BitcodeReader.cpp revision cb33799b9f4e152e3460faa83e59b53ff604c87d
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/Instructions.h"
20#include "llvm/MDNode.h"
21#include "llvm/Module.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  delete Buffer;
32  Buffer = 0;
33  std::vector<PATypeHolder>().swap(TypeList);
34  ValueList.clear();
35
36  std::vector<AttrListPtr>().swap(MAttributes);
37  std::vector<BasicBlock*>().swap(FunctionBBs);
38  std::vector<Function*>().swap(FunctionsWithBodies);
39  DeferredFunctionInfo.clear();
40}
41
42//===----------------------------------------------------------------------===//
43//  Helper functions to implement forward reference resolution, etc.
44//===----------------------------------------------------------------------===//
45
46/// ConvertToString - Convert a string from a record into an std::string, return
47/// true on failure.
48template<typename StrTy>
49static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
50                            StrTy &Result) {
51  if (Idx > Record.size())
52    return true;
53
54  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
55    Result += (char)Record[i];
56  return false;
57}
58
59static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
60  switch (Val) {
61  default: // Map unknown/new linkages to external
62  case 0: return GlobalValue::ExternalLinkage;
63  case 1: return GlobalValue::WeakAnyLinkage;
64  case 2: return GlobalValue::AppendingLinkage;
65  case 3: return GlobalValue::InternalLinkage;
66  case 4: return GlobalValue::LinkOnceAnyLinkage;
67  case 5: return GlobalValue::DLLImportLinkage;
68  case 6: return GlobalValue::DLLExportLinkage;
69  case 7: return GlobalValue::ExternalWeakLinkage;
70  case 8: return GlobalValue::CommonLinkage;
71  case 9: return GlobalValue::PrivateLinkage;
72  case 10: return GlobalValue::WeakODRLinkage;
73  case 11: return GlobalValue::LinkOnceODRLinkage;
74  case 12: return GlobalValue::AvailableExternallyLinkage;
75  }
76}
77
78static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
79  switch (Val) {
80  default: // Map unknown visibilities to default.
81  case 0: return GlobalValue::DefaultVisibility;
82  case 1: return GlobalValue::HiddenVisibility;
83  case 2: return GlobalValue::ProtectedVisibility;
84  }
85}
86
87static int GetDecodedCastOpcode(unsigned Val) {
88  switch (Val) {
89  default: return -1;
90  case bitc::CAST_TRUNC   : return Instruction::Trunc;
91  case bitc::CAST_ZEXT    : return Instruction::ZExt;
92  case bitc::CAST_SEXT    : return Instruction::SExt;
93  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
94  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
95  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
96  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
97  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
98  case bitc::CAST_FPEXT   : return Instruction::FPExt;
99  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
100  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
101  case bitc::CAST_BITCAST : return Instruction::BitCast;
102  }
103}
104static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
105  switch (Val) {
106  default: return -1;
107  case bitc::BINOP_ADD:  return Instruction::Add;
108  case bitc::BINOP_SUB:  return Instruction::Sub;
109  case bitc::BINOP_MUL:  return Instruction::Mul;
110  case bitc::BINOP_UDIV: return Instruction::UDiv;
111  case bitc::BINOP_SDIV:
112    return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
113  case bitc::BINOP_UREM: return Instruction::URem;
114  case bitc::BINOP_SREM:
115    return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
116  case bitc::BINOP_SHL:  return Instruction::Shl;
117  case bitc::BINOP_LSHR: return Instruction::LShr;
118  case bitc::BINOP_ASHR: return Instruction::AShr;
119  case bitc::BINOP_AND:  return Instruction::And;
120  case bitc::BINOP_OR:   return Instruction::Or;
121  case bitc::BINOP_XOR:  return Instruction::Xor;
122  }
123}
124
125namespace llvm {
126namespace {
127  /// @brief A class for maintaining the slot number definition
128  /// as a placeholder for the actual definition for forward constants defs.
129  class ConstantPlaceHolder : public ConstantExpr {
130    ConstantPlaceHolder();                       // DO NOT IMPLEMENT
131    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
132  public:
133    // allocate space for exactly one operand
134    void *operator new(size_t s) {
135      return User::operator new(s, 1);
136    }
137    explicit ConstantPlaceHolder(const Type *Ty)
138      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
139      Op<0>() = UndefValue::get(Type::Int32Ty);
140    }
141
142    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
143    static inline bool classof(const ConstantPlaceHolder *) { return true; }
144    static bool classof(const Value *V) {
145      return isa<ConstantExpr>(V) &&
146             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
147    }
148
149
150    /// Provide fast operand accessors
151    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
152  };
153}
154
155// FIXME: can we inherit this from ConstantExpr?
156template <>
157struct OperandTraits<ConstantPlaceHolder> : FixedNumOperandTraits<1> {
158};
159}
160
161
162void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
163  if (Idx == size()) {
164    push_back(V);
165    return;
166  }
167
168  if (Idx >= size())
169    resize(Idx+1);
170
171  WeakVH &OldV = ValuePtrs[Idx];
172  if (OldV == 0) {
173    OldV = V;
174    return;
175  }
176
177  // Handle constants and non-constants (e.g. instrs) differently for
178  // efficiency.
179  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
180    ResolveConstants.push_back(std::make_pair(PHC, Idx));
181    OldV = V;
182  } else {
183    // If there was a forward reference to this value, replace it.
184    Value *PrevVal = OldV;
185    OldV->replaceAllUsesWith(V);
186    delete PrevVal;
187  }
188}
189
190
191Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
192                                                    const Type *Ty) {
193  if (Idx >= size())
194    resize(Idx + 1);
195
196  if (Value *V = ValuePtrs[Idx]) {
197    assert(Ty == V->getType() && "Type mismatch in constant table!");
198    return cast<Constant>(V);
199  }
200
201  // Create and return a placeholder, which will later be RAUW'd.
202  Constant *C = new ConstantPlaceHolder(Ty);
203  ValuePtrs[Idx] = C;
204  return C;
205}
206
207Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
208  if (Idx >= size())
209    resize(Idx + 1);
210
211  if (Value *V = ValuePtrs[Idx]) {
212    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
213    return V;
214  }
215
216  // No type specified, must be invalid reference.
217  if (Ty == 0) return 0;
218
219  // Create and return a placeholder, which will later be RAUW'd.
220  Value *V = new Argument(Ty);
221  ValuePtrs[Idx] = V;
222  return V;
223}
224
225/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
226/// resolves any forward references.  The idea behind this is that we sometimes
227/// get constants (such as large arrays) which reference *many* forward ref
228/// constants.  Replacing each of these causes a lot of thrashing when
229/// building/reuniquing the constant.  Instead of doing this, we look at all the
230/// uses and rewrite all the place holders at once for any constant that uses
231/// a placeholder.
232void BitcodeReaderValueList::ResolveConstantForwardRefs() {
233  // Sort the values by-pointer so that they are efficient to look up with a
234  // binary search.
235  std::sort(ResolveConstants.begin(), ResolveConstants.end());
236
237  SmallVector<Constant*, 64> NewOps;
238
239  while (!ResolveConstants.empty()) {
240    Value *RealVal = operator[](ResolveConstants.back().second);
241    Constant *Placeholder = ResolveConstants.back().first;
242    ResolveConstants.pop_back();
243
244    // Loop over all users of the placeholder, updating them to reference the
245    // new value.  If they reference more than one placeholder, update them all
246    // at once.
247    while (!Placeholder->use_empty()) {
248      Value::use_iterator UI = Placeholder->use_begin();
249
250      // If the using object isn't uniqued, just update the operands.  This
251      // handles instructions and initializers for global variables.
252      if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
253        UI.getUse().set(RealVal);
254        continue;
255      }
256
257      // Otherwise, we have a constant that uses the placeholder.  Replace that
258      // constant with a new constant that has *all* placeholder uses updated.
259      Constant *UserC = cast<Constant>(*UI);
260      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
261           I != E; ++I) {
262        Value *NewOp;
263        if (!isa<ConstantPlaceHolder>(*I)) {
264          // Not a placeholder reference.
265          NewOp = *I;
266        } else if (*I == Placeholder) {
267          // Common case is that it just references this one placeholder.
268          NewOp = RealVal;
269        } else {
270          // Otherwise, look up the placeholder in ResolveConstants.
271          ResolveConstantsTy::iterator It =
272            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
273                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
274                                                            0));
275          assert(It != ResolveConstants.end() && It->first == *I);
276          NewOp = operator[](It->second);
277        }
278
279        NewOps.push_back(cast<Constant>(NewOp));
280      }
281
282      // Make the new constant.
283      Constant *NewC;
284      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
285        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], NewOps.size());
286      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
287        NewC = ConstantStruct::get(&NewOps[0], NewOps.size(),
288                                   UserCS->getType()->isPacked());
289      } else if (isa<ConstantVector>(UserC)) {
290        NewC = ConstantVector::get(&NewOps[0], NewOps.size());
291      } else {
292        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
293        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
294                                                          NewOps.size());
295      }
296
297      UserC->replaceAllUsesWith(NewC);
298      UserC->destroyConstant();
299      NewOps.clear();
300    }
301
302    // Update all ValueHandles, they should be the only users at this point.
303    Placeholder->replaceAllUsesWith(RealVal);
304    delete Placeholder;
305  }
306}
307
308
309const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
310  // If the TypeID is in range, return it.
311  if (ID < TypeList.size())
312    return TypeList[ID].get();
313  if (!isTypeTable) return 0;
314
315  // The type table allows forward references.  Push as many Opaque types as
316  // needed to get up to ID.
317  while (TypeList.size() <= ID)
318    TypeList.push_back(OpaqueType::get());
319  return TypeList.back().get();
320}
321
322//===----------------------------------------------------------------------===//
323//  Functions for parsing blocks from the bitcode file
324//===----------------------------------------------------------------------===//
325
326bool BitcodeReader::ParseAttributeBlock() {
327  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
328    return Error("Malformed block record");
329
330  if (!MAttributes.empty())
331    return Error("Multiple PARAMATTR blocks found!");
332
333  SmallVector<uint64_t, 64> Record;
334
335  SmallVector<AttributeWithIndex, 8> Attrs;
336
337  // Read all the records.
338  while (1) {
339    unsigned Code = Stream.ReadCode();
340    if (Code == bitc::END_BLOCK) {
341      if (Stream.ReadBlockEnd())
342        return Error("Error at end of PARAMATTR block");
343      return false;
344    }
345
346    if (Code == bitc::ENTER_SUBBLOCK) {
347      // No known subblocks, always skip them.
348      Stream.ReadSubBlockID();
349      if (Stream.SkipBlock())
350        return Error("Malformed block record");
351      continue;
352    }
353
354    if (Code == bitc::DEFINE_ABBREV) {
355      Stream.ReadAbbrevRecord();
356      continue;
357    }
358
359    // Read a record.
360    Record.clear();
361    switch (Stream.ReadRecord(Code, Record)) {
362    default:  // Default behavior: ignore.
363      break;
364    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
365      if (Record.size() & 1)
366        return Error("Invalid ENTRY record");
367
368      // FIXME : Remove this autoupgrade code in LLVM 3.0.
369      // If Function attributes are using index 0 then transfer them
370      // to index ~0. Index 0 is used for return value attributes but used to be
371      // used for function attributes.
372      Attributes RetAttribute = Attribute::None;
373      Attributes FnAttribute = Attribute::None;
374      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
375        // FIXME: remove in LLVM 3.0
376        // The alignment is stored as a 16-bit raw value from bits 31--16.
377        // We shift the bits above 31 down by 11 bits.
378
379        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
380        if (Alignment && !isPowerOf2_32(Alignment))
381          return Error("Alignment is not a power of two.");
382
383        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
384        if (Alignment)
385          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
386        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
387        Record[i+1] = ReconstitutedAttr;
388
389        if (Record[i] == 0)
390          RetAttribute = Record[i+1];
391        else if (Record[i] == ~0U)
392          FnAttribute = Record[i+1];
393      }
394
395      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
396                              Attribute::ReadOnly|Attribute::ReadNone);
397
398      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
399          (RetAttribute & OldRetAttrs) != 0) {
400        if (FnAttribute == Attribute::None) { // add a slot so they get added.
401          Record.push_back(~0U);
402          Record.push_back(0);
403        }
404
405        FnAttribute  |= RetAttribute & OldRetAttrs;
406        RetAttribute &= ~OldRetAttrs;
407      }
408
409      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
410        if (Record[i] == 0) {
411          if (RetAttribute != Attribute::None)
412            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
413        } else if (Record[i] == ~0U) {
414          if (FnAttribute != Attribute::None)
415            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
416        } else if (Record[i+1] != Attribute::None)
417          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
418      }
419
420      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
421      Attrs.clear();
422      break;
423    }
424    }
425  }
426}
427
428
429bool BitcodeReader::ParseTypeTable() {
430  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
431    return Error("Malformed block record");
432
433  if (!TypeList.empty())
434    return Error("Multiple TYPE_BLOCKs found!");
435
436  SmallVector<uint64_t, 64> Record;
437  unsigned NumRecords = 0;
438
439  // Read all the records for this type table.
440  while (1) {
441    unsigned Code = Stream.ReadCode();
442    if (Code == bitc::END_BLOCK) {
443      if (NumRecords != TypeList.size())
444        return Error("Invalid type forward reference in TYPE_BLOCK");
445      if (Stream.ReadBlockEnd())
446        return Error("Error at end of type table block");
447      return false;
448    }
449
450    if (Code == bitc::ENTER_SUBBLOCK) {
451      // No known subblocks, always skip them.
452      Stream.ReadSubBlockID();
453      if (Stream.SkipBlock())
454        return Error("Malformed block record");
455      continue;
456    }
457
458    if (Code == bitc::DEFINE_ABBREV) {
459      Stream.ReadAbbrevRecord();
460      continue;
461    }
462
463    // Read a record.
464    Record.clear();
465    const Type *ResultTy = 0;
466    switch (Stream.ReadRecord(Code, Record)) {
467    default:  // Default behavior: unknown type.
468      ResultTy = 0;
469      break;
470    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
471      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
472      // type list.  This allows us to reserve space.
473      if (Record.size() < 1)
474        return Error("Invalid TYPE_CODE_NUMENTRY record");
475      TypeList.reserve(Record[0]);
476      continue;
477    case bitc::TYPE_CODE_VOID:      // VOID
478      ResultTy = Type::VoidTy;
479      break;
480    case bitc::TYPE_CODE_FLOAT:     // FLOAT
481      ResultTy = Type::FloatTy;
482      break;
483    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
484      ResultTy = Type::DoubleTy;
485      break;
486    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
487      ResultTy = Type::X86_FP80Ty;
488      break;
489    case bitc::TYPE_CODE_FP128:     // FP128
490      ResultTy = Type::FP128Ty;
491      break;
492    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
493      ResultTy = Type::PPC_FP128Ty;
494      break;
495    case bitc::TYPE_CODE_LABEL:     // LABEL
496      ResultTy = Type::LabelTy;
497      break;
498    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
499      ResultTy = 0;
500      break;
501    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
502      if (Record.size() < 1)
503        return Error("Invalid Integer type record");
504
505      ResultTy = IntegerType::get(Record[0]);
506      break;
507    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
508                                    //          [pointee type, address space]
509      if (Record.size() < 1)
510        return Error("Invalid POINTER type record");
511      unsigned AddressSpace = 0;
512      if (Record.size() == 2)
513        AddressSpace = Record[1];
514      ResultTy = PointerType::get(getTypeByID(Record[0], true), AddressSpace);
515      break;
516    }
517    case bitc::TYPE_CODE_FUNCTION: {
518      // FIXME: attrid is dead, remove it in LLVM 3.0
519      // FUNCTION: [vararg, attrid, retty, paramty x N]
520      if (Record.size() < 3)
521        return Error("Invalid FUNCTION type record");
522      std::vector<const Type*> ArgTys;
523      for (unsigned i = 3, e = Record.size(); i != e; ++i)
524        ArgTys.push_back(getTypeByID(Record[i], true));
525
526      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
527                                   Record[0]);
528      break;
529    }
530    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
531      if (Record.size() < 1)
532        return Error("Invalid STRUCT type record");
533      std::vector<const Type*> EltTys;
534      for (unsigned i = 1, e = Record.size(); i != e; ++i)
535        EltTys.push_back(getTypeByID(Record[i], true));
536      ResultTy = StructType::get(EltTys, Record[0]);
537      break;
538    }
539    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
540      if (Record.size() < 2)
541        return Error("Invalid ARRAY type record");
542      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
543      break;
544    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
545      if (Record.size() < 2)
546        return Error("Invalid VECTOR type record");
547      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
548      break;
549    }
550
551    if (NumRecords == TypeList.size()) {
552      // If this is a new type slot, just append it.
553      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
554      ++NumRecords;
555    } else if (ResultTy == 0) {
556      // Otherwise, this was forward referenced, so an opaque type was created,
557      // but the result type is actually just an opaque.  Leave the one we
558      // created previously.
559      ++NumRecords;
560    } else {
561      // Otherwise, this was forward referenced, so an opaque type was created.
562      // Resolve the opaque type to the real type now.
563      assert(NumRecords < TypeList.size() && "Typelist imbalance");
564      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
565
566      // Don't directly push the new type on the Tab. Instead we want to replace
567      // the opaque type we previously inserted with the new concrete value. The
568      // refinement from the abstract (opaque) type to the new type causes all
569      // uses of the abstract type to use the concrete type (NewTy). This will
570      // also cause the opaque type to be deleted.
571      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
572
573      // This should have replaced the old opaque type with the new type in the
574      // value table... or with a preexisting type that was already in the
575      // system.  Let's just make sure it did.
576      assert(TypeList[NumRecords-1].get() != OldTy &&
577             "refineAbstractType didn't work!");
578    }
579  }
580}
581
582
583bool BitcodeReader::ParseTypeSymbolTable() {
584  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
585    return Error("Malformed block record");
586
587  SmallVector<uint64_t, 64> Record;
588
589  // Read all the records for this type table.
590  std::string TypeName;
591  while (1) {
592    unsigned Code = Stream.ReadCode();
593    if (Code == bitc::END_BLOCK) {
594      if (Stream.ReadBlockEnd())
595        return Error("Error at end of type symbol table block");
596      return false;
597    }
598
599    if (Code == bitc::ENTER_SUBBLOCK) {
600      // No known subblocks, always skip them.
601      Stream.ReadSubBlockID();
602      if (Stream.SkipBlock())
603        return Error("Malformed block record");
604      continue;
605    }
606
607    if (Code == bitc::DEFINE_ABBREV) {
608      Stream.ReadAbbrevRecord();
609      continue;
610    }
611
612    // Read a record.
613    Record.clear();
614    switch (Stream.ReadRecord(Code, Record)) {
615    default:  // Default behavior: unknown type.
616      break;
617    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
618      if (ConvertToString(Record, 1, TypeName))
619        return Error("Invalid TST_ENTRY record");
620      unsigned TypeID = Record[0];
621      if (TypeID >= TypeList.size())
622        return Error("Invalid Type ID in TST_ENTRY record");
623
624      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
625      TypeName.clear();
626      break;
627    }
628  }
629}
630
631bool BitcodeReader::ParseValueSymbolTable() {
632  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
633    return Error("Malformed block record");
634
635  SmallVector<uint64_t, 64> Record;
636
637  // Read all the records for this value table.
638  SmallString<128> ValueName;
639  while (1) {
640    unsigned Code = Stream.ReadCode();
641    if (Code == bitc::END_BLOCK) {
642      if (Stream.ReadBlockEnd())
643        return Error("Error at end of value symbol table block");
644      return false;
645    }
646    if (Code == bitc::ENTER_SUBBLOCK) {
647      // No known subblocks, always skip them.
648      Stream.ReadSubBlockID();
649      if (Stream.SkipBlock())
650        return Error("Malformed block record");
651      continue;
652    }
653
654    if (Code == bitc::DEFINE_ABBREV) {
655      Stream.ReadAbbrevRecord();
656      continue;
657    }
658
659    // Read a record.
660    Record.clear();
661    switch (Stream.ReadRecord(Code, Record)) {
662    default:  // Default behavior: unknown type.
663      break;
664    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
665      if (ConvertToString(Record, 1, ValueName))
666        return Error("Invalid TST_ENTRY record");
667      unsigned ValueID = Record[0];
668      if (ValueID >= ValueList.size())
669        return Error("Invalid Value ID in VST_ENTRY record");
670      Value *V = ValueList[ValueID];
671
672      V->setName(&ValueName[0], ValueName.size());
673      ValueName.clear();
674      break;
675    }
676    case bitc::VST_CODE_BBENTRY: {
677      if (ConvertToString(Record, 1, ValueName))
678        return Error("Invalid VST_BBENTRY record");
679      BasicBlock *BB = getBasicBlock(Record[0]);
680      if (BB == 0)
681        return Error("Invalid BB ID in VST_BBENTRY record");
682
683      BB->setName(&ValueName[0], ValueName.size());
684      ValueName.clear();
685      break;
686    }
687    }
688  }
689}
690
691/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
692/// the LSB for dense VBR encoding.
693static uint64_t DecodeSignRotatedValue(uint64_t V) {
694  if ((V & 1) == 0)
695    return V >> 1;
696  if (V != 1)
697    return -(V >> 1);
698  // There is no such thing as -0 with integers.  "-0" really means MININT.
699  return 1ULL << 63;
700}
701
702/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
703/// values and aliases that we can.
704bool BitcodeReader::ResolveGlobalAndAliasInits() {
705  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
706  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
707
708  GlobalInitWorklist.swap(GlobalInits);
709  AliasInitWorklist.swap(AliasInits);
710
711  while (!GlobalInitWorklist.empty()) {
712    unsigned ValID = GlobalInitWorklist.back().second;
713    if (ValID >= ValueList.size()) {
714      // Not ready to resolve this yet, it requires something later in the file.
715      GlobalInits.push_back(GlobalInitWorklist.back());
716    } else {
717      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
718        GlobalInitWorklist.back().first->setInitializer(C);
719      else
720        return Error("Global variable initializer is not a constant!");
721    }
722    GlobalInitWorklist.pop_back();
723  }
724
725  while (!AliasInitWorklist.empty()) {
726    unsigned ValID = AliasInitWorklist.back().second;
727    if (ValID >= ValueList.size()) {
728      AliasInits.push_back(AliasInitWorklist.back());
729    } else {
730      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
731        AliasInitWorklist.back().first->setAliasee(C);
732      else
733        return Error("Alias initializer is not a constant!");
734    }
735    AliasInitWorklist.pop_back();
736  }
737  return false;
738}
739
740
741bool BitcodeReader::ParseConstants() {
742  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
743    return Error("Malformed block record");
744
745  SmallVector<uint64_t, 64> Record;
746
747  // Read all the records for this value table.
748  const Type *CurTy = Type::Int32Ty;
749  unsigned NextCstNo = ValueList.size();
750  while (1) {
751    unsigned Code = Stream.ReadCode();
752    if (Code == bitc::END_BLOCK)
753      break;
754
755    if (Code == bitc::ENTER_SUBBLOCK) {
756      // No known subblocks, always skip them.
757      Stream.ReadSubBlockID();
758      if (Stream.SkipBlock())
759        return Error("Malformed block record");
760      continue;
761    }
762
763    if (Code == bitc::DEFINE_ABBREV) {
764      Stream.ReadAbbrevRecord();
765      continue;
766    }
767
768    // Read a record.
769    Record.clear();
770    Value *V = 0;
771    switch (Stream.ReadRecord(Code, Record)) {
772    default:  // Default behavior: unknown constant
773    case bitc::CST_CODE_UNDEF:     // UNDEF
774      V = UndefValue::get(CurTy);
775      break;
776    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
777      if (Record.empty())
778        return Error("Malformed CST_SETTYPE record");
779      if (Record[0] >= TypeList.size())
780        return Error("Invalid Type ID in CST_SETTYPE record");
781      CurTy = TypeList[Record[0]];
782      continue;  // Skip the ValueList manipulation.
783    case bitc::CST_CODE_NULL:      // NULL
784      V = Constant::getNullValue(CurTy);
785      break;
786    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
787      if (!isa<IntegerType>(CurTy) || Record.empty())
788        return Error("Invalid CST_INTEGER record");
789      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
790      break;
791    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
792      if (!isa<IntegerType>(CurTy) || Record.empty())
793        return Error("Invalid WIDE_INTEGER record");
794
795      unsigned NumWords = Record.size();
796      SmallVector<uint64_t, 8> Words;
797      Words.resize(NumWords);
798      for (unsigned i = 0; i != NumWords; ++i)
799        Words[i] = DecodeSignRotatedValue(Record[i]);
800      V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
801                                 NumWords, &Words[0]));
802      break;
803    }
804    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
805      if (Record.empty())
806        return Error("Invalid FLOAT record");
807      if (CurTy == Type::FloatTy)
808        V = ConstantFP::get(APFloat(APInt(32, (uint32_t)Record[0])));
809      else if (CurTy == Type::DoubleTy)
810        V = ConstantFP::get(APFloat(APInt(64, Record[0])));
811      else if (CurTy == Type::X86_FP80Ty) {
812        // Bits are not stored the same way as a normal i80 APInt, compensate.
813        uint64_t Rearrange[2];
814        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
815        Rearrange[1] = Record[0] >> 48;
816        V = ConstantFP::get(APFloat(APInt(80, 2, Rearrange)));
817      } else if (CurTy == Type::FP128Ty)
818        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0]), true));
819      else if (CurTy == Type::PPC_FP128Ty)
820        V = ConstantFP::get(APFloat(APInt(128, 2, &Record[0])));
821      else
822        V = UndefValue::get(CurTy);
823      break;
824    }
825
826    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
827      if (Record.empty())
828        return Error("Invalid CST_AGGREGATE record");
829
830      unsigned Size = Record.size();
831      std::vector<Constant*> Elts;
832
833      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
834        for (unsigned i = 0; i != Size; ++i)
835          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
836                                                     STy->getElementType(i)));
837        V = ConstantStruct::get(STy, Elts);
838      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
839        const Type *EltTy = ATy->getElementType();
840        for (unsigned i = 0; i != Size; ++i)
841          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
842        V = ConstantArray::get(ATy, Elts);
843      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
844        const Type *EltTy = VTy->getElementType();
845        for (unsigned i = 0; i != Size; ++i)
846          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
847        V = ConstantVector::get(Elts);
848      } else {
849        V = UndefValue::get(CurTy);
850      }
851      break;
852    }
853    case bitc::CST_CODE_STRING: { // STRING: [values]
854      if (Record.empty())
855        return Error("Invalid CST_AGGREGATE record");
856
857      const ArrayType *ATy = cast<ArrayType>(CurTy);
858      const Type *EltTy = ATy->getElementType();
859
860      unsigned Size = Record.size();
861      std::vector<Constant*> Elts;
862      for (unsigned i = 0; i != Size; ++i)
863        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
864      V = ConstantArray::get(ATy, Elts);
865      break;
866    }
867    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
868      if (Record.empty())
869        return Error("Invalid CST_AGGREGATE record");
870
871      const ArrayType *ATy = cast<ArrayType>(CurTy);
872      const Type *EltTy = ATy->getElementType();
873
874      unsigned Size = Record.size();
875      std::vector<Constant*> Elts;
876      for (unsigned i = 0; i != Size; ++i)
877        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
878      Elts.push_back(Constant::getNullValue(EltTy));
879      V = ConstantArray::get(ATy, Elts);
880      break;
881    }
882    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
883      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
884      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
885      if (Opc < 0) {
886        V = UndefValue::get(CurTy);  // Unknown binop.
887      } else {
888        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
889        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
890        V = ConstantExpr::get(Opc, LHS, RHS);
891      }
892      break;
893    }
894    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
895      if (Record.size() < 3) return Error("Invalid CE_CAST record");
896      int Opc = GetDecodedCastOpcode(Record[0]);
897      if (Opc < 0) {
898        V = UndefValue::get(CurTy);  // Unknown cast.
899      } else {
900        const Type *OpTy = getTypeByID(Record[1]);
901        if (!OpTy) return Error("Invalid CE_CAST record");
902        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
903        V = ConstantExpr::getCast(Opc, Op, CurTy);
904      }
905      break;
906    }
907    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
908      if (Record.size() & 1) return Error("Invalid CE_GEP record");
909      SmallVector<Constant*, 16> Elts;
910      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
911        const Type *ElTy = getTypeByID(Record[i]);
912        if (!ElTy) return Error("Invalid CE_GEP record");
913        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
914      }
915      V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
916      break;
917    }
918    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
919      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
920      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
921                                                              Type::Int1Ty),
922                                  ValueList.getConstantFwdRef(Record[1],CurTy),
923                                  ValueList.getConstantFwdRef(Record[2],CurTy));
924      break;
925    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
926      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
927      const VectorType *OpTy =
928        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
929      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
930      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
931      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
932      V = ConstantExpr::getExtractElement(Op0, Op1);
933      break;
934    }
935    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
936      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
937      if (Record.size() < 3 || OpTy == 0)
938        return Error("Invalid CE_INSERTELT record");
939      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
940      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
941                                                  OpTy->getElementType());
942      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
943      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
944      break;
945    }
946    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
947      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
948      if (Record.size() < 3 || OpTy == 0)
949        return Error("Invalid CE_SHUFFLEVEC record");
950      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
951      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
952      const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
953      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
954      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
955      break;
956    }
957    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
958      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
959      const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
960      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
961        return Error("Invalid CE_SHUFVEC_EX record");
962      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
963      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
964      const Type *ShufTy=VectorType::get(Type::Int32Ty, RTy->getNumElements());
965      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
966      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
967      break;
968    }
969    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
970      if (Record.size() < 4) return Error("Invalid CE_CMP record");
971      const Type *OpTy = getTypeByID(Record[0]);
972      if (OpTy == 0) return Error("Invalid CE_CMP record");
973      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
974      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
975
976      if (OpTy->isFloatingPoint())
977        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
978      else if (!isa<VectorType>(OpTy))
979        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
980      else if (OpTy->isFPOrFPVector())
981        V = ConstantExpr::getVFCmp(Record[3], Op0, Op1);
982      else
983        V = ConstantExpr::getVICmp(Record[3], Op0, Op1);
984      break;
985    }
986    case bitc::CST_CODE_INLINEASM: {
987      if (Record.size() < 2) return Error("Invalid INLINEASM record");
988      std::string AsmStr, ConstrStr;
989      bool HasSideEffects = Record[0];
990      unsigned AsmStrSize = Record[1];
991      if (2+AsmStrSize >= Record.size())
992        return Error("Invalid INLINEASM record");
993      unsigned ConstStrSize = Record[2+AsmStrSize];
994      if (3+AsmStrSize+ConstStrSize > Record.size())
995        return Error("Invalid INLINEASM record");
996
997      for (unsigned i = 0; i != AsmStrSize; ++i)
998        AsmStr += (char)Record[2+i];
999      for (unsigned i = 0; i != ConstStrSize; ++i)
1000        ConstrStr += (char)Record[3+AsmStrSize+i];
1001      const PointerType *PTy = cast<PointerType>(CurTy);
1002      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1003                         AsmStr, ConstrStr, HasSideEffects);
1004      break;
1005    }
1006    case bitc::CST_CODE_MDSTRING: {
1007      if (Record.size() < 2) return Error("Invalid MDSTRING record");
1008      unsigned MDStringLength = Record.size();
1009      SmallString<8> String;
1010      String.resize(MDStringLength);
1011      for (unsigned i = 0; i != MDStringLength; ++i)
1012        String[i] = Record[i];
1013      V = MDString::get(String.c_str(), String.c_str() + MDStringLength);
1014      break;
1015    }
1016    case bitc::CST_CODE_MDNODE: {
1017      if (Record.empty() || Record.size() % 2 == 1)
1018        return Error("Invalid CST_MDNODE record");
1019
1020      unsigned Size = Record.size();
1021      SmallVector<Value*, 8> Elts;
1022      for (unsigned i = 0; i != Size; i += 2) {
1023        const Type *Ty = getTypeByID(Record[i], false);
1024        if (Ty != Type::VoidTy)
1025          Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], Ty));
1026        else
1027          Elts.push_back(NULL);
1028      }
1029      V = MDNode::get(&Elts[0], Elts.size());
1030      break;
1031    }
1032    }
1033
1034    ValueList.AssignValue(V, NextCstNo);
1035    ++NextCstNo;
1036  }
1037
1038  if (NextCstNo != ValueList.size())
1039    return Error("Invalid constant reference!");
1040
1041  if (Stream.ReadBlockEnd())
1042    return Error("Error at end of constants block");
1043
1044  // Once all the constants have been read, go through and resolve forward
1045  // references.
1046  ValueList.ResolveConstantForwardRefs();
1047  return false;
1048}
1049
1050/// RememberAndSkipFunctionBody - When we see the block for a function body,
1051/// remember where it is and then skip it.  This lets us lazily deserialize the
1052/// functions.
1053bool BitcodeReader::RememberAndSkipFunctionBody() {
1054  // Get the function we are talking about.
1055  if (FunctionsWithBodies.empty())
1056    return Error("Insufficient function protos");
1057
1058  Function *Fn = FunctionsWithBodies.back();
1059  FunctionsWithBodies.pop_back();
1060
1061  // Save the current stream state.
1062  uint64_t CurBit = Stream.GetCurrentBitNo();
1063  DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
1064
1065  // Set the functions linkage to GhostLinkage so we know it is lazily
1066  // deserialized.
1067  Fn->setLinkage(GlobalValue::GhostLinkage);
1068
1069  // Skip over the function block for now.
1070  if (Stream.SkipBlock())
1071    return Error("Malformed block record");
1072  return false;
1073}
1074
1075bool BitcodeReader::ParseModule(const std::string &ModuleID) {
1076  // Reject multiple MODULE_BLOCK's in a single bitstream.
1077  if (TheModule)
1078    return Error("Multiple MODULE_BLOCKs in same stream");
1079
1080  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1081    return Error("Malformed block record");
1082
1083  // Otherwise, create the module.
1084  TheModule = new Module(ModuleID);
1085
1086  SmallVector<uint64_t, 64> Record;
1087  std::vector<std::string> SectionTable;
1088  std::vector<std::string> GCTable;
1089
1090  // Read all the records for this module.
1091  while (!Stream.AtEndOfStream()) {
1092    unsigned Code = Stream.ReadCode();
1093    if (Code == bitc::END_BLOCK) {
1094      if (Stream.ReadBlockEnd())
1095        return Error("Error at end of module block");
1096
1097      // Patch the initializers for globals and aliases up.
1098      ResolveGlobalAndAliasInits();
1099      if (!GlobalInits.empty() || !AliasInits.empty())
1100        return Error("Malformed global initializer set");
1101      if (!FunctionsWithBodies.empty())
1102        return Error("Too few function bodies found");
1103
1104      // Look for intrinsic functions which need to be upgraded at some point
1105      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1106           FI != FE; ++FI) {
1107        Function* NewFn;
1108        if (UpgradeIntrinsicFunction(FI, NewFn))
1109          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1110      }
1111
1112      // Force deallocation of memory for these vectors to favor the client that
1113      // want lazy deserialization.
1114      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1115      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1116      std::vector<Function*>().swap(FunctionsWithBodies);
1117      return false;
1118    }
1119
1120    if (Code == bitc::ENTER_SUBBLOCK) {
1121      switch (Stream.ReadSubBlockID()) {
1122      default:  // Skip unknown content.
1123        if (Stream.SkipBlock())
1124          return Error("Malformed block record");
1125        break;
1126      case bitc::BLOCKINFO_BLOCK_ID:
1127        if (Stream.ReadBlockInfoBlock())
1128          return Error("Malformed BlockInfoBlock");
1129        break;
1130      case bitc::PARAMATTR_BLOCK_ID:
1131        if (ParseAttributeBlock())
1132          return true;
1133        break;
1134      case bitc::TYPE_BLOCK_ID:
1135        if (ParseTypeTable())
1136          return true;
1137        break;
1138      case bitc::TYPE_SYMTAB_BLOCK_ID:
1139        if (ParseTypeSymbolTable())
1140          return true;
1141        break;
1142      case bitc::VALUE_SYMTAB_BLOCK_ID:
1143        if (ParseValueSymbolTable())
1144          return true;
1145        break;
1146      case bitc::CONSTANTS_BLOCK_ID:
1147        if (ParseConstants() || ResolveGlobalAndAliasInits())
1148          return true;
1149        break;
1150      case bitc::FUNCTION_BLOCK_ID:
1151        // If this is the first function body we've seen, reverse the
1152        // FunctionsWithBodies list.
1153        if (!HasReversedFunctionsWithBodies) {
1154          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1155          HasReversedFunctionsWithBodies = true;
1156        }
1157
1158        if (RememberAndSkipFunctionBody())
1159          return true;
1160        break;
1161      }
1162      continue;
1163    }
1164
1165    if (Code == bitc::DEFINE_ABBREV) {
1166      Stream.ReadAbbrevRecord();
1167      continue;
1168    }
1169
1170    // Read a record.
1171    switch (Stream.ReadRecord(Code, Record)) {
1172    default: break;  // Default behavior, ignore unknown content.
1173    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1174      if (Record.size() < 1)
1175        return Error("Malformed MODULE_CODE_VERSION");
1176      // Only version #0 is supported so far.
1177      if (Record[0] != 0)
1178        return Error("Unknown bitstream version!");
1179      break;
1180    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1181      std::string S;
1182      if (ConvertToString(Record, 0, S))
1183        return Error("Invalid MODULE_CODE_TRIPLE record");
1184      TheModule->setTargetTriple(S);
1185      break;
1186    }
1187    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1188      std::string S;
1189      if (ConvertToString(Record, 0, S))
1190        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1191      TheModule->setDataLayout(S);
1192      break;
1193    }
1194    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1195      std::string S;
1196      if (ConvertToString(Record, 0, S))
1197        return Error("Invalid MODULE_CODE_ASM record");
1198      TheModule->setModuleInlineAsm(S);
1199      break;
1200    }
1201    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1202      std::string S;
1203      if (ConvertToString(Record, 0, S))
1204        return Error("Invalid MODULE_CODE_DEPLIB record");
1205      TheModule->addLibrary(S);
1206      break;
1207    }
1208    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1209      std::string S;
1210      if (ConvertToString(Record, 0, S))
1211        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1212      SectionTable.push_back(S);
1213      break;
1214    }
1215    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1216      std::string S;
1217      if (ConvertToString(Record, 0, S))
1218        return Error("Invalid MODULE_CODE_GCNAME record");
1219      GCTable.push_back(S);
1220      break;
1221    }
1222    // GLOBALVAR: [pointer type, isconst, initid,
1223    //             linkage, alignment, section, visibility, threadlocal]
1224    case bitc::MODULE_CODE_GLOBALVAR: {
1225      if (Record.size() < 6)
1226        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1227      const Type *Ty = getTypeByID(Record[0]);
1228      if (!isa<PointerType>(Ty))
1229        return Error("Global not a pointer type!");
1230      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1231      Ty = cast<PointerType>(Ty)->getElementType();
1232
1233      bool isConstant = Record[1];
1234      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1235      unsigned Alignment = (1 << Record[4]) >> 1;
1236      std::string Section;
1237      if (Record[5]) {
1238        if (Record[5]-1 >= SectionTable.size())
1239          return Error("Invalid section ID");
1240        Section = SectionTable[Record[5]-1];
1241      }
1242      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1243      if (Record.size() > 6)
1244        Visibility = GetDecodedVisibility(Record[6]);
1245      bool isThreadLocal = false;
1246      if (Record.size() > 7)
1247        isThreadLocal = Record[7];
1248
1249      GlobalVariable *NewGV =
1250        new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule,
1251                           isThreadLocal, AddressSpace);
1252      NewGV->setAlignment(Alignment);
1253      if (!Section.empty())
1254        NewGV->setSection(Section);
1255      NewGV->setVisibility(Visibility);
1256      NewGV->setThreadLocal(isThreadLocal);
1257
1258      ValueList.push_back(NewGV);
1259
1260      // Remember which value to use for the global initializer.
1261      if (unsigned InitID = Record[2])
1262        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1263      break;
1264    }
1265    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1266    //             alignment, section, visibility, gc]
1267    case bitc::MODULE_CODE_FUNCTION: {
1268      if (Record.size() < 8)
1269        return Error("Invalid MODULE_CODE_FUNCTION record");
1270      const Type *Ty = getTypeByID(Record[0]);
1271      if (!isa<PointerType>(Ty))
1272        return Error("Function not a pointer type!");
1273      const FunctionType *FTy =
1274        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1275      if (!FTy)
1276        return Error("Function not a pointer to function type!");
1277
1278      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1279                                        "", TheModule);
1280
1281      Func->setCallingConv(Record[1]);
1282      bool isProto = Record[2];
1283      Func->setLinkage(GetDecodedLinkage(Record[3]));
1284      Func->setAttributes(getAttributes(Record[4]));
1285
1286      Func->setAlignment((1 << Record[5]) >> 1);
1287      if (Record[6]) {
1288        if (Record[6]-1 >= SectionTable.size())
1289          return Error("Invalid section ID");
1290        Func->setSection(SectionTable[Record[6]-1]);
1291      }
1292      Func->setVisibility(GetDecodedVisibility(Record[7]));
1293      if (Record.size() > 8 && Record[8]) {
1294        if (Record[8]-1 > GCTable.size())
1295          return Error("Invalid GC ID");
1296        Func->setGC(GCTable[Record[8]-1].c_str());
1297      }
1298      ValueList.push_back(Func);
1299
1300      // If this is a function with a body, remember the prototype we are
1301      // creating now, so that we can match up the body with them later.
1302      if (!isProto)
1303        FunctionsWithBodies.push_back(Func);
1304      break;
1305    }
1306    // ALIAS: [alias type, aliasee val#, linkage]
1307    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1308    case bitc::MODULE_CODE_ALIAS: {
1309      if (Record.size() < 3)
1310        return Error("Invalid MODULE_ALIAS record");
1311      const Type *Ty = getTypeByID(Record[0]);
1312      if (!isa<PointerType>(Ty))
1313        return Error("Function not a pointer type!");
1314
1315      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1316                                           "", 0, TheModule);
1317      // Old bitcode files didn't have visibility field.
1318      if (Record.size() > 3)
1319        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1320      ValueList.push_back(NewGA);
1321      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1322      break;
1323    }
1324    /// MODULE_CODE_PURGEVALS: [numvals]
1325    case bitc::MODULE_CODE_PURGEVALS:
1326      // Trim down the value list to the specified size.
1327      if (Record.size() < 1 || Record[0] > ValueList.size())
1328        return Error("Invalid MODULE_PURGEVALS record");
1329      ValueList.shrinkTo(Record[0]);
1330      break;
1331    }
1332    Record.clear();
1333  }
1334
1335  return Error("Premature end of bitstream");
1336}
1337
1338bool BitcodeReader::ParseBitcode() {
1339  TheModule = 0;
1340
1341  if (Buffer->getBufferSize() & 3)
1342    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1343
1344  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1345  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1346
1347  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1348  // The magic number is 0x0B17C0DE stored in little endian.
1349  if (isBitcodeWrapper(BufPtr, BufEnd))
1350    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1351      return Error("Invalid bitcode wrapper header");
1352
1353  StreamFile.init(BufPtr, BufEnd);
1354  Stream.init(StreamFile);
1355
1356  // Sniff for the signature.
1357  if (Stream.Read(8) != 'B' ||
1358      Stream.Read(8) != 'C' ||
1359      Stream.Read(4) != 0x0 ||
1360      Stream.Read(4) != 0xC ||
1361      Stream.Read(4) != 0xE ||
1362      Stream.Read(4) != 0xD)
1363    return Error("Invalid bitcode signature");
1364
1365  // We expect a number of well-defined blocks, though we don't necessarily
1366  // need to understand them all.
1367  while (!Stream.AtEndOfStream()) {
1368    unsigned Code = Stream.ReadCode();
1369
1370    if (Code != bitc::ENTER_SUBBLOCK)
1371      return Error("Invalid record at top-level");
1372
1373    unsigned BlockID = Stream.ReadSubBlockID();
1374
1375    // We only know the MODULE subblock ID.
1376    switch (BlockID) {
1377    case bitc::BLOCKINFO_BLOCK_ID:
1378      if (Stream.ReadBlockInfoBlock())
1379        return Error("Malformed BlockInfoBlock");
1380      break;
1381    case bitc::MODULE_BLOCK_ID:
1382      if (ParseModule(Buffer->getBufferIdentifier()))
1383        return true;
1384      break;
1385    default:
1386      if (Stream.SkipBlock())
1387        return Error("Malformed block record");
1388      break;
1389    }
1390  }
1391
1392  return false;
1393}
1394
1395
1396/// ParseFunctionBody - Lazily parse the specified function body block.
1397bool BitcodeReader::ParseFunctionBody(Function *F) {
1398  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1399    return Error("Malformed block record");
1400
1401  unsigned ModuleValueListSize = ValueList.size();
1402
1403  // Add all the function arguments to the value table.
1404  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1405    ValueList.push_back(I);
1406
1407  unsigned NextValueNo = ValueList.size();
1408  BasicBlock *CurBB = 0;
1409  unsigned CurBBNo = 0;
1410
1411  // Read all the records.
1412  SmallVector<uint64_t, 64> Record;
1413  while (1) {
1414    unsigned Code = Stream.ReadCode();
1415    if (Code == bitc::END_BLOCK) {
1416      if (Stream.ReadBlockEnd())
1417        return Error("Error at end of function block");
1418      break;
1419    }
1420
1421    if (Code == bitc::ENTER_SUBBLOCK) {
1422      switch (Stream.ReadSubBlockID()) {
1423      default:  // Skip unknown content.
1424        if (Stream.SkipBlock())
1425          return Error("Malformed block record");
1426        break;
1427      case bitc::CONSTANTS_BLOCK_ID:
1428        if (ParseConstants()) return true;
1429        NextValueNo = ValueList.size();
1430        break;
1431      case bitc::VALUE_SYMTAB_BLOCK_ID:
1432        if (ParseValueSymbolTable()) return true;
1433        break;
1434      }
1435      continue;
1436    }
1437
1438    if (Code == bitc::DEFINE_ABBREV) {
1439      Stream.ReadAbbrevRecord();
1440      continue;
1441    }
1442
1443    // Read a record.
1444    Record.clear();
1445    Instruction *I = 0;
1446    switch (Stream.ReadRecord(Code, Record)) {
1447    default: // Default behavior: reject
1448      return Error("Unknown instruction");
1449    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1450      if (Record.size() < 1 || Record[0] == 0)
1451        return Error("Invalid DECLAREBLOCKS record");
1452      // Create all the basic blocks for the function.
1453      FunctionBBs.resize(Record[0]);
1454      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1455        FunctionBBs[i] = BasicBlock::Create("", F);
1456      CurBB = FunctionBBs[0];
1457      continue;
1458
1459    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1460      unsigned OpNum = 0;
1461      Value *LHS, *RHS;
1462      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1463          getValue(Record, OpNum, LHS->getType(), RHS) ||
1464          OpNum+1 != Record.size())
1465        return Error("Invalid BINOP record");
1466
1467      int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType());
1468      if (Opc == -1) return Error("Invalid BINOP record");
1469      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1470      break;
1471    }
1472    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1473      unsigned OpNum = 0;
1474      Value *Op;
1475      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1476          OpNum+2 != Record.size())
1477        return Error("Invalid CAST record");
1478
1479      const Type *ResTy = getTypeByID(Record[OpNum]);
1480      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1481      if (Opc == -1 || ResTy == 0)
1482        return Error("Invalid CAST record");
1483      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1484      break;
1485    }
1486    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1487      unsigned OpNum = 0;
1488      Value *BasePtr;
1489      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1490        return Error("Invalid GEP record");
1491
1492      SmallVector<Value*, 16> GEPIdx;
1493      while (OpNum != Record.size()) {
1494        Value *Op;
1495        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1496          return Error("Invalid GEP record");
1497        GEPIdx.push_back(Op);
1498      }
1499
1500      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1501      break;
1502    }
1503
1504    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1505                                       // EXTRACTVAL: [opty, opval, n x indices]
1506      unsigned OpNum = 0;
1507      Value *Agg;
1508      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1509        return Error("Invalid EXTRACTVAL record");
1510
1511      SmallVector<unsigned, 4> EXTRACTVALIdx;
1512      for (unsigned RecSize = Record.size();
1513           OpNum != RecSize; ++OpNum) {
1514        uint64_t Index = Record[OpNum];
1515        if ((unsigned)Index != Index)
1516          return Error("Invalid EXTRACTVAL index");
1517        EXTRACTVALIdx.push_back((unsigned)Index);
1518      }
1519
1520      I = ExtractValueInst::Create(Agg,
1521                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1522      break;
1523    }
1524
1525    case bitc::FUNC_CODE_INST_INSERTVAL: {
1526                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1527      unsigned OpNum = 0;
1528      Value *Agg;
1529      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1530        return Error("Invalid INSERTVAL record");
1531      Value *Val;
1532      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1533        return Error("Invalid INSERTVAL record");
1534
1535      SmallVector<unsigned, 4> INSERTVALIdx;
1536      for (unsigned RecSize = Record.size();
1537           OpNum != RecSize; ++OpNum) {
1538        uint64_t Index = Record[OpNum];
1539        if ((unsigned)Index != Index)
1540          return Error("Invalid INSERTVAL index");
1541        INSERTVALIdx.push_back((unsigned)Index);
1542      }
1543
1544      I = InsertValueInst::Create(Agg, Val,
1545                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
1546      break;
1547    }
1548
1549    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1550      // obsolete form of select
1551      // handles select i1 ... in old bitcode
1552      unsigned OpNum = 0;
1553      Value *TrueVal, *FalseVal, *Cond;
1554      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1555          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1556          getValue(Record, OpNum, Type::Int1Ty, Cond))
1557        return Error("Invalid SELECT record");
1558
1559      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1560      break;
1561    }
1562
1563    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1564      // new form of select
1565      // handles select i1 or select [N x i1]
1566      unsigned OpNum = 0;
1567      Value *TrueVal, *FalseVal, *Cond;
1568      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1569          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1570          getValueTypePair(Record, OpNum, NextValueNo, Cond))
1571        return Error("Invalid SELECT record");
1572
1573      // select condition can be either i1 or [N x i1]
1574      if (const VectorType* vector_type =
1575          dyn_cast<const VectorType>(Cond->getType())) {
1576        // expect <n x i1>
1577        if (vector_type->getElementType() != Type::Int1Ty)
1578          return Error("Invalid SELECT condition type");
1579      } else {
1580        // expect i1
1581        if (Cond->getType() != Type::Int1Ty)
1582          return Error("Invalid SELECT condition type");
1583      }
1584
1585      I = SelectInst::Create(Cond, TrueVal, FalseVal);
1586      break;
1587    }
1588
1589    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1590      unsigned OpNum = 0;
1591      Value *Vec, *Idx;
1592      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1593          getValue(Record, OpNum, Type::Int32Ty, Idx))
1594        return Error("Invalid EXTRACTELT record");
1595      I = new ExtractElementInst(Vec, Idx);
1596      break;
1597    }
1598
1599    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1600      unsigned OpNum = 0;
1601      Value *Vec, *Elt, *Idx;
1602      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1603          getValue(Record, OpNum,
1604                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1605          getValue(Record, OpNum, Type::Int32Ty, Idx))
1606        return Error("Invalid INSERTELT record");
1607      I = InsertElementInst::Create(Vec, Elt, Idx);
1608      break;
1609    }
1610
1611    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1612      unsigned OpNum = 0;
1613      Value *Vec1, *Vec2, *Mask;
1614      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1615          getValue(Record, OpNum, Vec1->getType(), Vec2))
1616        return Error("Invalid SHUFFLEVEC record");
1617
1618      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1619        return Error("Invalid SHUFFLEVEC record");
1620      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1621      break;
1622    }
1623
1624    case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1625      // VFCmp/VICmp
1626      // or old form of ICmp/FCmp returning bool
1627      unsigned OpNum = 0;
1628      Value *LHS, *RHS;
1629      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1630          getValue(Record, OpNum, LHS->getType(), RHS) ||
1631          OpNum+1 != Record.size())
1632        return Error("Invalid CMP record");
1633
1634      if (LHS->getType()->isFloatingPoint())
1635        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1636      else if (!isa<VectorType>(LHS->getType()))
1637        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1638      else if (LHS->getType()->isFPOrFPVector())
1639        I = new VFCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1640      else
1641        I = new VICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1642      break;
1643    }
1644    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1645      // Fcmp/ICmp returning bool or vector of bool
1646      unsigned OpNum = 0;
1647      Value *LHS, *RHS;
1648      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1649          getValue(Record, OpNum, LHS->getType(), RHS) ||
1650          OpNum+1 != Record.size())
1651        return Error("Invalid CMP2 record");
1652
1653      if (LHS->getType()->isFPOrFPVector())
1654        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1655      else
1656        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1657      break;
1658    }
1659    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1660      if (Record.size() != 2)
1661        return Error("Invalid GETRESULT record");
1662      unsigned OpNum = 0;
1663      Value *Op;
1664      getValueTypePair(Record, OpNum, NextValueNo, Op);
1665      unsigned Index = Record[1];
1666      I = ExtractValueInst::Create(Op, Index);
1667      break;
1668    }
1669
1670    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1671      {
1672        unsigned Size = Record.size();
1673        if (Size == 0) {
1674          I = ReturnInst::Create();
1675          break;
1676        }
1677
1678        unsigned OpNum = 0;
1679        SmallVector<Value *,4> Vs;
1680        do {
1681          Value *Op = NULL;
1682          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1683            return Error("Invalid RET record");
1684          Vs.push_back(Op);
1685        } while(OpNum != Record.size());
1686
1687        const Type *ReturnType = F->getReturnType();
1688        if (Vs.size() > 1 ||
1689            (isa<StructType>(ReturnType) &&
1690             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1691          Value *RV = UndefValue::get(ReturnType);
1692          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1693            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1694            CurBB->getInstList().push_back(I);
1695            ValueList.AssignValue(I, NextValueNo++);
1696            RV = I;
1697          }
1698          I = ReturnInst::Create(RV);
1699          break;
1700        }
1701
1702        I = ReturnInst::Create(Vs[0]);
1703        break;
1704      }
1705    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1706      if (Record.size() != 1 && Record.size() != 3)
1707        return Error("Invalid BR record");
1708      BasicBlock *TrueDest = getBasicBlock(Record[0]);
1709      if (TrueDest == 0)
1710        return Error("Invalid BR record");
1711
1712      if (Record.size() == 1)
1713        I = BranchInst::Create(TrueDest);
1714      else {
1715        BasicBlock *FalseDest = getBasicBlock(Record[1]);
1716        Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1717        if (FalseDest == 0 || Cond == 0)
1718          return Error("Invalid BR record");
1719        I = BranchInst::Create(TrueDest, FalseDest, Cond);
1720      }
1721      break;
1722    }
1723    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1724      if (Record.size() < 3 || (Record.size() & 1) == 0)
1725        return Error("Invalid SWITCH record");
1726      const Type *OpTy = getTypeByID(Record[0]);
1727      Value *Cond = getFnValueByID(Record[1], OpTy);
1728      BasicBlock *Default = getBasicBlock(Record[2]);
1729      if (OpTy == 0 || Cond == 0 || Default == 0)
1730        return Error("Invalid SWITCH record");
1731      unsigned NumCases = (Record.size()-3)/2;
1732      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1733      for (unsigned i = 0, e = NumCases; i != e; ++i) {
1734        ConstantInt *CaseVal =
1735          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1736        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1737        if (CaseVal == 0 || DestBB == 0) {
1738          delete SI;
1739          return Error("Invalid SWITCH record!");
1740        }
1741        SI->addCase(CaseVal, DestBB);
1742      }
1743      I = SI;
1744      break;
1745    }
1746
1747    case bitc::FUNC_CODE_INST_INVOKE: {
1748      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
1749      if (Record.size() < 4) return Error("Invalid INVOKE record");
1750      AttrListPtr PAL = getAttributes(Record[0]);
1751      unsigned CCInfo = Record[1];
1752      BasicBlock *NormalBB = getBasicBlock(Record[2]);
1753      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
1754
1755      unsigned OpNum = 4;
1756      Value *Callee;
1757      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1758        return Error("Invalid INVOKE record");
1759
1760      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
1761      const FunctionType *FTy = !CalleeTy ? 0 :
1762        dyn_cast<FunctionType>(CalleeTy->getElementType());
1763
1764      // Check that the right number of fixed parameters are here.
1765      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
1766          Record.size() < OpNum+FTy->getNumParams())
1767        return Error("Invalid INVOKE record");
1768
1769      SmallVector<Value*, 16> Ops;
1770      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1771        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1772        if (Ops.back() == 0) return Error("Invalid INVOKE record");
1773      }
1774
1775      if (!FTy->isVarArg()) {
1776        if (Record.size() != OpNum)
1777          return Error("Invalid INVOKE record");
1778      } else {
1779        // Read type/value pairs for varargs params.
1780        while (OpNum != Record.size()) {
1781          Value *Op;
1782          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1783            return Error("Invalid INVOKE record");
1784          Ops.push_back(Op);
1785        }
1786      }
1787
1788      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
1789                             Ops.begin(), Ops.end());
1790      cast<InvokeInst>(I)->setCallingConv(CCInfo);
1791      cast<InvokeInst>(I)->setAttributes(PAL);
1792      break;
1793    }
1794    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1795      I = new UnwindInst();
1796      break;
1797    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1798      I = new UnreachableInst();
1799      break;
1800    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
1801      if (Record.size() < 1 || ((Record.size()-1)&1))
1802        return Error("Invalid PHI record");
1803      const Type *Ty = getTypeByID(Record[0]);
1804      if (!Ty) return Error("Invalid PHI record");
1805
1806      PHINode *PN = PHINode::Create(Ty);
1807      PN->reserveOperandSpace((Record.size()-1)/2);
1808
1809      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
1810        Value *V = getFnValueByID(Record[1+i], Ty);
1811        BasicBlock *BB = getBasicBlock(Record[2+i]);
1812        if (!V || !BB) return Error("Invalid PHI record");
1813        PN->addIncoming(V, BB);
1814      }
1815      I = PN;
1816      break;
1817    }
1818
1819    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1820      if (Record.size() < 3)
1821        return Error("Invalid MALLOC record");
1822      const PointerType *Ty =
1823        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1824      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1825      unsigned Align = Record[2];
1826      if (!Ty || !Size) return Error("Invalid MALLOC record");
1827      I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1828      break;
1829    }
1830    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
1831      unsigned OpNum = 0;
1832      Value *Op;
1833      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1834          OpNum != Record.size())
1835        return Error("Invalid FREE record");
1836      I = new FreeInst(Op);
1837      break;
1838    }
1839    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1840      if (Record.size() < 3)
1841        return Error("Invalid ALLOCA record");
1842      const PointerType *Ty =
1843        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1844      Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1845      unsigned Align = Record[2];
1846      if (!Ty || !Size) return Error("Invalid ALLOCA record");
1847      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1848      break;
1849    }
1850    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1851      unsigned OpNum = 0;
1852      Value *Op;
1853      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1854          OpNum+2 != Record.size())
1855        return Error("Invalid LOAD record");
1856
1857      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1858      break;
1859    }
1860    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
1861      unsigned OpNum = 0;
1862      Value *Val, *Ptr;
1863      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
1864          getValue(Record, OpNum,
1865                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
1866          OpNum+2 != Record.size())
1867        return Error("Invalid STORE record");
1868
1869      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1870      break;
1871    }
1872    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
1873      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
1874      unsigned OpNum = 0;
1875      Value *Val, *Ptr;
1876      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
1877          getValue(Record, OpNum, PointerType::getUnqual(Val->getType()), Ptr)||
1878          OpNum+2 != Record.size())
1879        return Error("Invalid STORE record");
1880
1881      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
1882      break;
1883    }
1884    case bitc::FUNC_CODE_INST_CALL: {
1885      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
1886      if (Record.size() < 3)
1887        return Error("Invalid CALL record");
1888
1889      AttrListPtr PAL = getAttributes(Record[0]);
1890      unsigned CCInfo = Record[1];
1891
1892      unsigned OpNum = 2;
1893      Value *Callee;
1894      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
1895        return Error("Invalid CALL record");
1896
1897      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
1898      const FunctionType *FTy = 0;
1899      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1900      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
1901        return Error("Invalid CALL record");
1902
1903      SmallVector<Value*, 16> Args;
1904      // Read the fixed params.
1905      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
1906        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
1907          Args.push_back(getBasicBlock(Record[OpNum]));
1908        else
1909          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
1910        if (Args.back() == 0) return Error("Invalid CALL record");
1911      }
1912
1913      // Read type/value pairs for varargs params.
1914      if (!FTy->isVarArg()) {
1915        if (OpNum != Record.size())
1916          return Error("Invalid CALL record");
1917      } else {
1918        while (OpNum != Record.size()) {
1919          Value *Op;
1920          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1921            return Error("Invalid CALL record");
1922          Args.push_back(Op);
1923        }
1924      }
1925
1926      I = CallInst::Create(Callee, Args.begin(), Args.end());
1927      cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1928      cast<CallInst>(I)->setTailCall(CCInfo & 1);
1929      cast<CallInst>(I)->setAttributes(PAL);
1930      break;
1931    }
1932    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1933      if (Record.size() < 3)
1934        return Error("Invalid VAARG record");
1935      const Type *OpTy = getTypeByID(Record[0]);
1936      Value *Op = getFnValueByID(Record[1], OpTy);
1937      const Type *ResTy = getTypeByID(Record[2]);
1938      if (!OpTy || !Op || !ResTy)
1939        return Error("Invalid VAARG record");
1940      I = new VAArgInst(Op, ResTy);
1941      break;
1942    }
1943    }
1944
1945    // Add instruction to end of current BB.  If there is no current BB, reject
1946    // this file.
1947    if (CurBB == 0) {
1948      delete I;
1949      return Error("Invalid instruction with no BB");
1950    }
1951    CurBB->getInstList().push_back(I);
1952
1953    // If this was a terminator instruction, move to the next block.
1954    if (isa<TerminatorInst>(I)) {
1955      ++CurBBNo;
1956      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1957    }
1958
1959    // Non-void values get registered in the value table for future use.
1960    if (I && I->getType() != Type::VoidTy)
1961      ValueList.AssignValue(I, NextValueNo++);
1962  }
1963
1964  // Check the function list for unresolved values.
1965  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1966    if (A->getParent() == 0) {
1967      // We found at least one unresolved value.  Nuke them all to avoid leaks.
1968      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1969        if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1970          A->replaceAllUsesWith(UndefValue::get(A->getType()));
1971          delete A;
1972        }
1973      }
1974      return Error("Never resolved value found in function!");
1975    }
1976  }
1977
1978  // Trim the value list down to the size it was before we parsed this function.
1979  ValueList.shrinkTo(ModuleValueListSize);
1980  std::vector<BasicBlock*>().swap(FunctionBBs);
1981
1982  return false;
1983}
1984
1985//===----------------------------------------------------------------------===//
1986// ModuleProvider implementation
1987//===----------------------------------------------------------------------===//
1988
1989
1990bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
1991  // If it already is material, ignore the request.
1992  if (!F->hasNotBeenReadFromBitcode()) return false;
1993
1994  DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
1995    DeferredFunctionInfo.find(F);
1996  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
1997
1998  // Move the bit stream to the saved position of the deferred function body and
1999  // restore the real linkage type for the function.
2000  Stream.JumpToBit(DFII->second.first);
2001  F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
2002
2003  if (ParseFunctionBody(F)) {
2004    if (ErrInfo) *ErrInfo = ErrorString;
2005    return true;
2006  }
2007
2008  // Upgrade any old intrinsic calls in the function.
2009  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2010       E = UpgradedIntrinsics.end(); I != E; ++I) {
2011    if (I->first != I->second) {
2012      for (Value::use_iterator UI = I->first->use_begin(),
2013           UE = I->first->use_end(); UI != UE; ) {
2014        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2015          UpgradeIntrinsicCall(CI, I->second);
2016      }
2017    }
2018  }
2019
2020  return false;
2021}
2022
2023void BitcodeReader::dematerializeFunction(Function *F) {
2024  // If this function isn't materialized, or if it is a proto, this is a noop.
2025  if (F->hasNotBeenReadFromBitcode() || F->isDeclaration())
2026    return;
2027
2028  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2029
2030  // Just forget the function body, we can remat it later.
2031  F->deleteBody();
2032  F->setLinkage(GlobalValue::GhostLinkage);
2033}
2034
2035
2036Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
2037  for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
2038       DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E;
2039       ++I) {
2040    Function *F = I->first;
2041    if (F->hasNotBeenReadFromBitcode() &&
2042        materializeFunction(F, ErrInfo))
2043      return 0;
2044  }
2045
2046  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2047  // delete the old functions to clean up. We can't do this unless the entire
2048  // module is materialized because there could always be another function body
2049  // with calls to the old function.
2050  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2051       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2052    if (I->first != I->second) {
2053      for (Value::use_iterator UI = I->first->use_begin(),
2054           UE = I->first->use_end(); UI != UE; ) {
2055        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2056          UpgradeIntrinsicCall(CI, I->second);
2057      }
2058      if (!I->first->use_empty())
2059        I->first->replaceAllUsesWith(I->second);
2060      I->first->eraseFromParent();
2061    }
2062  }
2063  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2064
2065  return TheModule;
2066}
2067
2068
2069/// This method is provided by the parent ModuleProvde class and overriden
2070/// here. It simply releases the module from its provided and frees up our
2071/// state.
2072/// @brief Release our hold on the generated module
2073Module *BitcodeReader::releaseModule(std::string *ErrInfo) {
2074  // Since we're losing control of this Module, we must hand it back complete
2075  Module *M = ModuleProvider::releaseModule(ErrInfo);
2076  FreeState();
2077  return M;
2078}
2079
2080
2081//===----------------------------------------------------------------------===//
2082// External interface
2083//===----------------------------------------------------------------------===//
2084
2085/// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
2086///
2087ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
2088                                               std::string *ErrMsg) {
2089  BitcodeReader *R = new BitcodeReader(Buffer);
2090  if (R->ParseBitcode()) {
2091    if (ErrMsg)
2092      *ErrMsg = R->getErrorString();
2093
2094    // Don't let the BitcodeReader dtor delete 'Buffer'.
2095    R->releaseMemoryBuffer();
2096    delete R;
2097    return 0;
2098  }
2099  return R;
2100}
2101
2102/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2103/// If an error occurs, return null and fill in *ErrMsg if non-null.
2104Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
2105  BitcodeReader *R;
2106  R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
2107  if (!R) return 0;
2108
2109  // Read in the entire module.
2110  Module *M = R->materializeModule(ErrMsg);
2111
2112  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2113  // there was an error.
2114  R->releaseMemoryBuffer();
2115
2116  // If there was no error, tell ModuleProvider not to delete it when its dtor
2117  // is run.
2118  if (M)
2119    M = R->releaseModule(ErrMsg);
2120
2121  delete R;
2122  return M;
2123}
2124