BitcodeReader.cpp revision bea4626f93c830e31f82cc947df28fdae583cd09
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
166};
167}
168
169
170void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
171  if (Idx == size()) {
172    push_back(V);
173    return;
174  }
175
176  if (Idx >= size())
177    resize(Idx+1);
178
179  WeakVH &OldV = ValuePtrs[Idx];
180  if (OldV == 0) {
181    OldV = V;
182    return;
183  }
184
185  // Handle constants and non-constants (e.g. instrs) differently for
186  // efficiency.
187  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
188    ResolveConstants.push_back(std::make_pair(PHC, Idx));
189    OldV = V;
190  } else {
191    // If there was a forward reference to this value, replace it.
192    Value *PrevVal = OldV;
193    OldV->replaceAllUsesWith(V);
194    delete PrevVal;
195  }
196}
197
198
199Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
200                                                    const Type *Ty) {
201  if (Idx >= size())
202    resize(Idx + 1);
203
204  if (Value *V = ValuePtrs[Idx]) {
205    assert(Ty == V->getType() && "Type mismatch in constant table!");
206    return cast<Constant>(V);
207  }
208
209  // Create and return a placeholder, which will later be RAUW'd.
210  Constant *C = new ConstantPlaceHolder(Ty, Context);
211  ValuePtrs[Idx] = C;
212  return C;
213}
214
215Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
216  if (Idx >= size())
217    resize(Idx + 1);
218
219  if (Value *V = ValuePtrs[Idx]) {
220    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
221    return V;
222  }
223
224  // No type specified, must be invalid reference.
225  if (Ty == 0) return 0;
226
227  // Create and return a placeholder, which will later be RAUW'd.
228  Value *V = new Argument(Ty);
229  ValuePtrs[Idx] = V;
230  return V;
231}
232
233/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
234/// resolves any forward references.  The idea behind this is that we sometimes
235/// get constants (such as large arrays) which reference *many* forward ref
236/// constants.  Replacing each of these causes a lot of thrashing when
237/// building/reuniquing the constant.  Instead of doing this, we look at all the
238/// uses and rewrite all the place holders at once for any constant that uses
239/// a placeholder.
240void BitcodeReaderValueList::ResolveConstantForwardRefs() {
241  // Sort the values by-pointer so that they are efficient to look up with a
242  // binary search.
243  std::sort(ResolveConstants.begin(), ResolveConstants.end());
244
245  SmallVector<Constant*, 64> NewOps;
246
247  while (!ResolveConstants.empty()) {
248    Value *RealVal = operator[](ResolveConstants.back().second);
249    Constant *Placeholder = ResolveConstants.back().first;
250    ResolveConstants.pop_back();
251
252    // Loop over all users of the placeholder, updating them to reference the
253    // new value.  If they reference more than one placeholder, update them all
254    // at once.
255    while (!Placeholder->use_empty()) {
256      Value::use_iterator UI = Placeholder->use_begin();
257      User *U = *UI;
258
259      // If the using object isn't uniqued, just update the operands.  This
260      // handles instructions and initializers for global variables.
261      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
262        UI.getUse().set(RealVal);
263        continue;
264      }
265
266      // Otherwise, we have a constant that uses the placeholder.  Replace that
267      // constant with a new constant that has *all* placeholder uses updated.
268      Constant *UserC = cast<Constant>(U);
269      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
270           I != E; ++I) {
271        Value *NewOp;
272        if (!isa<ConstantPlaceHolder>(*I)) {
273          // Not a placeholder reference.
274          NewOp = *I;
275        } else if (*I == Placeholder) {
276          // Common case is that it just references this one placeholder.
277          NewOp = RealVal;
278        } else {
279          // Otherwise, look up the placeholder in ResolveConstants.
280          ResolveConstantsTy::iterator It =
281            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
282                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
283                                                            0));
284          assert(It != ResolveConstants.end() && It->first == *I);
285          NewOp = operator[](It->second);
286        }
287
288        NewOps.push_back(cast<Constant>(NewOp));
289      }
290
291      // Make the new constant.
292      Constant *NewC;
293      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
294        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
295                                        NewOps.size());
296      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
297        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
298                                         UserCS->getType()->isPacked());
299      } else if (isa<ConstantVector>(UserC)) {
300        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
301      } else {
302        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
303        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
304                                                          NewOps.size());
305      }
306
307      UserC->replaceAllUsesWith(NewC);
308      UserC->destroyConstant();
309      NewOps.clear();
310    }
311
312    // Update all ValueHandles, they should be the only users at this point.
313    Placeholder->replaceAllUsesWith(RealVal);
314    delete Placeholder;
315  }
316}
317
318void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319  if (Idx == size()) {
320    push_back(V);
321    return;
322  }
323
324  if (Idx >= size())
325    resize(Idx+1);
326
327  WeakVH &OldV = MDValuePtrs[Idx];
328  if (OldV == 0) {
329    OldV = V;
330    return;
331  }
332
333  // If there was a forward reference to this value, replace it.
334  MDNode *PrevVal = cast<MDNode>(OldV);
335  OldV->replaceAllUsesWith(V);
336  MDNode::deleteTemporary(PrevVal);
337  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338  // value for Idx.
339  MDValuePtrs[Idx] = V;
340}
341
342Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343  if (Idx >= size())
344    resize(Idx + 1);
345
346  if (Value *V = MDValuePtrs[Idx]) {
347    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348    return V;
349  }
350
351  // Create and return a placeholder, which will later be RAUW'd.
352  Value *V = MDNode::getTemporary(Context, 0, 0);
353  MDValuePtrs[Idx] = V;
354  return V;
355}
356
357const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358  // If the TypeID is in range, return it.
359  if (ID < TypeList.size())
360    return TypeList[ID].get();
361  if (!isTypeTable) return 0;
362
363  // The type table allows forward references.  Push as many Opaque types as
364  // needed to get up to ID.
365  while (TypeList.size() <= ID)
366    TypeList.push_back(OpaqueType::get(Context));
367  return TypeList.back().get();
368}
369
370//===----------------------------------------------------------------------===//
371//  Functions for parsing blocks from the bitcode file
372//===----------------------------------------------------------------------===//
373
374bool BitcodeReader::ParseAttributeBlock() {
375  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376    return Error("Malformed block record");
377
378  if (!MAttributes.empty())
379    return Error("Multiple PARAMATTR blocks found!");
380
381  SmallVector<uint64_t, 64> Record;
382
383  SmallVector<AttributeWithIndex, 8> Attrs;
384
385  // Read all the records.
386  while (1) {
387    unsigned Code = Stream.ReadCode();
388    if (Code == bitc::END_BLOCK) {
389      if (Stream.ReadBlockEnd())
390        return Error("Error at end of PARAMATTR block");
391      return false;
392    }
393
394    if (Code == bitc::ENTER_SUBBLOCK) {
395      // No known subblocks, always skip them.
396      Stream.ReadSubBlockID();
397      if (Stream.SkipBlock())
398        return Error("Malformed block record");
399      continue;
400    }
401
402    if (Code == bitc::DEFINE_ABBREV) {
403      Stream.ReadAbbrevRecord();
404      continue;
405    }
406
407    // Read a record.
408    Record.clear();
409    switch (Stream.ReadRecord(Code, Record)) {
410    default:  // Default behavior: ignore.
411      break;
412    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413      if (Record.size() & 1)
414        return Error("Invalid ENTRY record");
415
416      // FIXME : Remove this autoupgrade code in LLVM 3.0.
417      // If Function attributes are using index 0 then transfer them
418      // to index ~0. Index 0 is used for return value attributes but used to be
419      // used for function attributes.
420      Attributes RetAttribute = Attribute::None;
421      Attributes FnAttribute = Attribute::None;
422      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423        // FIXME: remove in LLVM 3.0
424        // The alignment is stored as a 16-bit raw value from bits 31--16.
425        // We shift the bits above 31 down by 11 bits.
426
427        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428        if (Alignment && !isPowerOf2_32(Alignment))
429          return Error("Alignment is not a power of two.");
430
431        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432        if (Alignment)
433          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435        Record[i+1] = ReconstitutedAttr;
436
437        if (Record[i] == 0)
438          RetAttribute = Record[i+1];
439        else if (Record[i] == ~0U)
440          FnAttribute = Record[i+1];
441      }
442
443      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                              Attribute::ReadOnly|Attribute::ReadNone);
445
446      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447          (RetAttribute & OldRetAttrs) != 0) {
448        if (FnAttribute == Attribute::None) { // add a slot so they get added.
449          Record.push_back(~0U);
450          Record.push_back(0);
451        }
452
453        FnAttribute  |= RetAttribute & OldRetAttrs;
454        RetAttribute &= ~OldRetAttrs;
455      }
456
457      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458        if (Record[i] == 0) {
459          if (RetAttribute != Attribute::None)
460            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461        } else if (Record[i] == ~0U) {
462          if (FnAttribute != Attribute::None)
463            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464        } else if (Record[i+1] != Attribute::None)
465          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466      }
467
468      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469      Attrs.clear();
470      break;
471    }
472    }
473  }
474}
475
476
477bool BitcodeReader::ParseTypeTable() {
478  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479    return Error("Malformed block record");
480
481  if (!TypeList.empty())
482    return Error("Multiple TYPE_BLOCKs found!");
483
484  SmallVector<uint64_t, 64> Record;
485  unsigned NumRecords = 0;
486
487  // Read all the records for this type table.
488  while (1) {
489    unsigned Code = Stream.ReadCode();
490    if (Code == bitc::END_BLOCK) {
491      if (NumRecords != TypeList.size())
492        return Error("Invalid type forward reference in TYPE_BLOCK");
493      if (Stream.ReadBlockEnd())
494        return Error("Error at end of type table block");
495      return false;
496    }
497
498    if (Code == bitc::ENTER_SUBBLOCK) {
499      // No known subblocks, always skip them.
500      Stream.ReadSubBlockID();
501      if (Stream.SkipBlock())
502        return Error("Malformed block record");
503      continue;
504    }
505
506    if (Code == bitc::DEFINE_ABBREV) {
507      Stream.ReadAbbrevRecord();
508      continue;
509    }
510
511    // Read a record.
512    Record.clear();
513    const Type *ResultTy = 0;
514    switch (Stream.ReadRecord(Code, Record)) {
515    default:  // Default behavior: unknown type.
516      ResultTy = 0;
517      break;
518    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520      // type list.  This allows us to reserve space.
521      if (Record.size() < 1)
522        return Error("Invalid TYPE_CODE_NUMENTRY record");
523      TypeList.reserve(Record[0]);
524      continue;
525    case bitc::TYPE_CODE_VOID:      // VOID
526      ResultTy = Type::getVoidTy(Context);
527      break;
528    case bitc::TYPE_CODE_FLOAT:     // FLOAT
529      ResultTy = Type::getFloatTy(Context);
530      break;
531    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532      ResultTy = Type::getDoubleTy(Context);
533      break;
534    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535      ResultTy = Type::getX86_FP80Ty(Context);
536      break;
537    case bitc::TYPE_CODE_FP128:     // FP128
538      ResultTy = Type::getFP128Ty(Context);
539      break;
540    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541      ResultTy = Type::getPPC_FP128Ty(Context);
542      break;
543    case bitc::TYPE_CODE_LABEL:     // LABEL
544      ResultTy = Type::getLabelTy(Context);
545      break;
546    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547      ResultTy = 0;
548      break;
549    case bitc::TYPE_CODE_METADATA:  // METADATA
550      ResultTy = Type::getMetadataTy(Context);
551      break;
552    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553      ResultTy = Type::getX86_MMXTy(Context);
554      break;
555    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556      if (Record.size() < 1)
557        return Error("Invalid Integer type record");
558
559      ResultTy = IntegerType::get(Context, Record[0]);
560      break;
561    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                    //          [pointee type, address space]
563      if (Record.size() < 1)
564        return Error("Invalid POINTER type record");
565      unsigned AddressSpace = 0;
566      if (Record.size() == 2)
567        AddressSpace = Record[1];
568      ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                        AddressSpace);
570      break;
571    }
572    case bitc::TYPE_CODE_FUNCTION: {
573      // FIXME: attrid is dead, remove it in LLVM 3.0
574      // FUNCTION: [vararg, attrid, retty, paramty x N]
575      if (Record.size() < 3)
576        return Error("Invalid FUNCTION type record");
577      std::vector<const Type*> ArgTys;
578      for (unsigned i = 3, e = Record.size(); i != e; ++i)
579        ArgTys.push_back(getTypeByID(Record[i], true));
580
581      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                   Record[0]);
583      break;
584    }
585    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586      if (Record.size() < 1)
587        return Error("Invalid STRUCT type record");
588      std::vector<const Type*> EltTys;
589      for (unsigned i = 1, e = Record.size(); i != e; ++i)
590        EltTys.push_back(getTypeByID(Record[i], true));
591      ResultTy = StructType::get(Context, EltTys, Record[0]);
592      break;
593    }
594    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid ARRAY type record");
597      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600      if (Record.size() < 2)
601        return Error("Invalid VECTOR type record");
602      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603      break;
604    }
605
606    if (NumRecords == TypeList.size()) {
607      // If this is a new type slot, just append it.
608      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609      ++NumRecords;
610    } else if (ResultTy == 0) {
611      // Otherwise, this was forward referenced, so an opaque type was created,
612      // but the result type is actually just an opaque.  Leave the one we
613      // created previously.
614      ++NumRecords;
615    } else {
616      // Otherwise, this was forward referenced, so an opaque type was created.
617      // Resolve the opaque type to the real type now.
618      assert(NumRecords < TypeList.size() && "Typelist imbalance");
619      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620
621      // Don't directly push the new type on the Tab. Instead we want to replace
622      // the opaque type we previously inserted with the new concrete value. The
623      // refinement from the abstract (opaque) type to the new type causes all
624      // uses of the abstract type to use the concrete type (NewTy). This will
625      // also cause the opaque type to be deleted.
626      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627
628      // This should have replaced the old opaque type with the new type in the
629      // value table... or with a preexisting type that was already in the
630      // system.  Let's just make sure it did.
631      assert(TypeList[NumRecords-1].get() != OldTy &&
632             "refineAbstractType didn't work!");
633    }
634  }
635}
636
637
638bool BitcodeReader::ParseTypeSymbolTable() {
639  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640    return Error("Malformed block record");
641
642  SmallVector<uint64_t, 64> Record;
643
644  // Read all the records for this type table.
645  std::string TypeName;
646  while (1) {
647    unsigned Code = Stream.ReadCode();
648    if (Code == bitc::END_BLOCK) {
649      if (Stream.ReadBlockEnd())
650        return Error("Error at end of type symbol table block");
651      return false;
652    }
653
654    if (Code == bitc::ENTER_SUBBLOCK) {
655      // No known subblocks, always skip them.
656      Stream.ReadSubBlockID();
657      if (Stream.SkipBlock())
658        return Error("Malformed block record");
659      continue;
660    }
661
662    if (Code == bitc::DEFINE_ABBREV) {
663      Stream.ReadAbbrevRecord();
664      continue;
665    }
666
667    // Read a record.
668    Record.clear();
669    switch (Stream.ReadRecord(Code, Record)) {
670    default:  // Default behavior: unknown type.
671      break;
672    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673      if (ConvertToString(Record, 1, TypeName))
674        return Error("Invalid TST_ENTRY record");
675      unsigned TypeID = Record[0];
676      if (TypeID >= TypeList.size())
677        return Error("Invalid Type ID in TST_ENTRY record");
678
679      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680      TypeName.clear();
681      break;
682    }
683  }
684}
685
686bool BitcodeReader::ParseValueSymbolTable() {
687  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688    return Error("Malformed block record");
689
690  SmallVector<uint64_t, 64> Record;
691
692  // Read all the records for this value table.
693  SmallString<128> ValueName;
694  while (1) {
695    unsigned Code = Stream.ReadCode();
696    if (Code == bitc::END_BLOCK) {
697      if (Stream.ReadBlockEnd())
698        return Error("Error at end of value symbol table block");
699      return false;
700    }
701    if (Code == bitc::ENTER_SUBBLOCK) {
702      // No known subblocks, always skip them.
703      Stream.ReadSubBlockID();
704      if (Stream.SkipBlock())
705        return Error("Malformed block record");
706      continue;
707    }
708
709    if (Code == bitc::DEFINE_ABBREV) {
710      Stream.ReadAbbrevRecord();
711      continue;
712    }
713
714    // Read a record.
715    Record.clear();
716    switch (Stream.ReadRecord(Code, Record)) {
717    default:  // Default behavior: unknown type.
718      break;
719    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720      if (ConvertToString(Record, 1, ValueName))
721        return Error("Invalid VST_ENTRY record");
722      unsigned ValueID = Record[0];
723      if (ValueID >= ValueList.size())
724        return Error("Invalid Value ID in VST_ENTRY record");
725      Value *V = ValueList[ValueID];
726
727      V->setName(StringRef(ValueName.data(), ValueName.size()));
728      ValueName.clear();
729      break;
730    }
731    case bitc::VST_CODE_BBENTRY: {
732      if (ConvertToString(Record, 1, ValueName))
733        return Error("Invalid VST_BBENTRY record");
734      BasicBlock *BB = getBasicBlock(Record[0]);
735      if (BB == 0)
736        return Error("Invalid BB ID in VST_BBENTRY record");
737
738      BB->setName(StringRef(ValueName.data(), ValueName.size()));
739      ValueName.clear();
740      break;
741    }
742    }
743  }
744}
745
746bool BitcodeReader::ParseMetadata() {
747  unsigned NextMDValueNo = MDValueList.size();
748
749  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750    return Error("Malformed block record");
751
752  SmallVector<uint64_t, 64> Record;
753
754  // Read all the records.
755  while (1) {
756    unsigned Code = Stream.ReadCode();
757    if (Code == bitc::END_BLOCK) {
758      if (Stream.ReadBlockEnd())
759        return Error("Error at end of PARAMATTR block");
760      return false;
761    }
762
763    if (Code == bitc::ENTER_SUBBLOCK) {
764      // No known subblocks, always skip them.
765      Stream.ReadSubBlockID();
766      if (Stream.SkipBlock())
767        return Error("Malformed block record");
768      continue;
769    }
770
771    if (Code == bitc::DEFINE_ABBREV) {
772      Stream.ReadAbbrevRecord();
773      continue;
774    }
775
776    bool IsFunctionLocal = false;
777    // Read a record.
778    Record.clear();
779    Code = Stream.ReadRecord(Code, Record);
780    switch (Code) {
781    default:  // Default behavior: ignore.
782      break;
783    case bitc::METADATA_NAME: {
784      // Read named of the named metadata.
785      unsigned NameLength = Record.size();
786      SmallString<8> Name;
787      Name.resize(NameLength);
788      for (unsigned i = 0; i != NameLength; ++i)
789        Name[i] = Record[i];
790      Record.clear();
791      Code = Stream.ReadCode();
792
793      // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
794      // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
795      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
796      if (NextBitCode == bitc::METADATA_NAMED_NODE) {
797        LLVM2_7MetadataDetected = true;
798      } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
799        assert ( 0 && "Invalid Named Metadata record");
800
801      // Read named metadata elements.
802      unsigned Size = Record.size();
803      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
804      for (unsigned i = 0; i != Size; ++i) {
805        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
806        if (MD == 0)
807          return Error("Malformed metadata record");
808        NMD->addOperand(MD);
809      }
810      // Backwards compatibility hack: NamedMDValues used to be Values,
811      // and they got their own slots in the value numbering. They are no
812      // longer Values, however we still need to account for them in the
813      // numbering in order to be able to read old bitcode files.
814      // FIXME: Remove this in LLVM 3.0.
815      if (LLVM2_7MetadataDetected)
816        MDValueList.AssignValue(0, NextMDValueNo++);
817      break;
818    }
819    case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
820    case bitc::METADATA_FN_NODE2:
821      IsFunctionLocal = true;
822      // fall-through
823    case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
824    case bitc::METADATA_NODE2: {
825
826      // Detect 2.7-era metadata.
827      // FIXME: Remove in LLVM 3.0.
828      if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
829        LLVM2_7MetadataDetected = true;
830
831      if (Record.size() % 2 == 1)
832        return Error("Invalid METADATA_NODE2 record");
833
834      unsigned Size = Record.size();
835      SmallVector<Value*, 8> Elts;
836      for (unsigned i = 0; i != Size; i += 2) {
837        const Type *Ty = getTypeByID(Record[i]);
838        if (!Ty) return Error("Invalid METADATA_NODE2 record");
839        if (Ty->isMetadataTy())
840          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
841        else if (!Ty->isVoidTy())
842          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
843        else
844          Elts.push_back(NULL);
845      }
846      Value *V = MDNode::getWhenValsUnresolved(Context,
847                                               Elts.data(), Elts.size(),
848                                               IsFunctionLocal);
849      IsFunctionLocal = false;
850      MDValueList.AssignValue(V, NextMDValueNo++);
851      break;
852    }
853    case bitc::METADATA_STRING: {
854      unsigned MDStringLength = Record.size();
855      SmallString<8> String;
856      String.resize(MDStringLength);
857      for (unsigned i = 0; i != MDStringLength; ++i)
858        String[i] = Record[i];
859      Value *V = MDString::get(Context,
860                               StringRef(String.data(), String.size()));
861      MDValueList.AssignValue(V, NextMDValueNo++);
862      break;
863    }
864    case bitc::METADATA_KIND: {
865      unsigned RecordLength = Record.size();
866      if (Record.empty() || RecordLength < 2)
867        return Error("Invalid METADATA_KIND record");
868      SmallString<8> Name;
869      Name.resize(RecordLength-1);
870      unsigned Kind = Record[0];
871      for (unsigned i = 1; i != RecordLength; ++i)
872        Name[i-1] = Record[i];
873
874      unsigned NewKind = TheModule->getMDKindID(Name.str());
875      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
876        return Error("Conflicting METADATA_KIND records");
877      break;
878    }
879    }
880  }
881}
882
883/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
884/// the LSB for dense VBR encoding.
885static uint64_t DecodeSignRotatedValue(uint64_t V) {
886  if ((V & 1) == 0)
887    return V >> 1;
888  if (V != 1)
889    return -(V >> 1);
890  // There is no such thing as -0 with integers.  "-0" really means MININT.
891  return 1ULL << 63;
892}
893
894/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
895/// values and aliases that we can.
896bool BitcodeReader::ResolveGlobalAndAliasInits() {
897  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
898  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
899
900  GlobalInitWorklist.swap(GlobalInits);
901  AliasInitWorklist.swap(AliasInits);
902
903  while (!GlobalInitWorklist.empty()) {
904    unsigned ValID = GlobalInitWorklist.back().second;
905    if (ValID >= ValueList.size()) {
906      // Not ready to resolve this yet, it requires something later in the file.
907      GlobalInits.push_back(GlobalInitWorklist.back());
908    } else {
909      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
910        GlobalInitWorklist.back().first->setInitializer(C);
911      else
912        return Error("Global variable initializer is not a constant!");
913    }
914    GlobalInitWorklist.pop_back();
915  }
916
917  while (!AliasInitWorklist.empty()) {
918    unsigned ValID = AliasInitWorklist.back().second;
919    if (ValID >= ValueList.size()) {
920      AliasInits.push_back(AliasInitWorklist.back());
921    } else {
922      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
923        AliasInitWorklist.back().first->setAliasee(C);
924      else
925        return Error("Alias initializer is not a constant!");
926    }
927    AliasInitWorklist.pop_back();
928  }
929  return false;
930}
931
932bool BitcodeReader::ParseConstants() {
933  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
934    return Error("Malformed block record");
935
936  SmallVector<uint64_t, 64> Record;
937
938  // Read all the records for this value table.
939  const Type *CurTy = Type::getInt32Ty(Context);
940  unsigned NextCstNo = ValueList.size();
941  while (1) {
942    unsigned Code = Stream.ReadCode();
943    if (Code == bitc::END_BLOCK)
944      break;
945
946    if (Code == bitc::ENTER_SUBBLOCK) {
947      // No known subblocks, always skip them.
948      Stream.ReadSubBlockID();
949      if (Stream.SkipBlock())
950        return Error("Malformed block record");
951      continue;
952    }
953
954    if (Code == bitc::DEFINE_ABBREV) {
955      Stream.ReadAbbrevRecord();
956      continue;
957    }
958
959    // Read a record.
960    Record.clear();
961    Value *V = 0;
962    unsigned BitCode = Stream.ReadRecord(Code, Record);
963    switch (BitCode) {
964    default:  // Default behavior: unknown constant
965    case bitc::CST_CODE_UNDEF:     // UNDEF
966      V = UndefValue::get(CurTy);
967      break;
968    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
969      if (Record.empty())
970        return Error("Malformed CST_SETTYPE record");
971      if (Record[0] >= TypeList.size())
972        return Error("Invalid Type ID in CST_SETTYPE record");
973      CurTy = TypeList[Record[0]];
974      continue;  // Skip the ValueList manipulation.
975    case bitc::CST_CODE_NULL:      // NULL
976      V = Constant::getNullValue(CurTy);
977      break;
978    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
979      if (!CurTy->isIntegerTy() || Record.empty())
980        return Error("Invalid CST_INTEGER record");
981      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
982      break;
983    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
984      if (!CurTy->isIntegerTy() || Record.empty())
985        return Error("Invalid WIDE_INTEGER record");
986
987      unsigned NumWords = Record.size();
988      SmallVector<uint64_t, 8> Words;
989      Words.resize(NumWords);
990      for (unsigned i = 0; i != NumWords; ++i)
991        Words[i] = DecodeSignRotatedValue(Record[i]);
992      V = ConstantInt::get(Context,
993                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
994                           NumWords, &Words[0]));
995      break;
996    }
997    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
998      if (Record.empty())
999        return Error("Invalid FLOAT record");
1000      if (CurTy->isFloatTy())
1001        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1002      else if (CurTy->isDoubleTy())
1003        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1004      else if (CurTy->isX86_FP80Ty()) {
1005        // Bits are not stored the same way as a normal i80 APInt, compensate.
1006        uint64_t Rearrange[2];
1007        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1008        Rearrange[1] = Record[0] >> 48;
1009        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1010      } else if (CurTy->isFP128Ty())
1011        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1012      else if (CurTy->isPPC_FP128Ty())
1013        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1014      else
1015        V = UndefValue::get(CurTy);
1016      break;
1017    }
1018
1019    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1020      if (Record.empty())
1021        return Error("Invalid CST_AGGREGATE record");
1022
1023      unsigned Size = Record.size();
1024      std::vector<Constant*> Elts;
1025
1026      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1027        for (unsigned i = 0; i != Size; ++i)
1028          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1029                                                     STy->getElementType(i)));
1030        V = ConstantStruct::get(STy, Elts);
1031      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1032        const Type *EltTy = ATy->getElementType();
1033        for (unsigned i = 0; i != Size; ++i)
1034          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1035        V = ConstantArray::get(ATy, Elts);
1036      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1037        const Type *EltTy = VTy->getElementType();
1038        for (unsigned i = 0; i != Size; ++i)
1039          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1040        V = ConstantVector::get(Elts);
1041      } else {
1042        V = UndefValue::get(CurTy);
1043      }
1044      break;
1045    }
1046    case bitc::CST_CODE_STRING: { // STRING: [values]
1047      if (Record.empty())
1048        return Error("Invalid CST_AGGREGATE record");
1049
1050      const ArrayType *ATy = cast<ArrayType>(CurTy);
1051      const Type *EltTy = ATy->getElementType();
1052
1053      unsigned Size = Record.size();
1054      std::vector<Constant*> Elts;
1055      for (unsigned i = 0; i != Size; ++i)
1056        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1057      V = ConstantArray::get(ATy, Elts);
1058      break;
1059    }
1060    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1061      if (Record.empty())
1062        return Error("Invalid CST_AGGREGATE record");
1063
1064      const ArrayType *ATy = cast<ArrayType>(CurTy);
1065      const Type *EltTy = ATy->getElementType();
1066
1067      unsigned Size = Record.size();
1068      std::vector<Constant*> Elts;
1069      for (unsigned i = 0; i != Size; ++i)
1070        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1071      Elts.push_back(Constant::getNullValue(EltTy));
1072      V = ConstantArray::get(ATy, Elts);
1073      break;
1074    }
1075    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1076      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1077      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1078      if (Opc < 0) {
1079        V = UndefValue::get(CurTy);  // Unknown binop.
1080      } else {
1081        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1082        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1083        unsigned Flags = 0;
1084        if (Record.size() >= 4) {
1085          if (Opc == Instruction::Add ||
1086              Opc == Instruction::Sub ||
1087              Opc == Instruction::Mul) {
1088            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1089              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1090            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1091              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1092          } else if (Opc == Instruction::SDiv) {
1093            if (Record[3] & (1 << bitc::SDIV_EXACT))
1094              Flags |= SDivOperator::IsExact;
1095          }
1096        }
1097        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1098      }
1099      break;
1100    }
1101    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1102      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1103      int Opc = GetDecodedCastOpcode(Record[0]);
1104      if (Opc < 0) {
1105        V = UndefValue::get(CurTy);  // Unknown cast.
1106      } else {
1107        const Type *OpTy = getTypeByID(Record[1]);
1108        if (!OpTy) return Error("Invalid CE_CAST record");
1109        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1110        V = ConstantExpr::getCast(Opc, Op, CurTy);
1111      }
1112      break;
1113    }
1114    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1115    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1116      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1117      SmallVector<Constant*, 16> Elts;
1118      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1119        const Type *ElTy = getTypeByID(Record[i]);
1120        if (!ElTy) return Error("Invalid CE_GEP record");
1121        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1122      }
1123      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1124        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1125                                                   Elts.size()-1);
1126      else
1127        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1128                                           Elts.size()-1);
1129      break;
1130    }
1131    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1132      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1133      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1134                                                              Type::getInt1Ty(Context)),
1135                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1136                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1137      break;
1138    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1139      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1140      const VectorType *OpTy =
1141        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1142      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1143      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1144      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1145      V = ConstantExpr::getExtractElement(Op0, Op1);
1146      break;
1147    }
1148    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1149      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1150      if (Record.size() < 3 || OpTy == 0)
1151        return Error("Invalid CE_INSERTELT record");
1152      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1153      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1154                                                  OpTy->getElementType());
1155      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1156      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1157      break;
1158    }
1159    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1160      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1161      if (Record.size() < 3 || OpTy == 0)
1162        return Error("Invalid CE_SHUFFLEVEC record");
1163      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1164      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1165      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1166                                                 OpTy->getNumElements());
1167      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1168      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1169      break;
1170    }
1171    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1172      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1173      const VectorType *OpTy =
1174        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1175      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1176        return Error("Invalid CE_SHUFVEC_EX record");
1177      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1178      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1179      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1180                                                 RTy->getNumElements());
1181      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1182      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1183      break;
1184    }
1185    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1186      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1187      const Type *OpTy = getTypeByID(Record[0]);
1188      if (OpTy == 0) return Error("Invalid CE_CMP record");
1189      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1190      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1191
1192      if (OpTy->isFPOrFPVectorTy())
1193        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1194      else
1195        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1196      break;
1197    }
1198    case bitc::CST_CODE_INLINEASM: {
1199      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1200      std::string AsmStr, ConstrStr;
1201      bool HasSideEffects = Record[0] & 1;
1202      bool IsAlignStack = Record[0] >> 1;
1203      unsigned AsmStrSize = Record[1];
1204      if (2+AsmStrSize >= Record.size())
1205        return Error("Invalid INLINEASM record");
1206      unsigned ConstStrSize = Record[2+AsmStrSize];
1207      if (3+AsmStrSize+ConstStrSize > Record.size())
1208        return Error("Invalid INLINEASM record");
1209
1210      for (unsigned i = 0; i != AsmStrSize; ++i)
1211        AsmStr += (char)Record[2+i];
1212      for (unsigned i = 0; i != ConstStrSize; ++i)
1213        ConstrStr += (char)Record[3+AsmStrSize+i];
1214      const PointerType *PTy = cast<PointerType>(CurTy);
1215      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1216                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1217      break;
1218    }
1219    case bitc::CST_CODE_BLOCKADDRESS:{
1220      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1221      const Type *FnTy = getTypeByID(Record[0]);
1222      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1223      Function *Fn =
1224        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1225      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1226
1227      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1228                                                  Type::getInt8Ty(Context),
1229                                            false, GlobalValue::InternalLinkage,
1230                                                  0, "");
1231      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1232      V = FwdRef;
1233      break;
1234    }
1235    }
1236
1237    ValueList.AssignValue(V, NextCstNo);
1238    ++NextCstNo;
1239  }
1240
1241  if (NextCstNo != ValueList.size())
1242    return Error("Invalid constant reference!");
1243
1244  if (Stream.ReadBlockEnd())
1245    return Error("Error at end of constants block");
1246
1247  // Once all the constants have been read, go through and resolve forward
1248  // references.
1249  ValueList.ResolveConstantForwardRefs();
1250  return false;
1251}
1252
1253/// RememberAndSkipFunctionBody - When we see the block for a function body,
1254/// remember where it is and then skip it.  This lets us lazily deserialize the
1255/// functions.
1256bool BitcodeReader::RememberAndSkipFunctionBody() {
1257  // Get the function we are talking about.
1258  if (FunctionsWithBodies.empty())
1259    return Error("Insufficient function protos");
1260
1261  Function *Fn = FunctionsWithBodies.back();
1262  FunctionsWithBodies.pop_back();
1263
1264  // Save the current stream state.
1265  uint64_t CurBit = Stream.GetCurrentBitNo();
1266  DeferredFunctionInfo[Fn] = CurBit;
1267
1268  // Skip over the function block for now.
1269  if (Stream.SkipBlock())
1270    return Error("Malformed block record");
1271  return false;
1272}
1273
1274bool BitcodeReader::ParseModule() {
1275  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1276    return Error("Malformed block record");
1277
1278  SmallVector<uint64_t, 64> Record;
1279  std::vector<std::string> SectionTable;
1280  std::vector<std::string> GCTable;
1281
1282  // Read all the records for this module.
1283  while (!Stream.AtEndOfStream()) {
1284    unsigned Code = Stream.ReadCode();
1285    if (Code == bitc::END_BLOCK) {
1286      if (Stream.ReadBlockEnd())
1287        return Error("Error at end of module block");
1288
1289      // Patch the initializers for globals and aliases up.
1290      ResolveGlobalAndAliasInits();
1291      if (!GlobalInits.empty() || !AliasInits.empty())
1292        return Error("Malformed global initializer set");
1293      if (!FunctionsWithBodies.empty())
1294        return Error("Too few function bodies found");
1295
1296      // Look for intrinsic functions which need to be upgraded at some point
1297      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1298           FI != FE; ++FI) {
1299        Function* NewFn;
1300        if (UpgradeIntrinsicFunction(FI, NewFn))
1301          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1302      }
1303
1304      // Look for global variables which need to be renamed.
1305      for (Module::global_iterator
1306             GI = TheModule->global_begin(), GE = TheModule->global_end();
1307           GI != GE; ++GI)
1308        UpgradeGlobalVariable(GI);
1309
1310      // Force deallocation of memory for these vectors to favor the client that
1311      // want lazy deserialization.
1312      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1313      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1314      std::vector<Function*>().swap(FunctionsWithBodies);
1315      return false;
1316    }
1317
1318    if (Code == bitc::ENTER_SUBBLOCK) {
1319      switch (Stream.ReadSubBlockID()) {
1320      default:  // Skip unknown content.
1321        if (Stream.SkipBlock())
1322          return Error("Malformed block record");
1323        break;
1324      case bitc::BLOCKINFO_BLOCK_ID:
1325        if (Stream.ReadBlockInfoBlock())
1326          return Error("Malformed BlockInfoBlock");
1327        break;
1328      case bitc::PARAMATTR_BLOCK_ID:
1329        if (ParseAttributeBlock())
1330          return true;
1331        break;
1332      case bitc::TYPE_BLOCK_ID:
1333        if (ParseTypeTable())
1334          return true;
1335        break;
1336      case bitc::TYPE_SYMTAB_BLOCK_ID:
1337        if (ParseTypeSymbolTable())
1338          return true;
1339        break;
1340      case bitc::VALUE_SYMTAB_BLOCK_ID:
1341        if (ParseValueSymbolTable())
1342          return true;
1343        break;
1344      case bitc::CONSTANTS_BLOCK_ID:
1345        if (ParseConstants() || ResolveGlobalAndAliasInits())
1346          return true;
1347        break;
1348      case bitc::METADATA_BLOCK_ID:
1349        if (ParseMetadata())
1350          return true;
1351        break;
1352      case bitc::FUNCTION_BLOCK_ID:
1353        // If this is the first function body we've seen, reverse the
1354        // FunctionsWithBodies list.
1355        if (!HasReversedFunctionsWithBodies) {
1356          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1357          HasReversedFunctionsWithBodies = true;
1358        }
1359
1360        if (RememberAndSkipFunctionBody())
1361          return true;
1362        break;
1363      }
1364      continue;
1365    }
1366
1367    if (Code == bitc::DEFINE_ABBREV) {
1368      Stream.ReadAbbrevRecord();
1369      continue;
1370    }
1371
1372    // Read a record.
1373    switch (Stream.ReadRecord(Code, Record)) {
1374    default: break;  // Default behavior, ignore unknown content.
1375    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1376      if (Record.size() < 1)
1377        return Error("Malformed MODULE_CODE_VERSION");
1378      // Only version #0 is supported so far.
1379      if (Record[0] != 0)
1380        return Error("Unknown bitstream version!");
1381      break;
1382    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1383      std::string S;
1384      if (ConvertToString(Record, 0, S))
1385        return Error("Invalid MODULE_CODE_TRIPLE record");
1386      TheModule->setTargetTriple(S);
1387      break;
1388    }
1389    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1390      std::string S;
1391      if (ConvertToString(Record, 0, S))
1392        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1393      TheModule->setDataLayout(S);
1394      break;
1395    }
1396    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1397      std::string S;
1398      if (ConvertToString(Record, 0, S))
1399        return Error("Invalid MODULE_CODE_ASM record");
1400      TheModule->setModuleInlineAsm(S);
1401      break;
1402    }
1403    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1404      std::string S;
1405      if (ConvertToString(Record, 0, S))
1406        return Error("Invalid MODULE_CODE_DEPLIB record");
1407      TheModule->addLibrary(S);
1408      break;
1409    }
1410    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1411      std::string S;
1412      if (ConvertToString(Record, 0, S))
1413        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1414      SectionTable.push_back(S);
1415      break;
1416    }
1417    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1418      std::string S;
1419      if (ConvertToString(Record, 0, S))
1420        return Error("Invalid MODULE_CODE_GCNAME record");
1421      GCTable.push_back(S);
1422      break;
1423    }
1424    // GLOBALVAR: [pointer type, isconst, initid,
1425    //             linkage, alignment, section, visibility, threadlocal,
1426    //             unnamed_addr]
1427    case bitc::MODULE_CODE_GLOBALVAR: {
1428      if (Record.size() < 6)
1429        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1430      const Type *Ty = getTypeByID(Record[0]);
1431      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1432      if (!Ty->isPointerTy())
1433        return Error("Global not a pointer type!");
1434      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1435      Ty = cast<PointerType>(Ty)->getElementType();
1436
1437      bool isConstant = Record[1];
1438      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1439      unsigned Alignment = (1 << Record[4]) >> 1;
1440      std::string Section;
1441      if (Record[5]) {
1442        if (Record[5]-1 >= SectionTable.size())
1443          return Error("Invalid section ID");
1444        Section = SectionTable[Record[5]-1];
1445      }
1446      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1447      if (Record.size() > 6)
1448        Visibility = GetDecodedVisibility(Record[6]);
1449      bool isThreadLocal = false;
1450      if (Record.size() > 7)
1451        isThreadLocal = Record[7];
1452
1453      bool UnnamedAddr = false;
1454      if (Record.size() > 8)
1455        UnnamedAddr = Record[8];
1456
1457      GlobalVariable *NewGV =
1458        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1459                           isThreadLocal, AddressSpace);
1460      NewGV->setAlignment(Alignment);
1461      if (!Section.empty())
1462        NewGV->setSection(Section);
1463      NewGV->setVisibility(Visibility);
1464      NewGV->setThreadLocal(isThreadLocal);
1465      NewGV->setUnnamedAddr(UnnamedAddr);
1466
1467      ValueList.push_back(NewGV);
1468
1469      // Remember which value to use for the global initializer.
1470      if (unsigned InitID = Record[2])
1471        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1472      break;
1473    }
1474    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1475    //             alignment, section, visibility, gc, unnamed_addr]
1476    case bitc::MODULE_CODE_FUNCTION: {
1477      if (Record.size() < 8)
1478        return Error("Invalid MODULE_CODE_FUNCTION record");
1479      const Type *Ty = getTypeByID(Record[0]);
1480      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1481      if (!Ty->isPointerTy())
1482        return Error("Function not a pointer type!");
1483      const FunctionType *FTy =
1484        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1485      if (!FTy)
1486        return Error("Function not a pointer to function type!");
1487
1488      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1489                                        "", TheModule);
1490
1491      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1492      bool isProto = Record[2];
1493      Func->setLinkage(GetDecodedLinkage(Record[3]));
1494      Func->setAttributes(getAttributes(Record[4]));
1495
1496      Func->setAlignment((1 << Record[5]) >> 1);
1497      if (Record[6]) {
1498        if (Record[6]-1 >= SectionTable.size())
1499          return Error("Invalid section ID");
1500        Func->setSection(SectionTable[Record[6]-1]);
1501      }
1502      Func->setVisibility(GetDecodedVisibility(Record[7]));
1503      if (Record.size() > 8 && Record[8]) {
1504        if (Record[8]-1 > GCTable.size())
1505          return Error("Invalid GC ID");
1506        Func->setGC(GCTable[Record[8]-1].c_str());
1507      }
1508      bool UnnamedAddr = false;
1509      if (Record.size() > 9)
1510        UnnamedAddr = Record[9];
1511      Func->setUnnamedAddr(UnnamedAddr);
1512      ValueList.push_back(Func);
1513
1514      // If this is a function with a body, remember the prototype we are
1515      // creating now, so that we can match up the body with them later.
1516      if (!isProto)
1517        FunctionsWithBodies.push_back(Func);
1518      break;
1519    }
1520    // ALIAS: [alias type, aliasee val#, linkage]
1521    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1522    case bitc::MODULE_CODE_ALIAS: {
1523      if (Record.size() < 3)
1524        return Error("Invalid MODULE_ALIAS record");
1525      const Type *Ty = getTypeByID(Record[0]);
1526      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1527      if (!Ty->isPointerTy())
1528        return Error("Function not a pointer type!");
1529
1530      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1531                                           "", 0, TheModule);
1532      // Old bitcode files didn't have visibility field.
1533      if (Record.size() > 3)
1534        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1535      ValueList.push_back(NewGA);
1536      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1537      break;
1538    }
1539    /// MODULE_CODE_PURGEVALS: [numvals]
1540    case bitc::MODULE_CODE_PURGEVALS:
1541      // Trim down the value list to the specified size.
1542      if (Record.size() < 1 || Record[0] > ValueList.size())
1543        return Error("Invalid MODULE_PURGEVALS record");
1544      ValueList.shrinkTo(Record[0]);
1545      break;
1546    }
1547    Record.clear();
1548  }
1549
1550  return Error("Premature end of bitstream");
1551}
1552
1553bool BitcodeReader::ParseBitcodeInto(Module *M) {
1554  TheModule = 0;
1555
1556  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1557  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1558
1559  if (Buffer->getBufferSize() & 3) {
1560    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1561      return Error("Invalid bitcode signature");
1562    else
1563      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1564  }
1565
1566  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1567  // The magic number is 0x0B17C0DE stored in little endian.
1568  if (isBitcodeWrapper(BufPtr, BufEnd))
1569    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1570      return Error("Invalid bitcode wrapper header");
1571
1572  StreamFile.init(BufPtr, BufEnd);
1573  Stream.init(StreamFile);
1574
1575  // Sniff for the signature.
1576  if (Stream.Read(8) != 'B' ||
1577      Stream.Read(8) != 'C' ||
1578      Stream.Read(4) != 0x0 ||
1579      Stream.Read(4) != 0xC ||
1580      Stream.Read(4) != 0xE ||
1581      Stream.Read(4) != 0xD)
1582    return Error("Invalid bitcode signature");
1583
1584  // We expect a number of well-defined blocks, though we don't necessarily
1585  // need to understand them all.
1586  while (!Stream.AtEndOfStream()) {
1587    unsigned Code = Stream.ReadCode();
1588
1589    if (Code != bitc::ENTER_SUBBLOCK)
1590      return Error("Invalid record at top-level");
1591
1592    unsigned BlockID = Stream.ReadSubBlockID();
1593
1594    // We only know the MODULE subblock ID.
1595    switch (BlockID) {
1596    case bitc::BLOCKINFO_BLOCK_ID:
1597      if (Stream.ReadBlockInfoBlock())
1598        return Error("Malformed BlockInfoBlock");
1599      break;
1600    case bitc::MODULE_BLOCK_ID:
1601      // Reject multiple MODULE_BLOCK's in a single bitstream.
1602      if (TheModule)
1603        return Error("Multiple MODULE_BLOCKs in same stream");
1604      TheModule = M;
1605      if (ParseModule())
1606        return true;
1607      break;
1608    default:
1609      if (Stream.SkipBlock())
1610        return Error("Malformed block record");
1611      break;
1612    }
1613  }
1614
1615  return false;
1616}
1617
1618bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1619  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1620    return Error("Malformed block record");
1621
1622  SmallVector<uint64_t, 64> Record;
1623
1624  // Read all the records for this module.
1625  while (!Stream.AtEndOfStream()) {
1626    unsigned Code = Stream.ReadCode();
1627    if (Code == bitc::END_BLOCK) {
1628      if (Stream.ReadBlockEnd())
1629        return Error("Error at end of module block");
1630
1631      return false;
1632    }
1633
1634    if (Code == bitc::ENTER_SUBBLOCK) {
1635      switch (Stream.ReadSubBlockID()) {
1636      default:  // Skip unknown content.
1637        if (Stream.SkipBlock())
1638          return Error("Malformed block record");
1639        break;
1640      }
1641      continue;
1642    }
1643
1644    if (Code == bitc::DEFINE_ABBREV) {
1645      Stream.ReadAbbrevRecord();
1646      continue;
1647    }
1648
1649    // Read a record.
1650    switch (Stream.ReadRecord(Code, Record)) {
1651    default: break;  // Default behavior, ignore unknown content.
1652    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1653      if (Record.size() < 1)
1654        return Error("Malformed MODULE_CODE_VERSION");
1655      // Only version #0 is supported so far.
1656      if (Record[0] != 0)
1657        return Error("Unknown bitstream version!");
1658      break;
1659    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1660      std::string S;
1661      if (ConvertToString(Record, 0, S))
1662        return Error("Invalid MODULE_CODE_TRIPLE record");
1663      Triple = S;
1664      break;
1665    }
1666    }
1667    Record.clear();
1668  }
1669
1670  return Error("Premature end of bitstream");
1671}
1672
1673bool BitcodeReader::ParseTriple(std::string &Triple) {
1674  if (Buffer->getBufferSize() & 3)
1675    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1676
1677  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1678  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1679
1680  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1681  // The magic number is 0x0B17C0DE stored in little endian.
1682  if (isBitcodeWrapper(BufPtr, BufEnd))
1683    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1684      return Error("Invalid bitcode wrapper header");
1685
1686  StreamFile.init(BufPtr, BufEnd);
1687  Stream.init(StreamFile);
1688
1689  // Sniff for the signature.
1690  if (Stream.Read(8) != 'B' ||
1691      Stream.Read(8) != 'C' ||
1692      Stream.Read(4) != 0x0 ||
1693      Stream.Read(4) != 0xC ||
1694      Stream.Read(4) != 0xE ||
1695      Stream.Read(4) != 0xD)
1696    return Error("Invalid bitcode signature");
1697
1698  // We expect a number of well-defined blocks, though we don't necessarily
1699  // need to understand them all.
1700  while (!Stream.AtEndOfStream()) {
1701    unsigned Code = Stream.ReadCode();
1702
1703    if (Code != bitc::ENTER_SUBBLOCK)
1704      return Error("Invalid record at top-level");
1705
1706    unsigned BlockID = Stream.ReadSubBlockID();
1707
1708    // We only know the MODULE subblock ID.
1709    switch (BlockID) {
1710    case bitc::MODULE_BLOCK_ID:
1711      if (ParseModuleTriple(Triple))
1712        return true;
1713      break;
1714    default:
1715      if (Stream.SkipBlock())
1716        return Error("Malformed block record");
1717      break;
1718    }
1719  }
1720
1721  return false;
1722}
1723
1724/// ParseMetadataAttachment - Parse metadata attachments.
1725bool BitcodeReader::ParseMetadataAttachment() {
1726  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1727    return Error("Malformed block record");
1728
1729  SmallVector<uint64_t, 64> Record;
1730  while(1) {
1731    unsigned Code = Stream.ReadCode();
1732    if (Code == bitc::END_BLOCK) {
1733      if (Stream.ReadBlockEnd())
1734        return Error("Error at end of PARAMATTR block");
1735      break;
1736    }
1737    if (Code == bitc::DEFINE_ABBREV) {
1738      Stream.ReadAbbrevRecord();
1739      continue;
1740    }
1741    // Read a metadata attachment record.
1742    Record.clear();
1743    switch (Stream.ReadRecord(Code, Record)) {
1744    default:  // Default behavior: ignore.
1745      break;
1746    // FIXME: Remove in LLVM 3.0.
1747    case bitc::METADATA_ATTACHMENT:
1748      LLVM2_7MetadataDetected = true;
1749    case bitc::METADATA_ATTACHMENT2: {
1750      unsigned RecordLength = Record.size();
1751      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1752        return Error ("Invalid METADATA_ATTACHMENT reader!");
1753      Instruction *Inst = InstructionList[Record[0]];
1754      for (unsigned i = 1; i != RecordLength; i = i+2) {
1755        unsigned Kind = Record[i];
1756        DenseMap<unsigned, unsigned>::iterator I =
1757          MDKindMap.find(Kind);
1758        if (I == MDKindMap.end())
1759          return Error("Invalid metadata kind ID");
1760        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1761        Inst->setMetadata(I->second, cast<MDNode>(Node));
1762      }
1763      break;
1764    }
1765    }
1766  }
1767  return false;
1768}
1769
1770/// ParseFunctionBody - Lazily parse the specified function body block.
1771bool BitcodeReader::ParseFunctionBody(Function *F) {
1772  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1773    return Error("Malformed block record");
1774
1775  InstructionList.clear();
1776  unsigned ModuleValueListSize = ValueList.size();
1777  unsigned ModuleMDValueListSize = MDValueList.size();
1778
1779  // Add all the function arguments to the value table.
1780  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1781    ValueList.push_back(I);
1782
1783  unsigned NextValueNo = ValueList.size();
1784  BasicBlock *CurBB = 0;
1785  unsigned CurBBNo = 0;
1786
1787  DebugLoc LastLoc;
1788
1789  // Read all the records.
1790  SmallVector<uint64_t, 64> Record;
1791  while (1) {
1792    unsigned Code = Stream.ReadCode();
1793    if (Code == bitc::END_BLOCK) {
1794      if (Stream.ReadBlockEnd())
1795        return Error("Error at end of function block");
1796      break;
1797    }
1798
1799    if (Code == bitc::ENTER_SUBBLOCK) {
1800      switch (Stream.ReadSubBlockID()) {
1801      default:  // Skip unknown content.
1802        if (Stream.SkipBlock())
1803          return Error("Malformed block record");
1804        break;
1805      case bitc::CONSTANTS_BLOCK_ID:
1806        if (ParseConstants()) return true;
1807        NextValueNo = ValueList.size();
1808        break;
1809      case bitc::VALUE_SYMTAB_BLOCK_ID:
1810        if (ParseValueSymbolTable()) return true;
1811        break;
1812      case bitc::METADATA_ATTACHMENT_ID:
1813        if (ParseMetadataAttachment()) return true;
1814        break;
1815      case bitc::METADATA_BLOCK_ID:
1816        if (ParseMetadata()) return true;
1817        break;
1818      }
1819      continue;
1820    }
1821
1822    if (Code == bitc::DEFINE_ABBREV) {
1823      Stream.ReadAbbrevRecord();
1824      continue;
1825    }
1826
1827    // Read a record.
1828    Record.clear();
1829    Instruction *I = 0;
1830    unsigned BitCode = Stream.ReadRecord(Code, Record);
1831    switch (BitCode) {
1832    default: // Default behavior: reject
1833      return Error("Unknown instruction");
1834    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1835      if (Record.size() < 1 || Record[0] == 0)
1836        return Error("Invalid DECLAREBLOCKS record");
1837      // Create all the basic blocks for the function.
1838      FunctionBBs.resize(Record[0]);
1839      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1840        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1841      CurBB = FunctionBBs[0];
1842      continue;
1843
1844
1845    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1846      // This record indicates that the last instruction is at the same
1847      // location as the previous instruction with a location.
1848      I = 0;
1849
1850      // Get the last instruction emitted.
1851      if (CurBB && !CurBB->empty())
1852        I = &CurBB->back();
1853      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1854               !FunctionBBs[CurBBNo-1]->empty())
1855        I = &FunctionBBs[CurBBNo-1]->back();
1856
1857      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1858      I->setDebugLoc(LastLoc);
1859      I = 0;
1860      continue;
1861
1862    // FIXME: Remove this in LLVM 3.0.
1863    case bitc::FUNC_CODE_DEBUG_LOC:
1864      LLVM2_7MetadataDetected = true;
1865    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1866      I = 0;     // Get the last instruction emitted.
1867      if (CurBB && !CurBB->empty())
1868        I = &CurBB->back();
1869      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1870               !FunctionBBs[CurBBNo-1]->empty())
1871        I = &FunctionBBs[CurBBNo-1]->back();
1872      if (I == 0 || Record.size() < 4)
1873        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1874
1875      unsigned Line = Record[0], Col = Record[1];
1876      unsigned ScopeID = Record[2], IAID = Record[3];
1877
1878      MDNode *Scope = 0, *IA = 0;
1879      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1880      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1881      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1882      I->setDebugLoc(LastLoc);
1883      I = 0;
1884      continue;
1885    }
1886
1887    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1888      unsigned OpNum = 0;
1889      Value *LHS, *RHS;
1890      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1891          getValue(Record, OpNum, LHS->getType(), RHS) ||
1892          OpNum+1 > Record.size())
1893        return Error("Invalid BINOP record");
1894
1895      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1896      if (Opc == -1) return Error("Invalid BINOP record");
1897      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1898      InstructionList.push_back(I);
1899      if (OpNum < Record.size()) {
1900        if (Opc == Instruction::Add ||
1901            Opc == Instruction::Sub ||
1902            Opc == Instruction::Mul) {
1903          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1904            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1905          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1906            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1907        } else if (Opc == Instruction::SDiv) {
1908          if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1909            cast<BinaryOperator>(I)->setIsExact(true);
1910        }
1911      }
1912      break;
1913    }
1914    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1915      unsigned OpNum = 0;
1916      Value *Op;
1917      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1918          OpNum+2 != Record.size())
1919        return Error("Invalid CAST record");
1920
1921      const Type *ResTy = getTypeByID(Record[OpNum]);
1922      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1923      if (Opc == -1 || ResTy == 0)
1924        return Error("Invalid CAST record");
1925      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1926      InstructionList.push_back(I);
1927      break;
1928    }
1929    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1930    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1931      unsigned OpNum = 0;
1932      Value *BasePtr;
1933      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1934        return Error("Invalid GEP record");
1935
1936      SmallVector<Value*, 16> GEPIdx;
1937      while (OpNum != Record.size()) {
1938        Value *Op;
1939        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1940          return Error("Invalid GEP record");
1941        GEPIdx.push_back(Op);
1942      }
1943
1944      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1945      InstructionList.push_back(I);
1946      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1947        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1948      break;
1949    }
1950
1951    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1952                                       // EXTRACTVAL: [opty, opval, n x indices]
1953      unsigned OpNum = 0;
1954      Value *Agg;
1955      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1956        return Error("Invalid EXTRACTVAL record");
1957
1958      SmallVector<unsigned, 4> EXTRACTVALIdx;
1959      for (unsigned RecSize = Record.size();
1960           OpNum != RecSize; ++OpNum) {
1961        uint64_t Index = Record[OpNum];
1962        if ((unsigned)Index != Index)
1963          return Error("Invalid EXTRACTVAL index");
1964        EXTRACTVALIdx.push_back((unsigned)Index);
1965      }
1966
1967      I = ExtractValueInst::Create(Agg,
1968                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1969      InstructionList.push_back(I);
1970      break;
1971    }
1972
1973    case bitc::FUNC_CODE_INST_INSERTVAL: {
1974                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1975      unsigned OpNum = 0;
1976      Value *Agg;
1977      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1978        return Error("Invalid INSERTVAL record");
1979      Value *Val;
1980      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1981        return Error("Invalid INSERTVAL record");
1982
1983      SmallVector<unsigned, 4> INSERTVALIdx;
1984      for (unsigned RecSize = Record.size();
1985           OpNum != RecSize; ++OpNum) {
1986        uint64_t Index = Record[OpNum];
1987        if ((unsigned)Index != Index)
1988          return Error("Invalid INSERTVAL index");
1989        INSERTVALIdx.push_back((unsigned)Index);
1990      }
1991
1992      I = InsertValueInst::Create(Agg, Val,
1993                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1994      InstructionList.push_back(I);
1995      break;
1996    }
1997
1998    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1999      // obsolete form of select
2000      // handles select i1 ... in old bitcode
2001      unsigned OpNum = 0;
2002      Value *TrueVal, *FalseVal, *Cond;
2003      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2004          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2005          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2006        return Error("Invalid SELECT record");
2007
2008      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2009      InstructionList.push_back(I);
2010      break;
2011    }
2012
2013    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2014      // new form of select
2015      // handles select i1 or select [N x i1]
2016      unsigned OpNum = 0;
2017      Value *TrueVal, *FalseVal, *Cond;
2018      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2019          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2020          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2021        return Error("Invalid SELECT record");
2022
2023      // select condition can be either i1 or [N x i1]
2024      if (const VectorType* vector_type =
2025          dyn_cast<const VectorType>(Cond->getType())) {
2026        // expect <n x i1>
2027        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2028          return Error("Invalid SELECT condition type");
2029      } else {
2030        // expect i1
2031        if (Cond->getType() != Type::getInt1Ty(Context))
2032          return Error("Invalid SELECT condition type");
2033      }
2034
2035      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2036      InstructionList.push_back(I);
2037      break;
2038    }
2039
2040    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2041      unsigned OpNum = 0;
2042      Value *Vec, *Idx;
2043      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2044          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2045        return Error("Invalid EXTRACTELT record");
2046      I = ExtractElementInst::Create(Vec, Idx);
2047      InstructionList.push_back(I);
2048      break;
2049    }
2050
2051    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2052      unsigned OpNum = 0;
2053      Value *Vec, *Elt, *Idx;
2054      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2055          getValue(Record, OpNum,
2056                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2057          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2058        return Error("Invalid INSERTELT record");
2059      I = InsertElementInst::Create(Vec, Elt, Idx);
2060      InstructionList.push_back(I);
2061      break;
2062    }
2063
2064    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2065      unsigned OpNum = 0;
2066      Value *Vec1, *Vec2, *Mask;
2067      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2068          getValue(Record, OpNum, Vec1->getType(), Vec2))
2069        return Error("Invalid SHUFFLEVEC record");
2070
2071      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2072        return Error("Invalid SHUFFLEVEC record");
2073      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2074      InstructionList.push_back(I);
2075      break;
2076    }
2077
2078    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2079      // Old form of ICmp/FCmp returning bool
2080      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2081      // both legal on vectors but had different behaviour.
2082    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2083      // FCmp/ICmp returning bool or vector of bool
2084
2085      unsigned OpNum = 0;
2086      Value *LHS, *RHS;
2087      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2088          getValue(Record, OpNum, LHS->getType(), RHS) ||
2089          OpNum+1 != Record.size())
2090        return Error("Invalid CMP record");
2091
2092      if (LHS->getType()->isFPOrFPVectorTy())
2093        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2094      else
2095        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2096      InstructionList.push_back(I);
2097      break;
2098    }
2099
2100    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2101      if (Record.size() != 2)
2102        return Error("Invalid GETRESULT record");
2103      unsigned OpNum = 0;
2104      Value *Op;
2105      getValueTypePair(Record, OpNum, NextValueNo, Op);
2106      unsigned Index = Record[1];
2107      I = ExtractValueInst::Create(Op, Index);
2108      InstructionList.push_back(I);
2109      break;
2110    }
2111
2112    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2113      {
2114        unsigned Size = Record.size();
2115        if (Size == 0) {
2116          I = ReturnInst::Create(Context);
2117          InstructionList.push_back(I);
2118          break;
2119        }
2120
2121        unsigned OpNum = 0;
2122        SmallVector<Value *,4> Vs;
2123        do {
2124          Value *Op = NULL;
2125          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2126            return Error("Invalid RET record");
2127          Vs.push_back(Op);
2128        } while(OpNum != Record.size());
2129
2130        const Type *ReturnType = F->getReturnType();
2131        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2132        if (Vs.size() > 1 ||
2133            (ReturnType->isStructTy() &&
2134             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2135          Value *RV = UndefValue::get(ReturnType);
2136          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2137            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2138            InstructionList.push_back(I);
2139            CurBB->getInstList().push_back(I);
2140            ValueList.AssignValue(I, NextValueNo++);
2141            RV = I;
2142          }
2143          I = ReturnInst::Create(Context, RV);
2144          InstructionList.push_back(I);
2145          break;
2146        }
2147
2148        I = ReturnInst::Create(Context, Vs[0]);
2149        InstructionList.push_back(I);
2150        break;
2151      }
2152    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2153      if (Record.size() != 1 && Record.size() != 3)
2154        return Error("Invalid BR record");
2155      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2156      if (TrueDest == 0)
2157        return Error("Invalid BR record");
2158
2159      if (Record.size() == 1) {
2160        I = BranchInst::Create(TrueDest);
2161        InstructionList.push_back(I);
2162      }
2163      else {
2164        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2165        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2166        if (FalseDest == 0 || Cond == 0)
2167          return Error("Invalid BR record");
2168        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2169        InstructionList.push_back(I);
2170      }
2171      break;
2172    }
2173    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2174      if (Record.size() < 3 || (Record.size() & 1) == 0)
2175        return Error("Invalid SWITCH record");
2176      const Type *OpTy = getTypeByID(Record[0]);
2177      Value *Cond = getFnValueByID(Record[1], OpTy);
2178      BasicBlock *Default = getBasicBlock(Record[2]);
2179      if (OpTy == 0 || Cond == 0 || Default == 0)
2180        return Error("Invalid SWITCH record");
2181      unsigned NumCases = (Record.size()-3)/2;
2182      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2183      InstructionList.push_back(SI);
2184      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2185        ConstantInt *CaseVal =
2186          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2187        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2188        if (CaseVal == 0 || DestBB == 0) {
2189          delete SI;
2190          return Error("Invalid SWITCH record!");
2191        }
2192        SI->addCase(CaseVal, DestBB);
2193      }
2194      I = SI;
2195      break;
2196    }
2197    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2198      if (Record.size() < 2)
2199        return Error("Invalid INDIRECTBR record");
2200      const Type *OpTy = getTypeByID(Record[0]);
2201      Value *Address = getFnValueByID(Record[1], OpTy);
2202      if (OpTy == 0 || Address == 0)
2203        return Error("Invalid INDIRECTBR record");
2204      unsigned NumDests = Record.size()-2;
2205      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2206      InstructionList.push_back(IBI);
2207      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2208        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2209          IBI->addDestination(DestBB);
2210        } else {
2211          delete IBI;
2212          return Error("Invalid INDIRECTBR record!");
2213        }
2214      }
2215      I = IBI;
2216      break;
2217    }
2218
2219    case bitc::FUNC_CODE_INST_INVOKE: {
2220      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2221      if (Record.size() < 4) return Error("Invalid INVOKE record");
2222      AttrListPtr PAL = getAttributes(Record[0]);
2223      unsigned CCInfo = Record[1];
2224      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2225      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2226
2227      unsigned OpNum = 4;
2228      Value *Callee;
2229      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2230        return Error("Invalid INVOKE record");
2231
2232      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2233      const FunctionType *FTy = !CalleeTy ? 0 :
2234        dyn_cast<FunctionType>(CalleeTy->getElementType());
2235
2236      // Check that the right number of fixed parameters are here.
2237      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2238          Record.size() < OpNum+FTy->getNumParams())
2239        return Error("Invalid INVOKE record");
2240
2241      SmallVector<Value*, 16> Ops;
2242      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2243        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2244        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2245      }
2246
2247      if (!FTy->isVarArg()) {
2248        if (Record.size() != OpNum)
2249          return Error("Invalid INVOKE record");
2250      } else {
2251        // Read type/value pairs for varargs params.
2252        while (OpNum != Record.size()) {
2253          Value *Op;
2254          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2255            return Error("Invalid INVOKE record");
2256          Ops.push_back(Op);
2257        }
2258      }
2259
2260      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2261                             Ops.begin(), Ops.end());
2262      InstructionList.push_back(I);
2263      cast<InvokeInst>(I)->setCallingConv(
2264        static_cast<CallingConv::ID>(CCInfo));
2265      cast<InvokeInst>(I)->setAttributes(PAL);
2266      break;
2267    }
2268    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2269      I = new UnwindInst(Context);
2270      InstructionList.push_back(I);
2271      break;
2272    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2273      I = new UnreachableInst(Context);
2274      InstructionList.push_back(I);
2275      break;
2276    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2277      if (Record.size() < 1 || ((Record.size()-1)&1))
2278        return Error("Invalid PHI record");
2279      const Type *Ty = getTypeByID(Record[0]);
2280      if (!Ty) return Error("Invalid PHI record");
2281
2282      PHINode *PN = PHINode::Create(Ty);
2283      InstructionList.push_back(PN);
2284      PN->reserveOperandSpace((Record.size()-1)/2);
2285
2286      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2287        Value *V = getFnValueByID(Record[1+i], Ty);
2288        BasicBlock *BB = getBasicBlock(Record[2+i]);
2289        if (!V || !BB) return Error("Invalid PHI record");
2290        PN->addIncoming(V, BB);
2291      }
2292      I = PN;
2293      break;
2294    }
2295
2296    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2297      // Autoupgrade malloc instruction to malloc call.
2298      // FIXME: Remove in LLVM 3.0.
2299      if (Record.size() < 3)
2300        return Error("Invalid MALLOC record");
2301      const PointerType *Ty =
2302        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2303      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2304      if (!Ty || !Size) return Error("Invalid MALLOC record");
2305      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2306      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2307      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2308      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2309      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2310                                 AllocSize, Size, NULL);
2311      InstructionList.push_back(I);
2312      break;
2313    }
2314    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2315      unsigned OpNum = 0;
2316      Value *Op;
2317      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2318          OpNum != Record.size())
2319        return Error("Invalid FREE record");
2320      if (!CurBB) return Error("Invalid free instruction with no BB");
2321      I = CallInst::CreateFree(Op, CurBB);
2322      InstructionList.push_back(I);
2323      break;
2324    }
2325    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2326      // For backward compatibility, tolerate a lack of an opty, and use i32.
2327      // Remove this in LLVM 3.0.
2328      if (Record.size() < 3 || Record.size() > 4)
2329        return Error("Invalid ALLOCA record");
2330      unsigned OpNum = 0;
2331      const PointerType *Ty =
2332        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2333      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2334                                              Type::getInt32Ty(Context);
2335      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2336      unsigned Align = Record[OpNum++];
2337      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2338      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2339      InstructionList.push_back(I);
2340      break;
2341    }
2342    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2343      unsigned OpNum = 0;
2344      Value *Op;
2345      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2346          OpNum+2 != Record.size())
2347        return Error("Invalid LOAD record");
2348
2349      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2350      InstructionList.push_back(I);
2351      break;
2352    }
2353    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2354      unsigned OpNum = 0;
2355      Value *Val, *Ptr;
2356      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2357          getValue(Record, OpNum,
2358                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2359          OpNum+2 != Record.size())
2360        return Error("Invalid STORE record");
2361
2362      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2363      InstructionList.push_back(I);
2364      break;
2365    }
2366    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2367      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2368      unsigned OpNum = 0;
2369      Value *Val, *Ptr;
2370      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2371          getValue(Record, OpNum,
2372                   PointerType::getUnqual(Val->getType()), Ptr)||
2373          OpNum+2 != Record.size())
2374        return Error("Invalid STORE record");
2375
2376      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2377      InstructionList.push_back(I);
2378      break;
2379    }
2380    // FIXME: Remove this in LLVM 3.0.
2381    case bitc::FUNC_CODE_INST_CALL:
2382      LLVM2_7MetadataDetected = true;
2383    case bitc::FUNC_CODE_INST_CALL2: {
2384      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2385      if (Record.size() < 3)
2386        return Error("Invalid CALL record");
2387
2388      AttrListPtr PAL = getAttributes(Record[0]);
2389      unsigned CCInfo = Record[1];
2390
2391      unsigned OpNum = 2;
2392      Value *Callee;
2393      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2394        return Error("Invalid CALL record");
2395
2396      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2397      const FunctionType *FTy = 0;
2398      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2399      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2400        return Error("Invalid CALL record");
2401
2402      SmallVector<Value*, 16> Args;
2403      // Read the fixed params.
2404      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2405        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2406          Args.push_back(getBasicBlock(Record[OpNum]));
2407        else
2408          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2409        if (Args.back() == 0) return Error("Invalid CALL record");
2410      }
2411
2412      // Read type/value pairs for varargs params.
2413      if (!FTy->isVarArg()) {
2414        if (OpNum != Record.size())
2415          return Error("Invalid CALL record");
2416      } else {
2417        while (OpNum != Record.size()) {
2418          Value *Op;
2419          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2420            return Error("Invalid CALL record");
2421          Args.push_back(Op);
2422        }
2423      }
2424
2425      I = CallInst::Create(Callee, Args.begin(), Args.end());
2426      InstructionList.push_back(I);
2427      cast<CallInst>(I)->setCallingConv(
2428        static_cast<CallingConv::ID>(CCInfo>>1));
2429      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2430      cast<CallInst>(I)->setAttributes(PAL);
2431      break;
2432    }
2433    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2434      if (Record.size() < 3)
2435        return Error("Invalid VAARG record");
2436      const Type *OpTy = getTypeByID(Record[0]);
2437      Value *Op = getFnValueByID(Record[1], OpTy);
2438      const Type *ResTy = getTypeByID(Record[2]);
2439      if (!OpTy || !Op || !ResTy)
2440        return Error("Invalid VAARG record");
2441      I = new VAArgInst(Op, ResTy);
2442      InstructionList.push_back(I);
2443      break;
2444    }
2445    }
2446
2447    // Add instruction to end of current BB.  If there is no current BB, reject
2448    // this file.
2449    if (CurBB == 0) {
2450      delete I;
2451      return Error("Invalid instruction with no BB");
2452    }
2453    CurBB->getInstList().push_back(I);
2454
2455    // If this was a terminator instruction, move to the next block.
2456    if (isa<TerminatorInst>(I)) {
2457      ++CurBBNo;
2458      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2459    }
2460
2461    // Non-void values get registered in the value table for future use.
2462    if (I && !I->getType()->isVoidTy())
2463      ValueList.AssignValue(I, NextValueNo++);
2464  }
2465
2466  // Check the function list for unresolved values.
2467  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2468    if (A->getParent() == 0) {
2469      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2470      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2471        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2472          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2473          delete A;
2474        }
2475      }
2476      return Error("Never resolved value found in function!");
2477    }
2478  }
2479
2480  // FIXME: Check for unresolved forward-declared metadata references
2481  // and clean up leaks.
2482
2483  // See if anything took the address of blocks in this function.  If so,
2484  // resolve them now.
2485  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2486    BlockAddrFwdRefs.find(F);
2487  if (BAFRI != BlockAddrFwdRefs.end()) {
2488    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2489    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2490      unsigned BlockIdx = RefList[i].first;
2491      if (BlockIdx >= FunctionBBs.size())
2492        return Error("Invalid blockaddress block #");
2493
2494      GlobalVariable *FwdRef = RefList[i].second;
2495      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2496      FwdRef->eraseFromParent();
2497    }
2498
2499    BlockAddrFwdRefs.erase(BAFRI);
2500  }
2501
2502  // FIXME: Remove this in LLVM 3.0.
2503  unsigned NewMDValueListSize = MDValueList.size();
2504
2505  // Trim the value list down to the size it was before we parsed this function.
2506  ValueList.shrinkTo(ModuleValueListSize);
2507  MDValueList.shrinkTo(ModuleMDValueListSize);
2508
2509  // Backwards compatibility hack: Function-local metadata numbers
2510  // were previously not reset between functions. This is now fixed,
2511  // however we still need to understand the old numbering in order
2512  // to be able to read old bitcode files.
2513  // FIXME: Remove this in LLVM 3.0.
2514  if (LLVM2_7MetadataDetected)
2515    MDValueList.resize(NewMDValueListSize);
2516
2517  std::vector<BasicBlock*>().swap(FunctionBBs);
2518
2519  return false;
2520}
2521
2522//===----------------------------------------------------------------------===//
2523// GVMaterializer implementation
2524//===----------------------------------------------------------------------===//
2525
2526
2527bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2528  if (const Function *F = dyn_cast<Function>(GV)) {
2529    return F->isDeclaration() &&
2530      DeferredFunctionInfo.count(const_cast<Function*>(F));
2531  }
2532  return false;
2533}
2534
2535bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2536  Function *F = dyn_cast<Function>(GV);
2537  // If it's not a function or is already material, ignore the request.
2538  if (!F || !F->isMaterializable()) return false;
2539
2540  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2541  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2542
2543  // Move the bit stream to the saved position of the deferred function body.
2544  Stream.JumpToBit(DFII->second);
2545
2546  if (ParseFunctionBody(F)) {
2547    if (ErrInfo) *ErrInfo = ErrorString;
2548    return true;
2549  }
2550
2551  // Upgrade any old intrinsic calls in the function.
2552  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2553       E = UpgradedIntrinsics.end(); I != E; ++I) {
2554    if (I->first != I->second) {
2555      for (Value::use_iterator UI = I->first->use_begin(),
2556           UE = I->first->use_end(); UI != UE; ) {
2557        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2558          UpgradeIntrinsicCall(CI, I->second);
2559      }
2560    }
2561  }
2562
2563  return false;
2564}
2565
2566bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2567  const Function *F = dyn_cast<Function>(GV);
2568  if (!F || F->isDeclaration())
2569    return false;
2570  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2571}
2572
2573void BitcodeReader::Dematerialize(GlobalValue *GV) {
2574  Function *F = dyn_cast<Function>(GV);
2575  // If this function isn't dematerializable, this is a noop.
2576  if (!F || !isDematerializable(F))
2577    return;
2578
2579  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2580
2581  // Just forget the function body, we can remat it later.
2582  F->deleteBody();
2583}
2584
2585
2586bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2587  assert(M == TheModule &&
2588         "Can only Materialize the Module this BitcodeReader is attached to.");
2589  // Iterate over the module, deserializing any functions that are still on
2590  // disk.
2591  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2592       F != E; ++F)
2593    if (F->isMaterializable() &&
2594        Materialize(F, ErrInfo))
2595      return true;
2596
2597  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2598  // delete the old functions to clean up. We can't do this unless the entire
2599  // module is materialized because there could always be another function body
2600  // with calls to the old function.
2601  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2602       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2603    if (I->first != I->second) {
2604      for (Value::use_iterator UI = I->first->use_begin(),
2605           UE = I->first->use_end(); UI != UE; ) {
2606        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2607          UpgradeIntrinsicCall(CI, I->second);
2608      }
2609      if (!I->first->use_empty())
2610        I->first->replaceAllUsesWith(I->second);
2611      I->first->eraseFromParent();
2612    }
2613  }
2614  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2615
2616  // Check debug info intrinsics.
2617  CheckDebugInfoIntrinsics(TheModule);
2618
2619  return false;
2620}
2621
2622
2623//===----------------------------------------------------------------------===//
2624// External interface
2625//===----------------------------------------------------------------------===//
2626
2627/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2628///
2629Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2630                                   LLVMContext& Context,
2631                                   std::string *ErrMsg) {
2632  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2633  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2634  M->setMaterializer(R);
2635  if (R->ParseBitcodeInto(M)) {
2636    if (ErrMsg)
2637      *ErrMsg = R->getErrorString();
2638
2639    delete M;  // Also deletes R.
2640    return 0;
2641  }
2642  // Have the BitcodeReader dtor delete 'Buffer'.
2643  R->setBufferOwned(true);
2644  return M;
2645}
2646
2647/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2648/// If an error occurs, return null and fill in *ErrMsg if non-null.
2649Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2650                               std::string *ErrMsg){
2651  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2652  if (!M) return 0;
2653
2654  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2655  // there was an error.
2656  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2657
2658  // Read in the entire module, and destroy the BitcodeReader.
2659  if (M->MaterializeAllPermanently(ErrMsg)) {
2660    delete M;
2661    return 0;
2662  }
2663
2664  return M;
2665}
2666
2667std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2668                                         LLVMContext& Context,
2669                                         std::string *ErrMsg) {
2670  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2671  // Don't let the BitcodeReader dtor delete 'Buffer'.
2672  R->setBufferOwned(false);
2673
2674  std::string Triple("");
2675  if (R->ParseTriple(Triple))
2676    if (ErrMsg)
2677      *ErrMsg = R->getErrorString();
2678
2679  delete R;
2680  return Triple;
2681}
2682