BitcodeReader.cpp revision b81e457eb02b67a9ef5fb9edc1604b177acb821d
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> :
166  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    const Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                        NewOps.size());
297      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                         UserCS->getType()->isPacked());
300      } else if (isa<ConstantVector>(UserC)) {
301        NewC = ConstantVector::get(NewOps);
302      } else {
303        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
305      }
306
307      UserC->replaceAllUsesWith(NewC);
308      UserC->destroyConstant();
309      NewOps.clear();
310    }
311
312    // Update all ValueHandles, they should be the only users at this point.
313    Placeholder->replaceAllUsesWith(RealVal);
314    delete Placeholder;
315  }
316}
317
318void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319  if (Idx == size()) {
320    push_back(V);
321    return;
322  }
323
324  if (Idx >= size())
325    resize(Idx+1);
326
327  WeakVH &OldV = MDValuePtrs[Idx];
328  if (OldV == 0) {
329    OldV = V;
330    return;
331  }
332
333  // If there was a forward reference to this value, replace it.
334  MDNode *PrevVal = cast<MDNode>(OldV);
335  OldV->replaceAllUsesWith(V);
336  MDNode::deleteTemporary(PrevVal);
337  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338  // value for Idx.
339  MDValuePtrs[Idx] = V;
340}
341
342Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343  if (Idx >= size())
344    resize(Idx + 1);
345
346  if (Value *V = MDValuePtrs[Idx]) {
347    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348    return V;
349  }
350
351  // Create and return a placeholder, which will later be RAUW'd.
352  Value *V = MDNode::getTemporary(Context, 0, 0);
353  MDValuePtrs[Idx] = V;
354  return V;
355}
356
357const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358  // If the TypeID is in range, return it.
359  if (ID < TypeList.size())
360    return TypeList[ID].get();
361  if (!isTypeTable) return 0;
362
363  // The type table allows forward references.  Push as many Opaque types as
364  // needed to get up to ID.
365  while (TypeList.size() <= ID)
366    TypeList.push_back(OpaqueType::get(Context));
367  return TypeList.back().get();
368}
369
370//===----------------------------------------------------------------------===//
371//  Functions for parsing blocks from the bitcode file
372//===----------------------------------------------------------------------===//
373
374bool BitcodeReader::ParseAttributeBlock() {
375  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376    return Error("Malformed block record");
377
378  if (!MAttributes.empty())
379    return Error("Multiple PARAMATTR blocks found!");
380
381  SmallVector<uint64_t, 64> Record;
382
383  SmallVector<AttributeWithIndex, 8> Attrs;
384
385  // Read all the records.
386  while (1) {
387    unsigned Code = Stream.ReadCode();
388    if (Code == bitc::END_BLOCK) {
389      if (Stream.ReadBlockEnd())
390        return Error("Error at end of PARAMATTR block");
391      return false;
392    }
393
394    if (Code == bitc::ENTER_SUBBLOCK) {
395      // No known subblocks, always skip them.
396      Stream.ReadSubBlockID();
397      if (Stream.SkipBlock())
398        return Error("Malformed block record");
399      continue;
400    }
401
402    if (Code == bitc::DEFINE_ABBREV) {
403      Stream.ReadAbbrevRecord();
404      continue;
405    }
406
407    // Read a record.
408    Record.clear();
409    switch (Stream.ReadRecord(Code, Record)) {
410    default:  // Default behavior: ignore.
411      break;
412    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413      if (Record.size() & 1)
414        return Error("Invalid ENTRY record");
415
416      // FIXME : Remove this autoupgrade code in LLVM 3.0.
417      // If Function attributes are using index 0 then transfer them
418      // to index ~0. Index 0 is used for return value attributes but used to be
419      // used for function attributes.
420      Attributes RetAttribute = Attribute::None;
421      Attributes FnAttribute = Attribute::None;
422      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423        // FIXME: remove in LLVM 3.0
424        // The alignment is stored as a 16-bit raw value from bits 31--16.
425        // We shift the bits above 31 down by 11 bits.
426
427        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428        if (Alignment && !isPowerOf2_32(Alignment))
429          return Error("Alignment is not a power of two.");
430
431        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432        if (Alignment)
433          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435        Record[i+1] = ReconstitutedAttr;
436
437        if (Record[i] == 0)
438          RetAttribute = Record[i+1];
439        else if (Record[i] == ~0U)
440          FnAttribute = Record[i+1];
441      }
442
443      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                              Attribute::ReadOnly|Attribute::ReadNone);
445
446      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447          (RetAttribute & OldRetAttrs) != 0) {
448        if (FnAttribute == Attribute::None) { // add a slot so they get added.
449          Record.push_back(~0U);
450          Record.push_back(0);
451        }
452
453        FnAttribute  |= RetAttribute & OldRetAttrs;
454        RetAttribute &= ~OldRetAttrs;
455      }
456
457      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458        if (Record[i] == 0) {
459          if (RetAttribute != Attribute::None)
460            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461        } else if (Record[i] == ~0U) {
462          if (FnAttribute != Attribute::None)
463            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464        } else if (Record[i+1] != Attribute::None)
465          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466      }
467
468      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469      Attrs.clear();
470      break;
471    }
472    }
473  }
474}
475
476
477bool BitcodeReader::ParseTypeTable() {
478  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479    return Error("Malformed block record");
480
481  if (!TypeList.empty())
482    return Error("Multiple TYPE_BLOCKs found!");
483
484  SmallVector<uint64_t, 64> Record;
485  unsigned NumRecords = 0;
486
487  // Read all the records for this type table.
488  while (1) {
489    unsigned Code = Stream.ReadCode();
490    if (Code == bitc::END_BLOCK) {
491      if (NumRecords != TypeList.size())
492        return Error("Invalid type forward reference in TYPE_BLOCK");
493      if (Stream.ReadBlockEnd())
494        return Error("Error at end of type table block");
495      return false;
496    }
497
498    if (Code == bitc::ENTER_SUBBLOCK) {
499      // No known subblocks, always skip them.
500      Stream.ReadSubBlockID();
501      if (Stream.SkipBlock())
502        return Error("Malformed block record");
503      continue;
504    }
505
506    if (Code == bitc::DEFINE_ABBREV) {
507      Stream.ReadAbbrevRecord();
508      continue;
509    }
510
511    // Read a record.
512    Record.clear();
513    const Type *ResultTy = 0;
514    switch (Stream.ReadRecord(Code, Record)) {
515    default:  // Default behavior: unknown type.
516      ResultTy = 0;
517      break;
518    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520      // type list.  This allows us to reserve space.
521      if (Record.size() < 1)
522        return Error("Invalid TYPE_CODE_NUMENTRY record");
523      TypeList.reserve(Record[0]);
524      continue;
525    case bitc::TYPE_CODE_VOID:      // VOID
526      ResultTy = Type::getVoidTy(Context);
527      break;
528    case bitc::TYPE_CODE_FLOAT:     // FLOAT
529      ResultTy = Type::getFloatTy(Context);
530      break;
531    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532      ResultTy = Type::getDoubleTy(Context);
533      break;
534    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535      ResultTy = Type::getX86_FP80Ty(Context);
536      break;
537    case bitc::TYPE_CODE_FP128:     // FP128
538      ResultTy = Type::getFP128Ty(Context);
539      break;
540    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541      ResultTy = Type::getPPC_FP128Ty(Context);
542      break;
543    case bitc::TYPE_CODE_LABEL:     // LABEL
544      ResultTy = Type::getLabelTy(Context);
545      break;
546    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547      ResultTy = 0;
548      break;
549    case bitc::TYPE_CODE_METADATA:  // METADATA
550      ResultTy = Type::getMetadataTy(Context);
551      break;
552    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553      ResultTy = Type::getX86_MMXTy(Context);
554      break;
555    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556      if (Record.size() < 1)
557        return Error("Invalid Integer type record");
558
559      ResultTy = IntegerType::get(Context, Record[0]);
560      break;
561    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                    //          [pointee type, address space]
563      if (Record.size() < 1)
564        return Error("Invalid POINTER type record");
565      unsigned AddressSpace = 0;
566      if (Record.size() == 2)
567        AddressSpace = Record[1];
568      ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                        AddressSpace);
570      break;
571    }
572    case bitc::TYPE_CODE_FUNCTION: {
573      // FIXME: attrid is dead, remove it in LLVM 3.0
574      // FUNCTION: [vararg, attrid, retty, paramty x N]
575      if (Record.size() < 3)
576        return Error("Invalid FUNCTION type record");
577      std::vector<const Type*> ArgTys;
578      for (unsigned i = 3, e = Record.size(); i != e; ++i)
579        ArgTys.push_back(getTypeByID(Record[i], true));
580
581      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                   Record[0]);
583      break;
584    }
585    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586      if (Record.size() < 1)
587        return Error("Invalid STRUCT type record");
588      std::vector<const Type*> EltTys;
589      for (unsigned i = 1, e = Record.size(); i != e; ++i)
590        EltTys.push_back(getTypeByID(Record[i], true));
591      ResultTy = StructType::get(Context, EltTys, Record[0]);
592      break;
593    }
594    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid ARRAY type record");
597      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600      if (Record.size() < 2)
601        return Error("Invalid VECTOR type record");
602      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603      break;
604    }
605
606    if (NumRecords == TypeList.size()) {
607      // If this is a new type slot, just append it.
608      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609      ++NumRecords;
610    } else if (ResultTy == 0) {
611      // Otherwise, this was forward referenced, so an opaque type was created,
612      // but the result type is actually just an opaque.  Leave the one we
613      // created previously.
614      ++NumRecords;
615    } else {
616      // Otherwise, this was forward referenced, so an opaque type was created.
617      // Resolve the opaque type to the real type now.
618      assert(NumRecords < TypeList.size() && "Typelist imbalance");
619      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620
621      // Don't directly push the new type on the Tab. Instead we want to replace
622      // the opaque type we previously inserted with the new concrete value. The
623      // refinement from the abstract (opaque) type to the new type causes all
624      // uses of the abstract type to use the concrete type (NewTy). This will
625      // also cause the opaque type to be deleted.
626      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627
628      // This should have replaced the old opaque type with the new type in the
629      // value table... or with a preexisting type that was already in the
630      // system.  Let's just make sure it did.
631      assert(TypeList[NumRecords-1].get() != OldTy &&
632             "refineAbstractType didn't work!");
633    }
634  }
635}
636
637
638bool BitcodeReader::ParseTypeSymbolTable() {
639  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640    return Error("Malformed block record");
641
642  SmallVector<uint64_t, 64> Record;
643
644  // Read all the records for this type table.
645  std::string TypeName;
646  while (1) {
647    unsigned Code = Stream.ReadCode();
648    if (Code == bitc::END_BLOCK) {
649      if (Stream.ReadBlockEnd())
650        return Error("Error at end of type symbol table block");
651      return false;
652    }
653
654    if (Code == bitc::ENTER_SUBBLOCK) {
655      // No known subblocks, always skip them.
656      Stream.ReadSubBlockID();
657      if (Stream.SkipBlock())
658        return Error("Malformed block record");
659      continue;
660    }
661
662    if (Code == bitc::DEFINE_ABBREV) {
663      Stream.ReadAbbrevRecord();
664      continue;
665    }
666
667    // Read a record.
668    Record.clear();
669    switch (Stream.ReadRecord(Code, Record)) {
670    default:  // Default behavior: unknown type.
671      break;
672    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673      if (ConvertToString(Record, 1, TypeName))
674        return Error("Invalid TST_ENTRY record");
675      unsigned TypeID = Record[0];
676      if (TypeID >= TypeList.size())
677        return Error("Invalid Type ID in TST_ENTRY record");
678
679      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680      TypeName.clear();
681      break;
682    }
683  }
684}
685
686bool BitcodeReader::ParseValueSymbolTable() {
687  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688    return Error("Malformed block record");
689
690  SmallVector<uint64_t, 64> Record;
691
692  // Read all the records for this value table.
693  SmallString<128> ValueName;
694  while (1) {
695    unsigned Code = Stream.ReadCode();
696    if (Code == bitc::END_BLOCK) {
697      if (Stream.ReadBlockEnd())
698        return Error("Error at end of value symbol table block");
699      return false;
700    }
701    if (Code == bitc::ENTER_SUBBLOCK) {
702      // No known subblocks, always skip them.
703      Stream.ReadSubBlockID();
704      if (Stream.SkipBlock())
705        return Error("Malformed block record");
706      continue;
707    }
708
709    if (Code == bitc::DEFINE_ABBREV) {
710      Stream.ReadAbbrevRecord();
711      continue;
712    }
713
714    // Read a record.
715    Record.clear();
716    switch (Stream.ReadRecord(Code, Record)) {
717    default:  // Default behavior: unknown type.
718      break;
719    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720      if (ConvertToString(Record, 1, ValueName))
721        return Error("Invalid VST_ENTRY record");
722      unsigned ValueID = Record[0];
723      if (ValueID >= ValueList.size())
724        return Error("Invalid Value ID in VST_ENTRY record");
725      Value *V = ValueList[ValueID];
726
727      V->setName(StringRef(ValueName.data(), ValueName.size()));
728      ValueName.clear();
729      break;
730    }
731    case bitc::VST_CODE_BBENTRY: {
732      if (ConvertToString(Record, 1, ValueName))
733        return Error("Invalid VST_BBENTRY record");
734      BasicBlock *BB = getBasicBlock(Record[0]);
735      if (BB == 0)
736        return Error("Invalid BB ID in VST_BBENTRY record");
737
738      BB->setName(StringRef(ValueName.data(), ValueName.size()));
739      ValueName.clear();
740      break;
741    }
742    }
743  }
744}
745
746bool BitcodeReader::ParseMetadata() {
747  unsigned NextMDValueNo = MDValueList.size();
748
749  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750    return Error("Malformed block record");
751
752  SmallVector<uint64_t, 64> Record;
753
754  // Read all the records.
755  while (1) {
756    unsigned Code = Stream.ReadCode();
757    if (Code == bitc::END_BLOCK) {
758      if (Stream.ReadBlockEnd())
759        return Error("Error at end of PARAMATTR block");
760      return false;
761    }
762
763    if (Code == bitc::ENTER_SUBBLOCK) {
764      // No known subblocks, always skip them.
765      Stream.ReadSubBlockID();
766      if (Stream.SkipBlock())
767        return Error("Malformed block record");
768      continue;
769    }
770
771    if (Code == bitc::DEFINE_ABBREV) {
772      Stream.ReadAbbrevRecord();
773      continue;
774    }
775
776    bool IsFunctionLocal = false;
777    // Read a record.
778    Record.clear();
779    Code = Stream.ReadRecord(Code, Record);
780    switch (Code) {
781    default:  // Default behavior: ignore.
782      break;
783    case bitc::METADATA_NAME: {
784      // Read named of the named metadata.
785      unsigned NameLength = Record.size();
786      SmallString<8> Name;
787      Name.resize(NameLength);
788      for (unsigned i = 0; i != NameLength; ++i)
789        Name[i] = Record[i];
790      Record.clear();
791      Code = Stream.ReadCode();
792
793      // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
794      // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
795      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
796      if (NextBitCode == bitc::METADATA_NAMED_NODE) {
797        LLVM2_7MetadataDetected = true;
798      } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
799        assert ( 0 && "Invalid Named Metadata record");
800
801      // Read named metadata elements.
802      unsigned Size = Record.size();
803      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
804      for (unsigned i = 0; i != Size; ++i) {
805        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
806        if (MD == 0)
807          return Error("Malformed metadata record");
808        NMD->addOperand(MD);
809      }
810      // Backwards compatibility hack: NamedMDValues used to be Values,
811      // and they got their own slots in the value numbering. They are no
812      // longer Values, however we still need to account for them in the
813      // numbering in order to be able to read old bitcode files.
814      // FIXME: Remove this in LLVM 3.0.
815      if (LLVM2_7MetadataDetected)
816        MDValueList.AssignValue(0, NextMDValueNo++);
817      break;
818    }
819    case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
820    case bitc::METADATA_FN_NODE2:
821      IsFunctionLocal = true;
822      // fall-through
823    case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
824    case bitc::METADATA_NODE2: {
825
826      // Detect 2.7-era metadata.
827      // FIXME: Remove in LLVM 3.0.
828      if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
829        LLVM2_7MetadataDetected = true;
830
831      if (Record.size() % 2 == 1)
832        return Error("Invalid METADATA_NODE2 record");
833
834      unsigned Size = Record.size();
835      SmallVector<Value*, 8> Elts;
836      for (unsigned i = 0; i != Size; i += 2) {
837        const Type *Ty = getTypeByID(Record[i]);
838        if (!Ty) return Error("Invalid METADATA_NODE2 record");
839        if (Ty->isMetadataTy())
840          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
841        else if (!Ty->isVoidTy())
842          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
843        else
844          Elts.push_back(NULL);
845      }
846      Value *V = MDNode::getWhenValsUnresolved(Context,
847                                               Elts.data(), Elts.size(),
848                                               IsFunctionLocal);
849      IsFunctionLocal = false;
850      MDValueList.AssignValue(V, NextMDValueNo++);
851      break;
852    }
853    case bitc::METADATA_STRING: {
854      unsigned MDStringLength = Record.size();
855      SmallString<8> String;
856      String.resize(MDStringLength);
857      for (unsigned i = 0; i != MDStringLength; ++i)
858        String[i] = Record[i];
859      Value *V = MDString::get(Context,
860                               StringRef(String.data(), String.size()));
861      MDValueList.AssignValue(V, NextMDValueNo++);
862      break;
863    }
864    case bitc::METADATA_KIND: {
865      unsigned RecordLength = Record.size();
866      if (Record.empty() || RecordLength < 2)
867        return Error("Invalid METADATA_KIND record");
868      SmallString<8> Name;
869      Name.resize(RecordLength-1);
870      unsigned Kind = Record[0];
871      for (unsigned i = 1; i != RecordLength; ++i)
872        Name[i-1] = Record[i];
873
874      unsigned NewKind = TheModule->getMDKindID(Name.str());
875      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
876        return Error("Conflicting METADATA_KIND records");
877      break;
878    }
879    }
880  }
881}
882
883/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
884/// the LSB for dense VBR encoding.
885static uint64_t DecodeSignRotatedValue(uint64_t V) {
886  if ((V & 1) == 0)
887    return V >> 1;
888  if (V != 1)
889    return -(V >> 1);
890  // There is no such thing as -0 with integers.  "-0" really means MININT.
891  return 1ULL << 63;
892}
893
894/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
895/// values and aliases that we can.
896bool BitcodeReader::ResolveGlobalAndAliasInits() {
897  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
898  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
899
900  GlobalInitWorklist.swap(GlobalInits);
901  AliasInitWorklist.swap(AliasInits);
902
903  while (!GlobalInitWorklist.empty()) {
904    unsigned ValID = GlobalInitWorklist.back().second;
905    if (ValID >= ValueList.size()) {
906      // Not ready to resolve this yet, it requires something later in the file.
907      GlobalInits.push_back(GlobalInitWorklist.back());
908    } else {
909      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
910        GlobalInitWorklist.back().first->setInitializer(C);
911      else
912        return Error("Global variable initializer is not a constant!");
913    }
914    GlobalInitWorklist.pop_back();
915  }
916
917  while (!AliasInitWorklist.empty()) {
918    unsigned ValID = AliasInitWorklist.back().second;
919    if (ValID >= ValueList.size()) {
920      AliasInits.push_back(AliasInitWorklist.back());
921    } else {
922      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
923        AliasInitWorklist.back().first->setAliasee(C);
924      else
925        return Error("Alias initializer is not a constant!");
926    }
927    AliasInitWorklist.pop_back();
928  }
929  return false;
930}
931
932bool BitcodeReader::ParseConstants() {
933  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
934    return Error("Malformed block record");
935
936  SmallVector<uint64_t, 64> Record;
937
938  // Read all the records for this value table.
939  const Type *CurTy = Type::getInt32Ty(Context);
940  unsigned NextCstNo = ValueList.size();
941  while (1) {
942    unsigned Code = Stream.ReadCode();
943    if (Code == bitc::END_BLOCK)
944      break;
945
946    if (Code == bitc::ENTER_SUBBLOCK) {
947      // No known subblocks, always skip them.
948      Stream.ReadSubBlockID();
949      if (Stream.SkipBlock())
950        return Error("Malformed block record");
951      continue;
952    }
953
954    if (Code == bitc::DEFINE_ABBREV) {
955      Stream.ReadAbbrevRecord();
956      continue;
957    }
958
959    // Read a record.
960    Record.clear();
961    Value *V = 0;
962    unsigned BitCode = Stream.ReadRecord(Code, Record);
963    switch (BitCode) {
964    default:  // Default behavior: unknown constant
965    case bitc::CST_CODE_UNDEF:     // UNDEF
966      V = UndefValue::get(CurTy);
967      break;
968    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
969      if (Record.empty())
970        return Error("Malformed CST_SETTYPE record");
971      if (Record[0] >= TypeList.size())
972        return Error("Invalid Type ID in CST_SETTYPE record");
973      CurTy = TypeList[Record[0]];
974      continue;  // Skip the ValueList manipulation.
975    case bitc::CST_CODE_NULL:      // NULL
976      V = Constant::getNullValue(CurTy);
977      break;
978    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
979      if (!CurTy->isIntegerTy() || Record.empty())
980        return Error("Invalid CST_INTEGER record");
981      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
982      break;
983    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
984      if (!CurTy->isIntegerTy() || Record.empty())
985        return Error("Invalid WIDE_INTEGER record");
986
987      unsigned NumWords = Record.size();
988      SmallVector<uint64_t, 8> Words;
989      Words.resize(NumWords);
990      for (unsigned i = 0; i != NumWords; ++i)
991        Words[i] = DecodeSignRotatedValue(Record[i]);
992      V = ConstantInt::get(Context,
993                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
994                           NumWords, &Words[0]));
995      break;
996    }
997    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
998      if (Record.empty())
999        return Error("Invalid FLOAT record");
1000      if (CurTy->isFloatTy())
1001        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1002      else if (CurTy->isDoubleTy())
1003        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1004      else if (CurTy->isX86_FP80Ty()) {
1005        // Bits are not stored the same way as a normal i80 APInt, compensate.
1006        uint64_t Rearrange[2];
1007        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1008        Rearrange[1] = Record[0] >> 48;
1009        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1010      } else if (CurTy->isFP128Ty())
1011        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1012      else if (CurTy->isPPC_FP128Ty())
1013        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1014      else
1015        V = UndefValue::get(CurTy);
1016      break;
1017    }
1018
1019    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1020      if (Record.empty())
1021        return Error("Invalid CST_AGGREGATE record");
1022
1023      unsigned Size = Record.size();
1024      std::vector<Constant*> Elts;
1025
1026      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1027        for (unsigned i = 0; i != Size; ++i)
1028          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1029                                                     STy->getElementType(i)));
1030        V = ConstantStruct::get(STy, Elts);
1031      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1032        const Type *EltTy = ATy->getElementType();
1033        for (unsigned i = 0; i != Size; ++i)
1034          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1035        V = ConstantArray::get(ATy, Elts);
1036      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1037        const Type *EltTy = VTy->getElementType();
1038        for (unsigned i = 0; i != Size; ++i)
1039          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1040        V = ConstantVector::get(Elts);
1041      } else {
1042        V = UndefValue::get(CurTy);
1043      }
1044      break;
1045    }
1046    case bitc::CST_CODE_STRING: { // STRING: [values]
1047      if (Record.empty())
1048        return Error("Invalid CST_AGGREGATE record");
1049
1050      const ArrayType *ATy = cast<ArrayType>(CurTy);
1051      const Type *EltTy = ATy->getElementType();
1052
1053      unsigned Size = Record.size();
1054      std::vector<Constant*> Elts;
1055      for (unsigned i = 0; i != Size; ++i)
1056        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1057      V = ConstantArray::get(ATy, Elts);
1058      break;
1059    }
1060    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1061      if (Record.empty())
1062        return Error("Invalid CST_AGGREGATE record");
1063
1064      const ArrayType *ATy = cast<ArrayType>(CurTy);
1065      const Type *EltTy = ATy->getElementType();
1066
1067      unsigned Size = Record.size();
1068      std::vector<Constant*> Elts;
1069      for (unsigned i = 0; i != Size; ++i)
1070        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1071      Elts.push_back(Constant::getNullValue(EltTy));
1072      V = ConstantArray::get(ATy, Elts);
1073      break;
1074    }
1075    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1076      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1077      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1078      if (Opc < 0) {
1079        V = UndefValue::get(CurTy);  // Unknown binop.
1080      } else {
1081        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1082        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1083        unsigned Flags = 0;
1084        if (Record.size() >= 4) {
1085          if (Opc == Instruction::Add ||
1086              Opc == Instruction::Sub ||
1087              Opc == Instruction::Mul ||
1088              Opc == Instruction::Shl) {
1089            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1090              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1091            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1092              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1093          } else if (Opc == Instruction::SDiv ||
1094                     Opc == Instruction::UDiv ||
1095                     Opc == Instruction::LShr ||
1096                     Opc == Instruction::AShr) {
1097            if (Record[3] & (1 << bitc::PEO_EXACT))
1098              Flags |= SDivOperator::IsExact;
1099          }
1100        }
1101        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1102      }
1103      break;
1104    }
1105    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1106      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1107      int Opc = GetDecodedCastOpcode(Record[0]);
1108      if (Opc < 0) {
1109        V = UndefValue::get(CurTy);  // Unknown cast.
1110      } else {
1111        const Type *OpTy = getTypeByID(Record[1]);
1112        if (!OpTy) return Error("Invalid CE_CAST record");
1113        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1114        V = ConstantExpr::getCast(Opc, Op, CurTy);
1115      }
1116      break;
1117    }
1118    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1119    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1120      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1121      SmallVector<Constant*, 16> Elts;
1122      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1123        const Type *ElTy = getTypeByID(Record[i]);
1124        if (!ElTy) return Error("Invalid CE_GEP record");
1125        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1126      }
1127      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1128        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1129                                                   Elts.size()-1);
1130      else
1131        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1132                                           Elts.size()-1);
1133      break;
1134    }
1135    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1136      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1137      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1138                                                              Type::getInt1Ty(Context)),
1139                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1140                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1141      break;
1142    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1143      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1144      const VectorType *OpTy =
1145        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1146      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1147      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1148      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1149      V = ConstantExpr::getExtractElement(Op0, Op1);
1150      break;
1151    }
1152    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1153      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1154      if (Record.size() < 3 || OpTy == 0)
1155        return Error("Invalid CE_INSERTELT record");
1156      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1157      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1158                                                  OpTy->getElementType());
1159      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1160      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1161      break;
1162    }
1163    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1164      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1165      if (Record.size() < 3 || OpTy == 0)
1166        return Error("Invalid CE_SHUFFLEVEC record");
1167      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1168      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1169      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1170                                                 OpTy->getNumElements());
1171      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1172      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1173      break;
1174    }
1175    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1176      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1177      const VectorType *OpTy =
1178        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1179      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1180        return Error("Invalid CE_SHUFVEC_EX record");
1181      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1182      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1183      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1184                                                 RTy->getNumElements());
1185      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1186      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1187      break;
1188    }
1189    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1190      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1191      const Type *OpTy = getTypeByID(Record[0]);
1192      if (OpTy == 0) return Error("Invalid CE_CMP record");
1193      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1194      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1195
1196      if (OpTy->isFPOrFPVectorTy())
1197        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1198      else
1199        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1200      break;
1201    }
1202    case bitc::CST_CODE_INLINEASM: {
1203      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1204      std::string AsmStr, ConstrStr;
1205      bool HasSideEffects = Record[0] & 1;
1206      bool IsAlignStack = Record[0] >> 1;
1207      unsigned AsmStrSize = Record[1];
1208      if (2+AsmStrSize >= Record.size())
1209        return Error("Invalid INLINEASM record");
1210      unsigned ConstStrSize = Record[2+AsmStrSize];
1211      if (3+AsmStrSize+ConstStrSize > Record.size())
1212        return Error("Invalid INLINEASM record");
1213
1214      for (unsigned i = 0; i != AsmStrSize; ++i)
1215        AsmStr += (char)Record[2+i];
1216      for (unsigned i = 0; i != ConstStrSize; ++i)
1217        ConstrStr += (char)Record[3+AsmStrSize+i];
1218      const PointerType *PTy = cast<PointerType>(CurTy);
1219      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1220                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1221      break;
1222    }
1223    case bitc::CST_CODE_BLOCKADDRESS:{
1224      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1225      const Type *FnTy = getTypeByID(Record[0]);
1226      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1227      Function *Fn =
1228        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1229      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1230
1231      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1232                                                  Type::getInt8Ty(Context),
1233                                            false, GlobalValue::InternalLinkage,
1234                                                  0, "");
1235      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1236      V = FwdRef;
1237      break;
1238    }
1239    }
1240
1241    ValueList.AssignValue(V, NextCstNo);
1242    ++NextCstNo;
1243  }
1244
1245  if (NextCstNo != ValueList.size())
1246    return Error("Invalid constant reference!");
1247
1248  if (Stream.ReadBlockEnd())
1249    return Error("Error at end of constants block");
1250
1251  // Once all the constants have been read, go through and resolve forward
1252  // references.
1253  ValueList.ResolveConstantForwardRefs();
1254  return false;
1255}
1256
1257/// RememberAndSkipFunctionBody - When we see the block for a function body,
1258/// remember where it is and then skip it.  This lets us lazily deserialize the
1259/// functions.
1260bool BitcodeReader::RememberAndSkipFunctionBody() {
1261  // Get the function we are talking about.
1262  if (FunctionsWithBodies.empty())
1263    return Error("Insufficient function protos");
1264
1265  Function *Fn = FunctionsWithBodies.back();
1266  FunctionsWithBodies.pop_back();
1267
1268  // Save the current stream state.
1269  uint64_t CurBit = Stream.GetCurrentBitNo();
1270  DeferredFunctionInfo[Fn] = CurBit;
1271
1272  // Skip over the function block for now.
1273  if (Stream.SkipBlock())
1274    return Error("Malformed block record");
1275  return false;
1276}
1277
1278bool BitcodeReader::ParseModule() {
1279  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1280    return Error("Malformed block record");
1281
1282  SmallVector<uint64_t, 64> Record;
1283  std::vector<std::string> SectionTable;
1284  std::vector<std::string> GCTable;
1285
1286  // Read all the records for this module.
1287  while (!Stream.AtEndOfStream()) {
1288    unsigned Code = Stream.ReadCode();
1289    if (Code == bitc::END_BLOCK) {
1290      if (Stream.ReadBlockEnd())
1291        return Error("Error at end of module block");
1292
1293      // Patch the initializers for globals and aliases up.
1294      ResolveGlobalAndAliasInits();
1295      if (!GlobalInits.empty() || !AliasInits.empty())
1296        return Error("Malformed global initializer set");
1297      if (!FunctionsWithBodies.empty())
1298        return Error("Too few function bodies found");
1299
1300      // Look for intrinsic functions which need to be upgraded at some point
1301      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1302           FI != FE; ++FI) {
1303        Function* NewFn;
1304        if (UpgradeIntrinsicFunction(FI, NewFn))
1305          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1306      }
1307
1308      // Look for global variables which need to be renamed.
1309      for (Module::global_iterator
1310             GI = TheModule->global_begin(), GE = TheModule->global_end();
1311           GI != GE; ++GI)
1312        UpgradeGlobalVariable(GI);
1313
1314      // Force deallocation of memory for these vectors to favor the client that
1315      // want lazy deserialization.
1316      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1317      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1318      std::vector<Function*>().swap(FunctionsWithBodies);
1319      return false;
1320    }
1321
1322    if (Code == bitc::ENTER_SUBBLOCK) {
1323      switch (Stream.ReadSubBlockID()) {
1324      default:  // Skip unknown content.
1325        if (Stream.SkipBlock())
1326          return Error("Malformed block record");
1327        break;
1328      case bitc::BLOCKINFO_BLOCK_ID:
1329        if (Stream.ReadBlockInfoBlock())
1330          return Error("Malformed BlockInfoBlock");
1331        break;
1332      case bitc::PARAMATTR_BLOCK_ID:
1333        if (ParseAttributeBlock())
1334          return true;
1335        break;
1336      case bitc::TYPE_BLOCK_ID:
1337        if (ParseTypeTable())
1338          return true;
1339        break;
1340      case bitc::TYPE_SYMTAB_BLOCK_ID:
1341        if (ParseTypeSymbolTable())
1342          return true;
1343        break;
1344      case bitc::VALUE_SYMTAB_BLOCK_ID:
1345        if (ParseValueSymbolTable())
1346          return true;
1347        break;
1348      case bitc::CONSTANTS_BLOCK_ID:
1349        if (ParseConstants() || ResolveGlobalAndAliasInits())
1350          return true;
1351        break;
1352      case bitc::METADATA_BLOCK_ID:
1353        if (ParseMetadata())
1354          return true;
1355        break;
1356      case bitc::FUNCTION_BLOCK_ID:
1357        // If this is the first function body we've seen, reverse the
1358        // FunctionsWithBodies list.
1359        if (!HasReversedFunctionsWithBodies) {
1360          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1361          HasReversedFunctionsWithBodies = true;
1362        }
1363
1364        if (RememberAndSkipFunctionBody())
1365          return true;
1366        break;
1367      }
1368      continue;
1369    }
1370
1371    if (Code == bitc::DEFINE_ABBREV) {
1372      Stream.ReadAbbrevRecord();
1373      continue;
1374    }
1375
1376    // Read a record.
1377    switch (Stream.ReadRecord(Code, Record)) {
1378    default: break;  // Default behavior, ignore unknown content.
1379    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1380      if (Record.size() < 1)
1381        return Error("Malformed MODULE_CODE_VERSION");
1382      // Only version #0 is supported so far.
1383      if (Record[0] != 0)
1384        return Error("Unknown bitstream version!");
1385      break;
1386    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1387      std::string S;
1388      if (ConvertToString(Record, 0, S))
1389        return Error("Invalid MODULE_CODE_TRIPLE record");
1390      TheModule->setTargetTriple(S);
1391      break;
1392    }
1393    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1394      std::string S;
1395      if (ConvertToString(Record, 0, S))
1396        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1397      TheModule->setDataLayout(S);
1398      break;
1399    }
1400    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1401      std::string S;
1402      if (ConvertToString(Record, 0, S))
1403        return Error("Invalid MODULE_CODE_ASM record");
1404      TheModule->setModuleInlineAsm(S);
1405      break;
1406    }
1407    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1408      std::string S;
1409      if (ConvertToString(Record, 0, S))
1410        return Error("Invalid MODULE_CODE_DEPLIB record");
1411      TheModule->addLibrary(S);
1412      break;
1413    }
1414    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1415      std::string S;
1416      if (ConvertToString(Record, 0, S))
1417        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1418      SectionTable.push_back(S);
1419      break;
1420    }
1421    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1422      std::string S;
1423      if (ConvertToString(Record, 0, S))
1424        return Error("Invalid MODULE_CODE_GCNAME record");
1425      GCTable.push_back(S);
1426      break;
1427    }
1428    // GLOBALVAR: [pointer type, isconst, initid,
1429    //             linkage, alignment, section, visibility, threadlocal,
1430    //             unnamed_addr]
1431    case bitc::MODULE_CODE_GLOBALVAR: {
1432      if (Record.size() < 6)
1433        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1434      const Type *Ty = getTypeByID(Record[0]);
1435      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1436      if (!Ty->isPointerTy())
1437        return Error("Global not a pointer type!");
1438      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1439      Ty = cast<PointerType>(Ty)->getElementType();
1440
1441      bool isConstant = Record[1];
1442      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1443      unsigned Alignment = (1 << Record[4]) >> 1;
1444      std::string Section;
1445      if (Record[5]) {
1446        if (Record[5]-1 >= SectionTable.size())
1447          return Error("Invalid section ID");
1448        Section = SectionTable[Record[5]-1];
1449      }
1450      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1451      if (Record.size() > 6)
1452        Visibility = GetDecodedVisibility(Record[6]);
1453      bool isThreadLocal = false;
1454      if (Record.size() > 7)
1455        isThreadLocal = Record[7];
1456
1457      bool UnnamedAddr = false;
1458      if (Record.size() > 8)
1459        UnnamedAddr = Record[8];
1460
1461      GlobalVariable *NewGV =
1462        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1463                           isThreadLocal, AddressSpace);
1464      NewGV->setAlignment(Alignment);
1465      if (!Section.empty())
1466        NewGV->setSection(Section);
1467      NewGV->setVisibility(Visibility);
1468      NewGV->setThreadLocal(isThreadLocal);
1469      NewGV->setUnnamedAddr(UnnamedAddr);
1470
1471      ValueList.push_back(NewGV);
1472
1473      // Remember which value to use for the global initializer.
1474      if (unsigned InitID = Record[2])
1475        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1476      break;
1477    }
1478    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1479    //             alignment, section, visibility, gc, unnamed_addr]
1480    case bitc::MODULE_CODE_FUNCTION: {
1481      if (Record.size() < 8)
1482        return Error("Invalid MODULE_CODE_FUNCTION record");
1483      const Type *Ty = getTypeByID(Record[0]);
1484      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1485      if (!Ty->isPointerTy())
1486        return Error("Function not a pointer type!");
1487      const FunctionType *FTy =
1488        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1489      if (!FTy)
1490        return Error("Function not a pointer to function type!");
1491
1492      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1493                                        "", TheModule);
1494
1495      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1496      bool isProto = Record[2];
1497      Func->setLinkage(GetDecodedLinkage(Record[3]));
1498      Func->setAttributes(getAttributes(Record[4]));
1499
1500      Func->setAlignment((1 << Record[5]) >> 1);
1501      if (Record[6]) {
1502        if (Record[6]-1 >= SectionTable.size())
1503          return Error("Invalid section ID");
1504        Func->setSection(SectionTable[Record[6]-1]);
1505      }
1506      Func->setVisibility(GetDecodedVisibility(Record[7]));
1507      if (Record.size() > 8 && Record[8]) {
1508        if (Record[8]-1 > GCTable.size())
1509          return Error("Invalid GC ID");
1510        Func->setGC(GCTable[Record[8]-1].c_str());
1511      }
1512      bool UnnamedAddr = false;
1513      if (Record.size() > 9)
1514        UnnamedAddr = Record[9];
1515      Func->setUnnamedAddr(UnnamedAddr);
1516      ValueList.push_back(Func);
1517
1518      // If this is a function with a body, remember the prototype we are
1519      // creating now, so that we can match up the body with them later.
1520      if (!isProto)
1521        FunctionsWithBodies.push_back(Func);
1522      break;
1523    }
1524    // ALIAS: [alias type, aliasee val#, linkage]
1525    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1526    case bitc::MODULE_CODE_ALIAS: {
1527      if (Record.size() < 3)
1528        return Error("Invalid MODULE_ALIAS record");
1529      const Type *Ty = getTypeByID(Record[0]);
1530      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1531      if (!Ty->isPointerTy())
1532        return Error("Function not a pointer type!");
1533
1534      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1535                                           "", 0, TheModule);
1536      // Old bitcode files didn't have visibility field.
1537      if (Record.size() > 3)
1538        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1539      ValueList.push_back(NewGA);
1540      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1541      break;
1542    }
1543    /// MODULE_CODE_PURGEVALS: [numvals]
1544    case bitc::MODULE_CODE_PURGEVALS:
1545      // Trim down the value list to the specified size.
1546      if (Record.size() < 1 || Record[0] > ValueList.size())
1547        return Error("Invalid MODULE_PURGEVALS record");
1548      ValueList.shrinkTo(Record[0]);
1549      break;
1550    }
1551    Record.clear();
1552  }
1553
1554  return Error("Premature end of bitstream");
1555}
1556
1557bool BitcodeReader::ParseBitcodeInto(Module *M) {
1558  TheModule = 0;
1559
1560  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1561  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1562
1563  if (Buffer->getBufferSize() & 3) {
1564    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1565      return Error("Invalid bitcode signature");
1566    else
1567      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1568  }
1569
1570  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1571  // The magic number is 0x0B17C0DE stored in little endian.
1572  if (isBitcodeWrapper(BufPtr, BufEnd))
1573    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1574      return Error("Invalid bitcode wrapper header");
1575
1576  StreamFile.init(BufPtr, BufEnd);
1577  Stream.init(StreamFile);
1578
1579  // Sniff for the signature.
1580  if (Stream.Read(8) != 'B' ||
1581      Stream.Read(8) != 'C' ||
1582      Stream.Read(4) != 0x0 ||
1583      Stream.Read(4) != 0xC ||
1584      Stream.Read(4) != 0xE ||
1585      Stream.Read(4) != 0xD)
1586    return Error("Invalid bitcode signature");
1587
1588  // We expect a number of well-defined blocks, though we don't necessarily
1589  // need to understand them all.
1590  while (!Stream.AtEndOfStream()) {
1591    unsigned Code = Stream.ReadCode();
1592
1593    if (Code != bitc::ENTER_SUBBLOCK)
1594      return Error("Invalid record at top-level");
1595
1596    unsigned BlockID = Stream.ReadSubBlockID();
1597
1598    // We only know the MODULE subblock ID.
1599    switch (BlockID) {
1600    case bitc::BLOCKINFO_BLOCK_ID:
1601      if (Stream.ReadBlockInfoBlock())
1602        return Error("Malformed BlockInfoBlock");
1603      break;
1604    case bitc::MODULE_BLOCK_ID:
1605      // Reject multiple MODULE_BLOCK's in a single bitstream.
1606      if (TheModule)
1607        return Error("Multiple MODULE_BLOCKs in same stream");
1608      TheModule = M;
1609      if (ParseModule())
1610        return true;
1611      break;
1612    default:
1613      if (Stream.SkipBlock())
1614        return Error("Malformed block record");
1615      break;
1616    }
1617  }
1618
1619  return false;
1620}
1621
1622bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1623  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1624    return Error("Malformed block record");
1625
1626  SmallVector<uint64_t, 64> Record;
1627
1628  // Read all the records for this module.
1629  while (!Stream.AtEndOfStream()) {
1630    unsigned Code = Stream.ReadCode();
1631    if (Code == bitc::END_BLOCK) {
1632      if (Stream.ReadBlockEnd())
1633        return Error("Error at end of module block");
1634
1635      return false;
1636    }
1637
1638    if (Code == bitc::ENTER_SUBBLOCK) {
1639      switch (Stream.ReadSubBlockID()) {
1640      default:  // Skip unknown content.
1641        if (Stream.SkipBlock())
1642          return Error("Malformed block record");
1643        break;
1644      }
1645      continue;
1646    }
1647
1648    if (Code == bitc::DEFINE_ABBREV) {
1649      Stream.ReadAbbrevRecord();
1650      continue;
1651    }
1652
1653    // Read a record.
1654    switch (Stream.ReadRecord(Code, Record)) {
1655    default: break;  // Default behavior, ignore unknown content.
1656    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1657      if (Record.size() < 1)
1658        return Error("Malformed MODULE_CODE_VERSION");
1659      // Only version #0 is supported so far.
1660      if (Record[0] != 0)
1661        return Error("Unknown bitstream version!");
1662      break;
1663    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1664      std::string S;
1665      if (ConvertToString(Record, 0, S))
1666        return Error("Invalid MODULE_CODE_TRIPLE record");
1667      Triple = S;
1668      break;
1669    }
1670    }
1671    Record.clear();
1672  }
1673
1674  return Error("Premature end of bitstream");
1675}
1676
1677bool BitcodeReader::ParseTriple(std::string &Triple) {
1678  if (Buffer->getBufferSize() & 3)
1679    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1680
1681  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1682  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1683
1684  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1685  // The magic number is 0x0B17C0DE stored in little endian.
1686  if (isBitcodeWrapper(BufPtr, BufEnd))
1687    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1688      return Error("Invalid bitcode wrapper header");
1689
1690  StreamFile.init(BufPtr, BufEnd);
1691  Stream.init(StreamFile);
1692
1693  // Sniff for the signature.
1694  if (Stream.Read(8) != 'B' ||
1695      Stream.Read(8) != 'C' ||
1696      Stream.Read(4) != 0x0 ||
1697      Stream.Read(4) != 0xC ||
1698      Stream.Read(4) != 0xE ||
1699      Stream.Read(4) != 0xD)
1700    return Error("Invalid bitcode signature");
1701
1702  // We expect a number of well-defined blocks, though we don't necessarily
1703  // need to understand them all.
1704  while (!Stream.AtEndOfStream()) {
1705    unsigned Code = Stream.ReadCode();
1706
1707    if (Code != bitc::ENTER_SUBBLOCK)
1708      return Error("Invalid record at top-level");
1709
1710    unsigned BlockID = Stream.ReadSubBlockID();
1711
1712    // We only know the MODULE subblock ID.
1713    switch (BlockID) {
1714    case bitc::MODULE_BLOCK_ID:
1715      if (ParseModuleTriple(Triple))
1716        return true;
1717      break;
1718    default:
1719      if (Stream.SkipBlock())
1720        return Error("Malformed block record");
1721      break;
1722    }
1723  }
1724
1725  return false;
1726}
1727
1728/// ParseMetadataAttachment - Parse metadata attachments.
1729bool BitcodeReader::ParseMetadataAttachment() {
1730  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1731    return Error("Malformed block record");
1732
1733  SmallVector<uint64_t, 64> Record;
1734  while(1) {
1735    unsigned Code = Stream.ReadCode();
1736    if (Code == bitc::END_BLOCK) {
1737      if (Stream.ReadBlockEnd())
1738        return Error("Error at end of PARAMATTR block");
1739      break;
1740    }
1741    if (Code == bitc::DEFINE_ABBREV) {
1742      Stream.ReadAbbrevRecord();
1743      continue;
1744    }
1745    // Read a metadata attachment record.
1746    Record.clear();
1747    switch (Stream.ReadRecord(Code, Record)) {
1748    default:  // Default behavior: ignore.
1749      break;
1750    // FIXME: Remove in LLVM 3.0.
1751    case bitc::METADATA_ATTACHMENT:
1752      LLVM2_7MetadataDetected = true;
1753    case bitc::METADATA_ATTACHMENT2: {
1754      unsigned RecordLength = Record.size();
1755      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1756        return Error ("Invalid METADATA_ATTACHMENT reader!");
1757      Instruction *Inst = InstructionList[Record[0]];
1758      for (unsigned i = 1; i != RecordLength; i = i+2) {
1759        unsigned Kind = Record[i];
1760        DenseMap<unsigned, unsigned>::iterator I =
1761          MDKindMap.find(Kind);
1762        if (I == MDKindMap.end())
1763          return Error("Invalid metadata kind ID");
1764        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1765        Inst->setMetadata(I->second, cast<MDNode>(Node));
1766      }
1767      break;
1768    }
1769    }
1770  }
1771  return false;
1772}
1773
1774/// ParseFunctionBody - Lazily parse the specified function body block.
1775bool BitcodeReader::ParseFunctionBody(Function *F) {
1776  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1777    return Error("Malformed block record");
1778
1779  InstructionList.clear();
1780  unsigned ModuleValueListSize = ValueList.size();
1781  unsigned ModuleMDValueListSize = MDValueList.size();
1782
1783  // Add all the function arguments to the value table.
1784  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1785    ValueList.push_back(I);
1786
1787  unsigned NextValueNo = ValueList.size();
1788  BasicBlock *CurBB = 0;
1789  unsigned CurBBNo = 0;
1790
1791  DebugLoc LastLoc;
1792
1793  // Read all the records.
1794  SmallVector<uint64_t, 64> Record;
1795  while (1) {
1796    unsigned Code = Stream.ReadCode();
1797    if (Code == bitc::END_BLOCK) {
1798      if (Stream.ReadBlockEnd())
1799        return Error("Error at end of function block");
1800      break;
1801    }
1802
1803    if (Code == bitc::ENTER_SUBBLOCK) {
1804      switch (Stream.ReadSubBlockID()) {
1805      default:  // Skip unknown content.
1806        if (Stream.SkipBlock())
1807          return Error("Malformed block record");
1808        break;
1809      case bitc::CONSTANTS_BLOCK_ID:
1810        if (ParseConstants()) return true;
1811        NextValueNo = ValueList.size();
1812        break;
1813      case bitc::VALUE_SYMTAB_BLOCK_ID:
1814        if (ParseValueSymbolTable()) return true;
1815        break;
1816      case bitc::METADATA_ATTACHMENT_ID:
1817        if (ParseMetadataAttachment()) return true;
1818        break;
1819      case bitc::METADATA_BLOCK_ID:
1820        if (ParseMetadata()) return true;
1821        break;
1822      }
1823      continue;
1824    }
1825
1826    if (Code == bitc::DEFINE_ABBREV) {
1827      Stream.ReadAbbrevRecord();
1828      continue;
1829    }
1830
1831    // Read a record.
1832    Record.clear();
1833    Instruction *I = 0;
1834    unsigned BitCode = Stream.ReadRecord(Code, Record);
1835    switch (BitCode) {
1836    default: // Default behavior: reject
1837      return Error("Unknown instruction");
1838    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1839      if (Record.size() < 1 || Record[0] == 0)
1840        return Error("Invalid DECLAREBLOCKS record");
1841      // Create all the basic blocks for the function.
1842      FunctionBBs.resize(Record[0]);
1843      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1844        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1845      CurBB = FunctionBBs[0];
1846      continue;
1847
1848
1849    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1850      // This record indicates that the last instruction is at the same
1851      // location as the previous instruction with a location.
1852      I = 0;
1853
1854      // Get the last instruction emitted.
1855      if (CurBB && !CurBB->empty())
1856        I = &CurBB->back();
1857      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1858               !FunctionBBs[CurBBNo-1]->empty())
1859        I = &FunctionBBs[CurBBNo-1]->back();
1860
1861      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1862      I->setDebugLoc(LastLoc);
1863      I = 0;
1864      continue;
1865
1866    // FIXME: Remove this in LLVM 3.0.
1867    case bitc::FUNC_CODE_DEBUG_LOC:
1868      LLVM2_7MetadataDetected = true;
1869    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1870      I = 0;     // Get the last instruction emitted.
1871      if (CurBB && !CurBB->empty())
1872        I = &CurBB->back();
1873      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1874               !FunctionBBs[CurBBNo-1]->empty())
1875        I = &FunctionBBs[CurBBNo-1]->back();
1876      if (I == 0 || Record.size() < 4)
1877        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1878
1879      unsigned Line = Record[0], Col = Record[1];
1880      unsigned ScopeID = Record[2], IAID = Record[3];
1881
1882      MDNode *Scope = 0, *IA = 0;
1883      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1884      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1885      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1886      I->setDebugLoc(LastLoc);
1887      I = 0;
1888      continue;
1889    }
1890
1891    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1892      unsigned OpNum = 0;
1893      Value *LHS, *RHS;
1894      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1895          getValue(Record, OpNum, LHS->getType(), RHS) ||
1896          OpNum+1 > Record.size())
1897        return Error("Invalid BINOP record");
1898
1899      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1900      if (Opc == -1) return Error("Invalid BINOP record");
1901      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1902      InstructionList.push_back(I);
1903      if (OpNum < Record.size()) {
1904        if (Opc == Instruction::Add ||
1905            Opc == Instruction::Sub ||
1906            Opc == Instruction::Mul ||
1907            Opc == Instruction::Shl) {
1908          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1909            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1910          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1911            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1912        } else if (Opc == Instruction::SDiv ||
1913                   Opc == Instruction::UDiv ||
1914                   Opc == Instruction::LShr ||
1915                   Opc == Instruction::AShr) {
1916          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1917            cast<BinaryOperator>(I)->setIsExact(true);
1918        }
1919      }
1920      break;
1921    }
1922    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1923      unsigned OpNum = 0;
1924      Value *Op;
1925      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1926          OpNum+2 != Record.size())
1927        return Error("Invalid CAST record");
1928
1929      const Type *ResTy = getTypeByID(Record[OpNum]);
1930      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1931      if (Opc == -1 || ResTy == 0)
1932        return Error("Invalid CAST record");
1933      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1934      InstructionList.push_back(I);
1935      break;
1936    }
1937    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1938    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1939      unsigned OpNum = 0;
1940      Value *BasePtr;
1941      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1942        return Error("Invalid GEP record");
1943
1944      SmallVector<Value*, 16> GEPIdx;
1945      while (OpNum != Record.size()) {
1946        Value *Op;
1947        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1948          return Error("Invalid GEP record");
1949        GEPIdx.push_back(Op);
1950      }
1951
1952      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1953      InstructionList.push_back(I);
1954      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1955        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1956      break;
1957    }
1958
1959    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1960                                       // EXTRACTVAL: [opty, opval, n x indices]
1961      unsigned OpNum = 0;
1962      Value *Agg;
1963      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1964        return Error("Invalid EXTRACTVAL record");
1965
1966      SmallVector<unsigned, 4> EXTRACTVALIdx;
1967      for (unsigned RecSize = Record.size();
1968           OpNum != RecSize; ++OpNum) {
1969        uint64_t Index = Record[OpNum];
1970        if ((unsigned)Index != Index)
1971          return Error("Invalid EXTRACTVAL index");
1972        EXTRACTVALIdx.push_back((unsigned)Index);
1973      }
1974
1975      I = ExtractValueInst::Create(Agg,
1976                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1977      InstructionList.push_back(I);
1978      break;
1979    }
1980
1981    case bitc::FUNC_CODE_INST_INSERTVAL: {
1982                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1983      unsigned OpNum = 0;
1984      Value *Agg;
1985      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1986        return Error("Invalid INSERTVAL record");
1987      Value *Val;
1988      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1989        return Error("Invalid INSERTVAL record");
1990
1991      SmallVector<unsigned, 4> INSERTVALIdx;
1992      for (unsigned RecSize = Record.size();
1993           OpNum != RecSize; ++OpNum) {
1994        uint64_t Index = Record[OpNum];
1995        if ((unsigned)Index != Index)
1996          return Error("Invalid INSERTVAL index");
1997        INSERTVALIdx.push_back((unsigned)Index);
1998      }
1999
2000      I = InsertValueInst::Create(Agg, Val,
2001                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
2002      InstructionList.push_back(I);
2003      break;
2004    }
2005
2006    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2007      // obsolete form of select
2008      // handles select i1 ... in old bitcode
2009      unsigned OpNum = 0;
2010      Value *TrueVal, *FalseVal, *Cond;
2011      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2012          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2013          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2014        return Error("Invalid SELECT record");
2015
2016      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2017      InstructionList.push_back(I);
2018      break;
2019    }
2020
2021    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2022      // new form of select
2023      // handles select i1 or select [N x i1]
2024      unsigned OpNum = 0;
2025      Value *TrueVal, *FalseVal, *Cond;
2026      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2027          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2028          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2029        return Error("Invalid SELECT record");
2030
2031      // select condition can be either i1 or [N x i1]
2032      if (const VectorType* vector_type =
2033          dyn_cast<const VectorType>(Cond->getType())) {
2034        // expect <n x i1>
2035        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2036          return Error("Invalid SELECT condition type");
2037      } else {
2038        // expect i1
2039        if (Cond->getType() != Type::getInt1Ty(Context))
2040          return Error("Invalid SELECT condition type");
2041      }
2042
2043      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2044      InstructionList.push_back(I);
2045      break;
2046    }
2047
2048    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2049      unsigned OpNum = 0;
2050      Value *Vec, *Idx;
2051      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2052          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2053        return Error("Invalid EXTRACTELT record");
2054      I = ExtractElementInst::Create(Vec, Idx);
2055      InstructionList.push_back(I);
2056      break;
2057    }
2058
2059    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2060      unsigned OpNum = 0;
2061      Value *Vec, *Elt, *Idx;
2062      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2063          getValue(Record, OpNum,
2064                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2065          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2066        return Error("Invalid INSERTELT record");
2067      I = InsertElementInst::Create(Vec, Elt, Idx);
2068      InstructionList.push_back(I);
2069      break;
2070    }
2071
2072    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2073      unsigned OpNum = 0;
2074      Value *Vec1, *Vec2, *Mask;
2075      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2076          getValue(Record, OpNum, Vec1->getType(), Vec2))
2077        return Error("Invalid SHUFFLEVEC record");
2078
2079      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2080        return Error("Invalid SHUFFLEVEC record");
2081      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2082      InstructionList.push_back(I);
2083      break;
2084    }
2085
2086    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2087      // Old form of ICmp/FCmp returning bool
2088      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2089      // both legal on vectors but had different behaviour.
2090    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2091      // FCmp/ICmp returning bool or vector of bool
2092
2093      unsigned OpNum = 0;
2094      Value *LHS, *RHS;
2095      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2096          getValue(Record, OpNum, LHS->getType(), RHS) ||
2097          OpNum+1 != Record.size())
2098        return Error("Invalid CMP record");
2099
2100      if (LHS->getType()->isFPOrFPVectorTy())
2101        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2102      else
2103        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2104      InstructionList.push_back(I);
2105      break;
2106    }
2107
2108    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2109      if (Record.size() != 2)
2110        return Error("Invalid GETRESULT record");
2111      unsigned OpNum = 0;
2112      Value *Op;
2113      getValueTypePair(Record, OpNum, NextValueNo, Op);
2114      unsigned Index = Record[1];
2115      I = ExtractValueInst::Create(Op, Index);
2116      InstructionList.push_back(I);
2117      break;
2118    }
2119
2120    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2121      {
2122        unsigned Size = Record.size();
2123        if (Size == 0) {
2124          I = ReturnInst::Create(Context);
2125          InstructionList.push_back(I);
2126          break;
2127        }
2128
2129        unsigned OpNum = 0;
2130        SmallVector<Value *,4> Vs;
2131        do {
2132          Value *Op = NULL;
2133          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2134            return Error("Invalid RET record");
2135          Vs.push_back(Op);
2136        } while(OpNum != Record.size());
2137
2138        const Type *ReturnType = F->getReturnType();
2139        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2140        if (Vs.size() > 1 ||
2141            (ReturnType->isStructTy() &&
2142             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2143          Value *RV = UndefValue::get(ReturnType);
2144          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2145            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2146            InstructionList.push_back(I);
2147            CurBB->getInstList().push_back(I);
2148            ValueList.AssignValue(I, NextValueNo++);
2149            RV = I;
2150          }
2151          I = ReturnInst::Create(Context, RV);
2152          InstructionList.push_back(I);
2153          break;
2154        }
2155
2156        I = ReturnInst::Create(Context, Vs[0]);
2157        InstructionList.push_back(I);
2158        break;
2159      }
2160    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2161      if (Record.size() != 1 && Record.size() != 3)
2162        return Error("Invalid BR record");
2163      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2164      if (TrueDest == 0)
2165        return Error("Invalid BR record");
2166
2167      if (Record.size() == 1) {
2168        I = BranchInst::Create(TrueDest);
2169        InstructionList.push_back(I);
2170      }
2171      else {
2172        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2173        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2174        if (FalseDest == 0 || Cond == 0)
2175          return Error("Invalid BR record");
2176        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2177        InstructionList.push_back(I);
2178      }
2179      break;
2180    }
2181    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2182      if (Record.size() < 3 || (Record.size() & 1) == 0)
2183        return Error("Invalid SWITCH record");
2184      const Type *OpTy = getTypeByID(Record[0]);
2185      Value *Cond = getFnValueByID(Record[1], OpTy);
2186      BasicBlock *Default = getBasicBlock(Record[2]);
2187      if (OpTy == 0 || Cond == 0 || Default == 0)
2188        return Error("Invalid SWITCH record");
2189      unsigned NumCases = (Record.size()-3)/2;
2190      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2191      InstructionList.push_back(SI);
2192      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2193        ConstantInt *CaseVal =
2194          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2195        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2196        if (CaseVal == 0 || DestBB == 0) {
2197          delete SI;
2198          return Error("Invalid SWITCH record!");
2199        }
2200        SI->addCase(CaseVal, DestBB);
2201      }
2202      I = SI;
2203      break;
2204    }
2205    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2206      if (Record.size() < 2)
2207        return Error("Invalid INDIRECTBR record");
2208      const Type *OpTy = getTypeByID(Record[0]);
2209      Value *Address = getFnValueByID(Record[1], OpTy);
2210      if (OpTy == 0 || Address == 0)
2211        return Error("Invalid INDIRECTBR record");
2212      unsigned NumDests = Record.size()-2;
2213      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2214      InstructionList.push_back(IBI);
2215      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2216        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2217          IBI->addDestination(DestBB);
2218        } else {
2219          delete IBI;
2220          return Error("Invalid INDIRECTBR record!");
2221        }
2222      }
2223      I = IBI;
2224      break;
2225    }
2226
2227    case bitc::FUNC_CODE_INST_INVOKE: {
2228      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2229      if (Record.size() < 4) return Error("Invalid INVOKE record");
2230      AttrListPtr PAL = getAttributes(Record[0]);
2231      unsigned CCInfo = Record[1];
2232      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2233      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2234
2235      unsigned OpNum = 4;
2236      Value *Callee;
2237      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2238        return Error("Invalid INVOKE record");
2239
2240      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2241      const FunctionType *FTy = !CalleeTy ? 0 :
2242        dyn_cast<FunctionType>(CalleeTy->getElementType());
2243
2244      // Check that the right number of fixed parameters are here.
2245      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2246          Record.size() < OpNum+FTy->getNumParams())
2247        return Error("Invalid INVOKE record");
2248
2249      SmallVector<Value*, 16> Ops;
2250      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2251        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2252        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2253      }
2254
2255      if (!FTy->isVarArg()) {
2256        if (Record.size() != OpNum)
2257          return Error("Invalid INVOKE record");
2258      } else {
2259        // Read type/value pairs for varargs params.
2260        while (OpNum != Record.size()) {
2261          Value *Op;
2262          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2263            return Error("Invalid INVOKE record");
2264          Ops.push_back(Op);
2265        }
2266      }
2267
2268      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2269                             Ops.begin(), Ops.end());
2270      InstructionList.push_back(I);
2271      cast<InvokeInst>(I)->setCallingConv(
2272        static_cast<CallingConv::ID>(CCInfo));
2273      cast<InvokeInst>(I)->setAttributes(PAL);
2274      break;
2275    }
2276    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2277      I = new UnwindInst(Context);
2278      InstructionList.push_back(I);
2279      break;
2280    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2281      I = new UnreachableInst(Context);
2282      InstructionList.push_back(I);
2283      break;
2284    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2285      if (Record.size() < 1 || ((Record.size()-1)&1))
2286        return Error("Invalid PHI record");
2287      const Type *Ty = getTypeByID(Record[0]);
2288      if (!Ty) return Error("Invalid PHI record");
2289
2290      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2291      InstructionList.push_back(PN);
2292
2293      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2294        Value *V = getFnValueByID(Record[1+i], Ty);
2295        BasicBlock *BB = getBasicBlock(Record[2+i]);
2296        if (!V || !BB) return Error("Invalid PHI record");
2297        PN->addIncoming(V, BB);
2298      }
2299      I = PN;
2300      break;
2301    }
2302
2303    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2304      // Autoupgrade malloc instruction to malloc call.
2305      // FIXME: Remove in LLVM 3.0.
2306      if (Record.size() < 3)
2307        return Error("Invalid MALLOC record");
2308      const PointerType *Ty =
2309        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2310      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2311      if (!Ty || !Size) return Error("Invalid MALLOC record");
2312      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2313      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2314      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2315      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2316      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2317                                 AllocSize, Size, NULL);
2318      InstructionList.push_back(I);
2319      break;
2320    }
2321    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2322      unsigned OpNum = 0;
2323      Value *Op;
2324      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2325          OpNum != Record.size())
2326        return Error("Invalid FREE record");
2327      if (!CurBB) return Error("Invalid free instruction with no BB");
2328      I = CallInst::CreateFree(Op, CurBB);
2329      InstructionList.push_back(I);
2330      break;
2331    }
2332    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2333      // For backward compatibility, tolerate a lack of an opty, and use i32.
2334      // Remove this in LLVM 3.0.
2335      if (Record.size() < 3 || Record.size() > 4)
2336        return Error("Invalid ALLOCA record");
2337      unsigned OpNum = 0;
2338      const PointerType *Ty =
2339        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2340      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2341                                              Type::getInt32Ty(Context);
2342      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2343      unsigned Align = Record[OpNum++];
2344      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2345      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2346      InstructionList.push_back(I);
2347      break;
2348    }
2349    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2350      unsigned OpNum = 0;
2351      Value *Op;
2352      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2353          OpNum+2 != Record.size())
2354        return Error("Invalid LOAD record");
2355
2356      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2357      InstructionList.push_back(I);
2358      break;
2359    }
2360    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2361      unsigned OpNum = 0;
2362      Value *Val, *Ptr;
2363      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2364          getValue(Record, OpNum,
2365                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2366          OpNum+2 != Record.size())
2367        return Error("Invalid STORE record");
2368
2369      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2370      InstructionList.push_back(I);
2371      break;
2372    }
2373    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2374      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2375      unsigned OpNum = 0;
2376      Value *Val, *Ptr;
2377      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2378          getValue(Record, OpNum,
2379                   PointerType::getUnqual(Val->getType()), Ptr)||
2380          OpNum+2 != Record.size())
2381        return Error("Invalid STORE record");
2382
2383      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2384      InstructionList.push_back(I);
2385      break;
2386    }
2387    // FIXME: Remove this in LLVM 3.0.
2388    case bitc::FUNC_CODE_INST_CALL:
2389      LLVM2_7MetadataDetected = true;
2390    case bitc::FUNC_CODE_INST_CALL2: {
2391      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2392      if (Record.size() < 3)
2393        return Error("Invalid CALL record");
2394
2395      AttrListPtr PAL = getAttributes(Record[0]);
2396      unsigned CCInfo = Record[1];
2397
2398      unsigned OpNum = 2;
2399      Value *Callee;
2400      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2401        return Error("Invalid CALL record");
2402
2403      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2404      const FunctionType *FTy = 0;
2405      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2406      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2407        return Error("Invalid CALL record");
2408
2409      SmallVector<Value*, 16> Args;
2410      // Read the fixed params.
2411      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2412        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2413          Args.push_back(getBasicBlock(Record[OpNum]));
2414        else
2415          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2416        if (Args.back() == 0) return Error("Invalid CALL record");
2417      }
2418
2419      // Read type/value pairs for varargs params.
2420      if (!FTy->isVarArg()) {
2421        if (OpNum != Record.size())
2422          return Error("Invalid CALL record");
2423      } else {
2424        while (OpNum != Record.size()) {
2425          Value *Op;
2426          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2427            return Error("Invalid CALL record");
2428          Args.push_back(Op);
2429        }
2430      }
2431
2432      I = CallInst::Create(Callee, Args.begin(), Args.end());
2433      InstructionList.push_back(I);
2434      cast<CallInst>(I)->setCallingConv(
2435        static_cast<CallingConv::ID>(CCInfo>>1));
2436      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2437      cast<CallInst>(I)->setAttributes(PAL);
2438      break;
2439    }
2440    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2441      if (Record.size() < 3)
2442        return Error("Invalid VAARG record");
2443      const Type *OpTy = getTypeByID(Record[0]);
2444      Value *Op = getFnValueByID(Record[1], OpTy);
2445      const Type *ResTy = getTypeByID(Record[2]);
2446      if (!OpTy || !Op || !ResTy)
2447        return Error("Invalid VAARG record");
2448      I = new VAArgInst(Op, ResTy);
2449      InstructionList.push_back(I);
2450      break;
2451    }
2452    }
2453
2454    // Add instruction to end of current BB.  If there is no current BB, reject
2455    // this file.
2456    if (CurBB == 0) {
2457      delete I;
2458      return Error("Invalid instruction with no BB");
2459    }
2460    CurBB->getInstList().push_back(I);
2461
2462    // If this was a terminator instruction, move to the next block.
2463    if (isa<TerminatorInst>(I)) {
2464      ++CurBBNo;
2465      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2466    }
2467
2468    // Non-void values get registered in the value table for future use.
2469    if (I && !I->getType()->isVoidTy())
2470      ValueList.AssignValue(I, NextValueNo++);
2471  }
2472
2473  // Check the function list for unresolved values.
2474  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2475    if (A->getParent() == 0) {
2476      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2477      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2478        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2479          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2480          delete A;
2481        }
2482      }
2483      return Error("Never resolved value found in function!");
2484    }
2485  }
2486
2487  // FIXME: Check for unresolved forward-declared metadata references
2488  // and clean up leaks.
2489
2490  // See if anything took the address of blocks in this function.  If so,
2491  // resolve them now.
2492  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2493    BlockAddrFwdRefs.find(F);
2494  if (BAFRI != BlockAddrFwdRefs.end()) {
2495    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2496    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2497      unsigned BlockIdx = RefList[i].first;
2498      if (BlockIdx >= FunctionBBs.size())
2499        return Error("Invalid blockaddress block #");
2500
2501      GlobalVariable *FwdRef = RefList[i].second;
2502      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2503      FwdRef->eraseFromParent();
2504    }
2505
2506    BlockAddrFwdRefs.erase(BAFRI);
2507  }
2508
2509  // FIXME: Remove this in LLVM 3.0.
2510  unsigned NewMDValueListSize = MDValueList.size();
2511
2512  // Trim the value list down to the size it was before we parsed this function.
2513  ValueList.shrinkTo(ModuleValueListSize);
2514  MDValueList.shrinkTo(ModuleMDValueListSize);
2515
2516  // Backwards compatibility hack: Function-local metadata numbers
2517  // were previously not reset between functions. This is now fixed,
2518  // however we still need to understand the old numbering in order
2519  // to be able to read old bitcode files.
2520  // FIXME: Remove this in LLVM 3.0.
2521  if (LLVM2_7MetadataDetected)
2522    MDValueList.resize(NewMDValueListSize);
2523
2524  std::vector<BasicBlock*>().swap(FunctionBBs);
2525
2526  return false;
2527}
2528
2529//===----------------------------------------------------------------------===//
2530// GVMaterializer implementation
2531//===----------------------------------------------------------------------===//
2532
2533
2534bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2535  if (const Function *F = dyn_cast<Function>(GV)) {
2536    return F->isDeclaration() &&
2537      DeferredFunctionInfo.count(const_cast<Function*>(F));
2538  }
2539  return false;
2540}
2541
2542bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2543  Function *F = dyn_cast<Function>(GV);
2544  // If it's not a function or is already material, ignore the request.
2545  if (!F || !F->isMaterializable()) return false;
2546
2547  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2548  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2549
2550  // Move the bit stream to the saved position of the deferred function body.
2551  Stream.JumpToBit(DFII->second);
2552
2553  if (ParseFunctionBody(F)) {
2554    if (ErrInfo) *ErrInfo = ErrorString;
2555    return true;
2556  }
2557
2558  // Upgrade any old intrinsic calls in the function.
2559  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2560       E = UpgradedIntrinsics.end(); I != E; ++I) {
2561    if (I->first != I->second) {
2562      for (Value::use_iterator UI = I->first->use_begin(),
2563           UE = I->first->use_end(); UI != UE; ) {
2564        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2565          UpgradeIntrinsicCall(CI, I->second);
2566      }
2567    }
2568  }
2569
2570  return false;
2571}
2572
2573bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2574  const Function *F = dyn_cast<Function>(GV);
2575  if (!F || F->isDeclaration())
2576    return false;
2577  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2578}
2579
2580void BitcodeReader::Dematerialize(GlobalValue *GV) {
2581  Function *F = dyn_cast<Function>(GV);
2582  // If this function isn't dematerializable, this is a noop.
2583  if (!F || !isDematerializable(F))
2584    return;
2585
2586  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2587
2588  // Just forget the function body, we can remat it later.
2589  F->deleteBody();
2590}
2591
2592
2593bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2594  assert(M == TheModule &&
2595         "Can only Materialize the Module this BitcodeReader is attached to.");
2596  // Iterate over the module, deserializing any functions that are still on
2597  // disk.
2598  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2599       F != E; ++F)
2600    if (F->isMaterializable() &&
2601        Materialize(F, ErrInfo))
2602      return true;
2603
2604  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2605  // delete the old functions to clean up. We can't do this unless the entire
2606  // module is materialized because there could always be another function body
2607  // with calls to the old function.
2608  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2609       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2610    if (I->first != I->second) {
2611      for (Value::use_iterator UI = I->first->use_begin(),
2612           UE = I->first->use_end(); UI != UE; ) {
2613        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2614          UpgradeIntrinsicCall(CI, I->second);
2615      }
2616      if (!I->first->use_empty())
2617        I->first->replaceAllUsesWith(I->second);
2618      I->first->eraseFromParent();
2619    }
2620  }
2621  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2622
2623  // Check debug info intrinsics.
2624  CheckDebugInfoIntrinsics(TheModule);
2625
2626  return false;
2627}
2628
2629
2630//===----------------------------------------------------------------------===//
2631// External interface
2632//===----------------------------------------------------------------------===//
2633
2634/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2635///
2636Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2637                                   LLVMContext& Context,
2638                                   std::string *ErrMsg) {
2639  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2640  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2641  M->setMaterializer(R);
2642  if (R->ParseBitcodeInto(M)) {
2643    if (ErrMsg)
2644      *ErrMsg = R->getErrorString();
2645
2646    delete M;  // Also deletes R.
2647    return 0;
2648  }
2649  // Have the BitcodeReader dtor delete 'Buffer'.
2650  R->setBufferOwned(true);
2651  return M;
2652}
2653
2654/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2655/// If an error occurs, return null and fill in *ErrMsg if non-null.
2656Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2657                               std::string *ErrMsg){
2658  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2659  if (!M) return 0;
2660
2661  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2662  // there was an error.
2663  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2664
2665  // Read in the entire module, and destroy the BitcodeReader.
2666  if (M->MaterializeAllPermanently(ErrMsg)) {
2667    delete M;
2668    return 0;
2669  }
2670
2671  return M;
2672}
2673
2674std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2675                                         LLVMContext& Context,
2676                                         std::string *ErrMsg) {
2677  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2678  // Don't let the BitcodeReader dtor delete 'Buffer'.
2679  R->setBufferOwned(false);
2680
2681  std::string Triple("");
2682  if (R->ParseTriple(Triple))
2683    if (ErrMsg)
2684      *ErrMsg = R->getErrorString();
2685
2686  delete R;
2687  return Triple;
2688}
2689