2;
2041      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2042      InstructionList.push_back(SI);
2043      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2044        ConstantInt *CaseVal =
2045          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2046        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2047        if (CaseVal == 0 || DestBB == 0) {
2048          delete SI;
2049          return Error("Invalid SWITCH record!");
2050        }
2051        SI->addCase(CaseVal, DestBB);
2052      }
2053      I = SI;
2054      break;
2055    }
2056    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2057      if (Record.size() < 2)
2058        return Error("Invalid INDIRECTBR record");
2059      const Type *OpTy = getTypeByID(Record[0]);
2060      Value *Address = getFnValueByID(Record[1], OpTy);
2061      if (OpTy == 0 || Address == 0)
2062        return Error("Invalid INDIRECTBR record");
2063      unsigned NumDests = Record.size()-2;
2064      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2065      InstructionList.push_back(IBI);
2066      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2067        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2068          IBI->addDestination(DestBB);
2069        } else {
2070          delete IBI;
2071          return Error("Invalid INDIRECTBR record!");
2072        }
2073      }
2074      I = IBI;
2075      break;
2076    }
2077
2078    case bitc::FUNC_CODE_INST_INVOKE: {
2079      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2080      if (Record.size() < 4) return Error("Invalid INVOKE record");
2081      AttrListPtr PAL = getAttributes(Record[0]);
2082      unsigned CCInfo = Record[1];
2083      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2084      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2085
2086      unsigned OpNum = 4;
2087      Value *Callee;
2088      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2089        return Error("Invalid INVOKE record");
2090
2091      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2092      const FunctionType *FTy = !CalleeTy ? 0 :
2093        dyn_cast<FunctionType>(CalleeTy->getElementType());
2094
2095      // Check that the right number of fixed parameters are here.
2096      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2097          Record.size() < OpNum+FTy->getNumParams())
2098        return Error("Invalid INVOKE record");
2099
2100      SmallVector<Value*, 16> Ops;
2101      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2102        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2103        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2104      }
2105
2106      if (!FTy->isVarArg()) {
2107        if (Record.size() != OpNum)
2108          return Error("Invalid INVOKE record");
2109      } else {
2110        // Read type/value pairs for varargs params.
2111        while (OpNum != Record.size()) {
2112          Value *Op;
2113          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2114            return Error("Invalid INVOKE record");
2115          Ops.push_back(Op);
2116        }
2117      }
2118
2119      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2120                             Ops.begin(), Ops.end());
2121      InstructionList.push_back(I);
2122      cast<InvokeInst>(I)->setCallingConv(
2123        static_cast<CallingConv::ID>(CCInfo));
2124      cast<InvokeInst>(I)->setAttributes(PAL);
2125      break;
2126    }
2127    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2128      I = new UnwindInst(Context);
2129      InstructionList.push_back(I);
2130      break;
2131    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2132      I = new UnreachableInst(Context);
2133      InstructionList.push_back(I);
2134      break;
2135    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2136      if (Record.size() < 1 || ((Record.size()-1)&1))
2137        return Error("Invalid PHI record");
2138      const Type *Ty = getTypeByID(Record[0]);
2139      if (!Ty) return Error("Invalid PHI record");
2140
2141      PHINode *PN = PHINode::Create(Ty);
2142      InstructionList.push_back(PN);
2143      PN->reserveOperandSpace((Record.size()-1)/2);
2144
2145      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2146        Value *V = getFnValueByID(Record[1+i], Ty);
2147        BasicBlock *BB = getBasicBlock(Record[2+i]);
2148        if (!V || !BB) return Error("Invalid PHI record");
2149        PN->addIncoming(V, BB);
2150      }
2151      I = PN;
2152      break;
2153    }
2154
2155    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2156      // Autoupgrade malloc instruction to malloc call.
2157      // FIXME: Remove in LLVM 3.0.
2158      if (Record.size() < 3)
2159        return Error("Invalid MALLOC record");
2160      const PointerType *Ty =
2161        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2162      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2163      if (!Ty || !Size) return Error("Invalid MALLOC record");
2164      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2165      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2166      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2167      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2168      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2169                                 AllocSize, Size, NULL);
2170      InstructionList.push_back(I);
2171      break;
2172    }
2173    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2174      unsigned OpNum = 0;
2175      Value *Op;
2176      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2177          OpNum != Record.size())
2178        return Error("Invalid FREE record");
2179      if (!CurBB) return Error("Invalid free instruction with no BB");
2180      I = CallInst::CreateFree(Op, CurBB);
2181      InstructionList.push_back(I);
2182      break;
2183    }
2184    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2185      // For backward compatibility, tolerate a lack of an opty, and use i32.
2186      // LLVM 3.0: Remove this.
2187      if (Record.size() < 3 || Record.size() > 4)
2188        return Error("Invalid ALLOCA record");
2189      unsigned OpNum = 0;
2190      const PointerType *Ty =
2191        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2192      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2193                                              Type::getInt32Ty(Context);
2194      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2195      unsigned Align = Record[OpNum++];
2196      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2197      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2198      InstructionList.push_back(I);
2199      break;
2200    }
2201    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2202      unsigned OpNum = 0;
2203      Value *Op;
2204      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2205          OpNum+2 != Record.size())
2206        return Error("Invalid LOAD record");
2207
2208      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2209      InstructionList.push_back(I);
2210      break;
2211    }
2212    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2213      unsigned OpNum = 0;
2214      Value *Val, *Ptr;
2215      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2216          getValue(Record, OpNum,
2217                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2218          OpNum+2 != Record.size())
2219        return Error("Invalid STORE record");
2220
2221      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2222      InstructionList.push_back(I);
2223      break;
2224    }
2225    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2226      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2227      unsigned OpNum = 0;
2228      Value *Val, *Ptr;
2229      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2230          getValue(Record, OpNum,
2231                   PointerType::getUnqual(Val->getType()), Ptr)||
2232          OpNum+2 != Record.size())
2233        return Error("Invalid STORE record");
2234
2235      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2236      InstructionList.push_back(I);
2237      break;
2238    }
2239    case bitc::FUNC_CODE_INST_CALL: {
2240      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2241      if (Record.size() < 3)
2242        return Error("Invalid CALL record");
2243
2244      AttrListPtr PAL = getAttributes(Record[0]);
2245      unsigned CCInfo = Record[1];
2246
2247      unsigned OpNum = 2;
2248      Value *Callee;
2249      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2250        return Error("Invalid CALL record");
2251
2252      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2253      const FunctionType *FTy = 0;
2254      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2255      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2256        return Error("Invalid CALL record");
2257
2258      SmallVector<Value*, 16> Args;
2259      // Read the fixed params.
2260      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2261        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2262          Args.push_back(getBasicBlock(Record[OpNum]));
2263        else
2264          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2265        if (Args.back() == 0) return Error("Invalid CALL record");
2266      }
2267
2268      // Read type/value pairs for varargs params.
2269      if (!FTy->isVarArg()) {
2270        if (OpNum != Record.size())
2271          return Error("Invalid CALL record");
2272      } else {
2273        while (OpNum != Record.size()) {
2274          Value *Op;
2275          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2276            return Error("Invalid CALL record");
2277          Args.push_back(Op);
2278        }
2279      }
2280
2281      I = CallInst::Create(Callee, Args.begin(), Args.end());
2282      InstructionList.push_back(I);
2283      cast<CallInst>(I)->setCallingConv(
2284        static_cast<CallingConv::ID>(CCInfo>>1));
2285      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2286      cast<CallInst>(I)->setAttributes(PAL);
2287      break;
2288    }
2289    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2290      if (Record.size() < 3)
2291        return Error("Invalid VAARG record");
2292      const Type *OpTy = getTypeByID(Record[0]);
2293      Value *Op = getFnValueByID(Record[1], OpTy);
2294      const Type *ResTy = getTypeByID(Record[2]);
2295      if (!OpTy || !Op || !ResTy)
2296        return Error("Invalid VAARG record");
2297      I = new VAArgInst(Op, ResTy);
2298      InstructionList.push_back(I);
2299      break;
2300    }
2301    }
2302
2303    // Add instruction to end of current BB.  If there is no current BB, reject
2304    // this file.
2305    if (CurBB == 0) {
2306      delete I;
2307      return Error("Invalid instruction with no BB");
2308    }
2309    CurBB->getInstList().push_back(I);
2310
2311    // If this was a terminator instruction, move to the next block.
2312    if (isa<TerminatorInst>(I)) {
2313      ++CurBBNo;
2314      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2315    }
2316
2317    // Non-void values get registered in the value table for future use.
2318    if (I && !I->getType()->isVoidTy())
2319      ValueList.AssignValue(I, NextValueNo++);
2320  }
2321
2322  // Check the function list for unresolved values.
2323  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2324    if (A->getParent() == 0) {
2325      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2326      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2327        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2328          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2329          delete A;
2330        }
2331      }
2332      return Error("Never resolved value found in function!");
2333    }
2334  }
2335
2336  // See if anything took the address of blocks in this function.  If so,
2337  // resolve them now.
2338  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2339    BlockAddrFwdRefs.find(F);
2340  if (BAFRI != BlockAddrFwdRefs.end()) {
2341    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2342    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2343      unsigned BlockIdx = RefList[i].first;
2344      if (BlockIdx >= FunctionBBs.size())
2345        return Error("Invalid blockaddress block #");
2346
2347      GlobalVariable *FwdRef = RefList[i].second;
2348      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2349      FwdRef->eraseFromParent();
2350    }
2351
2352    BlockAddrFwdRefs.erase(BAFRI);
2353  }
2354
2355  // Trim the value list down to the size it was before we parsed this function.
2356  ValueList.shrinkTo(ModuleValueListSize);
2357  std::vector<BasicBlock*>().swap(FunctionBBs);
2358
2359  return false;
2360}
2361
2362//===----------------------------------------------------------------------===//
2363// GVMaterializer implementation
2364//===----------------------------------------------------------------------===//
2365
2366
2367bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2368  if (const Function *F = dyn_cast<Function>(GV)) {
2369    return F->isDeclaration() &&
2370      DeferredFunctionInfo.count(const_cast<Function*>(F));
2371  }
2372  return false;
2373}
2374
2375bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2376  Function *F = dyn_cast<Function>(GV);
2377  // If it's not a function or is already material, ignore the request.
2378  if (!F || !F->isMaterializable()) return false;
2379
2380  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2381  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2382
2383  // Move the bit stream to the saved position of the deferred function body.
2384  Stream.JumpToBit(DFII->second);
2385
2386  if (ParseFunctionBody(F)) {
2387    if (ErrInfo) *ErrInfo = ErrorString;
2388    return true;
2389  }
2390
2391  // Upgrade any old intrinsic calls in the function.
2392  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2393       E = UpgradedIntrinsics.end(); I != E; ++I) {
2394    if (I->first != I->second) {
2395      for (Value::use_iterator UI = I->first->use_begin(),
2396           UE = I->first->use_end(); UI != UE; ) {
2397        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2398          UpgradeIntrinsicCall(CI, I->second);
2399      }
2400    }
2401  }
2402
2403  return false;
2404}
2405
2406bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2407  const Function *F = dyn_cast<Function>(GV);
2408  if (!F || F->isDeclaration())
2409    return false;
2410  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2411}
2412
2413void BitcodeReader::Dematerialize(GlobalValue *GV) {
2414  Function *F = dyn_cast<Function>(GV);
2415  // If this function isn't dematerializable, this is a noop.
2416  if (!F || !isDematerializable(F))
2417    return;
2418
2419  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2420
2421  // Just forget the function body, we can remat it later.
2422  F->deleteBody();
2423}
2424
2425
2426bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2427  assert(M == TheModule &&
2428         "Can only Materialize the Module this BitcodeReader is attached to.");
2429  // Iterate over the module, deserializing any functions that are still on
2430  // disk.
2431  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2432       F != E; ++F)
2433    if (F->isMaterializable() &&
2434        Materialize(F, ErrInfo))
2435      return true;
2436
2437  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2438  // delete the old functions to clean up. We can't do this unless the entire
2439  // module is materialized because there could always be another function body
2440  // with calls to the old function.
2441  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2442       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2443    if (I->first != I->second) {
2444      for (Value::use_iterator UI = I->first->use_begin(),
2445           UE = I->first->use_end(); UI != UE; ) {
2446        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2447          UpgradeIntrinsicCall(CI, I->second);
2448      }
2449      if (!I->first->use_empty())
2450        I->first->replaceAllUsesWith(I->second);
2451      I->first->eraseFromParent();
2452    }
2453  }
2454  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2455
2456  // Check debug info intrinsics.
2457  CheckDebugInfoIntrinsics(TheModule);
2458
2459  return false;
2460}
2461
2462
2463//===----------------------------------------------------------------------===//
2464// External interface
2465//===----------------------------------------------------------------------===//
2466
2467/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2468///
2469Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2470                                   LLVMContext& Context,
2471                                   std::string *ErrMsg) {
2472  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2473  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2474  M->setMaterializer(R);
2475  if (R->ParseBitcodeInto(M)) {
2476    if (ErrMsg)
2477      *ErrMsg = R->getErrorString();
2478
2479    delete M;  // Also deletes R.
2480    return 0;
2481  }
2482  // Have the BitcodeReader dtor delete 'Buffer'.
2483  R->setBufferOwned(true);
2484  return M;
2485}
2486
2487/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2488/// If an error occurs, return null and fill in *ErrMsg if non-null.
2489Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2490                               std::string *ErrMsg){
2491  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2492  if (!M) return 0;
2493
2494  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2495  // there was an error.
2496  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2497
2498  // Read in the entire module, and destroy the BitcodeReader.
2499  if (M->MaterializeAllPermanently(ErrMsg)) {
2500    delete M;
2501    return NULL;
2502  }
2503  return M;
2504}
2505