BitcodeReader.cpp revision c9687b32fab6d6ec53ac95dccf61d598be26d5dc
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> :
166  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    const Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                        NewOps.size());
297      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                         UserCS->getType()->isPacked());
300      } else if (isa<ConstantVector>(UserC)) {
301        NewC = ConstantVector::get(NewOps);
302      } else {
303        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
305      }
306
307      UserC->replaceAllUsesWith(NewC);
308      UserC->destroyConstant();
309      NewOps.clear();
310    }
311
312    // Update all ValueHandles, they should be the only users at this point.
313    Placeholder->replaceAllUsesWith(RealVal);
314    delete Placeholder;
315  }
316}
317
318void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319  if (Idx == size()) {
320    push_back(V);
321    return;
322  }
323
324  if (Idx >= size())
325    resize(Idx+1);
326
327  WeakVH &OldV = MDValuePtrs[Idx];
328  if (OldV == 0) {
329    OldV = V;
330    return;
331  }
332
333  // If there was a forward reference to this value, replace it.
334  MDNode *PrevVal = cast<MDNode>(OldV);
335  OldV->replaceAllUsesWith(V);
336  MDNode::deleteTemporary(PrevVal);
337  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338  // value for Idx.
339  MDValuePtrs[Idx] = V;
340}
341
342Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343  if (Idx >= size())
344    resize(Idx + 1);
345
346  if (Value *V = MDValuePtrs[Idx]) {
347    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348    return V;
349  }
350
351  // Create and return a placeholder, which will later be RAUW'd.
352  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
353  MDValuePtrs[Idx] = V;
354  return V;
355}
356
357const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358  // If the TypeID is in range, return it.
359  if (ID < TypeList.size())
360    return TypeList[ID].get();
361  if (!isTypeTable) return 0;
362
363  // The type table allows forward references.  Push as many Opaque types as
364  // needed to get up to ID.
365  while (TypeList.size() <= ID)
366    TypeList.push_back(OpaqueType::get(Context));
367  return TypeList.back().get();
368}
369
370//===----------------------------------------------------------------------===//
371//  Functions for parsing blocks from the bitcode file
372//===----------------------------------------------------------------------===//
373
374bool BitcodeReader::ParseAttributeBlock() {
375  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376    return Error("Malformed block record");
377
378  if (!MAttributes.empty())
379    return Error("Multiple PARAMATTR blocks found!");
380
381  SmallVector<uint64_t, 64> Record;
382
383  SmallVector<AttributeWithIndex, 8> Attrs;
384
385  // Read all the records.
386  while (1) {
387    unsigned Code = Stream.ReadCode();
388    if (Code == bitc::END_BLOCK) {
389      if (Stream.ReadBlockEnd())
390        return Error("Error at end of PARAMATTR block");
391      return false;
392    }
393
394    if (Code == bitc::ENTER_SUBBLOCK) {
395      // No known subblocks, always skip them.
396      Stream.ReadSubBlockID();
397      if (Stream.SkipBlock())
398        return Error("Malformed block record");
399      continue;
400    }
401
402    if (Code == bitc::DEFINE_ABBREV) {
403      Stream.ReadAbbrevRecord();
404      continue;
405    }
406
407    // Read a record.
408    Record.clear();
409    switch (Stream.ReadRecord(Code, Record)) {
410    default:  // Default behavior: ignore.
411      break;
412    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413      if (Record.size() & 1)
414        return Error("Invalid ENTRY record");
415
416      // FIXME : Remove this autoupgrade code in LLVM 3.0.
417      // If Function attributes are using index 0 then transfer them
418      // to index ~0. Index 0 is used for return value attributes but used to be
419      // used for function attributes.
420      Attributes RetAttribute = Attribute::None;
421      Attributes FnAttribute = Attribute::None;
422      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423        // FIXME: remove in LLVM 3.0
424        // The alignment is stored as a 16-bit raw value from bits 31--16.
425        // We shift the bits above 31 down by 11 bits.
426
427        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428        if (Alignment && !isPowerOf2_32(Alignment))
429          return Error("Alignment is not a power of two.");
430
431        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432        if (Alignment)
433          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435        Record[i+1] = ReconstitutedAttr;
436
437        if (Record[i] == 0)
438          RetAttribute = Record[i+1];
439        else if (Record[i] == ~0U)
440          FnAttribute = Record[i+1];
441      }
442
443      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                              Attribute::ReadOnly|Attribute::ReadNone);
445
446      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447          (RetAttribute & OldRetAttrs) != 0) {
448        if (FnAttribute == Attribute::None) { // add a slot so they get added.
449          Record.push_back(~0U);
450          Record.push_back(0);
451        }
452
453        FnAttribute  |= RetAttribute & OldRetAttrs;
454        RetAttribute &= ~OldRetAttrs;
455      }
456
457      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458        if (Record[i] == 0) {
459          if (RetAttribute != Attribute::None)
460            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461        } else if (Record[i] == ~0U) {
462          if (FnAttribute != Attribute::None)
463            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464        } else if (Record[i+1] != Attribute::None)
465          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466      }
467
468      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469      Attrs.clear();
470      break;
471    }
472    }
473  }
474}
475
476
477bool BitcodeReader::ParseTypeTable() {
478  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479    return Error("Malformed block record");
480
481  if (!TypeList.empty())
482    return Error("Multiple TYPE_BLOCKs found!");
483
484  SmallVector<uint64_t, 64> Record;
485  unsigned NumRecords = 0;
486
487  // Read all the records for this type table.
488  while (1) {
489    unsigned Code = Stream.ReadCode();
490    if (Code == bitc::END_BLOCK) {
491      if (NumRecords != TypeList.size())
492        return Error("Invalid type forward reference in TYPE_BLOCK");
493      if (Stream.ReadBlockEnd())
494        return Error("Error at end of type table block");
495      return false;
496    }
497
498    if (Code == bitc::ENTER_SUBBLOCK) {
499      // No known subblocks, always skip them.
500      Stream.ReadSubBlockID();
501      if (Stream.SkipBlock())
502        return Error("Malformed block record");
503      continue;
504    }
505
506    if (Code == bitc::DEFINE_ABBREV) {
507      Stream.ReadAbbrevRecord();
508      continue;
509    }
510
511    // Read a record.
512    Record.clear();
513    const Type *ResultTy = 0;
514    switch (Stream.ReadRecord(Code, Record)) {
515    default:  // Default behavior: unknown type.
516      ResultTy = 0;
517      break;
518    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520      // type list.  This allows us to reserve space.
521      if (Record.size() < 1)
522        return Error("Invalid TYPE_CODE_NUMENTRY record");
523      TypeList.reserve(Record[0]);
524      continue;
525    case bitc::TYPE_CODE_VOID:      // VOID
526      ResultTy = Type::getVoidTy(Context);
527      break;
528    case bitc::TYPE_CODE_FLOAT:     // FLOAT
529      ResultTy = Type::getFloatTy(Context);
530      break;
531    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532      ResultTy = Type::getDoubleTy(Context);
533      break;
534    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535      ResultTy = Type::getX86_FP80Ty(Context);
536      break;
537    case bitc::TYPE_CODE_FP128:     // FP128
538      ResultTy = Type::getFP128Ty(Context);
539      break;
540    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541      ResultTy = Type::getPPC_FP128Ty(Context);
542      break;
543    case bitc::TYPE_CODE_LABEL:     // LABEL
544      ResultTy = Type::getLabelTy(Context);
545      break;
546    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547      ResultTy = 0;
548      break;
549    case bitc::TYPE_CODE_METADATA:  // METADATA
550      ResultTy = Type::getMetadataTy(Context);
551      break;
552    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553      ResultTy = Type::getX86_MMXTy(Context);
554      break;
555    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556      if (Record.size() < 1)
557        return Error("Invalid Integer type record");
558
559      ResultTy = IntegerType::get(Context, Record[0]);
560      break;
561    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                    //          [pointee type, address space]
563      if (Record.size() < 1)
564        return Error("Invalid POINTER type record");
565      unsigned AddressSpace = 0;
566      if (Record.size() == 2)
567        AddressSpace = Record[1];
568      ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                        AddressSpace);
570      break;
571    }
572    case bitc::TYPE_CODE_FUNCTION: {
573      // FIXME: attrid is dead, remove it in LLVM 3.0
574      // FUNCTION: [vararg, attrid, retty, paramty x N]
575      if (Record.size() < 3)
576        return Error("Invalid FUNCTION type record");
577      std::vector<const Type*> ArgTys;
578      for (unsigned i = 3, e = Record.size(); i != e; ++i)
579        ArgTys.push_back(getTypeByID(Record[i], true));
580
581      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                   Record[0]);
583      break;
584    }
585    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586      if (Record.size() < 1)
587        return Error("Invalid STRUCT type record");
588      std::vector<const Type*> EltTys;
589      for (unsigned i = 1, e = Record.size(); i != e; ++i)
590        EltTys.push_back(getTypeByID(Record[i], true));
591      ResultTy = StructType::get(Context, EltTys, Record[0]);
592      break;
593    }
594    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595      if (Record.size() < 2)
596        return Error("Invalid ARRAY type record");
597      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598      break;
599    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600      if (Record.size() < 2)
601        return Error("Invalid VECTOR type record");
602      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603      break;
604    }
605
606    if (NumRecords == TypeList.size()) {
607      // If this is a new type slot, just append it.
608      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609      ++NumRecords;
610    } else if (ResultTy == 0) {
611      // Otherwise, this was forward referenced, so an opaque type was created,
612      // but the result type is actually just an opaque.  Leave the one we
613      // created previously.
614      ++NumRecords;
615    } else {
616      // Otherwise, this was forward referenced, so an opaque type was created.
617      // Resolve the opaque type to the real type now.
618      assert(NumRecords < TypeList.size() && "Typelist imbalance");
619      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620
621      // Don't directly push the new type on the Tab. Instead we want to replace
622      // the opaque type we previously inserted with the new concrete value. The
623      // refinement from the abstract (opaque) type to the new type causes all
624      // uses of the abstract type to use the concrete type (NewTy). This will
625      // also cause the opaque type to be deleted.
626      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627
628      // This should have replaced the old opaque type with the new type in the
629      // value table... or with a preexisting type that was already in the
630      // system.  Let's just make sure it did.
631      assert(TypeList[NumRecords-1].get() != OldTy &&
632             "refineAbstractType didn't work!");
633    }
634  }
635}
636
637
638bool BitcodeReader::ParseTypeSymbolTable() {
639  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640    return Error("Malformed block record");
641
642  SmallVector<uint64_t, 64> Record;
643
644  // Read all the records for this type table.
645  std::string TypeName;
646  while (1) {
647    unsigned Code = Stream.ReadCode();
648    if (Code == bitc::END_BLOCK) {
649      if (Stream.ReadBlockEnd())
650        return Error("Error at end of type symbol table block");
651      return false;
652    }
653
654    if (Code == bitc::ENTER_SUBBLOCK) {
655      // No known subblocks, always skip them.
656      Stream.ReadSubBlockID();
657      if (Stream.SkipBlock())
658        return Error("Malformed block record");
659      continue;
660    }
661
662    if (Code == bitc::DEFINE_ABBREV) {
663      Stream.ReadAbbrevRecord();
664      continue;
665    }
666
667    // Read a record.
668    Record.clear();
669    switch (Stream.ReadRecord(Code, Record)) {
670    default:  // Default behavior: unknown type.
671      break;
672    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673      if (ConvertToString(Record, 1, TypeName))
674        return Error("Invalid TST_ENTRY record");
675      unsigned TypeID = Record[0];
676      if (TypeID >= TypeList.size())
677        return Error("Invalid Type ID in TST_ENTRY record");
678
679      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680      TypeName.clear();
681      break;
682    }
683  }
684}
685
686bool BitcodeReader::ParseValueSymbolTable() {
687  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688    return Error("Malformed block record");
689
690  SmallVector<uint64_t, 64> Record;
691
692  // Read all the records for this value table.
693  SmallString<128> ValueName;
694  while (1) {
695    unsigned Code = Stream.ReadCode();
696    if (Code == bitc::END_BLOCK) {
697      if (Stream.ReadBlockEnd())
698        return Error("Error at end of value symbol table block");
699      return false;
700    }
701    if (Code == bitc::ENTER_SUBBLOCK) {
702      // No known subblocks, always skip them.
703      Stream.ReadSubBlockID();
704      if (Stream.SkipBlock())
705        return Error("Malformed block record");
706      continue;
707    }
708
709    if (Code == bitc::DEFINE_ABBREV) {
710      Stream.ReadAbbrevRecord();
711      continue;
712    }
713
714    // Read a record.
715    Record.clear();
716    switch (Stream.ReadRecord(Code, Record)) {
717    default:  // Default behavior: unknown type.
718      break;
719    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720      if (ConvertToString(Record, 1, ValueName))
721        return Error("Invalid VST_ENTRY record");
722      unsigned ValueID = Record[0];
723      if (ValueID >= ValueList.size())
724        return Error("Invalid Value ID in VST_ENTRY record");
725      Value *V = ValueList[ValueID];
726
727      V->setName(StringRef(ValueName.data(), ValueName.size()));
728      ValueName.clear();
729      break;
730    }
731    case bitc::VST_CODE_BBENTRY: {
732      if (ConvertToString(Record, 1, ValueName))
733        return Error("Invalid VST_BBENTRY record");
734      BasicBlock *BB = getBasicBlock(Record[0]);
735      if (BB == 0)
736        return Error("Invalid BB ID in VST_BBENTRY record");
737
738      BB->setName(StringRef(ValueName.data(), ValueName.size()));
739      ValueName.clear();
740      break;
741    }
742    }
743  }
744}
745
746bool BitcodeReader::ParseMetadata() {
747  unsigned NextMDValueNo = MDValueList.size();
748
749  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750    return Error("Malformed block record");
751
752  SmallVector<uint64_t, 64> Record;
753
754  // Read all the records.
755  while (1) {
756    unsigned Code = Stream.ReadCode();
757    if (Code == bitc::END_BLOCK) {
758      if (Stream.ReadBlockEnd())
759        return Error("Error at end of PARAMATTR block");
760      return false;
761    }
762
763    if (Code == bitc::ENTER_SUBBLOCK) {
764      // No known subblocks, always skip them.
765      Stream.ReadSubBlockID();
766      if (Stream.SkipBlock())
767        return Error("Malformed block record");
768      continue;
769    }
770
771    if (Code == bitc::DEFINE_ABBREV) {
772      Stream.ReadAbbrevRecord();
773      continue;
774    }
775
776    bool IsFunctionLocal = false;
777    // Read a record.
778    Record.clear();
779    Code = Stream.ReadRecord(Code, Record);
780    switch (Code) {
781    default:  // Default behavior: ignore.
782      break;
783    case bitc::METADATA_NAME: {
784      // Read named of the named metadata.
785      unsigned NameLength = Record.size();
786      SmallString<8> Name;
787      Name.resize(NameLength);
788      for (unsigned i = 0; i != NameLength; ++i)
789        Name[i] = Record[i];
790      Record.clear();
791      Code = Stream.ReadCode();
792
793      // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
794      // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
795      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
796      if (NextBitCode == bitc::METADATA_NAMED_NODE) {
797        LLVM2_7MetadataDetected = true;
798      } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
799        assert ( 0 && "Invalid Named Metadata record");
800
801      // Read named metadata elements.
802      unsigned Size = Record.size();
803      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
804      for (unsigned i = 0; i != Size; ++i) {
805        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
806        if (MD == 0)
807          return Error("Malformed metadata record");
808        NMD->addOperand(MD);
809      }
810      // Backwards compatibility hack: NamedMDValues used to be Values,
811      // and they got their own slots in the value numbering. They are no
812      // longer Values, however we still need to account for them in the
813      // numbering in order to be able to read old bitcode files.
814      // FIXME: Remove this in LLVM 3.0.
815      if (LLVM2_7MetadataDetected)
816        MDValueList.AssignValue(0, NextMDValueNo++);
817      break;
818    }
819    case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
820    case bitc::METADATA_FN_NODE2:
821      IsFunctionLocal = true;
822      // fall-through
823    case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
824    case bitc::METADATA_NODE2: {
825
826      // Detect 2.7-era metadata.
827      // FIXME: Remove in LLVM 3.0.
828      if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
829        LLVM2_7MetadataDetected = true;
830
831      if (Record.size() % 2 == 1)
832        return Error("Invalid METADATA_NODE2 record");
833
834      unsigned Size = Record.size();
835      SmallVector<Value*, 8> Elts;
836      for (unsigned i = 0; i != Size; i += 2) {
837        const Type *Ty = getTypeByID(Record[i]);
838        if (!Ty) return Error("Invalid METADATA_NODE2 record");
839        if (Ty->isMetadataTy())
840          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
841        else if (!Ty->isVoidTy())
842          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
843        else
844          Elts.push_back(NULL);
845      }
846      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
847      IsFunctionLocal = false;
848      MDValueList.AssignValue(V, NextMDValueNo++);
849      break;
850    }
851    case bitc::METADATA_STRING: {
852      unsigned MDStringLength = Record.size();
853      SmallString<8> String;
854      String.resize(MDStringLength);
855      for (unsigned i = 0; i != MDStringLength; ++i)
856        String[i] = Record[i];
857      Value *V = MDString::get(Context,
858                               StringRef(String.data(), String.size()));
859      MDValueList.AssignValue(V, NextMDValueNo++);
860      break;
861    }
862    case bitc::METADATA_KIND: {
863      unsigned RecordLength = Record.size();
864      if (Record.empty() || RecordLength < 2)
865        return Error("Invalid METADATA_KIND record");
866      SmallString<8> Name;
867      Name.resize(RecordLength-1);
868      unsigned Kind = Record[0];
869      for (unsigned i = 1; i != RecordLength; ++i)
870        Name[i-1] = Record[i];
871
872      unsigned NewKind = TheModule->getMDKindID(Name.str());
873      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
874        return Error("Conflicting METADATA_KIND records");
875      break;
876    }
877    }
878  }
879}
880
881/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
882/// the LSB for dense VBR encoding.
883static uint64_t DecodeSignRotatedValue(uint64_t V) {
884  if ((V & 1) == 0)
885    return V >> 1;
886  if (V != 1)
887    return -(V >> 1);
888  // There is no such thing as -0 with integers.  "-0" really means MININT.
889  return 1ULL << 63;
890}
891
892/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
893/// values and aliases that we can.
894bool BitcodeReader::ResolveGlobalAndAliasInits() {
895  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
896  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
897
898  GlobalInitWorklist.swap(GlobalInits);
899  AliasInitWorklist.swap(AliasInits);
900
901  while (!GlobalInitWorklist.empty()) {
902    unsigned ValID = GlobalInitWorklist.back().second;
903    if (ValID >= ValueList.size()) {
904      // Not ready to resolve this yet, it requires something later in the file.
905      GlobalInits.push_back(GlobalInitWorklist.back());
906    } else {
907      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
908        GlobalInitWorklist.back().first->setInitializer(C);
909      else
910        return Error("Global variable initializer is not a constant!");
911    }
912    GlobalInitWorklist.pop_back();
913  }
914
915  while (!AliasInitWorklist.empty()) {
916    unsigned ValID = AliasInitWorklist.back().second;
917    if (ValID >= ValueList.size()) {
918      AliasInits.push_back(AliasInitWorklist.back());
919    } else {
920      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
921        AliasInitWorklist.back().first->setAliasee(C);
922      else
923        return Error("Alias initializer is not a constant!");
924    }
925    AliasInitWorklist.pop_back();
926  }
927  return false;
928}
929
930bool BitcodeReader::ParseConstants() {
931  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
932    return Error("Malformed block record");
933
934  SmallVector<uint64_t, 64> Record;
935
936  // Read all the records for this value table.
937  const Type *CurTy = Type::getInt32Ty(Context);
938  unsigned NextCstNo = ValueList.size();
939  while (1) {
940    unsigned Code = Stream.ReadCode();
941    if (Code == bitc::END_BLOCK)
942      break;
943
944    if (Code == bitc::ENTER_SUBBLOCK) {
945      // No known subblocks, always skip them.
946      Stream.ReadSubBlockID();
947      if (Stream.SkipBlock())
948        return Error("Malformed block record");
949      continue;
950    }
951
952    if (Code == bitc::DEFINE_ABBREV) {
953      Stream.ReadAbbrevRecord();
954      continue;
955    }
956
957    // Read a record.
958    Record.clear();
959    Value *V = 0;
960    unsigned BitCode = Stream.ReadRecord(Code, Record);
961    switch (BitCode) {
962    default:  // Default behavior: unknown constant
963    case bitc::CST_CODE_UNDEF:     // UNDEF
964      V = UndefValue::get(CurTy);
965      break;
966    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
967      if (Record.empty())
968        return Error("Malformed CST_SETTYPE record");
969      if (Record[0] >= TypeList.size())
970        return Error("Invalid Type ID in CST_SETTYPE record");
971      CurTy = TypeList[Record[0]];
972      continue;  // Skip the ValueList manipulation.
973    case bitc::CST_CODE_NULL:      // NULL
974      V = Constant::getNullValue(CurTy);
975      break;
976    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
977      if (!CurTy->isIntegerTy() || Record.empty())
978        return Error("Invalid CST_INTEGER record");
979      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
980      break;
981    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
982      if (!CurTy->isIntegerTy() || Record.empty())
983        return Error("Invalid WIDE_INTEGER record");
984
985      unsigned NumWords = Record.size();
986      SmallVector<uint64_t, 8> Words;
987      Words.resize(NumWords);
988      for (unsigned i = 0; i != NumWords; ++i)
989        Words[i] = DecodeSignRotatedValue(Record[i]);
990      V = ConstantInt::get(Context,
991                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
992                           NumWords, &Words[0]));
993      break;
994    }
995    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
996      if (Record.empty())
997        return Error("Invalid FLOAT record");
998      if (CurTy->isFloatTy())
999        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1000      else if (CurTy->isDoubleTy())
1001        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1002      else if (CurTy->isX86_FP80Ty()) {
1003        // Bits are not stored the same way as a normal i80 APInt, compensate.
1004        uint64_t Rearrange[2];
1005        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1006        Rearrange[1] = Record[0] >> 48;
1007        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1008      } else if (CurTy->isFP128Ty())
1009        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1010      else if (CurTy->isPPC_FP128Ty())
1011        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1012      else
1013        V = UndefValue::get(CurTy);
1014      break;
1015    }
1016
1017    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1018      if (Record.empty())
1019        return Error("Invalid CST_AGGREGATE record");
1020
1021      unsigned Size = Record.size();
1022      std::vector<Constant*> Elts;
1023
1024      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1025        for (unsigned i = 0; i != Size; ++i)
1026          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1027                                                     STy->getElementType(i)));
1028        V = ConstantStruct::get(STy, Elts);
1029      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1030        const Type *EltTy = ATy->getElementType();
1031        for (unsigned i = 0; i != Size; ++i)
1032          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1033        V = ConstantArray::get(ATy, Elts);
1034      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1035        const Type *EltTy = VTy->getElementType();
1036        for (unsigned i = 0; i != Size; ++i)
1037          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1038        V = ConstantVector::get(Elts);
1039      } else {
1040        V = UndefValue::get(CurTy);
1041      }
1042      break;
1043    }
1044    case bitc::CST_CODE_STRING: { // STRING: [values]
1045      if (Record.empty())
1046        return Error("Invalid CST_AGGREGATE record");
1047
1048      const ArrayType *ATy = cast<ArrayType>(CurTy);
1049      const Type *EltTy = ATy->getElementType();
1050
1051      unsigned Size = Record.size();
1052      std::vector<Constant*> Elts;
1053      for (unsigned i = 0; i != Size; ++i)
1054        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1055      V = ConstantArray::get(ATy, Elts);
1056      break;
1057    }
1058    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1059      if (Record.empty())
1060        return Error("Invalid CST_AGGREGATE record");
1061
1062      const ArrayType *ATy = cast<ArrayType>(CurTy);
1063      const Type *EltTy = ATy->getElementType();
1064
1065      unsigned Size = Record.size();
1066      std::vector<Constant*> Elts;
1067      for (unsigned i = 0; i != Size; ++i)
1068        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1069      Elts.push_back(Constant::getNullValue(EltTy));
1070      V = ConstantArray::get(ATy, Elts);
1071      break;
1072    }
1073    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1074      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1075      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1076      if (Opc < 0) {
1077        V = UndefValue::get(CurTy);  // Unknown binop.
1078      } else {
1079        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1080        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1081        unsigned Flags = 0;
1082        if (Record.size() >= 4) {
1083          if (Opc == Instruction::Add ||
1084              Opc == Instruction::Sub ||
1085              Opc == Instruction::Mul ||
1086              Opc == Instruction::Shl) {
1087            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1088              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1089            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1090              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1091          } else if (Opc == Instruction::SDiv ||
1092                     Opc == Instruction::UDiv ||
1093                     Opc == Instruction::LShr ||
1094                     Opc == Instruction::AShr) {
1095            if (Record[3] & (1 << bitc::PEO_EXACT))
1096              Flags |= SDivOperator::IsExact;
1097          }
1098        }
1099        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1100      }
1101      break;
1102    }
1103    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1104      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1105      int Opc = GetDecodedCastOpcode(Record[0]);
1106      if (Opc < 0) {
1107        V = UndefValue::get(CurTy);  // Unknown cast.
1108      } else {
1109        const Type *OpTy = getTypeByID(Record[1]);
1110        if (!OpTy) return Error("Invalid CE_CAST record");
1111        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1112        V = ConstantExpr::getCast(Opc, Op, CurTy);
1113      }
1114      break;
1115    }
1116    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1117    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1118      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1119      SmallVector<Constant*, 16> Elts;
1120      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1121        const Type *ElTy = getTypeByID(Record[i]);
1122        if (!ElTy) return Error("Invalid CE_GEP record");
1123        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1124      }
1125      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1126        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1127                                                   Elts.size()-1);
1128      else
1129        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1130                                           Elts.size()-1);
1131      break;
1132    }
1133    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1134      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1135      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1136                                                              Type::getInt1Ty(Context)),
1137                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1138                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1139      break;
1140    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1141      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1142      const VectorType *OpTy =
1143        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1144      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1145      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1146      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1147      V = ConstantExpr::getExtractElement(Op0, Op1);
1148      break;
1149    }
1150    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1151      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1152      if (Record.size() < 3 || OpTy == 0)
1153        return Error("Invalid CE_INSERTELT record");
1154      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1155      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1156                                                  OpTy->getElementType());
1157      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1158      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1159      break;
1160    }
1161    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1162      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1163      if (Record.size() < 3 || OpTy == 0)
1164        return Error("Invalid CE_SHUFFLEVEC record");
1165      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1166      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1167      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1168                                                 OpTy->getNumElements());
1169      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1170      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1171      break;
1172    }
1173    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1174      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1175      const VectorType *OpTy =
1176        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1177      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1178        return Error("Invalid CE_SHUFVEC_EX record");
1179      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1180      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1181      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1182                                                 RTy->getNumElements());
1183      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1184      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1185      break;
1186    }
1187    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1188      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1189      const Type *OpTy = getTypeByID(Record[0]);
1190      if (OpTy == 0) return Error("Invalid CE_CMP record");
1191      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1192      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1193
1194      if (OpTy->isFPOrFPVectorTy())
1195        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1196      else
1197        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1198      break;
1199    }
1200    case bitc::CST_CODE_INLINEASM: {
1201      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1202      std::string AsmStr, ConstrStr;
1203      bool HasSideEffects = Record[0] & 1;
1204      bool IsAlignStack = Record[0] >> 1;
1205      unsigned AsmStrSize = Record[1];
1206      if (2+AsmStrSize >= Record.size())
1207        return Error("Invalid INLINEASM record");
1208      unsigned ConstStrSize = Record[2+AsmStrSize];
1209      if (3+AsmStrSize+ConstStrSize > Record.size())
1210        return Error("Invalid INLINEASM record");
1211
1212      for (unsigned i = 0; i != AsmStrSize; ++i)
1213        AsmStr += (char)Record[2+i];
1214      for (unsigned i = 0; i != ConstStrSize; ++i)
1215        ConstrStr += (char)Record[3+AsmStrSize+i];
1216      const PointerType *PTy = cast<PointerType>(CurTy);
1217      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1218                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1219      break;
1220    }
1221    case bitc::CST_CODE_BLOCKADDRESS:{
1222      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1223      const Type *FnTy = getTypeByID(Record[0]);
1224      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1225      Function *Fn =
1226        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1227      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1228
1229      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1230                                                  Type::getInt8Ty(Context),
1231                                            false, GlobalValue::InternalLinkage,
1232                                                  0, "");
1233      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1234      V = FwdRef;
1235      break;
1236    }
1237    }
1238
1239    ValueList.AssignValue(V, NextCstNo);
1240    ++NextCstNo;
1241  }
1242
1243  if (NextCstNo != ValueList.size())
1244    return Error("Invalid constant reference!");
1245
1246  if (Stream.ReadBlockEnd())
1247    return Error("Error at end of constants block");
1248
1249  // Once all the constants have been read, go through and resolve forward
1250  // references.
1251  ValueList.ResolveConstantForwardRefs();
1252  return false;
1253}
1254
1255/// RememberAndSkipFunctionBody - When we see the block for a function body,
1256/// remember where it is and then skip it.  This lets us lazily deserialize the
1257/// functions.
1258bool BitcodeReader::RememberAndSkipFunctionBody() {
1259  // Get the function we are talking about.
1260  if (FunctionsWithBodies.empty())
1261    return Error("Insufficient function protos");
1262
1263  Function *Fn = FunctionsWithBodies.back();
1264  FunctionsWithBodies.pop_back();
1265
1266  // Save the current stream state.
1267  uint64_t CurBit = Stream.GetCurrentBitNo();
1268  DeferredFunctionInfo[Fn] = CurBit;
1269
1270  // Skip over the function block for now.
1271  if (Stream.SkipBlock())
1272    return Error("Malformed block record");
1273  return false;
1274}
1275
1276bool BitcodeReader::ParseModule() {
1277  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1278    return Error("Malformed block record");
1279
1280  SmallVector<uint64_t, 64> Record;
1281  std::vector<std::string> SectionTable;
1282  std::vector<std::string> GCTable;
1283
1284  // Read all the records for this module.
1285  while (!Stream.AtEndOfStream()) {
1286    unsigned Code = Stream.ReadCode();
1287    if (Code == bitc::END_BLOCK) {
1288      if (Stream.ReadBlockEnd())
1289        return Error("Error at end of module block");
1290
1291      // Patch the initializers for globals and aliases up.
1292      ResolveGlobalAndAliasInits();
1293      if (!GlobalInits.empty() || !AliasInits.empty())
1294        return Error("Malformed global initializer set");
1295      if (!FunctionsWithBodies.empty())
1296        return Error("Too few function bodies found");
1297
1298      // Look for intrinsic functions which need to be upgraded at some point
1299      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1300           FI != FE; ++FI) {
1301        Function* NewFn;
1302        if (UpgradeIntrinsicFunction(FI, NewFn))
1303          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1304      }
1305
1306      // Look for global variables which need to be renamed.
1307      for (Module::global_iterator
1308             GI = TheModule->global_begin(), GE = TheModule->global_end();
1309           GI != GE; ++GI)
1310        UpgradeGlobalVariable(GI);
1311
1312      // Force deallocation of memory for these vectors to favor the client that
1313      // want lazy deserialization.
1314      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1315      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1316      std::vector<Function*>().swap(FunctionsWithBodies);
1317      return false;
1318    }
1319
1320    if (Code == bitc::ENTER_SUBBLOCK) {
1321      switch (Stream.ReadSubBlockID()) {
1322      default:  // Skip unknown content.
1323        if (Stream.SkipBlock())
1324          return Error("Malformed block record");
1325        break;
1326      case bitc::BLOCKINFO_BLOCK_ID:
1327        if (Stream.ReadBlockInfoBlock())
1328          return Error("Malformed BlockInfoBlock");
1329        break;
1330      case bitc::PARAMATTR_BLOCK_ID:
1331        if (ParseAttributeBlock())
1332          return true;
1333        break;
1334      case bitc::TYPE_BLOCK_ID:
1335        if (ParseTypeTable())
1336          return true;
1337        break;
1338      case bitc::TYPE_SYMTAB_BLOCK_ID:
1339        if (ParseTypeSymbolTable())
1340          return true;
1341        break;
1342      case bitc::VALUE_SYMTAB_BLOCK_ID:
1343        if (ParseValueSymbolTable())
1344          return true;
1345        break;
1346      case bitc::CONSTANTS_BLOCK_ID:
1347        if (ParseConstants() || ResolveGlobalAndAliasInits())
1348          return true;
1349        break;
1350      case bitc::METADATA_BLOCK_ID:
1351        if (ParseMetadata())
1352          return true;
1353        break;
1354      case bitc::FUNCTION_BLOCK_ID:
1355        // If this is the first function body we've seen, reverse the
1356        // FunctionsWithBodies list.
1357        if (!HasReversedFunctionsWithBodies) {
1358          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1359          HasReversedFunctionsWithBodies = true;
1360        }
1361
1362        if (RememberAndSkipFunctionBody())
1363          return true;
1364        break;
1365      }
1366      continue;
1367    }
1368
1369    if (Code == bitc::DEFINE_ABBREV) {
1370      Stream.ReadAbbrevRecord();
1371      continue;
1372    }
1373
1374    // Read a record.
1375    switch (Stream.ReadRecord(Code, Record)) {
1376    default: break;  // Default behavior, ignore unknown content.
1377    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1378      if (Record.size() < 1)
1379        return Error("Malformed MODULE_CODE_VERSION");
1380      // Only version #0 is supported so far.
1381      if (Record[0] != 0)
1382        return Error("Unknown bitstream version!");
1383      break;
1384    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1385      std::string S;
1386      if (ConvertToString(Record, 0, S))
1387        return Error("Invalid MODULE_CODE_TRIPLE record");
1388      TheModule->setTargetTriple(S);
1389      break;
1390    }
1391    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1392      std::string S;
1393      if (ConvertToString(Record, 0, S))
1394        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1395      TheModule->setDataLayout(S);
1396      break;
1397    }
1398    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1399      std::string S;
1400      if (ConvertToString(Record, 0, S))
1401        return Error("Invalid MODULE_CODE_ASM record");
1402      TheModule->setModuleInlineAsm(S);
1403      break;
1404    }
1405    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1406      std::string S;
1407      if (ConvertToString(Record, 0, S))
1408        return Error("Invalid MODULE_CODE_DEPLIB record");
1409      TheModule->addLibrary(S);
1410      break;
1411    }
1412    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1413      std::string S;
1414      if (ConvertToString(Record, 0, S))
1415        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1416      SectionTable.push_back(S);
1417      break;
1418    }
1419    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1420      std::string S;
1421      if (ConvertToString(Record, 0, S))
1422        return Error("Invalid MODULE_CODE_GCNAME record");
1423      GCTable.push_back(S);
1424      break;
1425    }
1426    // GLOBALVAR: [pointer type, isconst, initid,
1427    //             linkage, alignment, section, visibility, threadlocal,
1428    //             unnamed_addr]
1429    case bitc::MODULE_CODE_GLOBALVAR: {
1430      if (Record.size() < 6)
1431        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1432      const Type *Ty = getTypeByID(Record[0]);
1433      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1434      if (!Ty->isPointerTy())
1435        return Error("Global not a pointer type!");
1436      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1437      Ty = cast<PointerType>(Ty)->getElementType();
1438
1439      bool isConstant = Record[1];
1440      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1441      unsigned Alignment = (1 << Record[4]) >> 1;
1442      std::string Section;
1443      if (Record[5]) {
1444        if (Record[5]-1 >= SectionTable.size())
1445          return Error("Invalid section ID");
1446        Section = SectionTable[Record[5]-1];
1447      }
1448      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1449      if (Record.size() > 6)
1450        Visibility = GetDecodedVisibility(Record[6]);
1451      bool isThreadLocal = false;
1452      if (Record.size() > 7)
1453        isThreadLocal = Record[7];
1454
1455      bool UnnamedAddr = false;
1456      if (Record.size() > 8)
1457        UnnamedAddr = Record[8];
1458
1459      GlobalVariable *NewGV =
1460        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1461                           isThreadLocal, AddressSpace);
1462      NewGV->setAlignment(Alignment);
1463      if (!Section.empty())
1464        NewGV->setSection(Section);
1465      NewGV->setVisibility(Visibility);
1466      NewGV->setThreadLocal(isThreadLocal);
1467      NewGV->setUnnamedAddr(UnnamedAddr);
1468
1469      ValueList.push_back(NewGV);
1470
1471      // Remember which value to use for the global initializer.
1472      if (unsigned InitID = Record[2])
1473        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1474      break;
1475    }
1476    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1477    //             alignment, section, visibility, gc, unnamed_addr]
1478    case bitc::MODULE_CODE_FUNCTION: {
1479      if (Record.size() < 8)
1480        return Error("Invalid MODULE_CODE_FUNCTION record");
1481      const Type *Ty = getTypeByID(Record[0]);
1482      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1483      if (!Ty->isPointerTy())
1484        return Error("Function not a pointer type!");
1485      const FunctionType *FTy =
1486        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1487      if (!FTy)
1488        return Error("Function not a pointer to function type!");
1489
1490      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1491                                        "", TheModule);
1492
1493      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1494      bool isProto = Record[2];
1495      Func->setLinkage(GetDecodedLinkage(Record[3]));
1496      Func->setAttributes(getAttributes(Record[4]));
1497
1498      Func->setAlignment((1 << Record[5]) >> 1);
1499      if (Record[6]) {
1500        if (Record[6]-1 >= SectionTable.size())
1501          return Error("Invalid section ID");
1502        Func->setSection(SectionTable[Record[6]-1]);
1503      }
1504      Func->setVisibility(GetDecodedVisibility(Record[7]));
1505      if (Record.size() > 8 && Record[8]) {
1506        if (Record[8]-1 > GCTable.size())
1507          return Error("Invalid GC ID");
1508        Func->setGC(GCTable[Record[8]-1].c_str());
1509      }
1510      bool UnnamedAddr = false;
1511      if (Record.size() > 9)
1512        UnnamedAddr = Record[9];
1513      Func->setUnnamedAddr(UnnamedAddr);
1514      ValueList.push_back(Func);
1515
1516      // If this is a function with a body, remember the prototype we are
1517      // creating now, so that we can match up the body with them later.
1518      if (!isProto)
1519        FunctionsWithBodies.push_back(Func);
1520      break;
1521    }
1522    // ALIAS: [alias type, aliasee val#, linkage]
1523    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1524    case bitc::MODULE_CODE_ALIAS: {
1525      if (Record.size() < 3)
1526        return Error("Invalid MODULE_ALIAS record");
1527      const Type *Ty = getTypeByID(Record[0]);
1528      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1529      if (!Ty->isPointerTy())
1530        return Error("Function not a pointer type!");
1531
1532      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1533                                           "", 0, TheModule);
1534      // Old bitcode files didn't have visibility field.
1535      if (Record.size() > 3)
1536        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1537      ValueList.push_back(NewGA);
1538      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1539      break;
1540    }
1541    /// MODULE_CODE_PURGEVALS: [numvals]
1542    case bitc::MODULE_CODE_PURGEVALS:
1543      // Trim down the value list to the specified size.
1544      if (Record.size() < 1 || Record[0] > ValueList.size())
1545        return Error("Invalid MODULE_PURGEVALS record");
1546      ValueList.shrinkTo(Record[0]);
1547      break;
1548    }
1549    Record.clear();
1550  }
1551
1552  return Error("Premature end of bitstream");
1553}
1554
1555bool BitcodeReader::ParseBitcodeInto(Module *M) {
1556  TheModule = 0;
1557
1558  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1559  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1560
1561  if (Buffer->getBufferSize() & 3) {
1562    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1563      return Error("Invalid bitcode signature");
1564    else
1565      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1566  }
1567
1568  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1569  // The magic number is 0x0B17C0DE stored in little endian.
1570  if (isBitcodeWrapper(BufPtr, BufEnd))
1571    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1572      return Error("Invalid bitcode wrapper header");
1573
1574  StreamFile.init(BufPtr, BufEnd);
1575  Stream.init(StreamFile);
1576
1577  // Sniff for the signature.
1578  if (Stream.Read(8) != 'B' ||
1579      Stream.Read(8) != 'C' ||
1580      Stream.Read(4) != 0x0 ||
1581      Stream.Read(4) != 0xC ||
1582      Stream.Read(4) != 0xE ||
1583      Stream.Read(4) != 0xD)
1584    return Error("Invalid bitcode signature");
1585
1586  // We expect a number of well-defined blocks, though we don't necessarily
1587  // need to understand them all.
1588  while (!Stream.AtEndOfStream()) {
1589    unsigned Code = Stream.ReadCode();
1590
1591    if (Code != bitc::ENTER_SUBBLOCK) {
1592
1593      // The ranlib in xcode 4 will align archive members by appending newlines to the
1594      // end of them. If this file size is a multiple of 4 but not 8, we have to read and
1595      // ignore these final 4 bytes :-(
1596      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1597          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1598	  Stream.AtEndOfStream())
1599        return false;
1600
1601      return Error("Invalid record at top-level");
1602    }
1603
1604    unsigned BlockID = Stream.ReadSubBlockID();
1605
1606    // We only know the MODULE subblock ID.
1607    switch (BlockID) {
1608    case bitc::BLOCKINFO_BLOCK_ID:
1609      if (Stream.ReadBlockInfoBlock())
1610        return Error("Malformed BlockInfoBlock");
1611      break;
1612    case bitc::MODULE_BLOCK_ID:
1613      // Reject multiple MODULE_BLOCK's in a single bitstream.
1614      if (TheModule)
1615        return Error("Multiple MODULE_BLOCKs in same stream");
1616      TheModule = M;
1617      if (ParseModule())
1618        return true;
1619      break;
1620    default:
1621      if (Stream.SkipBlock())
1622        return Error("Malformed block record");
1623      break;
1624    }
1625  }
1626
1627  return false;
1628}
1629
1630bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1631  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1632    return Error("Malformed block record");
1633
1634  SmallVector<uint64_t, 64> Record;
1635
1636  // Read all the records for this module.
1637  while (!Stream.AtEndOfStream()) {
1638    unsigned Code = Stream.ReadCode();
1639    if (Code == bitc::END_BLOCK) {
1640      if (Stream.ReadBlockEnd())
1641        return Error("Error at end of module block");
1642
1643      return false;
1644    }
1645
1646    if (Code == bitc::ENTER_SUBBLOCK) {
1647      switch (Stream.ReadSubBlockID()) {
1648      default:  // Skip unknown content.
1649        if (Stream.SkipBlock())
1650          return Error("Malformed block record");
1651        break;
1652      }
1653      continue;
1654    }
1655
1656    if (Code == bitc::DEFINE_ABBREV) {
1657      Stream.ReadAbbrevRecord();
1658      continue;
1659    }
1660
1661    // Read a record.
1662    switch (Stream.ReadRecord(Code, Record)) {
1663    default: break;  // Default behavior, ignore unknown content.
1664    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1665      if (Record.size() < 1)
1666        return Error("Malformed MODULE_CODE_VERSION");
1667      // Only version #0 is supported so far.
1668      if (Record[0] != 0)
1669        return Error("Unknown bitstream version!");
1670      break;
1671    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1672      std::string S;
1673      if (ConvertToString(Record, 0, S))
1674        return Error("Invalid MODULE_CODE_TRIPLE record");
1675      Triple = S;
1676      break;
1677    }
1678    }
1679    Record.clear();
1680  }
1681
1682  return Error("Premature end of bitstream");
1683}
1684
1685bool BitcodeReader::ParseTriple(std::string &Triple) {
1686  if (Buffer->getBufferSize() & 3)
1687    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1688
1689  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1690  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1691
1692  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1693  // The magic number is 0x0B17C0DE stored in little endian.
1694  if (isBitcodeWrapper(BufPtr, BufEnd))
1695    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1696      return Error("Invalid bitcode wrapper header");
1697
1698  StreamFile.init(BufPtr, BufEnd);
1699  Stream.init(StreamFile);
1700
1701  // Sniff for the signature.
1702  if (Stream.Read(8) != 'B' ||
1703      Stream.Read(8) != 'C' ||
1704      Stream.Read(4) != 0x0 ||
1705      Stream.Read(4) != 0xC ||
1706      Stream.Read(4) != 0xE ||
1707      Stream.Read(4) != 0xD)
1708    return Error("Invalid bitcode signature");
1709
1710  // We expect a number of well-defined blocks, though we don't necessarily
1711  // need to understand them all.
1712  while (!Stream.AtEndOfStream()) {
1713    unsigned Code = Stream.ReadCode();
1714
1715    if (Code != bitc::ENTER_SUBBLOCK)
1716      return Error("Invalid record at top-level");
1717
1718    unsigned BlockID = Stream.ReadSubBlockID();
1719
1720    // We only know the MODULE subblock ID.
1721    switch (BlockID) {
1722    case bitc::MODULE_BLOCK_ID:
1723      if (ParseModuleTriple(Triple))
1724        return true;
1725      break;
1726    default:
1727      if (Stream.SkipBlock())
1728        return Error("Malformed block record");
1729      break;
1730    }
1731  }
1732
1733  return false;
1734}
1735
1736/// ParseMetadataAttachment - Parse metadata attachments.
1737bool BitcodeReader::ParseMetadataAttachment() {
1738  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1739    return Error("Malformed block record");
1740
1741  SmallVector<uint64_t, 64> Record;
1742  while(1) {
1743    unsigned Code = Stream.ReadCode();
1744    if (Code == bitc::END_BLOCK) {
1745      if (Stream.ReadBlockEnd())
1746        return Error("Error at end of PARAMATTR block");
1747      break;
1748    }
1749    if (Code == bitc::DEFINE_ABBREV) {
1750      Stream.ReadAbbrevRecord();
1751      continue;
1752    }
1753    // Read a metadata attachment record.
1754    Record.clear();
1755    switch (Stream.ReadRecord(Code, Record)) {
1756    default:  // Default behavior: ignore.
1757      break;
1758    // FIXME: Remove in LLVM 3.0.
1759    case bitc::METADATA_ATTACHMENT:
1760      LLVM2_7MetadataDetected = true;
1761    case bitc::METADATA_ATTACHMENT2: {
1762      unsigned RecordLength = Record.size();
1763      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1764        return Error ("Invalid METADATA_ATTACHMENT reader!");
1765      Instruction *Inst = InstructionList[Record[0]];
1766      for (unsigned i = 1; i != RecordLength; i = i+2) {
1767        unsigned Kind = Record[i];
1768        DenseMap<unsigned, unsigned>::iterator I =
1769          MDKindMap.find(Kind);
1770        if (I == MDKindMap.end())
1771          return Error("Invalid metadata kind ID");
1772        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1773        Inst->setMetadata(I->second, cast<MDNode>(Node));
1774      }
1775      break;
1776    }
1777    }
1778  }
1779  return false;
1780}
1781
1782/// ParseFunctionBody - Lazily parse the specified function body block.
1783bool BitcodeReader::ParseFunctionBody(Function *F) {
1784  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1785    return Error("Malformed block record");
1786
1787  InstructionList.clear();
1788  unsigned ModuleValueListSize = ValueList.size();
1789  unsigned ModuleMDValueListSize = MDValueList.size();
1790
1791  // Add all the function arguments to the value table.
1792  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1793    ValueList.push_back(I);
1794
1795  unsigned NextValueNo = ValueList.size();
1796  BasicBlock *CurBB = 0;
1797  unsigned CurBBNo = 0;
1798
1799  DebugLoc LastLoc;
1800
1801  // Read all the records.
1802  SmallVector<uint64_t, 64> Record;
1803  while (1) {
1804    unsigned Code = Stream.ReadCode();
1805    if (Code == bitc::END_BLOCK) {
1806      if (Stream.ReadBlockEnd())
1807        return Error("Error at end of function block");
1808      break;
1809    }
1810
1811    if (Code == bitc::ENTER_SUBBLOCK) {
1812      switch (Stream.ReadSubBlockID()) {
1813      default:  // Skip unknown content.
1814        if (Stream.SkipBlock())
1815          return Error("Malformed block record");
1816        break;
1817      case bitc::CONSTANTS_BLOCK_ID:
1818        if (ParseConstants()) return true;
1819        NextValueNo = ValueList.size();
1820        break;
1821      case bitc::VALUE_SYMTAB_BLOCK_ID:
1822        if (ParseValueSymbolTable()) return true;
1823        break;
1824      case bitc::METADATA_ATTACHMENT_ID:
1825        if (ParseMetadataAttachment()) return true;
1826        break;
1827      case bitc::METADATA_BLOCK_ID:
1828        if (ParseMetadata()) return true;
1829        break;
1830      }
1831      continue;
1832    }
1833
1834    if (Code == bitc::DEFINE_ABBREV) {
1835      Stream.ReadAbbrevRecord();
1836      continue;
1837    }
1838
1839    // Read a record.
1840    Record.clear();
1841    Instruction *I = 0;
1842    unsigned BitCode = Stream.ReadRecord(Code, Record);
1843    switch (BitCode) {
1844    default: // Default behavior: reject
1845      return Error("Unknown instruction");
1846    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1847      if (Record.size() < 1 || Record[0] == 0)
1848        return Error("Invalid DECLAREBLOCKS record");
1849      // Create all the basic blocks for the function.
1850      FunctionBBs.resize(Record[0]);
1851      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1852        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1853      CurBB = FunctionBBs[0];
1854      continue;
1855
1856
1857    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1858      // This record indicates that the last instruction is at the same
1859      // location as the previous instruction with a location.
1860      I = 0;
1861
1862      // Get the last instruction emitted.
1863      if (CurBB && !CurBB->empty())
1864        I = &CurBB->back();
1865      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1866               !FunctionBBs[CurBBNo-1]->empty())
1867        I = &FunctionBBs[CurBBNo-1]->back();
1868
1869      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1870      I->setDebugLoc(LastLoc);
1871      I = 0;
1872      continue;
1873
1874    // FIXME: Remove this in LLVM 3.0.
1875    case bitc::FUNC_CODE_DEBUG_LOC:
1876      LLVM2_7MetadataDetected = true;
1877    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1878      I = 0;     // Get the last instruction emitted.
1879      if (CurBB && !CurBB->empty())
1880        I = &CurBB->back();
1881      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1882               !FunctionBBs[CurBBNo-1]->empty())
1883        I = &FunctionBBs[CurBBNo-1]->back();
1884      if (I == 0 || Record.size() < 4)
1885        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1886
1887      unsigned Line = Record[0], Col = Record[1];
1888      unsigned ScopeID = Record[2], IAID = Record[3];
1889
1890      MDNode *Scope = 0, *IA = 0;
1891      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1892      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1893      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1894      I->setDebugLoc(LastLoc);
1895      I = 0;
1896      continue;
1897    }
1898
1899    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1900      unsigned OpNum = 0;
1901      Value *LHS, *RHS;
1902      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1903          getValue(Record, OpNum, LHS->getType(), RHS) ||
1904          OpNum+1 > Record.size())
1905        return Error("Invalid BINOP record");
1906
1907      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1908      if (Opc == -1) return Error("Invalid BINOP record");
1909      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1910      InstructionList.push_back(I);
1911      if (OpNum < Record.size()) {
1912        if (Opc == Instruction::Add ||
1913            Opc == Instruction::Sub ||
1914            Opc == Instruction::Mul ||
1915            Opc == Instruction::Shl) {
1916          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1917            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1918          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1919            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1920        } else if (Opc == Instruction::SDiv ||
1921                   Opc == Instruction::UDiv ||
1922                   Opc == Instruction::LShr ||
1923                   Opc == Instruction::AShr) {
1924          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1925            cast<BinaryOperator>(I)->setIsExact(true);
1926        }
1927      }
1928      break;
1929    }
1930    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1931      unsigned OpNum = 0;
1932      Value *Op;
1933      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1934          OpNum+2 != Record.size())
1935        return Error("Invalid CAST record");
1936
1937      const Type *ResTy = getTypeByID(Record[OpNum]);
1938      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1939      if (Opc == -1 || ResTy == 0)
1940        return Error("Invalid CAST record");
1941      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1942      InstructionList.push_back(I);
1943      break;
1944    }
1945    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1946    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1947      unsigned OpNum = 0;
1948      Value *BasePtr;
1949      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1950        return Error("Invalid GEP record");
1951
1952      SmallVector<Value*, 16> GEPIdx;
1953      while (OpNum != Record.size()) {
1954        Value *Op;
1955        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1956          return Error("Invalid GEP record");
1957        GEPIdx.push_back(Op);
1958      }
1959
1960      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1961      InstructionList.push_back(I);
1962      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1963        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1964      break;
1965    }
1966
1967    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1968                                       // EXTRACTVAL: [opty, opval, n x indices]
1969      unsigned OpNum = 0;
1970      Value *Agg;
1971      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1972        return Error("Invalid EXTRACTVAL record");
1973
1974      SmallVector<unsigned, 4> EXTRACTVALIdx;
1975      for (unsigned RecSize = Record.size();
1976           OpNum != RecSize; ++OpNum) {
1977        uint64_t Index = Record[OpNum];
1978        if ((unsigned)Index != Index)
1979          return Error("Invalid EXTRACTVAL index");
1980        EXTRACTVALIdx.push_back((unsigned)Index);
1981      }
1982
1983      I = ExtractValueInst::Create(Agg,
1984                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1985      InstructionList.push_back(I);
1986      break;
1987    }
1988
1989    case bitc::FUNC_CODE_INST_INSERTVAL: {
1990                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1991      unsigned OpNum = 0;
1992      Value *Agg;
1993      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1994        return Error("Invalid INSERTVAL record");
1995      Value *Val;
1996      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1997        return Error("Invalid INSERTVAL record");
1998
1999      SmallVector<unsigned, 4> INSERTVALIdx;
2000      for (unsigned RecSize = Record.size();
2001           OpNum != RecSize; ++OpNum) {
2002        uint64_t Index = Record[OpNum];
2003        if ((unsigned)Index != Index)
2004          return Error("Invalid INSERTVAL index");
2005        INSERTVALIdx.push_back((unsigned)Index);
2006      }
2007
2008      I = InsertValueInst::Create(Agg, Val,
2009                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
2010      InstructionList.push_back(I);
2011      break;
2012    }
2013
2014    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2015      // obsolete form of select
2016      // handles select i1 ... in old bitcode
2017      unsigned OpNum = 0;
2018      Value *TrueVal, *FalseVal, *Cond;
2019      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2020          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2021          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2022        return Error("Invalid SELECT record");
2023
2024      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2025      InstructionList.push_back(I);
2026      break;
2027    }
2028
2029    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2030      // new form of select
2031      // handles select i1 or select [N x i1]
2032      unsigned OpNum = 0;
2033      Value *TrueVal, *FalseVal, *Cond;
2034      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2035          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2036          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2037        return Error("Invalid SELECT record");
2038
2039      // select condition can be either i1 or [N x i1]
2040      if (const VectorType* vector_type =
2041          dyn_cast<const VectorType>(Cond->getType())) {
2042        // expect <n x i1>
2043        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2044          return Error("Invalid SELECT condition type");
2045      } else {
2046        // expect i1
2047        if (Cond->getType() != Type::getInt1Ty(Context))
2048          return Error("Invalid SELECT condition type");
2049      }
2050
2051      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2052      InstructionList.push_back(I);
2053      break;
2054    }
2055
2056    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2057      unsigned OpNum = 0;
2058      Value *Vec, *Idx;
2059      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2060          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2061        return Error("Invalid EXTRACTELT record");
2062      I = ExtractElementInst::Create(Vec, Idx);
2063      InstructionList.push_back(I);
2064      break;
2065    }
2066
2067    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2068      unsigned OpNum = 0;
2069      Value *Vec, *Elt, *Idx;
2070      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2071          getValue(Record, OpNum,
2072                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2073          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2074        return Error("Invalid INSERTELT record");
2075      I = InsertElementInst::Create(Vec, Elt, Idx);
2076      InstructionList.push_back(I);
2077      break;
2078    }
2079
2080    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2081      unsigned OpNum = 0;
2082      Value *Vec1, *Vec2, *Mask;
2083      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2084          getValue(Record, OpNum, Vec1->getType(), Vec2))
2085        return Error("Invalid SHUFFLEVEC record");
2086
2087      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2088        return Error("Invalid SHUFFLEVEC record");
2089      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2090      InstructionList.push_back(I);
2091      break;
2092    }
2093
2094    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2095      // Old form of ICmp/FCmp returning bool
2096      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2097      // both legal on vectors but had different behaviour.
2098    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2099      // FCmp/ICmp returning bool or vector of bool
2100
2101      unsigned OpNum = 0;
2102      Value *LHS, *RHS;
2103      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2104          getValue(Record, OpNum, LHS->getType(), RHS) ||
2105          OpNum+1 != Record.size())
2106        return Error("Invalid CMP record");
2107
2108      if (LHS->getType()->isFPOrFPVectorTy())
2109        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2110      else
2111        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2112      InstructionList.push_back(I);
2113      break;
2114    }
2115
2116    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2117      if (Record.size() != 2)
2118        return Error("Invalid GETRESULT record");
2119      unsigned OpNum = 0;
2120      Value *Op;
2121      getValueTypePair(Record, OpNum, NextValueNo, Op);
2122      unsigned Index = Record[1];
2123      I = ExtractValueInst::Create(Op, Index);
2124      InstructionList.push_back(I);
2125      break;
2126    }
2127
2128    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2129      {
2130        unsigned Size = Record.size();
2131        if (Size == 0) {
2132          I = ReturnInst::Create(Context);
2133          InstructionList.push_back(I);
2134          break;
2135        }
2136
2137        unsigned OpNum = 0;
2138        SmallVector<Value *,4> Vs;
2139        do {
2140          Value *Op = NULL;
2141          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2142            return Error("Invalid RET record");
2143          Vs.push_back(Op);
2144        } while(OpNum != Record.size());
2145
2146        const Type *ReturnType = F->getReturnType();
2147        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2148        if (Vs.size() > 1 ||
2149            (ReturnType->isStructTy() &&
2150             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2151          Value *RV = UndefValue::get(ReturnType);
2152          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2153            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2154            InstructionList.push_back(I);
2155            CurBB->getInstList().push_back(I);
2156            ValueList.AssignValue(I, NextValueNo++);
2157            RV = I;
2158          }
2159          I = ReturnInst::Create(Context, RV);
2160          InstructionList.push_back(I);
2161          break;
2162        }
2163
2164        I = ReturnInst::Create(Context, Vs[0]);
2165        InstructionList.push_back(I);
2166        break;
2167      }
2168    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2169      if (Record.size() != 1 && Record.size() != 3)
2170        return Error("Invalid BR record");
2171      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2172      if (TrueDest == 0)
2173        return Error("Invalid BR record");
2174
2175      if (Record.size() == 1) {
2176        I = BranchInst::Create(TrueDest);
2177        InstructionList.push_back(I);
2178      }
2179      else {
2180        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2181        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2182        if (FalseDest == 0 || Cond == 0)
2183          return Error("Invalid BR record");
2184        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2185        InstructionList.push_back(I);
2186      }
2187      break;
2188    }
2189    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2190      if (Record.size() < 3 || (Record.size() & 1) == 0)
2191        return Error("Invalid SWITCH record");
2192      const Type *OpTy = getTypeByID(Record[0]);
2193      Value *Cond = getFnValueByID(Record[1], OpTy);
2194      BasicBlock *Default = getBasicBlock(Record[2]);
2195      if (OpTy == 0 || Cond == 0 || Default == 0)
2196        return Error("Invalid SWITCH record");
2197      unsigned NumCases = (Record.size()-3)/2;
2198      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2199      InstructionList.push_back(SI);
2200      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2201        ConstantInt *CaseVal =
2202          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2203        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2204        if (CaseVal == 0 || DestBB == 0) {
2205          delete SI;
2206          return Error("Invalid SWITCH record!");
2207        }
2208        SI->addCase(CaseVal, DestBB);
2209      }
2210      I = SI;
2211      break;
2212    }
2213    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2214      if (Record.size() < 2)
2215        return Error("Invalid INDIRECTBR record");
2216      const Type *OpTy = getTypeByID(Record[0]);
2217      Value *Address = getFnValueByID(Record[1], OpTy);
2218      if (OpTy == 0 || Address == 0)
2219        return Error("Invalid INDIRECTBR record");
2220      unsigned NumDests = Record.size()-2;
2221      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2222      InstructionList.push_back(IBI);
2223      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2224        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2225          IBI->addDestination(DestBB);
2226        } else {
2227          delete IBI;
2228          return Error("Invalid INDIRECTBR record!");
2229        }
2230      }
2231      I = IBI;
2232      break;
2233    }
2234
2235    case bitc::FUNC_CODE_INST_INVOKE: {
2236      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2237      if (Record.size() < 4) return Error("Invalid INVOKE record");
2238      AttrListPtr PAL = getAttributes(Record[0]);
2239      unsigned CCInfo = Record[1];
2240      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2241      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2242
2243      unsigned OpNum = 4;
2244      Value *Callee;
2245      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2246        return Error("Invalid INVOKE record");
2247
2248      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2249      const FunctionType *FTy = !CalleeTy ? 0 :
2250        dyn_cast<FunctionType>(CalleeTy->getElementType());
2251
2252      // Check that the right number of fixed parameters are here.
2253      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2254          Record.size() < OpNum+FTy->getNumParams())
2255        return Error("Invalid INVOKE record");
2256
2257      SmallVector<Value*, 16> Ops;
2258      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2259        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2260        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2261      }
2262
2263      if (!FTy->isVarArg()) {
2264        if (Record.size() != OpNum)
2265          return Error("Invalid INVOKE record");
2266      } else {
2267        // Read type/value pairs for varargs params.
2268        while (OpNum != Record.size()) {
2269          Value *Op;
2270          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2271            return Error("Invalid INVOKE record");
2272          Ops.push_back(Op);
2273        }
2274      }
2275
2276      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2277                             Ops.begin(), Ops.end());
2278      InstructionList.push_back(I);
2279      cast<InvokeInst>(I)->setCallingConv(
2280        static_cast<CallingConv::ID>(CCInfo));
2281      cast<InvokeInst>(I)->setAttributes(PAL);
2282      break;
2283    }
2284    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2285      I = new UnwindInst(Context);
2286      InstructionList.push_back(I);
2287      break;
2288    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2289      I = new UnreachableInst(Context);
2290      InstructionList.push_back(I);
2291      break;
2292    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2293      if (Record.size() < 1 || ((Record.size()-1)&1))
2294        return Error("Invalid PHI record");
2295      const Type *Ty = getTypeByID(Record[0]);
2296      if (!Ty) return Error("Invalid PHI record");
2297
2298      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2299      InstructionList.push_back(PN);
2300
2301      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2302        Value *V = getFnValueByID(Record[1+i], Ty);
2303        BasicBlock *BB = getBasicBlock(Record[2+i]);
2304        if (!V || !BB) return Error("Invalid PHI record");
2305        PN->addIncoming(V, BB);
2306      }
2307      I = PN;
2308      break;
2309    }
2310
2311    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2312      // Autoupgrade malloc instruction to malloc call.
2313      // FIXME: Remove in LLVM 3.0.
2314      if (Record.size() < 3)
2315        return Error("Invalid MALLOC record");
2316      const PointerType *Ty =
2317        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2318      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2319      if (!Ty || !Size) return Error("Invalid MALLOC record");
2320      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2321      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2322      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2323      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2324      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2325                                 AllocSize, Size, NULL);
2326      InstructionList.push_back(I);
2327      break;
2328    }
2329    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2330      unsigned OpNum = 0;
2331      Value *Op;
2332      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2333          OpNum != Record.size())
2334        return Error("Invalid FREE record");
2335      if (!CurBB) return Error("Invalid free instruction with no BB");
2336      I = CallInst::CreateFree(Op, CurBB);
2337      InstructionList.push_back(I);
2338      break;
2339    }
2340    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2341      // For backward compatibility, tolerate a lack of an opty, and use i32.
2342      // Remove this in LLVM 3.0.
2343      if (Record.size() < 3 || Record.size() > 4)
2344        return Error("Invalid ALLOCA record");
2345      unsigned OpNum = 0;
2346      const PointerType *Ty =
2347        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2348      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2349                                              Type::getInt32Ty(Context);
2350      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2351      unsigned Align = Record[OpNum++];
2352      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2353      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2354      InstructionList.push_back(I);
2355      break;
2356    }
2357    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2358      unsigned OpNum = 0;
2359      Value *Op;
2360      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2361          OpNum+2 != Record.size())
2362        return Error("Invalid LOAD record");
2363
2364      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2365      InstructionList.push_back(I);
2366      break;
2367    }
2368    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2369      unsigned OpNum = 0;
2370      Value *Val, *Ptr;
2371      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2372          getValue(Record, OpNum,
2373                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2374          OpNum+2 != Record.size())
2375        return Error("Invalid STORE record");
2376
2377      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2378      InstructionList.push_back(I);
2379      break;
2380    }
2381    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2382      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2383      unsigned OpNum = 0;
2384      Value *Val, *Ptr;
2385      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2386          getValue(Record, OpNum,
2387                   PointerType::getUnqual(Val->getType()), Ptr)||
2388          OpNum+2 != Record.size())
2389        return Error("Invalid STORE record");
2390
2391      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2392      InstructionList.push_back(I);
2393      break;
2394    }
2395    // FIXME: Remove this in LLVM 3.0.
2396    case bitc::FUNC_CODE_INST_CALL:
2397      LLVM2_7MetadataDetected = true;
2398    case bitc::FUNC_CODE_INST_CALL2: {
2399      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2400      if (Record.size() < 3)
2401        return Error("Invalid CALL record");
2402
2403      AttrListPtr PAL = getAttributes(Record[0]);
2404      unsigned CCInfo = Record[1];
2405
2406      unsigned OpNum = 2;
2407      Value *Callee;
2408      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2409        return Error("Invalid CALL record");
2410
2411      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2412      const FunctionType *FTy = 0;
2413      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2414      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2415        return Error("Invalid CALL record");
2416
2417      SmallVector<Value*, 16> Args;
2418      // Read the fixed params.
2419      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2420        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2421          Args.push_back(getBasicBlock(Record[OpNum]));
2422        else
2423          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2424        if (Args.back() == 0) return Error("Invalid CALL record");
2425      }
2426
2427      // Read type/value pairs for varargs params.
2428      if (!FTy->isVarArg()) {
2429        if (OpNum != Record.size())
2430          return Error("Invalid CALL record");
2431      } else {
2432        while (OpNum != Record.size()) {
2433          Value *Op;
2434          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2435            return Error("Invalid CALL record");
2436          Args.push_back(Op);
2437        }
2438      }
2439
2440      I = CallInst::Create(Callee, Args.begin(), Args.end());
2441      InstructionList.push_back(I);
2442      cast<CallInst>(I)->setCallingConv(
2443        static_cast<CallingConv::ID>(CCInfo>>1));
2444      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2445      cast<CallInst>(I)->setAttributes(PAL);
2446      break;
2447    }
2448    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2449      if (Record.size() < 3)
2450        return Error("Invalid VAARG record");
2451      const Type *OpTy = getTypeByID(Record[0]);
2452      Value *Op = getFnValueByID(Record[1], OpTy);
2453      const Type *ResTy = getTypeByID(Record[2]);
2454      if (!OpTy || !Op || !ResTy)
2455        return Error("Invalid VAARG record");
2456      I = new VAArgInst(Op, ResTy);
2457      InstructionList.push_back(I);
2458      break;
2459    }
2460    }
2461
2462    // Add instruction to end of current BB.  If there is no current BB, reject
2463    // this file.
2464    if (CurBB == 0) {
2465      delete I;
2466      return Error("Invalid instruction with no BB");
2467    }
2468    CurBB->getInstList().push_back(I);
2469
2470    // If this was a terminator instruction, move to the next block.
2471    if (isa<TerminatorInst>(I)) {
2472      ++CurBBNo;
2473      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2474    }
2475
2476    // Non-void values get registered in the value table for future use.
2477    if (I && !I->getType()->isVoidTy())
2478      ValueList.AssignValue(I, NextValueNo++);
2479  }
2480
2481  // Check the function list for unresolved values.
2482  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2483    if (A->getParent() == 0) {
2484      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2485      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2486        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2487          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2488          delete A;
2489        }
2490      }
2491      return Error("Never resolved value found in function!");
2492    }
2493  }
2494
2495  // FIXME: Check for unresolved forward-declared metadata references
2496  // and clean up leaks.
2497
2498  // See if anything took the address of blocks in this function.  If so,
2499  // resolve them now.
2500  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2501    BlockAddrFwdRefs.find(F);
2502  if (BAFRI != BlockAddrFwdRefs.end()) {
2503    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2504    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2505      unsigned BlockIdx = RefList[i].first;
2506      if (BlockIdx >= FunctionBBs.size())
2507        return Error("Invalid blockaddress block #");
2508
2509      GlobalVariable *FwdRef = RefList[i].second;
2510      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2511      FwdRef->eraseFromParent();
2512    }
2513
2514    BlockAddrFwdRefs.erase(BAFRI);
2515  }
2516
2517  // FIXME: Remove this in LLVM 3.0.
2518  unsigned NewMDValueListSize = MDValueList.size();
2519
2520  // Trim the value list down to the size it was before we parsed this function.
2521  ValueList.shrinkTo(ModuleValueListSize);
2522  MDValueList.shrinkTo(ModuleMDValueListSize);
2523
2524  // Backwards compatibility hack: Function-local metadata numbers
2525  // were previously not reset between functions. This is now fixed,
2526  // however we still need to understand the old numbering in order
2527  // to be able to read old bitcode files.
2528  // FIXME: Remove this in LLVM 3.0.
2529  if (LLVM2_7MetadataDetected)
2530    MDValueList.resize(NewMDValueListSize);
2531
2532  std::vector<BasicBlock*>().swap(FunctionBBs);
2533
2534  return false;
2535}
2536
2537//===----------------------------------------------------------------------===//
2538// GVMaterializer implementation
2539//===----------------------------------------------------------------------===//
2540
2541
2542bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2543  if (const Function *F = dyn_cast<Function>(GV)) {
2544    return F->isDeclaration() &&
2545      DeferredFunctionInfo.count(const_cast<Function*>(F));
2546  }
2547  return false;
2548}
2549
2550bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2551  Function *F = dyn_cast<Function>(GV);
2552  // If it's not a function or is already material, ignore the request.
2553  if (!F || !F->isMaterializable()) return false;
2554
2555  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2556  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2557
2558  // Move the bit stream to the saved position of the deferred function body.
2559  Stream.JumpToBit(DFII->second);
2560
2561  if (ParseFunctionBody(F)) {
2562    if (ErrInfo) *ErrInfo = ErrorString;
2563    return true;
2564  }
2565
2566  // Upgrade any old intrinsic calls in the function.
2567  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2568       E = UpgradedIntrinsics.end(); I != E; ++I) {
2569    if (I->first != I->second) {
2570      for (Value::use_iterator UI = I->first->use_begin(),
2571           UE = I->first->use_end(); UI != UE; ) {
2572        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2573          UpgradeIntrinsicCall(CI, I->second);
2574      }
2575    }
2576  }
2577
2578  return false;
2579}
2580
2581bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2582  const Function *F = dyn_cast<Function>(GV);
2583  if (!F || F->isDeclaration())
2584    return false;
2585  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2586}
2587
2588void BitcodeReader::Dematerialize(GlobalValue *GV) {
2589  Function *F = dyn_cast<Function>(GV);
2590  // If this function isn't dematerializable, this is a noop.
2591  if (!F || !isDematerializable(F))
2592    return;
2593
2594  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2595
2596  // Just forget the function body, we can remat it later.
2597  F->deleteBody();
2598}
2599
2600
2601bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2602  assert(M == TheModule &&
2603         "Can only Materialize the Module this BitcodeReader is attached to.");
2604  // Iterate over the module, deserializing any functions that are still on
2605  // disk.
2606  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2607       F != E; ++F)
2608    if (F->isMaterializable() &&
2609        Materialize(F, ErrInfo))
2610      return true;
2611
2612  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2613  // delete the old functions to clean up. We can't do this unless the entire
2614  // module is materialized because there could always be another function body
2615  // with calls to the old function.
2616  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2617       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2618    if (I->first != I->second) {
2619      for (Value::use_iterator UI = I->first->use_begin(),
2620           UE = I->first->use_end(); UI != UE; ) {
2621        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2622          UpgradeIntrinsicCall(CI, I->second);
2623      }
2624      if (!I->first->use_empty())
2625        I->first->replaceAllUsesWith(I->second);
2626      I->first->eraseFromParent();
2627    }
2628  }
2629  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2630
2631  // Check debug info intrinsics.
2632  CheckDebugInfoIntrinsics(TheModule);
2633
2634  return false;
2635}
2636
2637
2638//===----------------------------------------------------------------------===//
2639// External interface
2640//===----------------------------------------------------------------------===//
2641
2642/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2643///
2644Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2645                                   LLVMContext& Context,
2646                                   std::string *ErrMsg) {
2647  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2648  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2649  M->setMaterializer(R);
2650  if (R->ParseBitcodeInto(M)) {
2651    if (ErrMsg)
2652      *ErrMsg = R->getErrorString();
2653
2654    delete M;  // Also deletes R.
2655    return 0;
2656  }
2657  // Have the BitcodeReader dtor delete 'Buffer'.
2658  R->setBufferOwned(true);
2659  return M;
2660}
2661
2662/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2663/// If an error occurs, return null and fill in *ErrMsg if non-null.
2664Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2665                               std::string *ErrMsg){
2666  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2667  if (!M) return 0;
2668
2669  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2670  // there was an error.
2671  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2672
2673  // Read in the entire module, and destroy the BitcodeReader.
2674  if (M->MaterializeAllPermanently(ErrMsg)) {
2675    delete M;
2676    return 0;
2677  }
2678
2679  return M;
2680}
2681
2682std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2683                                         LLVMContext& Context,
2684                                         std::string *ErrMsg) {
2685  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2686  // Don't let the BitcodeReader dtor delete 'Buffer'.
2687  R->setBufferOwned(false);
2688
2689  std::string Triple("");
2690  if (R->ParseTriple(Triple))
2691    if (ErrMsg)
2692      *ErrMsg = R->getErrorString();
2693
2694  delete R;
2695  return Triple;
2696}
2697