BitcodeReader.cpp revision bb811a244567aa8a1522203f15588f4d001b7353
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
166};
167}
168
169
170void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
171  if (Idx == size()) {
172    push_back(V);
173    return;
174  }
175
176  if (Idx >= size())
177    resize(Idx+1);
178
179  WeakVH &OldV = ValuePtrs[Idx];
180  if (OldV == 0) {
181    OldV = V;
182    return;
183  }
184
185  // Handle constants and non-constants (e.g. instrs) differently for
186  // efficiency.
187  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
188    ResolveConstants.push_back(std::make_pair(PHC, Idx));
189    OldV = V;
190  } else {
191    // If there was a forward reference to this value, replace it.
192    Value *PrevVal = OldV;
193    OldV->replaceAllUsesWith(V);
194    delete PrevVal;
195  }
196}
197
198
199Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
200                                                    const Type *Ty) {
201  if (Idx >= size())
202    resize(Idx + 1);
203
204  if (Value *V = ValuePtrs[Idx]) {
205    assert(Ty == V->getType() && "Type mismatch in constant table!");
206    return cast<Constant>(V);
207  }
208
209  // Create and return a placeholder, which will later be RAUW'd.
210  Constant *C = new ConstantPlaceHolder(Ty, Context);
211  ValuePtrs[Idx] = C;
212  return C;
213}
214
215Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
216  if (Idx >= size())
217    resize(Idx + 1);
218
219  if (Value *V = ValuePtrs[Idx]) {
220    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
221    return V;
222  }
223
224  // No type specified, must be invalid reference.
225  if (Ty == 0) return 0;
226
227  // Create and return a placeholder, which will later be RAUW'd.
228  Value *V = new Argument(Ty);
229  ValuePtrs[Idx] = V;
230  return V;
231}
232
233/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
234/// resolves any forward references.  The idea behind this is that we sometimes
235/// get constants (such as large arrays) which reference *many* forward ref
236/// constants.  Replacing each of these causes a lot of thrashing when
237/// building/reuniquing the constant.  Instead of doing this, we look at all the
238/// uses and rewrite all the place holders at once for any constant that uses
239/// a placeholder.
240void BitcodeReaderValueList::ResolveConstantForwardRefs() {
241  // Sort the values by-pointer so that they are efficient to look up with a
242  // binary search.
243  std::sort(ResolveConstants.begin(), ResolveConstants.end());
244
245  SmallVector<Constant*, 64> NewOps;
246
247  while (!ResolveConstants.empty()) {
248    Value *RealVal = operator[](ResolveConstants.back().second);
249    Constant *Placeholder = ResolveConstants.back().first;
250    ResolveConstants.pop_back();
251
252    // Loop over all users of the placeholder, updating them to reference the
253    // new value.  If they reference more than one placeholder, update them all
254    // at once.
255    while (!Placeholder->use_empty()) {
256      Value::use_iterator UI = Placeholder->use_begin();
257      User *U = *UI;
258
259      // If the using object isn't uniqued, just update the operands.  This
260      // handles instructions and initializers for global variables.
261      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
262        UI.getUse().set(RealVal);
263        continue;
264      }
265
266      // Otherwise, we have a constant that uses the placeholder.  Replace that
267      // constant with a new constant that has *all* placeholder uses updated.
268      Constant *UserC = cast<Constant>(U);
269      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
270           I != E; ++I) {
271        Value *NewOp;
272        if (!isa<ConstantPlaceHolder>(*I)) {
273          // Not a placeholder reference.
274          NewOp = *I;
275        } else if (*I == Placeholder) {
276          // Common case is that it just references this one placeholder.
277          NewOp = RealVal;
278        } else {
279          // Otherwise, look up the placeholder in ResolveConstants.
280          ResolveConstantsTy::iterator It =
281            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
282                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
283                                                            0));
284          assert(It != ResolveConstants.end() && It->first == *I);
285          NewOp = operator[](It->second);
286        }
287
288        NewOps.push_back(cast<Constant>(NewOp));
289      }
290
291      // Make the new constant.
292      Constant *NewC;
293      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
294        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
295                                        NewOps.size());
296      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
298                                         UserCS->getType()->isPacked());
299      } else if (isa<ConstantVector>(UserC)) {
300        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
301      } else {
302        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
303        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
304                                                          NewOps.size());
305      }
306
307      UserC->replaceAllUsesWith(NewC);
308      UserC->destroyConstant();
309      NewOps.clear();
310    }
311
312    // Update all ValueHandles, they should be the only users at this point.
313    Placeholder->replaceAllUsesWith(RealVal);
314    delete Placeholder;
315  }
316}
317
318void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319  if (Idx == size()) {
320    push_back(V);
321    return;
322  }
323
324  if (Idx >= size())
325    resize(Idx+1);
326
327  WeakVH &OldV = MDValuePtrs[Idx];
328  if (OldV == 0) {
329    OldV = V;
330    return;
331  }
332
333  // If there was a forward reference to this value, replace it.
334  MDNode *PrevVal = cast<MDNode>(OldV);
335  OldV->replaceAllUsesWith(V);
336  MDNode::deleteTemporary(PrevVal);
337  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338  // value for Idx.
339  MDValuePtrs[Idx] = V;
340}
341
342Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343  if (Idx >= size())
344    resize(Idx + 1);
345
346  if (Value *V = MDValuePtrs[Idx]) {
347    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348    return V;
349  }
350
351  // Create and return a placeholder, which will later be RAUW'd.
352  Value *V = MDNode::getTemporary(Context, 0, 0);
353  MDValuePtrs[Idx] = V;
354  return V;
355}
356
357const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358  // If the TypeID is in range, return it.
359  if (ID < TypeList.size())
360    return TypeList[ID].get();
361  if (!isTypeTable) return 0;
362
363  // The type table allows forward references.  Push as many Opaque types as
364  // needed to get up to ID.
365  while (TypeList.size() <= ID)
366    TypeList.push_back(OpaqueType::get(Context));
367  return TypeList.back().get();
368}
369
370//===----------------------------------------------------------------------===//
371//  Functions for parsing blocks from the bitcode file
372//===----------------------------------------------------------------------===//
373
374bool BitcodeReader::ParseAttributeBlock() {
375  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376    return Error("Malformed block record");
377
378  if (!MAttributes.empty())
379    return Error("Multiple PARAMATTR blocks found!");
380
381  SmallVector<uint64_t, 64> Record;
382
383  SmallVector<AttributeWithIndex, 8> Attrs;
384
385  // Read all the records.
386  while (1) {
387    unsigned Code = Stream.ReadCode();
388    if (Code == bitc::END_BLOCK) {
389      if (Stream.ReadBlockEnd())
390        return Error("Error at end of PARAMATTR block");
391      return false;
392    }
393
394    if (Code == bitc::ENTER_SUBBLOCK) {
395      // No known subblocks, always skip them.
396      Stream.ReadSubBlockID();
397      if (Stream.SkipBlock())
398        return Error("Malformed block record");
399      continue;
400    }
401
402    if (Code == bitc::DEFINE_ABBREV) {
403      Stream.ReadAbbrevRecord();
404      continue;
405    }
406
407    // Read a record.
408    Record.clear();
409    switch (Stream.ReadRecord(Code, Record)) {
410    default:  // Default behavior: ignore.
411      break;
412    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413      if (Record.size() & 1)
414        return Error("Invalid ENTRY record");
415
416      // FIXME : Remove this autoupgrade code in LLVM 3.0.
417      // If Function attributes are using index 0 then transfer them
418      // to index ~0. Index 0 is used for return value attributes but used to be
419      // used for function attributes.
420      Attributes RetAttribute = Attribute::None;
421      Attributes FnAttribute = Attribute::None;
422      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423        // FIXME: remove in LLVM 3.0
424        // The alignment is stored as a 16-bit raw value from bits 31--16.
425        // We shift the bits above 31 down by 11 bits.
426
427        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428        if (Alignment && !isPowerOf2_32(Alignment))
429          return Error("Alignment is not a power of two.");
430
431        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432        if (Alignment)
433          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435        Record[i+1] = ReconstitutedAttr;
436
437        if (Record[i] == 0)
438          RetAttribute = Record[i+1];
439        else if (Record[i] == ~0U)
440          FnAttribute = Record[i+1];
441      }
442
443      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                              Attribute::ReadOnly|Attribute::ReadNone);
445
446      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447          (RetAttribute & OldRetAttrs) != 0) {
448        if (FnAttribute == Attribute::None) { // add a slot so they get added.
449          Record.push_back(~0U);
450          Record.push_back(0);
451        }
452
453        FnAttribute  |= RetAttribute & OldRetAttrs;
454        RetAttribute &= ~OldRetAttrs;
455      }
456
457      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458        if (Record[i] == 0) {
459          if (RetAttribute != Attribute::None)
460            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461        } else if (Record[i] == ~0U) {
462          if (FnAttribute != Attribute::None)
463            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464        } else if (Record[i+1] != Attribute::None)
465          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466      }
467
468      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469      Attrs.clear();
470      break;
471    }
472    }
473  }
474}
475
476
477bool BitcodeReader::ParseTypeTable() {
478  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479    return Error("Malformed block record");
480
481  if (!TypeList.empty())
482    return Error("Multiple TYPE_BLOCKs found!");
483
484  SmallVector<uint64_t, 64> Record;
485  unsigned NumRecords = 0;
486
487  // Read all the records for this type table.
488  while (1) {
489    unsigned Code = Stream.ReadCode();
490    if (Code == bitc::END_BLOCK) {
491      if (NumRecords != TypeList.size())
492        return Error("Invalid type forward reference in TYPE_BLOCK");
493      if (Stream.ReadBlockEnd())
494        return Error("Error at end of type table block");
495      return false;
496    }
497
498    if (Code == bitc::ENTER_SUBBLOCK) {
499      // No known subblocks, always skip them.
500      Stream.ReadSubBlockID();
501      if (Stream.SkipBlock())
502        return Error("Malformed block record");
503      continue;
504    }
505
506    if (Code == bitc::DEFINE_ABBREV) {
507      Stream.ReadAbbrevRecord();
508      continue;
509    }
510
511    // Read a record.
512    Record.clear();
513    const Type *ResultTy = 0;
514    switch (Stream.ReadRecord(Code, Record)) {
515    default:  // Default behavior: unknown type.
516      ResultTy = 0;
517      break;
518    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520      // type list.  This allows us to reserve space.
521      if (Record.size() < 1)
522        return Error("Invalid TYPE_CODE_NUMENTRY record");
523      TypeList.reserve(Record[0]);
524      continue;
525    case bitc::TYPE_CODE_VOID:      // VOID
526      ResultTy = Type::getVoidTy(Context);
527      break;
528    case bitc::TYPE_CODE_FLOAT:     // FLOAT
529      ResultTy = Type::getFloatTy(Context);
530      break;
531    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532      ResultTy = Type::getDoubleTy(Context);
533      break;
534    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535      ResultTy = Type::getX86_FP80Ty(Context);
536      break;
537    case bitc::TYPE_CODE_FP128:     // FP128
538      ResultTy = Type::getFP128Ty(Context);
539      break;
540    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541      ResultTy = Type::getPPC_FP128Ty(Context);
542      break;
543    case bitc::TYPE_CODE_LABEL:     // LABEL
544      ResultTy = Type::getLabelTy(Context);
545      break;
546    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547      ResultTy = 0;
548      break;
549    case bitc::TYPE_CODE_METADATA:  // METADATA
550      ResultTy = Type::getMetadataTy(Context);
551      break;
552    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553      ResultTy = Type::getX86_MMXTy(Context);
554      break;
555    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556      if (Record.size() < 1)
557        return Error("Invalid Integer type record");
558
559      ResultTy = IntegerType::get(Context, Record[0]);
560      break;
561    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                    //          [pointee type, address space]
563      if (Record.size() < 1)
564        return Error("Invalid POINTER type record");
565      unsigned AddressSpace = 0;
566      if (Record.size() == 2)
567        AddressSpace = Record[1];
568      ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                        AddressSpace);
570      break;
571    }
572    case bitc::TYPE_CODE_FUNCTION: {
573      // FIXME: attrid is dead, remove it in LLVM 3.0
574      // FUNCTION: [vararg, attrid, retty, paramty x N]
575      if (Record.size() < 3)
576        return Error("Invalid FUNCTION type record");
577      std::vector<const Type*> ArgTys;
578      for (unsigned i = 3, e = Record.size(); i != e; ++i)
579        ArgTys.push_back(getTypeByID(Record[i], true));
580
581      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                   Record[0]);
583      break;
584    }
585    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586      if (Record.size() < 1)
587        return Error("Invalid STRUCT type record");
588      std::vector<const Type*> EltTys;
589      for (unsigned i = 1, e = Record.size(); i != e; ++i)
590        EltTys.push_back(getTypeByID(Record[i], true));
591      ResultTy = StructType::get(Context, EltTys, Record[0]);
592      break;
593    }
594    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid ARRAY type record");
597      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600      if (Record.size() < 2)
601        return Error("Invalid VECTOR type record");
602      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603      break;
604    }
605
606    if (NumRecords == TypeList.size()) {
607      // If this is a new type slot, just append it.
608      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609      ++NumRecords;
610    } else if (ResultTy == 0) {
611      // Otherwise, this was forward referenced, so an opaque type was created,
612      // but the result type is actually just an opaque.  Leave the one we
613      // created previously.
614      ++NumRecords;
615    } else {
616      // Otherwise, this was forward referenced, so an opaque type was created.
617      // Resolve the opaque type to the real type now.
618      assert(NumRecords < TypeList.size() && "Typelist imbalance");
619      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620
621      // Don't directly push the new type on the Tab. Instead we want to replace
622      // the opaque type we previously inserted with the new concrete value. The
623      // refinement from the abstract (opaque) type to the new type causes all
624      // uses of the abstract type to use the concrete type (NewTy). This will
625      // also cause the opaque type to be deleted.
626      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627
628      // This should have replaced the old opaque type with the new type in the
629      // value table... or with a preexisting type that was already in the
630      // system.  Let's just make sure it did.
631      assert(TypeList[NumRecords-1].get() != OldTy &&
632             "refineAbstractType didn't work!");
633    }
634  }
635}
636
637
638bool BitcodeReader::ParseTypeSymbolTable() {
639  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640    return Error("Malformed block record");
641
642  SmallVector<uint64_t, 64> Record;
643
644  // Read all the records for this type table.
645  std::string TypeName;
646  while (1) {
647    unsigned Code = Stream.ReadCode();
648    if (Code == bitc::END_BLOCK) {
649      if (Stream.ReadBlockEnd())
650        return Error("Error at end of type symbol table block");
651      return false;
652    }
653
654    if (Code == bitc::ENTER_SUBBLOCK) {
655      // No known subblocks, always skip them.
656      Stream.ReadSubBlockID();
657      if (Stream.SkipBlock())
658        return Error("Malformed block record");
659      continue;
660    }
661
662    if (Code == bitc::DEFINE_ABBREV) {
663      Stream.ReadAbbrevRecord();
664      continue;
665    }
666
667    // Read a record.
668    Record.clear();
669    switch (Stream.ReadRecord(Code, Record)) {
670    default:  // Default behavior: unknown type.
671      break;
672    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673      if (ConvertToString(Record, 1, TypeName))
674        return Error("Invalid TST_ENTRY record");
675      unsigned TypeID = Record[0];
676      if (TypeID >= TypeList.size())
677        return Error("Invalid Type ID in TST_ENTRY record");
678
679      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680      TypeName.clear();
681      break;
682    }
683  }
684}
685
686bool BitcodeReader::ParseValueSymbolTable() {
687  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688    return Error("Malformed block record");
689
690  SmallVector<uint64_t, 64> Record;
691
692  // Read all the records for this value table.
693  SmallString<128> ValueName;
694  while (1) {
695    unsigned Code = Stream.ReadCode();
696    if (Code == bitc::END_BLOCK) {
697      if (Stream.ReadBlockEnd())
698        return Error("Error at end of value symbol table block");
699      return false;
700    }
701    if (Code == bitc::ENTER_SUBBLOCK) {
702      // No known subblocks, always skip them.
703      Stream.ReadSubBlockID();
704      if (Stream.SkipBlock())
705        return Error("Malformed block record");
706      continue;
707    }
708
709    if (Code == bitc::DEFINE_ABBREV) {
710      Stream.ReadAbbrevRecord();
711      continue;
712    }
713
714    // Read a record.
715    Record.clear();
716    switch (Stream.ReadRecord(Code, Record)) {
717    default:  // Default behavior: unknown type.
718      break;
719    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720      if (ConvertToString(Record, 1, ValueName))
721        return Error("Invalid VST_ENTRY record");
722      unsigned ValueID = Record[0];
723      if (ValueID >= ValueList.size())
724        return Error("Invalid Value ID in VST_ENTRY record");
725      Value *V = ValueList[ValueID];
726
727      V->setName(StringRef(ValueName.data(), ValueName.size()));
728      ValueName.clear();
729      break;
730    }
731    case bitc::VST_CODE_BBENTRY: {
732      if (ConvertToString(Record, 1, ValueName))
733        return Error("Invalid VST_BBENTRY record");
734      BasicBlock *BB = getBasicBlock(Record[0]);
735      if (BB == 0)
736        return Error("Invalid BB ID in VST_BBENTRY record");
737
738      BB->setName(StringRef(ValueName.data(), ValueName.size()));
739      ValueName.clear();
740      break;
741    }
742    }
743  }
744}
745
746bool BitcodeReader::ParseMetadata() {
747  unsigned NextMDValueNo = MDValueList.size();
748
749  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750    return Error("Malformed block record");
751
752  SmallVector<uint64_t, 64> Record;
753
754  // Read all the records.
755  while (1) {
756    unsigned Code = Stream.ReadCode();
757    if (Code == bitc::END_BLOCK) {
758      if (Stream.ReadBlockEnd())
759        return Error("Error at end of PARAMATTR block");
760      return false;
761    }
762
763    if (Code == bitc::ENTER_SUBBLOCK) {
764      // No known subblocks, always skip them.
765      Stream.ReadSubBlockID();
766      if (Stream.SkipBlock())
767        return Error("Malformed block record");
768      continue;
769    }
770
771    if (Code == bitc::DEFINE_ABBREV) {
772      Stream.ReadAbbrevRecord();
773      continue;
774    }
775
776    bool IsFunctionLocal = false;
777    // Read a record.
778    Record.clear();
779    switch (Stream.ReadRecord(Code, Record)) {
780    default:  // Default behavior: ignore.
781      break;
782    case bitc::METADATA_NAME: {
783      // Read named of the named metadata.
784      unsigned NameLength = Record.size();
785      SmallString<8> Name;
786      Name.resize(NameLength);
787      for (unsigned i = 0; i != NameLength; ++i)
788        Name[i] = Record[i];
789      Record.clear();
790      Code = Stream.ReadCode();
791
792      // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
793      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
794      // FIXME: LLVM 3.0: Remove this.
795      if (NextBitCode == bitc::METADATA_NAMED_NODE)
796        break;
797      if (NextBitCode != bitc::METADATA_NAMED_NODE2)
798        assert ( 0 && "Inavlid Named Metadata record");
799
800      // Read named metadata elements.
801      unsigned Size = Record.size();
802      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
803      for (unsigned i = 0; i != Size; ++i) {
804        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
805        if (MD == 0)
806          return Error("Malformed metadata record");
807        NMD->addOperand(MD);
808      }
809      break;
810    }
811    case bitc::METADATA_FN_NODE:
812      // FIXME: Legacy support for the old fn_node, where function-local
813      // metadata operands were bogus. Remove in LLVM 3.0.
814      break;
815    case bitc::METADATA_NODE:
816      // FIXME: Legacy support for the old node, where function-local
817      // metadata operands were bogus. Remove in LLVM 3.0.
818      break;
819    case bitc::METADATA_FN_NODE2:
820      IsFunctionLocal = true;
821      // fall-through
822    case bitc::METADATA_NODE2: {
823      if (Record.size() % 2 == 1)
824        return Error("Invalid METADATA_NODE2 record");
825
826      unsigned Size = Record.size();
827      SmallVector<Value*, 8> Elts;
828      for (unsigned i = 0; i != Size; i += 2) {
829        const Type *Ty = getTypeByID(Record[i], false);
830        if (Ty->isMetadataTy())
831          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
832        else if (!Ty->isVoidTy())
833          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
834        else
835          Elts.push_back(NULL);
836      }
837      Value *V = MDNode::getWhenValsUnresolved(Context,
838                                               Elts.data(), Elts.size(),
839                                               IsFunctionLocal);
840      IsFunctionLocal = false;
841      MDValueList.AssignValue(V, NextMDValueNo++);
842      break;
843    }
844    case bitc::METADATA_STRING: {
845      unsigned MDStringLength = Record.size();
846      SmallString<8> String;
847      String.resize(MDStringLength);
848      for (unsigned i = 0; i != MDStringLength; ++i)
849        String[i] = Record[i];
850      Value *V = MDString::get(Context,
851                               StringRef(String.data(), String.size()));
852      MDValueList.AssignValue(V, NextMDValueNo++);
853      break;
854    }
855    case bitc::METADATA_KIND: {
856      unsigned RecordLength = Record.size();
857      if (Record.empty() || RecordLength < 2)
858        return Error("Invalid METADATA_KIND record");
859      SmallString<8> Name;
860      Name.resize(RecordLength-1);
861      unsigned Kind = Record[0];
862      for (unsigned i = 1; i != RecordLength; ++i)
863        Name[i-1] = Record[i];
864
865      unsigned NewKind = TheModule->getMDKindID(Name.str());
866      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
867        return Error("Conflicting METADATA_KIND records");
868      break;
869    }
870    }
871  }
872}
873
874/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
875/// the LSB for dense VBR encoding.
876static uint64_t DecodeSignRotatedValue(uint64_t V) {
877  if ((V & 1) == 0)
878    return V >> 1;
879  if (V != 1)
880    return -(V >> 1);
881  // There is no such thing as -0 with integers.  "-0" really means MININT.
882  return 1ULL << 63;
883}
884
885/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
886/// values and aliases that we can.
887bool BitcodeReader::ResolveGlobalAndAliasInits() {
888  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
889  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
890
891  GlobalInitWorklist.swap(GlobalInits);
892  AliasInitWorklist.swap(AliasInits);
893
894  while (!GlobalInitWorklist.empty()) {
895    unsigned ValID = GlobalInitWorklist.back().second;
896    if (ValID >= ValueList.size()) {
897      // Not ready to resolve this yet, it requires something later in the file.
898      GlobalInits.push_back(GlobalInitWorklist.back());
899    } else {
900      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
901        GlobalInitWorklist.back().first->setInitializer(C);
902      else
903        return Error("Global variable initializer is not a constant!");
904    }
905    GlobalInitWorklist.pop_back();
906  }
907
908  while (!AliasInitWorklist.empty()) {
909    unsigned ValID = AliasInitWorklist.back().second;
910    if (ValID >= ValueList.size()) {
911      AliasInits.push_back(AliasInitWorklist.back());
912    } else {
913      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
914        AliasInitWorklist.back().first->setAliasee(C);
915      else
916        return Error("Alias initializer is not a constant!");
917    }
918    AliasInitWorklist.pop_back();
919  }
920  return false;
921}
922
923bool BitcodeReader::ParseConstants() {
924  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
925    return Error("Malformed block record");
926
927  SmallVector<uint64_t, 64> Record;
928
929  // Read all the records for this value table.
930  const Type *CurTy = Type::getInt32Ty(Context);
931  unsigned NextCstNo = ValueList.size();
932  while (1) {
933    unsigned Code = Stream.ReadCode();
934    if (Code == bitc::END_BLOCK)
935      break;
936
937    if (Code == bitc::ENTER_SUBBLOCK) {
938      // No known subblocks, always skip them.
939      Stream.ReadSubBlockID();
940      if (Stream.SkipBlock())
941        return Error("Malformed block record");
942      continue;
943    }
944
945    if (Code == bitc::DEFINE_ABBREV) {
946      Stream.ReadAbbrevRecord();
947      continue;
948    }
949
950    // Read a record.
951    Record.clear();
952    Value *V = 0;
953    unsigned BitCode = Stream.ReadRecord(Code, Record);
954    switch (BitCode) {
955    default:  // Default behavior: unknown constant
956    case bitc::CST_CODE_UNDEF:     // UNDEF
957      V = UndefValue::get(CurTy);
958      break;
959    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
960      if (Record.empty())
961        return Error("Malformed CST_SETTYPE record");
962      if (Record[0] >= TypeList.size())
963        return Error("Invalid Type ID in CST_SETTYPE record");
964      CurTy = TypeList[Record[0]];
965      continue;  // Skip the ValueList manipulation.
966    case bitc::CST_CODE_NULL:      // NULL
967      V = Constant::getNullValue(CurTy);
968      break;
969    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
970      if (!CurTy->isIntegerTy() || Record.empty())
971        return Error("Invalid CST_INTEGER record");
972      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
973      break;
974    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
975      if (!CurTy->isIntegerTy() || Record.empty())
976        return Error("Invalid WIDE_INTEGER record");
977
978      unsigned NumWords = Record.size();
979      SmallVector<uint64_t, 8> Words;
980      Words.resize(NumWords);
981      for (unsigned i = 0; i != NumWords; ++i)
982        Words[i] = DecodeSignRotatedValue(Record[i]);
983      V = ConstantInt::get(Context,
984                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
985                           NumWords, &Words[0]));
986      break;
987    }
988    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
989      if (Record.empty())
990        return Error("Invalid FLOAT record");
991      if (CurTy->isFloatTy())
992        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
993      else if (CurTy->isDoubleTy())
994        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
995      else if (CurTy->isX86_FP80Ty()) {
996        // Bits are not stored the same way as a normal i80 APInt, compensate.
997        uint64_t Rearrange[2];
998        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
999        Rearrange[1] = Record[0] >> 48;
1000        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1001      } else if (CurTy->isFP128Ty())
1002        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1003      else if (CurTy->isPPC_FP128Ty())
1004        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1005      else
1006        V = UndefValue::get(CurTy);
1007      break;
1008    }
1009
1010    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1011      if (Record.empty())
1012        return Error("Invalid CST_AGGREGATE record");
1013
1014      unsigned Size = Record.size();
1015      std::vector<Constant*> Elts;
1016
1017      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1018        for (unsigned i = 0; i != Size; ++i)
1019          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1020                                                     STy->getElementType(i)));
1021        V = ConstantStruct::get(STy, Elts);
1022      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1023        const Type *EltTy = ATy->getElementType();
1024        for (unsigned i = 0; i != Size; ++i)
1025          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1026        V = ConstantArray::get(ATy, Elts);
1027      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1028        const Type *EltTy = VTy->getElementType();
1029        for (unsigned i = 0; i != Size; ++i)
1030          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1031        V = ConstantVector::get(Elts);
1032      } else {
1033        V = UndefValue::get(CurTy);
1034      }
1035      break;
1036    }
1037    case bitc::CST_CODE_STRING: { // STRING: [values]
1038      if (Record.empty())
1039        return Error("Invalid CST_AGGREGATE record");
1040
1041      const ArrayType *ATy = cast<ArrayType>(CurTy);
1042      const Type *EltTy = ATy->getElementType();
1043
1044      unsigned Size = Record.size();
1045      std::vector<Constant*> Elts;
1046      for (unsigned i = 0; i != Size; ++i)
1047        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1048      V = ConstantArray::get(ATy, Elts);
1049      break;
1050    }
1051    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1052      if (Record.empty())
1053        return Error("Invalid CST_AGGREGATE record");
1054
1055      const ArrayType *ATy = cast<ArrayType>(CurTy);
1056      const Type *EltTy = ATy->getElementType();
1057
1058      unsigned Size = Record.size();
1059      std::vector<Constant*> Elts;
1060      for (unsigned i = 0; i != Size; ++i)
1061        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1062      Elts.push_back(Constant::getNullValue(EltTy));
1063      V = ConstantArray::get(ATy, Elts);
1064      break;
1065    }
1066    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1067      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1068      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1069      if (Opc < 0) {
1070        V = UndefValue::get(CurTy);  // Unknown binop.
1071      } else {
1072        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1073        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1074        unsigned Flags = 0;
1075        if (Record.size() >= 4) {
1076          if (Opc == Instruction::Add ||
1077              Opc == Instruction::Sub ||
1078              Opc == Instruction::Mul) {
1079            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1080              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1081            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1082              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1083          } else if (Opc == Instruction::SDiv) {
1084            if (Record[3] & (1 << bitc::SDIV_EXACT))
1085              Flags |= SDivOperator::IsExact;
1086          }
1087        }
1088        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1089      }
1090      break;
1091    }
1092    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1093      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1094      int Opc = GetDecodedCastOpcode(Record[0]);
1095      if (Opc < 0) {
1096        V = UndefValue::get(CurTy);  // Unknown cast.
1097      } else {
1098        const Type *OpTy = getTypeByID(Record[1]);
1099        if (!OpTy) return Error("Invalid CE_CAST record");
1100        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1101        V = ConstantExpr::getCast(Opc, Op, CurTy);
1102      }
1103      break;
1104    }
1105    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1106    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1107      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1108      SmallVector<Constant*, 16> Elts;
1109      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1110        const Type *ElTy = getTypeByID(Record[i]);
1111        if (!ElTy) return Error("Invalid CE_GEP record");
1112        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1113      }
1114      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1115        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1116                                                   Elts.size()-1);
1117      else
1118        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1119                                           Elts.size()-1);
1120      break;
1121    }
1122    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1123      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1124      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1125                                                              Type::getInt1Ty(Context)),
1126                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1127                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1128      break;
1129    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1130      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1131      const VectorType *OpTy =
1132        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1133      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1134      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1135      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1136      V = ConstantExpr::getExtractElement(Op0, Op1);
1137      break;
1138    }
1139    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1140      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1141      if (Record.size() < 3 || OpTy == 0)
1142        return Error("Invalid CE_INSERTELT record");
1143      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1144      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1145                                                  OpTy->getElementType());
1146      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1147      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1148      break;
1149    }
1150    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1151      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1152      if (Record.size() < 3 || OpTy == 0)
1153        return Error("Invalid CE_SHUFFLEVEC record");
1154      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1155      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1156      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1157                                                 OpTy->getNumElements());
1158      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1159      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1160      break;
1161    }
1162    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1163      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1164      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1165      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1166        return Error("Invalid CE_SHUFVEC_EX record");
1167      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1168      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1169      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1170                                                 RTy->getNumElements());
1171      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1172      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1173      break;
1174    }
1175    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1176      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1177      const Type *OpTy = getTypeByID(Record[0]);
1178      if (OpTy == 0) return Error("Invalid CE_CMP record");
1179      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1180      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1181
1182      if (OpTy->isFPOrFPVectorTy())
1183        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1184      else
1185        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1186      break;
1187    }
1188    case bitc::CST_CODE_INLINEASM: {
1189      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1190      std::string AsmStr, ConstrStr;
1191      bool HasSideEffects = Record[0] & 1;
1192      bool IsAlignStack = Record[0] >> 1;
1193      unsigned AsmStrSize = Record[1];
1194      if (2+AsmStrSize >= Record.size())
1195        return Error("Invalid INLINEASM record");
1196      unsigned ConstStrSize = Record[2+AsmStrSize];
1197      if (3+AsmStrSize+ConstStrSize > Record.size())
1198        return Error("Invalid INLINEASM record");
1199
1200      for (unsigned i = 0; i != AsmStrSize; ++i)
1201        AsmStr += (char)Record[2+i];
1202      for (unsigned i = 0; i != ConstStrSize; ++i)
1203        ConstrStr += (char)Record[3+AsmStrSize+i];
1204      const PointerType *PTy = cast<PointerType>(CurTy);
1205      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1206                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1207      break;
1208    }
1209    case bitc::CST_CODE_BLOCKADDRESS:{
1210      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1211      const Type *FnTy = getTypeByID(Record[0]);
1212      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1213      Function *Fn =
1214        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1215      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1216
1217      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1218                                                  Type::getInt8Ty(Context),
1219                                            false, GlobalValue::InternalLinkage,
1220                                                  0, "");
1221      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1222      V = FwdRef;
1223      break;
1224    }
1225    }
1226
1227    ValueList.AssignValue(V, NextCstNo);
1228    ++NextCstNo;
1229  }
1230
1231  if (NextCstNo != ValueList.size())
1232    return Error("Invalid constant reference!");
1233
1234  if (Stream.ReadBlockEnd())
1235    return Error("Error at end of constants block");
1236
1237  // Once all the constants have been read, go through and resolve forward
1238  // references.
1239  ValueList.ResolveConstantForwardRefs();
1240  return false;
1241}
1242
1243/// RememberAndSkipFunctionBody - When we see the block for a function body,
1244/// remember where it is and then skip it.  This lets us lazily deserialize the
1245/// functions.
1246bool BitcodeReader::RememberAndSkipFunctionBody() {
1247  // Get the function we are talking about.
1248  if (FunctionsWithBodies.empty())
1249    return Error("Insufficient function protos");
1250
1251  Function *Fn = FunctionsWithBodies.back();
1252  FunctionsWithBodies.pop_back();
1253
1254  // Save the current stream state.
1255  uint64_t CurBit = Stream.GetCurrentBitNo();
1256  DeferredFunctionInfo[Fn] = CurBit;
1257
1258  // Skip over the function block for now.
1259  if (Stream.SkipBlock())
1260    return Error("Malformed block record");
1261  return false;
1262}
1263
1264bool BitcodeReader::ParseModule() {
1265  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1266    return Error("Malformed block record");
1267
1268  SmallVector<uint64_t, 64> Record;
1269  std::vector<std::string> SectionTable;
1270  std::vector<std::string> GCTable;
1271
1272  // Read all the records for this module.
1273  while (!Stream.AtEndOfStream()) {
1274    unsigned Code = Stream.ReadCode();
1275    if (Code == bitc::END_BLOCK) {
1276      if (Stream.ReadBlockEnd())
1277        return Error("Error at end of module block");
1278
1279      // Patch the initializers for globals and aliases up.
1280      ResolveGlobalAndAliasInits();
1281      if (!GlobalInits.empty() || !AliasInits.empty())
1282        return Error("Malformed global initializer set");
1283      if (!FunctionsWithBodies.empty())
1284        return Error("Too few function bodies found");
1285
1286      // Look for intrinsic functions which need to be upgraded at some point
1287      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1288           FI != FE; ++FI) {
1289        Function* NewFn;
1290        if (UpgradeIntrinsicFunction(FI, NewFn))
1291          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1292      }
1293
1294      // Look for global variables which need to be renamed.
1295      for (Module::global_iterator
1296             GI = TheModule->global_begin(), GE = TheModule->global_end();
1297           GI != GE; ++GI)
1298        UpgradeGlobalVariable(GI);
1299
1300      // Force deallocation of memory for these vectors to favor the client that
1301      // want lazy deserialization.
1302      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1303      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1304      std::vector<Function*>().swap(FunctionsWithBodies);
1305      return false;
1306    }
1307
1308    if (Code == bitc::ENTER_SUBBLOCK) {
1309      switch (Stream.ReadSubBlockID()) {
1310      default:  // Skip unknown content.
1311        if (Stream.SkipBlock())
1312          return Error("Malformed block record");
1313        break;
1314      case bitc::BLOCKINFO_BLOCK_ID:
1315        if (Stream.ReadBlockInfoBlock())
1316          return Error("Malformed BlockInfoBlock");
1317        break;
1318      case bitc::PARAMATTR_BLOCK_ID:
1319        if (ParseAttributeBlock())
1320          return true;
1321        break;
1322      case bitc::TYPE_BLOCK_ID:
1323        if (ParseTypeTable())
1324          return true;
1325        break;
1326      case bitc::TYPE_SYMTAB_BLOCK_ID:
1327        if (ParseTypeSymbolTable())
1328          return true;
1329        break;
1330      case bitc::VALUE_SYMTAB_BLOCK_ID:
1331        if (ParseValueSymbolTable())
1332          return true;
1333        break;
1334      case bitc::CONSTANTS_BLOCK_ID:
1335        if (ParseConstants() || ResolveGlobalAndAliasInits())
1336          return true;
1337        break;
1338      case bitc::METADATA_BLOCK_ID:
1339        if (ParseMetadata())
1340          return true;
1341        break;
1342      case bitc::FUNCTION_BLOCK_ID:
1343        // If this is the first function body we've seen, reverse the
1344        // FunctionsWithBodies list.
1345        if (!HasReversedFunctionsWithBodies) {
1346          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1347          HasReversedFunctionsWithBodies = true;
1348        }
1349
1350        if (RememberAndSkipFunctionBody())
1351          return true;
1352        break;
1353      }
1354      continue;
1355    }
1356
1357    if (Code == bitc::DEFINE_ABBREV) {
1358      Stream.ReadAbbrevRecord();
1359      continue;
1360    }
1361
1362    // Read a record.
1363    switch (Stream.ReadRecord(Code, Record)) {
1364    default: break;  // Default behavior, ignore unknown content.
1365    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1366      if (Record.size() < 1)
1367        return Error("Malformed MODULE_CODE_VERSION");
1368      // Only version #0 is supported so far.
1369      if (Record[0] != 0)
1370        return Error("Unknown bitstream version!");
1371      break;
1372    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1373      std::string S;
1374      if (ConvertToString(Record, 0, S))
1375        return Error("Invalid MODULE_CODE_TRIPLE record");
1376      TheModule->setTargetTriple(S);
1377      break;
1378    }
1379    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1380      std::string S;
1381      if (ConvertToString(Record, 0, S))
1382        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1383      TheModule->setDataLayout(S);
1384      break;
1385    }
1386    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1387      std::string S;
1388      if (ConvertToString(Record, 0, S))
1389        return Error("Invalid MODULE_CODE_ASM record");
1390      TheModule->setModuleInlineAsm(S);
1391      break;
1392    }
1393    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1394      std::string S;
1395      if (ConvertToString(Record, 0, S))
1396        return Error("Invalid MODULE_CODE_DEPLIB record");
1397      TheModule->addLibrary(S);
1398      break;
1399    }
1400    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1401      std::string S;
1402      if (ConvertToString(Record, 0, S))
1403        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1404      SectionTable.push_back(S);
1405      break;
1406    }
1407    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1408      std::string S;
1409      if (ConvertToString(Record, 0, S))
1410        return Error("Invalid MODULE_CODE_GCNAME record");
1411      GCTable.push_back(S);
1412      break;
1413    }
1414    // GLOBALVAR: [pointer type, isconst, initid,
1415    //             linkage, alignment, section, visibility, threadlocal]
1416    case bitc::MODULE_CODE_GLOBALVAR: {
1417      if (Record.size() < 6)
1418        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1419      const Type *Ty = getTypeByID(Record[0]);
1420      if (!Ty->isPointerTy())
1421        return Error("Global not a pointer type!");
1422      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1423      Ty = cast<PointerType>(Ty)->getElementType();
1424
1425      bool isConstant = Record[1];
1426      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1427      unsigned Alignment = (1 << Record[4]) >> 1;
1428      std::string Section;
1429      if (Record[5]) {
1430        if (Record[5]-1 >= SectionTable.size())
1431          return Error("Invalid section ID");
1432        Section = SectionTable[Record[5]-1];
1433      }
1434      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1435      if (Record.size() > 6)
1436        Visibility = GetDecodedVisibility(Record[6]);
1437      bool isThreadLocal = false;
1438      if (Record.size() > 7)
1439        isThreadLocal = Record[7];
1440
1441      GlobalVariable *NewGV =
1442        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1443                           isThreadLocal, AddressSpace);
1444      NewGV->setAlignment(Alignment);
1445      if (!Section.empty())
1446        NewGV->setSection(Section);
1447      NewGV->setVisibility(Visibility);
1448      NewGV->setThreadLocal(isThreadLocal);
1449
1450      ValueList.push_back(NewGV);
1451
1452      // Remember which value to use for the global initializer.
1453      if (unsigned InitID = Record[2])
1454        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1455      break;
1456    }
1457    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1458    //             alignment, section, visibility, gc]
1459    case bitc::MODULE_CODE_FUNCTION: {
1460      if (Record.size() < 8)
1461        return Error("Invalid MODULE_CODE_FUNCTION record");
1462      const Type *Ty = getTypeByID(Record[0]);
1463      if (!Ty->isPointerTy())
1464        return Error("Function not a pointer type!");
1465      const FunctionType *FTy =
1466        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1467      if (!FTy)
1468        return Error("Function not a pointer to function type!");
1469
1470      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1471                                        "", TheModule);
1472
1473      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1474      bool isProto = Record[2];
1475      Func->setLinkage(GetDecodedLinkage(Record[3]));
1476      Func->setAttributes(getAttributes(Record[4]));
1477
1478      Func->setAlignment((1 << Record[5]) >> 1);
1479      if (Record[6]) {
1480        if (Record[6]-1 >= SectionTable.size())
1481          return Error("Invalid section ID");
1482        Func->setSection(SectionTable[Record[6]-1]);
1483      }
1484      Func->setVisibility(GetDecodedVisibility(Record[7]));
1485      if (Record.size() > 8 && Record[8]) {
1486        if (Record[8]-1 > GCTable.size())
1487          return Error("Invalid GC ID");
1488        Func->setGC(GCTable[Record[8]-1].c_str());
1489      }
1490      ValueList.push_back(Func);
1491
1492      // If this is a function with a body, remember the prototype we are
1493      // creating now, so that we can match up the body with them later.
1494      if (!isProto)
1495        FunctionsWithBodies.push_back(Func);
1496      break;
1497    }
1498    // ALIAS: [alias type, aliasee val#, linkage]
1499    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1500    case bitc::MODULE_CODE_ALIAS: {
1501      if (Record.size() < 3)
1502        return Error("Invalid MODULE_ALIAS record");
1503      const Type *Ty = getTypeByID(Record[0]);
1504      if (!Ty->isPointerTy())
1505        return Error("Function not a pointer type!");
1506
1507      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1508                                           "", 0, TheModule);
1509      // Old bitcode files didn't have visibility field.
1510      if (Record.size() > 3)
1511        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1512      ValueList.push_back(NewGA);
1513      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1514      break;
1515    }
1516    /// MODULE_CODE_PURGEVALS: [numvals]
1517    case bitc::MODULE_CODE_PURGEVALS:
1518      // Trim down the value list to the specified size.
1519      if (Record.size() < 1 || Record[0] > ValueList.size())
1520        return Error("Invalid MODULE_PURGEVALS record");
1521      ValueList.shrinkTo(Record[0]);
1522      break;
1523    }
1524    Record.clear();
1525  }
1526
1527  return Error("Premature end of bitstream");
1528}
1529
1530bool BitcodeReader::ParseBitcodeInto(Module *M) {
1531  TheModule = 0;
1532
1533  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1534  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1535
1536  if (Buffer->getBufferSize() & 3) {
1537    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1538      return Error("Invalid bitcode signature");
1539    else
1540      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1541  }
1542
1543  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1544  // The magic number is 0x0B17C0DE stored in little endian.
1545  if (isBitcodeWrapper(BufPtr, BufEnd))
1546    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1547      return Error("Invalid bitcode wrapper header");
1548
1549  StreamFile.init(BufPtr, BufEnd);
1550  Stream.init(StreamFile);
1551
1552  // Sniff for the signature.
1553  if (Stream.Read(8) != 'B' ||
1554      Stream.Read(8) != 'C' ||
1555      Stream.Read(4) != 0x0 ||
1556      Stream.Read(4) != 0xC ||
1557      Stream.Read(4) != 0xE ||
1558      Stream.Read(4) != 0xD)
1559    return Error("Invalid bitcode signature");
1560
1561  // We expect a number of well-defined blocks, though we don't necessarily
1562  // need to understand them all.
1563  while (!Stream.AtEndOfStream()) {
1564    unsigned Code = Stream.ReadCode();
1565
1566    if (Code != bitc::ENTER_SUBBLOCK)
1567      return Error("Invalid record at top-level");
1568
1569    unsigned BlockID = Stream.ReadSubBlockID();
1570
1571    // We only know the MODULE subblock ID.
1572    switch (BlockID) {
1573    case bitc::BLOCKINFO_BLOCK_ID:
1574      if (Stream.ReadBlockInfoBlock())
1575        return Error("Malformed BlockInfoBlock");
1576      break;
1577    case bitc::MODULE_BLOCK_ID:
1578      // Reject multiple MODULE_BLOCK's in a single bitstream.
1579      if (TheModule)
1580        return Error("Multiple MODULE_BLOCKs in same stream");
1581      TheModule = M;
1582      if (ParseModule())
1583        return true;
1584      break;
1585    default:
1586      if (Stream.SkipBlock())
1587        return Error("Malformed block record");
1588      break;
1589    }
1590  }
1591
1592  return false;
1593}
1594
1595/// ParseMetadataAttachment - Parse metadata attachments.
1596bool BitcodeReader::ParseMetadataAttachment() {
1597  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1598    return Error("Malformed block record");
1599
1600  SmallVector<uint64_t, 64> Record;
1601  while(1) {
1602    unsigned Code = Stream.ReadCode();
1603    if (Code == bitc::END_BLOCK) {
1604      if (Stream.ReadBlockEnd())
1605        return Error("Error at end of PARAMATTR block");
1606      break;
1607    }
1608    if (Code == bitc::DEFINE_ABBREV) {
1609      Stream.ReadAbbrevRecord();
1610      continue;
1611    }
1612    // Read a metadata attachment record.
1613    Record.clear();
1614    switch (Stream.ReadRecord(Code, Record)) {
1615    default:  // Default behavior: ignore.
1616      break;
1617    case bitc::METADATA_ATTACHMENT:
1618      // LLVM 3.0: Remove this.
1619      break;
1620    case bitc::METADATA_ATTACHMENT2: {
1621      unsigned RecordLength = Record.size();
1622      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1623        return Error ("Invalid METADATA_ATTACHMENT reader!");
1624      Instruction *Inst = InstructionList[Record[0]];
1625      for (unsigned i = 1; i != RecordLength; i = i+2) {
1626        unsigned Kind = Record[i];
1627        DenseMap<unsigned, unsigned>::iterator I =
1628          MDKindMap.find(Kind);
1629        if (I == MDKindMap.end())
1630          return Error("Invalid metadata kind ID");
1631        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1632        Inst->setMetadata(I->second, cast<MDNode>(Node));
1633      }
1634      break;
1635    }
1636    }
1637  }
1638  return false;
1639}
1640
1641/// ParseFunctionBody - Lazily parse the specified function body block.
1642bool BitcodeReader::ParseFunctionBody(Function *F) {
1643  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1644    return Error("Malformed block record");
1645
1646  InstructionList.clear();
1647  unsigned ModuleValueListSize = ValueList.size();
1648  unsigned ModuleMDValueListSize = MDValueList.size();
1649
1650  // Add all the function arguments to the value table.
1651  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1652    ValueList.push_back(I);
1653
1654  unsigned NextValueNo = ValueList.size();
1655  BasicBlock *CurBB = 0;
1656  unsigned CurBBNo = 0;
1657
1658  DebugLoc LastLoc;
1659
1660  // Read all the records.
1661  SmallVector<uint64_t, 64> Record;
1662  while (1) {
1663    unsigned Code = Stream.ReadCode();
1664    if (Code == bitc::END_BLOCK) {
1665      if (Stream.ReadBlockEnd())
1666        return Error("Error at end of function block");
1667      break;
1668    }
1669
1670    if (Code == bitc::ENTER_SUBBLOCK) {
1671      switch (Stream.ReadSubBlockID()) {
1672      default:  // Skip unknown content.
1673        if (Stream.SkipBlock())
1674          return Error("Malformed block record");
1675        break;
1676      case bitc::CONSTANTS_BLOCK_ID:
1677        if (ParseConstants()) return true;
1678        NextValueNo = ValueList.size();
1679        break;
1680      case bitc::VALUE_SYMTAB_BLOCK_ID:
1681        if (ParseValueSymbolTable()) return true;
1682        break;
1683      case bitc::METADATA_ATTACHMENT_ID:
1684        if (ParseMetadataAttachment()) return true;
1685        break;
1686      case bitc::METADATA_BLOCK_ID:
1687        if (ParseMetadata()) return true;
1688        break;
1689      }
1690      continue;
1691    }
1692
1693    if (Code == bitc::DEFINE_ABBREV) {
1694      Stream.ReadAbbrevRecord();
1695      continue;
1696    }
1697
1698    // Read a record.
1699    Record.clear();
1700    Instruction *I = 0;
1701    unsigned BitCode = Stream.ReadRecord(Code, Record);
1702    switch (BitCode) {
1703    default: // Default behavior: reject
1704      return Error("Unknown instruction");
1705    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1706      if (Record.size() < 1 || Record[0] == 0)
1707        return Error("Invalid DECLAREBLOCKS record");
1708      // Create all the basic blocks for the function.
1709      FunctionBBs.resize(Record[0]);
1710      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1711        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1712      CurBB = FunctionBBs[0];
1713      continue;
1714
1715
1716    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1717      // This record indicates that the last instruction is at the same
1718      // location as the previous instruction with a location.
1719      I = 0;
1720
1721      // Get the last instruction emitted.
1722      if (CurBB && !CurBB->empty())
1723        I = &CurBB->back();
1724      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1725               !FunctionBBs[CurBBNo-1]->empty())
1726        I = &FunctionBBs[CurBBNo-1]->back();
1727
1728      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1729      I->setDebugLoc(LastLoc);
1730      I = 0;
1731      continue;
1732
1733    case bitc::FUNC_CODE_DEBUG_LOC:
1734      // FIXME: Ignore. Remove this in LLVM 3.0.
1735      continue;
1736
1737    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1738      I = 0;     // Get the last instruction emitted.
1739      if (CurBB && !CurBB->empty())
1740        I = &CurBB->back();
1741      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1742               !FunctionBBs[CurBBNo-1]->empty())
1743        I = &FunctionBBs[CurBBNo-1]->back();
1744      if (I == 0 || Record.size() < 4)
1745        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1746
1747      unsigned Line = Record[0], Col = Record[1];
1748      unsigned ScopeID = Record[2], IAID = Record[3];
1749
1750      MDNode *Scope = 0, *IA = 0;
1751      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1752      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1753      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1754      I->setDebugLoc(LastLoc);
1755      I = 0;
1756      continue;
1757    }
1758
1759    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1760      unsigned OpNum = 0;
1761      Value *LHS, *RHS;
1762      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1763          getValue(Record, OpNum, LHS->getType(), RHS) ||
1764          OpNum+1 > Record.size())
1765        return Error("Invalid BINOP record");
1766
1767      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1768      if (Opc == -1) return Error("Invalid BINOP record");
1769      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1770      InstructionList.push_back(I);
1771      if (OpNum < Record.size()) {
1772        if (Opc == Instruction::Add ||
1773            Opc == Instruction::Sub ||
1774            Opc == Instruction::Mul) {
1775          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1776            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1777          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1778            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1779        } else if (Opc == Instruction::SDiv) {
1780          if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1781            cast<BinaryOperator>(I)->setIsExact(true);
1782        }
1783      }
1784      break;
1785    }
1786    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1787      unsigned OpNum = 0;
1788      Value *Op;
1789      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1790          OpNum+2 != Record.size())
1791        return Error("Invalid CAST record");
1792
1793      const Type *ResTy = getTypeByID(Record[OpNum]);
1794      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1795      if (Opc == -1 || ResTy == 0)
1796        return Error("Invalid CAST record");
1797      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1798      InstructionList.push_back(I);
1799      break;
1800    }
1801    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1802    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1803      unsigned OpNum = 0;
1804      Value *BasePtr;
1805      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1806        return Error("Invalid GEP record");
1807
1808      SmallVector<Value*, 16> GEPIdx;
1809      while (OpNum != Record.size()) {
1810        Value *Op;
1811        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1812          return Error("Invalid GEP record");
1813        GEPIdx.push_back(Op);
1814      }
1815
1816      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1817      InstructionList.push_back(I);
1818      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1819        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1820      break;
1821    }
1822
1823    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1824                                       // EXTRACTVAL: [opty, opval, n x indices]
1825      unsigned OpNum = 0;
1826      Value *Agg;
1827      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1828        return Error("Invalid EXTRACTVAL record");
1829
1830      SmallVector<unsigned, 4> EXTRACTVALIdx;
1831      for (unsigned RecSize = Record.size();
1832           OpNum != RecSize; ++OpNum) {
1833        uint64_t Index = Record[OpNum];
1834        if ((unsigned)Index != Index)
1835          return Error("Invalid EXTRACTVAL index");
1836        EXTRACTVALIdx.push_back((unsigned)Index);
1837      }
1838
1839      I = ExtractValueInst::Create(Agg,
1840                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1841      InstructionList.push_back(I);
1842      break;
1843    }
1844
1845    case bitc::FUNC_CODE_INST_INSERTVAL: {
1846                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1847      unsigned OpNum = 0;
1848      Value *Agg;
1849      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1850        return Error("Invalid INSERTVAL record");
1851      Value *Val;
1852      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1853        return Error("Invalid INSERTVAL record");
1854
1855      SmallVector<unsigned, 4> INSERTVALIdx;
1856      for (unsigned RecSize = Record.size();
1857           OpNum != RecSize; ++OpNum) {
1858        uint64_t Index = Record[OpNum];
1859        if ((unsigned)Index != Index)
1860          return Error("Invalid INSERTVAL index");
1861        INSERTVALIdx.push_back((unsigned)Index);
1862      }
1863
1864      I = InsertValueInst::Create(Agg, Val,
1865                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1866      InstructionList.push_back(I);
1867      break;
1868    }
1869
1870    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1871      // obsolete form of select
1872      // handles select i1 ... in old bitcode
1873      unsigned OpNum = 0;
1874      Value *TrueVal, *FalseVal, *Cond;
1875      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1876          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1877          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1878        return Error("Invalid SELECT record");
1879
1880      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1881      InstructionList.push_back(I);
1882      break;
1883    }
1884
1885    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1886      // new form of select
1887      // handles select i1 or select [N x i1]
1888      unsigned OpNum = 0;
1889      Value *TrueVal, *FalseVal, *Cond;
1890      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1891          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1892          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1893        return Error("Invalid SELECT record");
1894
1895      // select condition can be either i1 or [N x i1]
1896      if (const VectorType* vector_type =
1897          dyn_cast<const VectorType>(Cond->getType())) {
1898        // expect <n x i1>
1899        if (vector_type->getElementType() != Type::getInt1Ty(Context))
1900          return Error("Invalid SELECT condition type");
1901      } else {
1902        // expect i1
1903        if (Cond->getType() != Type::getInt1Ty(Context))
1904          return Error("Invalid SELECT condition type");
1905      }
1906
1907      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1908      InstructionList.push_back(I);
1909      break;
1910    }
1911
1912    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1913      unsigned OpNum = 0;
1914      Value *Vec, *Idx;
1915      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1916          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1917        return Error("Invalid EXTRACTELT record");
1918      I = ExtractElementInst::Create(Vec, Idx);
1919      InstructionList.push_back(I);
1920      break;
1921    }
1922
1923    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1924      unsigned OpNum = 0;
1925      Value *Vec, *Elt, *Idx;
1926      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1927          getValue(Record, OpNum,
1928                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1929          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1930        return Error("Invalid INSERTELT record");
1931      I = InsertElementInst::Create(Vec, Elt, Idx);
1932      InstructionList.push_back(I);
1933      break;
1934    }
1935
1936    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1937      unsigned OpNum = 0;
1938      Value *Vec1, *Vec2, *Mask;
1939      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1940          getValue(Record, OpNum, Vec1->getType(), Vec2))
1941        return Error("Invalid SHUFFLEVEC record");
1942
1943      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1944        return Error("Invalid SHUFFLEVEC record");
1945      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1946      InstructionList.push_back(I);
1947      break;
1948    }
1949
1950    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1951      // Old form of ICmp/FCmp returning bool
1952      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1953      // both legal on vectors but had different behaviour.
1954    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1955      // FCmp/ICmp returning bool or vector of bool
1956
1957      unsigned OpNum = 0;
1958      Value *LHS, *RHS;
1959      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1960          getValue(Record, OpNum, LHS->getType(), RHS) ||
1961          OpNum+1 != Record.size())
1962        return Error("Invalid CMP record");
1963
1964      if (LHS->getType()->isFPOrFPVectorTy())
1965        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1966      else
1967        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1968      InstructionList.push_back(I);
1969      break;
1970    }
1971
1972    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1973      if (Record.size() != 2)
1974        return Error("Invalid GETRESULT record");
1975      unsigned OpNum = 0;
1976      Value *Op;
1977      getValueTypePair(Record, OpNum, NextValueNo, Op);
1978      unsigned Index = Record[1];
1979      I = ExtractValueInst::Create(Op, Index);
1980      InstructionList.push_back(I);
1981      break;
1982    }
1983
1984    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1985      {
1986        unsigned Size = Record.size();
1987        if (Size == 0) {
1988          I = ReturnInst::Create(Context);
1989          InstructionList.push_back(I);
1990          break;
1991        }
1992
1993        unsigned OpNum = 0;
1994        SmallVector<Value *,4> Vs;
1995        do {
1996          Value *Op = NULL;
1997          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1998            return Error("Invalid RET record");
1999          Vs.push_back(Op);
2000        } while(OpNum != Record.size());
2001
2002        const Type *ReturnType = F->getReturnType();
2003        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2004        if (Vs.size() > 1 ||
2005            (ReturnType->isStructTy() &&
2006             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2007          Value *RV = UndefValue::get(ReturnType);
2008          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2009            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2010            InstructionList.push_back(I);
2011            CurBB->getInstList().push_back(I);
2012            ValueList.AssignValue(I, NextValueNo++);
2013            RV = I;
2014          }
2015          I = ReturnInst::Create(Context, RV);
2016          InstructionList.push_back(I);
2017          break;
2018        }
2019
2020        I = ReturnInst::Create(Context, Vs[0]);
2021        InstructionList.push_back(I);
2022        break;
2023      }
2024    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2025      if (Record.size() != 1 && Record.size() != 3)
2026        return Error("Invalid BR record");
2027      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2028      if (TrueDest == 0)
2029        return Error("Invalid BR record");
2030
2031      if (Record.size() == 1) {
2032        I = BranchInst::Create(TrueDest);
2033        InstructionList.push_back(I);
2034      }
2035      else {
2036        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2037        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2038        if (FalseDest == 0 || Cond == 0)
2039          return Error("Invalid BR record");
2040        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2041        InstructionList.push_back(I);
2042      }
2043      break;
2044    }
2045    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2046      if (Record.size() < 3 || (Record.size() & 1) == 0)
2047        return Error("Invalid SWITCH record");
2048      const Type *OpTy = getTypeByID(Record[0]);
2049      Value *Cond = getFnValueByID(Record[1], OpTy);
2050      BasicBlock *Default = getBasicBlock(Record[2]);
2051      if (OpTy == 0 || Cond == 0 || Default == 0)
2052        return Error("Invalid SWITCH record");
2053      unsigned NumCases = (Record.size()-3)/2;
2054      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2055      InstructionList.push_back(SI);
2056      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2057        ConstantInt *CaseVal =
2058          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2059        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2060        if (CaseVal == 0 || DestBB == 0) {
2061          delete SI;
2062          return Error("Invalid SWITCH record!");
2063        }
2064        SI->addCase(CaseVal, DestBB);
2065      }
2066      I = SI;
2067      break;
2068    }
2069    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2070      if (Record.size() < 2)
2071        return Error("Invalid INDIRECTBR record");
2072      const Type *OpTy = getTypeByID(Record[0]);
2073      Value *Address = getFnValueByID(Record[1], OpTy);
2074      if (OpTy == 0 || Address == 0)
2075        return Error("Invalid INDIRECTBR record");
2076      unsigned NumDests = Record.size()-2;
2077      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2078      InstructionList.push_back(IBI);
2079      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2080        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2081          IBI->addDestination(DestBB);
2082        } else {
2083          delete IBI;
2084          return Error("Invalid INDIRECTBR record!");
2085        }
2086      }
2087      I = IBI;
2088      break;
2089    }
2090
2091    case bitc::FUNC_CODE_INST_INVOKE: {
2092      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2093      if (Record.size() < 4) return Error("Invalid INVOKE record");
2094      AttrListPtr PAL = getAttributes(Record[0]);
2095      unsigned CCInfo = Record[1];
2096      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2097      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2098
2099      unsigned OpNum = 4;
2100      Value *Callee;
2101      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2102        return Error("Invalid INVOKE record");
2103
2104      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2105      const FunctionType *FTy = !CalleeTy ? 0 :
2106        dyn_cast<FunctionType>(CalleeTy->getElementType());
2107
2108      // Check that the right number of fixed parameters are here.
2109      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2110          Record.size() < OpNum+FTy->getNumParams())
2111        return Error("Invalid INVOKE record");
2112
2113      SmallVector<Value*, 16> Ops;
2114      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2115        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2116        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2117      }
2118
2119      if (!FTy->isVarArg()) {
2120        if (Record.size() != OpNum)
2121          return Error("Invalid INVOKE record");
2122      } else {
2123        // Read type/value pairs for varargs params.
2124        while (OpNum != Record.size()) {
2125          Value *Op;
2126          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2127            return Error("Invalid INVOKE record");
2128          Ops.push_back(Op);
2129        }
2130      }
2131
2132      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2133                             Ops.begin(), Ops.end());
2134      InstructionList.push_back(I);
2135      cast<InvokeInst>(I)->setCallingConv(
2136        static_cast<CallingConv::ID>(CCInfo));
2137      cast<InvokeInst>(I)->setAttributes(PAL);
2138      break;
2139    }
2140    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2141      I = new UnwindInst(Context);
2142      InstructionList.push_back(I);
2143      break;
2144    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2145      I = new UnreachableInst(Context);
2146      InstructionList.push_back(I);
2147      break;
2148    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2149      if (Record.size() < 1 || ((Record.size()-1)&1))
2150        return Error("Invalid PHI record");
2151      const Type *Ty = getTypeByID(Record[0]);
2152      if (!Ty) return Error("Invalid PHI record");
2153
2154      PHINode *PN = PHINode::Create(Ty);
2155      InstructionList.push_back(PN);
2156      PN->reserveOperandSpace((Record.size()-1)/2);
2157
2158      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2159        Value *V = getFnValueByID(Record[1+i], Ty);
2160        BasicBlock *BB = getBasicBlock(Record[2+i]);
2161        if (!V || !BB) return Error("Invalid PHI record");
2162        PN->addIncoming(V, BB);
2163      }
2164      I = PN;
2165      break;
2166    }
2167
2168    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2169      // Autoupgrade malloc instruction to malloc call.
2170      // FIXME: Remove in LLVM 3.0.
2171      if (Record.size() < 3)
2172        return Error("Invalid MALLOC record");
2173      const PointerType *Ty =
2174        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2175      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2176      if (!Ty || !Size) return Error("Invalid MALLOC record");
2177      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2178      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2179      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2180      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2181      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2182                                 AllocSize, Size, NULL);
2183      InstructionList.push_back(I);
2184      break;
2185    }
2186    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2187      unsigned OpNum = 0;
2188      Value *Op;
2189      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2190          OpNum != Record.size())
2191        return Error("Invalid FREE record");
2192      if (!CurBB) return Error("Invalid free instruction with no BB");
2193      I = CallInst::CreateFree(Op, CurBB);
2194      InstructionList.push_back(I);
2195      break;
2196    }
2197    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2198      // For backward compatibility, tolerate a lack of an opty, and use i32.
2199      // LLVM 3.0: Remove this.
2200      if (Record.size() < 3 || Record.size() > 4)
2201        return Error("Invalid ALLOCA record");
2202      unsigned OpNum = 0;
2203      const PointerType *Ty =
2204        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2205      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2206                                              Type::getInt32Ty(Context);
2207      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2208      unsigned Align = Record[OpNum++];
2209      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2210      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2211      InstructionList.push_back(I);
2212      break;
2213    }
2214    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2215      unsigned OpNum = 0;
2216      Value *Op;
2217      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2218          OpNum+2 != Record.size())
2219        return Error("Invalid LOAD record");
2220
2221      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2222      InstructionList.push_back(I);
2223      break;
2224    }
2225    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2226      unsigned OpNum = 0;
2227      Value *Val, *Ptr;
2228      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2229          getValue(Record, OpNum,
2230                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2231          OpNum+2 != Record.size())
2232        return Error("Invalid STORE record");
2233
2234      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2235      InstructionList.push_back(I);
2236      break;
2237    }
2238    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2239      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2240      unsigned OpNum = 0;
2241      Value *Val, *Ptr;
2242      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2243          getValue(Record, OpNum,
2244                   PointerType::getUnqual(Val->getType()), Ptr)||
2245          OpNum+2 != Record.size())
2246        return Error("Invalid STORE record");
2247
2248      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2249      InstructionList.push_back(I);
2250      break;
2251    }
2252    case bitc::FUNC_CODE_INST_CALL:
2253    case bitc::FUNC_CODE_INST_CALL2: {
2254      // FIXME: Legacy support for the old call instruction, where function-local
2255      // metadata operands were bogus. Remove in LLVM 3.0.
2256      bool DropMetadata = BitCode == bitc::FUNC_CODE_INST_CALL;
2257
2258      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2259      if (Record.size() < 3)
2260        return Error("Invalid CALL record");
2261
2262      AttrListPtr PAL = getAttributes(Record[0]);
2263      unsigned CCInfo = Record[1];
2264
2265      unsigned OpNum = 2;
2266      Value *Callee;
2267      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2268        return Error("Invalid CALL record");
2269
2270      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2271      const FunctionType *FTy = 0;
2272      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2273      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2274        return Error("Invalid CALL record");
2275
2276      SmallVector<Value*, 16> Args;
2277      // Read the fixed params.
2278      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2279        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2280          Args.push_back(getBasicBlock(Record[OpNum]));
2281        else if (DropMetadata &&
2282                 FTy->getParamType(i)->getTypeID()==Type::MetadataTyID) {
2283          // LLVM 2.7 compatibility: drop metadata arguments to null.
2284          Value *Ops = 0;
2285          Args.push_back(MDNode::get(Context, &Ops, 1));
2286          continue;
2287        } else
2288          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2289        if (Args.back() == 0) return Error("Invalid CALL record");
2290      }
2291
2292      // Read type/value pairs for varargs params.
2293      if (!FTy->isVarArg()) {
2294        if (OpNum != Record.size())
2295          return Error("Invalid CALL record");
2296      } else {
2297        while (OpNum != Record.size()) {
2298          Value *Op;
2299          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2300            return Error("Invalid CALL record");
2301          Args.push_back(Op);
2302        }
2303      }
2304
2305      I = CallInst::Create(Callee, Args.begin(), Args.end());
2306      InstructionList.push_back(I);
2307      cast<CallInst>(I)->setCallingConv(
2308        static_cast<CallingConv::ID>(CCInfo>>1));
2309      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2310      cast<CallInst>(I)->setAttributes(PAL);
2311      break;
2312    }
2313    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2314      if (Record.size() < 3)
2315        return Error("Invalid VAARG record");
2316      const Type *OpTy = getTypeByID(Record[0]);
2317      Value *Op = getFnValueByID(Record[1], OpTy);
2318      const Type *ResTy = getTypeByID(Record[2]);
2319      if (!OpTy || !Op || !ResTy)
2320        return Error("Invalid VAARG record");
2321      I = new VAArgInst(Op, ResTy);
2322      InstructionList.push_back(I);
2323      break;
2324    }
2325    }
2326
2327    // Add instruction to end of current BB.  If there is no current BB, reject
2328    // this file.
2329    if (CurBB == 0) {
2330      delete I;
2331      return Error("Invalid instruction with no BB");
2332    }
2333    CurBB->getInstList().push_back(I);
2334
2335    // If this was a terminator instruction, move to the next block.
2336    if (isa<TerminatorInst>(I)) {
2337      ++CurBBNo;
2338      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2339    }
2340
2341    // Non-void values get registered in the value table for future use.
2342    if (I && !I->getType()->isVoidTy())
2343      ValueList.AssignValue(I, NextValueNo++);
2344  }
2345
2346  // Check the function list for unresolved values.
2347  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2348    if (A->getParent() == 0) {
2349      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2350      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2351        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2352          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2353          delete A;
2354        }
2355      }
2356      return Error("Never resolved value found in function!");
2357    }
2358  }
2359
2360  // FIXME: Check for unresolved forward-declared metadata references
2361  // and clean up leaks.
2362
2363  // See if anything took the address of blocks in this function.  If so,
2364  // resolve them now.
2365  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2366    BlockAddrFwdRefs.find(F);
2367  if (BAFRI != BlockAddrFwdRefs.end()) {
2368    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2369    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2370      unsigned BlockIdx = RefList[i].first;
2371      if (BlockIdx >= FunctionBBs.size())
2372        return Error("Invalid blockaddress block #");
2373
2374      GlobalVariable *FwdRef = RefList[i].second;
2375      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2376      FwdRef->eraseFromParent();
2377    }
2378
2379    BlockAddrFwdRefs.erase(BAFRI);
2380  }
2381
2382  // Trim the value list down to the size it was before we parsed this function.
2383  ValueList.shrinkTo(ModuleValueListSize);
2384  MDValueList.shrinkTo(ModuleMDValueListSize);
2385  std::vector<BasicBlock*>().swap(FunctionBBs);
2386
2387  return false;
2388}
2389
2390//===----------------------------------------------------------------------===//
2391// GVMaterializer implementation
2392//===----------------------------------------------------------------------===//
2393
2394
2395bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2396  if (const Function *F = dyn_cast<Function>(GV)) {
2397    return F->isDeclaration() &&
2398      DeferredFunctionInfo.count(const_cast<Function*>(F));
2399  }
2400  return false;
2401}
2402
2403bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2404  Function *F = dyn_cast<Function>(GV);
2405  // If it's not a function or is already material, ignore the request.
2406  if (!F || !F->isMaterializable()) return false;
2407
2408  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2409  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2410
2411  // Move the bit stream to the saved position of the deferred function body.
2412  Stream.JumpToBit(DFII->second);
2413
2414  if (ParseFunctionBody(F)) {
2415    if (ErrInfo) *ErrInfo = ErrorString;
2416    return true;
2417  }
2418
2419  // Upgrade any old intrinsic calls in the function.
2420  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2421       E = UpgradedIntrinsics.end(); I != E; ++I) {
2422    if (I->first != I->second) {
2423      for (Value::use_iterator UI = I->first->use_begin(),
2424           UE = I->first->use_end(); UI != UE; ) {
2425        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2426          UpgradeIntrinsicCall(CI, I->second);
2427      }
2428    }
2429  }
2430
2431  return false;
2432}
2433
2434bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2435  const Function *F = dyn_cast<Function>(GV);
2436  if (!F || F->isDeclaration())
2437    return false;
2438  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2439}
2440
2441void BitcodeReader::Dematerialize(GlobalValue *GV) {
2442  Function *F = dyn_cast<Function>(GV);
2443  // If this function isn't dematerializable, this is a noop.
2444  if (!F || !isDematerializable(F))
2445    return;
2446
2447  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2448
2449  // Just forget the function body, we can remat it later.
2450  F->deleteBody();
2451}
2452
2453
2454bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2455  assert(M == TheModule &&
2456         "Can only Materialize the Module this BitcodeReader is attached to.");
2457  // Iterate over the module, deserializing any functions that are still on
2458  // disk.
2459  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2460       F != E; ++F)
2461    if (F->isMaterializable() &&
2462        Materialize(F, ErrInfo))
2463      return true;
2464
2465  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2466  // delete the old functions to clean up. We can't do this unless the entire
2467  // module is materialized because there could always be another function body
2468  // with calls to the old function.
2469  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2470       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2471    if (I->first != I->second) {
2472      for (Value::use_iterator UI = I->first->use_begin(),
2473           UE = I->first->use_end(); UI != UE; ) {
2474        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2475          UpgradeIntrinsicCall(CI, I->second);
2476      }
2477      if (!I->first->use_empty())
2478        I->first->replaceAllUsesWith(I->second);
2479      I->first->eraseFromParent();
2480    }
2481  }
2482  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2483
2484  // Check debug info intrinsics.
2485  CheckDebugInfoIntrinsics(TheModule);
2486
2487  return false;
2488}
2489
2490
2491//===----------------------------------------------------------------------===//
2492// External interface
2493//===----------------------------------------------------------------------===//
2494
2495/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2496///
2497Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2498                                   LLVMContext& Context,
2499                                   std::string *ErrMsg) {
2500  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2501  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2502  M->setMaterializer(R);
2503  if (R->ParseBitcodeInto(M)) {
2504    if (ErrMsg)
2505      *ErrMsg = R->getErrorString();
2506
2507    delete M;  // Also deletes R.
2508    return 0;
2509  }
2510  // Have the BitcodeReader dtor delete 'Buffer'.
2511  R->setBufferOwned(true);
2512  return M;
2513}
2514
2515/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2516/// If an error occurs, return null and fill in *ErrMsg if non-null.
2517Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2518                               std::string *ErrMsg){
2519  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2520  if (!M) return 0;
2521
2522  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2523  // there was an error.
2524  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2525
2526  // Read in the entire module, and destroy the BitcodeReader.
2527  if (M->MaterializeAllPermanently(ErrMsg)) {
2528    delete M;
2529    return NULL;
2530  }
2531  return M;
2532}
2533