BitcodeReader.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Bitcode/ReaderWriter.h"
11#include "BitcodeReader.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/Bitcode/LLVMBitCodes.h"
15#include "llvm/IR/AutoUpgrade.h"
16#include "llvm/IR/Constants.h"
17#include "llvm/IR/DerivedTypes.h"
18#include "llvm/IR/InlineAsm.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/IR/LLVMContext.h"
21#include "llvm/IR/Module.h"
22#include "llvm/IR/OperandTraits.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/Support/DataStream.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30enum {
31  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
32};
33
34void BitcodeReader::materializeForwardReferencedFunctions() {
35  while (!BlockAddrFwdRefs.empty()) {
36    Function *F = BlockAddrFwdRefs.begin()->first;
37    F->Materialize();
38  }
39}
40
41void BitcodeReader::FreeState() {
42  Buffer = nullptr;
43  std::vector<Type*>().swap(TypeList);
44  ValueList.clear();
45  MDValueList.clear();
46  std::vector<Comdat *>().swap(ComdatList);
47
48  std::vector<AttributeSet>().swap(MAttributes);
49  std::vector<BasicBlock*>().swap(FunctionBBs);
50  std::vector<Function*>().swap(FunctionsWithBodies);
51  DeferredFunctionInfo.clear();
52  MDKindMap.clear();
53
54  assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
55}
56
57//===----------------------------------------------------------------------===//
58//  Helper functions to implement forward reference resolution, etc.
59//===----------------------------------------------------------------------===//
60
61/// ConvertToString - Convert a string from a record into an std::string, return
62/// true on failure.
63template<typename StrTy>
64static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
65                            StrTy &Result) {
66  if (Idx > Record.size())
67    return true;
68
69  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
70    Result += (char)Record[i];
71  return false;
72}
73
74static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
75  switch (Val) {
76  default: // Map unknown/new linkages to external
77  case 0:  return GlobalValue::ExternalLinkage;
78  case 1:  return GlobalValue::WeakAnyLinkage;
79  case 2:  return GlobalValue::AppendingLinkage;
80  case 3:  return GlobalValue::InternalLinkage;
81  case 4:  return GlobalValue::LinkOnceAnyLinkage;
82  case 5:  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
83  case 6:  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
84  case 7:  return GlobalValue::ExternalWeakLinkage;
85  case 8:  return GlobalValue::CommonLinkage;
86  case 9:  return GlobalValue::PrivateLinkage;
87  case 10: return GlobalValue::WeakODRLinkage;
88  case 11: return GlobalValue::LinkOnceODRLinkage;
89  case 12: return GlobalValue::AvailableExternallyLinkage;
90  case 13:
91    return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
92  case 14:
93    return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
94  }
95}
96
97static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
98  switch (Val) {
99  default: // Map unknown visibilities to default.
100  case 0: return GlobalValue::DefaultVisibility;
101  case 1: return GlobalValue::HiddenVisibility;
102  case 2: return GlobalValue::ProtectedVisibility;
103  }
104}
105
106static GlobalValue::DLLStorageClassTypes
107GetDecodedDLLStorageClass(unsigned Val) {
108  switch (Val) {
109  default: // Map unknown values to default.
110  case 0: return GlobalValue::DefaultStorageClass;
111  case 1: return GlobalValue::DLLImportStorageClass;
112  case 2: return GlobalValue::DLLExportStorageClass;
113  }
114}
115
116static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
117  switch (Val) {
118    case 0: return GlobalVariable::NotThreadLocal;
119    default: // Map unknown non-zero value to general dynamic.
120    case 1: return GlobalVariable::GeneralDynamicTLSModel;
121    case 2: return GlobalVariable::LocalDynamicTLSModel;
122    case 3: return GlobalVariable::InitialExecTLSModel;
123    case 4: return GlobalVariable::LocalExecTLSModel;
124  }
125}
126
127static int GetDecodedCastOpcode(unsigned Val) {
128  switch (Val) {
129  default: return -1;
130  case bitc::CAST_TRUNC   : return Instruction::Trunc;
131  case bitc::CAST_ZEXT    : return Instruction::ZExt;
132  case bitc::CAST_SEXT    : return Instruction::SExt;
133  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
134  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
135  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
136  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
137  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
138  case bitc::CAST_FPEXT   : return Instruction::FPExt;
139  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
140  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
141  case bitc::CAST_BITCAST : return Instruction::BitCast;
142  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
143  }
144}
145static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
146  switch (Val) {
147  default: return -1;
148  case bitc::BINOP_ADD:
149    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
150  case bitc::BINOP_SUB:
151    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
152  case bitc::BINOP_MUL:
153    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
154  case bitc::BINOP_UDIV: return Instruction::UDiv;
155  case bitc::BINOP_SDIV:
156    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
157  case bitc::BINOP_UREM: return Instruction::URem;
158  case bitc::BINOP_SREM:
159    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
160  case bitc::BINOP_SHL:  return Instruction::Shl;
161  case bitc::BINOP_LSHR: return Instruction::LShr;
162  case bitc::BINOP_ASHR: return Instruction::AShr;
163  case bitc::BINOP_AND:  return Instruction::And;
164  case bitc::BINOP_OR:   return Instruction::Or;
165  case bitc::BINOP_XOR:  return Instruction::Xor;
166  }
167}
168
169static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
170  switch (Val) {
171  default: return AtomicRMWInst::BAD_BINOP;
172  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
173  case bitc::RMW_ADD: return AtomicRMWInst::Add;
174  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
175  case bitc::RMW_AND: return AtomicRMWInst::And;
176  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
177  case bitc::RMW_OR: return AtomicRMWInst::Or;
178  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
179  case bitc::RMW_MAX: return AtomicRMWInst::Max;
180  case bitc::RMW_MIN: return AtomicRMWInst::Min;
181  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
182  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
183  }
184}
185
186static AtomicOrdering GetDecodedOrdering(unsigned Val) {
187  switch (Val) {
188  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
189  case bitc::ORDERING_UNORDERED: return Unordered;
190  case bitc::ORDERING_MONOTONIC: return Monotonic;
191  case bitc::ORDERING_ACQUIRE: return Acquire;
192  case bitc::ORDERING_RELEASE: return Release;
193  case bitc::ORDERING_ACQREL: return AcquireRelease;
194  default: // Map unknown orderings to sequentially-consistent.
195  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
196  }
197}
198
199static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
200  switch (Val) {
201  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
202  default: // Map unknown scopes to cross-thread.
203  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
204  }
205}
206
207static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
208  switch (Val) {
209  default: // Map unknown selection kinds to any.
210  case bitc::COMDAT_SELECTION_KIND_ANY:
211    return Comdat::Any;
212  case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
213    return Comdat::ExactMatch;
214  case bitc::COMDAT_SELECTION_KIND_LARGEST:
215    return Comdat::Largest;
216  case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
217    return Comdat::NoDuplicates;
218  case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
219    return Comdat::SameSize;
220  }
221}
222
223static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
224  switch (Val) {
225  case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
226  case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
227  }
228}
229
230namespace llvm {
231namespace {
232  /// @brief A class for maintaining the slot number definition
233  /// as a placeholder for the actual definition for forward constants defs.
234  class ConstantPlaceHolder : public ConstantExpr {
235    void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
236  public:
237    // allocate space for exactly one operand
238    void *operator new(size_t s) {
239      return User::operator new(s, 1);
240    }
241    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
242      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
243      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
244    }
245
246    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
247    static bool classof(const Value *V) {
248      return isa<ConstantExpr>(V) &&
249             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
250    }
251
252
253    /// Provide fast operand accessors
254    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
255  };
256}
257
258// FIXME: can we inherit this from ConstantExpr?
259template <>
260struct OperandTraits<ConstantPlaceHolder> :
261  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
262};
263}
264
265
266void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
267  if (Idx == size()) {
268    push_back(V);
269    return;
270  }
271
272  if (Idx >= size())
273    resize(Idx+1);
274
275  WeakVH &OldV = ValuePtrs[Idx];
276  if (!OldV) {
277    OldV = V;
278    return;
279  }
280
281  // Handle constants and non-constants (e.g. instrs) differently for
282  // efficiency.
283  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
284    ResolveConstants.push_back(std::make_pair(PHC, Idx));
285    OldV = V;
286  } else {
287    // If there was a forward reference to this value, replace it.
288    Value *PrevVal = OldV;
289    OldV->replaceAllUsesWith(V);
290    delete PrevVal;
291  }
292}
293
294
295Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
296                                                    Type *Ty) {
297  if (Idx >= size())
298    resize(Idx + 1);
299
300  if (Value *V = ValuePtrs[Idx]) {
301    assert(Ty == V->getType() && "Type mismatch in constant table!");
302    return cast<Constant>(V);
303  }
304
305  // Create and return a placeholder, which will later be RAUW'd.
306  Constant *C = new ConstantPlaceHolder(Ty, Context);
307  ValuePtrs[Idx] = C;
308  return C;
309}
310
311Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
312  if (Idx >= size())
313    resize(Idx + 1);
314
315  if (Value *V = ValuePtrs[Idx]) {
316    assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
317    return V;
318  }
319
320  // No type specified, must be invalid reference.
321  if (!Ty) return nullptr;
322
323  // Create and return a placeholder, which will later be RAUW'd.
324  Value *V = new Argument(Ty);
325  ValuePtrs[Idx] = V;
326  return V;
327}
328
329/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
330/// resolves any forward references.  The idea behind this is that we sometimes
331/// get constants (such as large arrays) which reference *many* forward ref
332/// constants.  Replacing each of these causes a lot of thrashing when
333/// building/reuniquing the constant.  Instead of doing this, we look at all the
334/// uses and rewrite all the place holders at once for any constant that uses
335/// a placeholder.
336void BitcodeReaderValueList::ResolveConstantForwardRefs() {
337  // Sort the values by-pointer so that they are efficient to look up with a
338  // binary search.
339  std::sort(ResolveConstants.begin(), ResolveConstants.end());
340
341  SmallVector<Constant*, 64> NewOps;
342
343  while (!ResolveConstants.empty()) {
344    Value *RealVal = operator[](ResolveConstants.back().second);
345    Constant *Placeholder = ResolveConstants.back().first;
346    ResolveConstants.pop_back();
347
348    // Loop over all users of the placeholder, updating them to reference the
349    // new value.  If they reference more than one placeholder, update them all
350    // at once.
351    while (!Placeholder->use_empty()) {
352      auto UI = Placeholder->user_begin();
353      User *U = *UI;
354
355      // If the using object isn't uniqued, just update the operands.  This
356      // handles instructions and initializers for global variables.
357      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
358        UI.getUse().set(RealVal);
359        continue;
360      }
361
362      // Otherwise, we have a constant that uses the placeholder.  Replace that
363      // constant with a new constant that has *all* placeholder uses updated.
364      Constant *UserC = cast<Constant>(U);
365      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
366           I != E; ++I) {
367        Value *NewOp;
368        if (!isa<ConstantPlaceHolder>(*I)) {
369          // Not a placeholder reference.
370          NewOp = *I;
371        } else if (*I == Placeholder) {
372          // Common case is that it just references this one placeholder.
373          NewOp = RealVal;
374        } else {
375          // Otherwise, look up the placeholder in ResolveConstants.
376          ResolveConstantsTy::iterator It =
377            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
378                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
379                                                            0));
380          assert(It != ResolveConstants.end() && It->first == *I);
381          NewOp = operator[](It->second);
382        }
383
384        NewOps.push_back(cast<Constant>(NewOp));
385      }
386
387      // Make the new constant.
388      Constant *NewC;
389      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
390        NewC = ConstantArray::get(UserCA->getType(), NewOps);
391      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
392        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
393      } else if (isa<ConstantVector>(UserC)) {
394        NewC = ConstantVector::get(NewOps);
395      } else {
396        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
397        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
398      }
399
400      UserC->replaceAllUsesWith(NewC);
401      UserC->destroyConstant();
402      NewOps.clear();
403    }
404
405    // Update all ValueHandles, they should be the only users at this point.
406    Placeholder->replaceAllUsesWith(RealVal);
407    delete Placeholder;
408  }
409}
410
411void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
412  if (Idx == size()) {
413    push_back(V);
414    return;
415  }
416
417  if (Idx >= size())
418    resize(Idx+1);
419
420  WeakVH &OldV = MDValuePtrs[Idx];
421  if (!OldV) {
422    OldV = V;
423    return;
424  }
425
426  // If there was a forward reference to this value, replace it.
427  MDNode *PrevVal = cast<MDNode>(OldV);
428  OldV->replaceAllUsesWith(V);
429  MDNode::deleteTemporary(PrevVal);
430  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
431  // value for Idx.
432  MDValuePtrs[Idx] = V;
433}
434
435Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
436  if (Idx >= size())
437    resize(Idx + 1);
438
439  if (Value *V = MDValuePtrs[Idx]) {
440    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
441    return V;
442  }
443
444  // Create and return a placeholder, which will later be RAUW'd.
445  Value *V = MDNode::getTemporary(Context, None);
446  MDValuePtrs[Idx] = V;
447  return V;
448}
449
450Type *BitcodeReader::getTypeByID(unsigned ID) {
451  // The type table size is always specified correctly.
452  if (ID >= TypeList.size())
453    return nullptr;
454
455  if (Type *Ty = TypeList[ID])
456    return Ty;
457
458  // If we have a forward reference, the only possible case is when it is to a
459  // named struct.  Just create a placeholder for now.
460  return TypeList[ID] = StructType::create(Context);
461}
462
463
464//===----------------------------------------------------------------------===//
465//  Functions for parsing blocks from the bitcode file
466//===----------------------------------------------------------------------===//
467
468
469/// \brief This fills an AttrBuilder object with the LLVM attributes that have
470/// been decoded from the given integer. This function must stay in sync with
471/// 'encodeLLVMAttributesForBitcode'.
472static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
473                                           uint64_t EncodedAttrs) {
474  // FIXME: Remove in 4.0.
475
476  // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
477  // the bits above 31 down by 11 bits.
478  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
479  assert((!Alignment || isPowerOf2_32(Alignment)) &&
480         "Alignment must be a power of two.");
481
482  if (Alignment)
483    B.addAlignmentAttr(Alignment);
484  B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
485                (EncodedAttrs & 0xffff));
486}
487
488std::error_code BitcodeReader::ParseAttributeBlock() {
489  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
490    return Error(InvalidRecord);
491
492  if (!MAttributes.empty())
493    return Error(InvalidMultipleBlocks);
494
495  SmallVector<uint64_t, 64> Record;
496
497  SmallVector<AttributeSet, 8> Attrs;
498
499  // Read all the records.
500  while (1) {
501    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
502
503    switch (Entry.Kind) {
504    case BitstreamEntry::SubBlock: // Handled for us already.
505    case BitstreamEntry::Error:
506      return Error(MalformedBlock);
507    case BitstreamEntry::EndBlock:
508      return std::error_code();
509    case BitstreamEntry::Record:
510      // The interesting case.
511      break;
512    }
513
514    // Read a record.
515    Record.clear();
516    switch (Stream.readRecord(Entry.ID, Record)) {
517    default:  // Default behavior: ignore.
518      break;
519    case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
520      // FIXME: Remove in 4.0.
521      if (Record.size() & 1)
522        return Error(InvalidRecord);
523
524      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
525        AttrBuilder B;
526        decodeLLVMAttributesForBitcode(B, Record[i+1]);
527        Attrs.push_back(AttributeSet::get(Context, Record[i], B));
528      }
529
530      MAttributes.push_back(AttributeSet::get(Context, Attrs));
531      Attrs.clear();
532      break;
533    }
534    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
535      for (unsigned i = 0, e = Record.size(); i != e; ++i)
536        Attrs.push_back(MAttributeGroups[Record[i]]);
537
538      MAttributes.push_back(AttributeSet::get(Context, Attrs));
539      Attrs.clear();
540      break;
541    }
542    }
543  }
544}
545
546// Returns Attribute::None on unrecognized codes.
547static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
548  switch (Code) {
549  default:
550    return Attribute::None;
551  case bitc::ATTR_KIND_ALIGNMENT:
552    return Attribute::Alignment;
553  case bitc::ATTR_KIND_ALWAYS_INLINE:
554    return Attribute::AlwaysInline;
555  case bitc::ATTR_KIND_BUILTIN:
556    return Attribute::Builtin;
557  case bitc::ATTR_KIND_BY_VAL:
558    return Attribute::ByVal;
559  case bitc::ATTR_KIND_IN_ALLOCA:
560    return Attribute::InAlloca;
561  case bitc::ATTR_KIND_COLD:
562    return Attribute::Cold;
563  case bitc::ATTR_KIND_INLINE_HINT:
564    return Attribute::InlineHint;
565  case bitc::ATTR_KIND_IN_REG:
566    return Attribute::InReg;
567  case bitc::ATTR_KIND_JUMP_TABLE:
568    return Attribute::JumpTable;
569  case bitc::ATTR_KIND_MIN_SIZE:
570    return Attribute::MinSize;
571  case bitc::ATTR_KIND_NAKED:
572    return Attribute::Naked;
573  case bitc::ATTR_KIND_NEST:
574    return Attribute::Nest;
575  case bitc::ATTR_KIND_NO_ALIAS:
576    return Attribute::NoAlias;
577  case bitc::ATTR_KIND_NO_BUILTIN:
578    return Attribute::NoBuiltin;
579  case bitc::ATTR_KIND_NO_CAPTURE:
580    return Attribute::NoCapture;
581  case bitc::ATTR_KIND_NO_DUPLICATE:
582    return Attribute::NoDuplicate;
583  case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
584    return Attribute::NoImplicitFloat;
585  case bitc::ATTR_KIND_NO_INLINE:
586    return Attribute::NoInline;
587  case bitc::ATTR_KIND_NON_LAZY_BIND:
588    return Attribute::NonLazyBind;
589  case bitc::ATTR_KIND_NON_NULL:
590    return Attribute::NonNull;
591  case bitc::ATTR_KIND_NO_RED_ZONE:
592    return Attribute::NoRedZone;
593  case bitc::ATTR_KIND_NO_RETURN:
594    return Attribute::NoReturn;
595  case bitc::ATTR_KIND_NO_UNWIND:
596    return Attribute::NoUnwind;
597  case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
598    return Attribute::OptimizeForSize;
599  case bitc::ATTR_KIND_OPTIMIZE_NONE:
600    return Attribute::OptimizeNone;
601  case bitc::ATTR_KIND_READ_NONE:
602    return Attribute::ReadNone;
603  case bitc::ATTR_KIND_READ_ONLY:
604    return Attribute::ReadOnly;
605  case bitc::ATTR_KIND_RETURNED:
606    return Attribute::Returned;
607  case bitc::ATTR_KIND_RETURNS_TWICE:
608    return Attribute::ReturnsTwice;
609  case bitc::ATTR_KIND_S_EXT:
610    return Attribute::SExt;
611  case bitc::ATTR_KIND_STACK_ALIGNMENT:
612    return Attribute::StackAlignment;
613  case bitc::ATTR_KIND_STACK_PROTECT:
614    return Attribute::StackProtect;
615  case bitc::ATTR_KIND_STACK_PROTECT_REQ:
616    return Attribute::StackProtectReq;
617  case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
618    return Attribute::StackProtectStrong;
619  case bitc::ATTR_KIND_STRUCT_RET:
620    return Attribute::StructRet;
621  case bitc::ATTR_KIND_SANITIZE_ADDRESS:
622    return Attribute::SanitizeAddress;
623  case bitc::ATTR_KIND_SANITIZE_THREAD:
624    return Attribute::SanitizeThread;
625  case bitc::ATTR_KIND_SANITIZE_MEMORY:
626    return Attribute::SanitizeMemory;
627  case bitc::ATTR_KIND_UW_TABLE:
628    return Attribute::UWTable;
629  case bitc::ATTR_KIND_Z_EXT:
630    return Attribute::ZExt;
631  }
632}
633
634std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
635                                             Attribute::AttrKind *Kind) {
636  *Kind = GetAttrFromCode(Code);
637  if (*Kind == Attribute::None)
638    return Error(InvalidValue);
639  return std::error_code();
640}
641
642std::error_code BitcodeReader::ParseAttributeGroupBlock() {
643  if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
644    return Error(InvalidRecord);
645
646  if (!MAttributeGroups.empty())
647    return Error(InvalidMultipleBlocks);
648
649  SmallVector<uint64_t, 64> Record;
650
651  // Read all the records.
652  while (1) {
653    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
654
655    switch (Entry.Kind) {
656    case BitstreamEntry::SubBlock: // Handled for us already.
657    case BitstreamEntry::Error:
658      return Error(MalformedBlock);
659    case BitstreamEntry::EndBlock:
660      return std::error_code();
661    case BitstreamEntry::Record:
662      // The interesting case.
663      break;
664    }
665
666    // Read a record.
667    Record.clear();
668    switch (Stream.readRecord(Entry.ID, Record)) {
669    default:  // Default behavior: ignore.
670      break;
671    case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
672      if (Record.size() < 3)
673        return Error(InvalidRecord);
674
675      uint64_t GrpID = Record[0];
676      uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
677
678      AttrBuilder B;
679      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
680        if (Record[i] == 0) {        // Enum attribute
681          Attribute::AttrKind Kind;
682          if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
683            return EC;
684
685          B.addAttribute(Kind);
686        } else if (Record[i] == 1) { // Align attribute
687          Attribute::AttrKind Kind;
688          if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
689            return EC;
690          if (Kind == Attribute::Alignment)
691            B.addAlignmentAttr(Record[++i]);
692          else
693            B.addStackAlignmentAttr(Record[++i]);
694        } else {                     // String attribute
695          assert((Record[i] == 3 || Record[i] == 4) &&
696                 "Invalid attribute group entry");
697          bool HasValue = (Record[i++] == 4);
698          SmallString<64> KindStr;
699          SmallString<64> ValStr;
700
701          while (Record[i] != 0 && i != e)
702            KindStr += Record[i++];
703          assert(Record[i] == 0 && "Kind string not null terminated");
704
705          if (HasValue) {
706            // Has a value associated with it.
707            ++i; // Skip the '0' that terminates the "kind" string.
708            while (Record[i] != 0 && i != e)
709              ValStr += Record[i++];
710            assert(Record[i] == 0 && "Value string not null terminated");
711          }
712
713          B.addAttribute(KindStr.str(), ValStr.str());
714        }
715      }
716
717      MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
718      break;
719    }
720    }
721  }
722}
723
724std::error_code BitcodeReader::ParseTypeTable() {
725  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
726    return Error(InvalidRecord);
727
728  return ParseTypeTableBody();
729}
730
731std::error_code BitcodeReader::ParseTypeTableBody() {
732  if (!TypeList.empty())
733    return Error(InvalidMultipleBlocks);
734
735  SmallVector<uint64_t, 64> Record;
736  unsigned NumRecords = 0;
737
738  SmallString<64> TypeName;
739
740  // Read all the records for this type table.
741  while (1) {
742    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
743
744    switch (Entry.Kind) {
745    case BitstreamEntry::SubBlock: // Handled for us already.
746    case BitstreamEntry::Error:
747      return Error(MalformedBlock);
748    case BitstreamEntry::EndBlock:
749      if (NumRecords != TypeList.size())
750        return Error(MalformedBlock);
751      return std::error_code();
752    case BitstreamEntry::Record:
753      // The interesting case.
754      break;
755    }
756
757    // Read a record.
758    Record.clear();
759    Type *ResultTy = nullptr;
760    switch (Stream.readRecord(Entry.ID, Record)) {
761    default:
762      return Error(InvalidValue);
763    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
764      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
765      // type list.  This allows us to reserve space.
766      if (Record.size() < 1)
767        return Error(InvalidRecord);
768      TypeList.resize(Record[0]);
769      continue;
770    case bitc::TYPE_CODE_VOID:      // VOID
771      ResultTy = Type::getVoidTy(Context);
772      break;
773    case bitc::TYPE_CODE_HALF:     // HALF
774      ResultTy = Type::getHalfTy(Context);
775      break;
776    case bitc::TYPE_CODE_FLOAT:     // FLOAT
777      ResultTy = Type::getFloatTy(Context);
778      break;
779    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
780      ResultTy = Type::getDoubleTy(Context);
781      break;
782    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
783      ResultTy = Type::getX86_FP80Ty(Context);
784      break;
785    case bitc::TYPE_CODE_FP128:     // FP128
786      ResultTy = Type::getFP128Ty(Context);
787      break;
788    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
789      ResultTy = Type::getPPC_FP128Ty(Context);
790      break;
791    case bitc::TYPE_CODE_LABEL:     // LABEL
792      ResultTy = Type::getLabelTy(Context);
793      break;
794    case bitc::TYPE_CODE_METADATA:  // METADATA
795      ResultTy = Type::getMetadataTy(Context);
796      break;
797    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
798      ResultTy = Type::getX86_MMXTy(Context);
799      break;
800    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
801      if (Record.size() < 1)
802        return Error(InvalidRecord);
803
804      ResultTy = IntegerType::get(Context, Record[0]);
805      break;
806    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
807                                    //          [pointee type, address space]
808      if (Record.size() < 1)
809        return Error(InvalidRecord);
810      unsigned AddressSpace = 0;
811      if (Record.size() == 2)
812        AddressSpace = Record[1];
813      ResultTy = getTypeByID(Record[0]);
814      if (!ResultTy)
815        return Error(InvalidType);
816      ResultTy = PointerType::get(ResultTy, AddressSpace);
817      break;
818    }
819    case bitc::TYPE_CODE_FUNCTION_OLD: {
820      // FIXME: attrid is dead, remove it in LLVM 4.0
821      // FUNCTION: [vararg, attrid, retty, paramty x N]
822      if (Record.size() < 3)
823        return Error(InvalidRecord);
824      SmallVector<Type*, 8> ArgTys;
825      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
826        if (Type *T = getTypeByID(Record[i]))
827          ArgTys.push_back(T);
828        else
829          break;
830      }
831
832      ResultTy = getTypeByID(Record[2]);
833      if (!ResultTy || ArgTys.size() < Record.size()-3)
834        return Error(InvalidType);
835
836      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
837      break;
838    }
839    case bitc::TYPE_CODE_FUNCTION: {
840      // FUNCTION: [vararg, retty, paramty x N]
841      if (Record.size() < 2)
842        return Error(InvalidRecord);
843      SmallVector<Type*, 8> ArgTys;
844      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
845        if (Type *T = getTypeByID(Record[i]))
846          ArgTys.push_back(T);
847        else
848          break;
849      }
850
851      ResultTy = getTypeByID(Record[1]);
852      if (!ResultTy || ArgTys.size() < Record.size()-2)
853        return Error(InvalidType);
854
855      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
856      break;
857    }
858    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
859      if (Record.size() < 1)
860        return Error(InvalidRecord);
861      SmallVector<Type*, 8> EltTys;
862      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
863        if (Type *T = getTypeByID(Record[i]))
864          EltTys.push_back(T);
865        else
866          break;
867      }
868      if (EltTys.size() != Record.size()-1)
869        return Error(InvalidType);
870      ResultTy = StructType::get(Context, EltTys, Record[0]);
871      break;
872    }
873    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
874      if (ConvertToString(Record, 0, TypeName))
875        return Error(InvalidRecord);
876      continue;
877
878    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
879      if (Record.size() < 1)
880        return Error(InvalidRecord);
881
882      if (NumRecords >= TypeList.size())
883        return Error(InvalidTYPETable);
884
885      // Check to see if this was forward referenced, if so fill in the temp.
886      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
887      if (Res) {
888        Res->setName(TypeName);
889        TypeList[NumRecords] = nullptr;
890      } else  // Otherwise, create a new struct.
891        Res = StructType::create(Context, TypeName);
892      TypeName.clear();
893
894      SmallVector<Type*, 8> EltTys;
895      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
896        if (Type *T = getTypeByID(Record[i]))
897          EltTys.push_back(T);
898        else
899          break;
900      }
901      if (EltTys.size() != Record.size()-1)
902        return Error(InvalidRecord);
903      Res->setBody(EltTys, Record[0]);
904      ResultTy = Res;
905      break;
906    }
907    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
908      if (Record.size() != 1)
909        return Error(InvalidRecord);
910
911      if (NumRecords >= TypeList.size())
912        return Error(InvalidTYPETable);
913
914      // Check to see if this was forward referenced, if so fill in the temp.
915      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
916      if (Res) {
917        Res->setName(TypeName);
918        TypeList[NumRecords] = nullptr;
919      } else  // Otherwise, create a new struct with no body.
920        Res = StructType::create(Context, TypeName);
921      TypeName.clear();
922      ResultTy = Res;
923      break;
924    }
925    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
926      if (Record.size() < 2)
927        return Error(InvalidRecord);
928      if ((ResultTy = getTypeByID(Record[1])))
929        ResultTy = ArrayType::get(ResultTy, Record[0]);
930      else
931        return Error(InvalidType);
932      break;
933    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
934      if (Record.size() < 2)
935        return Error(InvalidRecord);
936      if ((ResultTy = getTypeByID(Record[1])))
937        ResultTy = VectorType::get(ResultTy, Record[0]);
938      else
939        return Error(InvalidType);
940      break;
941    }
942
943    if (NumRecords >= TypeList.size())
944      return Error(InvalidTYPETable);
945    assert(ResultTy && "Didn't read a type?");
946    assert(!TypeList[NumRecords] && "Already read type?");
947    TypeList[NumRecords++] = ResultTy;
948  }
949}
950
951std::error_code BitcodeReader::ParseValueSymbolTable() {
952  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
953    return Error(InvalidRecord);
954
955  SmallVector<uint64_t, 64> Record;
956
957  // Read all the records for this value table.
958  SmallString<128> ValueName;
959  while (1) {
960    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
961
962    switch (Entry.Kind) {
963    case BitstreamEntry::SubBlock: // Handled for us already.
964    case BitstreamEntry::Error:
965      return Error(MalformedBlock);
966    case BitstreamEntry::EndBlock:
967      return std::error_code();
968    case BitstreamEntry::Record:
969      // The interesting case.
970      break;
971    }
972
973    // Read a record.
974    Record.clear();
975    switch (Stream.readRecord(Entry.ID, Record)) {
976    default:  // Default behavior: unknown type.
977      break;
978    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
979      if (ConvertToString(Record, 1, ValueName))
980        return Error(InvalidRecord);
981      unsigned ValueID = Record[0];
982      if (ValueID >= ValueList.size() || !ValueList[ValueID])
983        return Error(InvalidRecord);
984      Value *V = ValueList[ValueID];
985
986      V->setName(StringRef(ValueName.data(), ValueName.size()));
987      ValueName.clear();
988      break;
989    }
990    case bitc::VST_CODE_BBENTRY: {
991      if (ConvertToString(Record, 1, ValueName))
992        return Error(InvalidRecord);
993      BasicBlock *BB = getBasicBlock(Record[0]);
994      if (!BB)
995        return Error(InvalidRecord);
996
997      BB->setName(StringRef(ValueName.data(), ValueName.size()));
998      ValueName.clear();
999      break;
1000    }
1001    }
1002  }
1003}
1004
1005std::error_code BitcodeReader::ParseMetadata() {
1006  unsigned NextMDValueNo = MDValueList.size();
1007
1008  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1009    return Error(InvalidRecord);
1010
1011  SmallVector<uint64_t, 64> Record;
1012
1013  // Read all the records.
1014  while (1) {
1015    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1016
1017    switch (Entry.Kind) {
1018    case BitstreamEntry::SubBlock: // Handled for us already.
1019    case BitstreamEntry::Error:
1020      return Error(MalformedBlock);
1021    case BitstreamEntry::EndBlock:
1022      return std::error_code();
1023    case BitstreamEntry::Record:
1024      // The interesting case.
1025      break;
1026    }
1027
1028    bool IsFunctionLocal = false;
1029    // Read a record.
1030    Record.clear();
1031    unsigned Code = Stream.readRecord(Entry.ID, Record);
1032    switch (Code) {
1033    default:  // Default behavior: ignore.
1034      break;
1035    case bitc::METADATA_NAME: {
1036      // Read name of the named metadata.
1037      SmallString<8> Name(Record.begin(), Record.end());
1038      Record.clear();
1039      Code = Stream.ReadCode();
1040
1041      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1042      unsigned NextBitCode = Stream.readRecord(Code, Record);
1043      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1044
1045      // Read named metadata elements.
1046      unsigned Size = Record.size();
1047      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1048      for (unsigned i = 0; i != Size; ++i) {
1049        MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1050        if (!MD)
1051          return Error(InvalidRecord);
1052        NMD->addOperand(MD);
1053      }
1054      break;
1055    }
1056    case bitc::METADATA_FN_NODE:
1057      IsFunctionLocal = true;
1058      // fall-through
1059    case bitc::METADATA_NODE: {
1060      if (Record.size() % 2 == 1)
1061        return Error(InvalidRecord);
1062
1063      unsigned Size = Record.size();
1064      SmallVector<Value*, 8> Elts;
1065      for (unsigned i = 0; i != Size; i += 2) {
1066        Type *Ty = getTypeByID(Record[i]);
1067        if (!Ty)
1068          return Error(InvalidRecord);
1069        if (Ty->isMetadataTy())
1070          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1071        else if (!Ty->isVoidTy())
1072          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1073        else
1074          Elts.push_back(nullptr);
1075      }
1076      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1077      IsFunctionLocal = false;
1078      MDValueList.AssignValue(V, NextMDValueNo++);
1079      break;
1080    }
1081    case bitc::METADATA_STRING: {
1082      std::string String(Record.begin(), Record.end());
1083      llvm::UpgradeMDStringConstant(String);
1084      Value *V = MDString::get(Context, String);
1085      MDValueList.AssignValue(V, NextMDValueNo++);
1086      break;
1087    }
1088    case bitc::METADATA_KIND: {
1089      if (Record.size() < 2)
1090        return Error(InvalidRecord);
1091
1092      unsigned Kind = Record[0];
1093      SmallString<8> Name(Record.begin()+1, Record.end());
1094
1095      unsigned NewKind = TheModule->getMDKindID(Name.str());
1096      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1097        return Error(ConflictingMETADATA_KINDRecords);
1098      break;
1099    }
1100    }
1101  }
1102}
1103
1104/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1105/// the LSB for dense VBR encoding.
1106uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1107  if ((V & 1) == 0)
1108    return V >> 1;
1109  if (V != 1)
1110    return -(V >> 1);
1111  // There is no such thing as -0 with integers.  "-0" really means MININT.
1112  return 1ULL << 63;
1113}
1114
1115/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1116/// values and aliases that we can.
1117std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1118  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1119  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1120  std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1121
1122  GlobalInitWorklist.swap(GlobalInits);
1123  AliasInitWorklist.swap(AliasInits);
1124  FunctionPrefixWorklist.swap(FunctionPrefixes);
1125
1126  while (!GlobalInitWorklist.empty()) {
1127    unsigned ValID = GlobalInitWorklist.back().second;
1128    if (ValID >= ValueList.size()) {
1129      // Not ready to resolve this yet, it requires something later in the file.
1130      GlobalInits.push_back(GlobalInitWorklist.back());
1131    } else {
1132      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1133        GlobalInitWorklist.back().first->setInitializer(C);
1134      else
1135        return Error(ExpectedConstant);
1136    }
1137    GlobalInitWorklist.pop_back();
1138  }
1139
1140  while (!AliasInitWorklist.empty()) {
1141    unsigned ValID = AliasInitWorklist.back().second;
1142    if (ValID >= ValueList.size()) {
1143      AliasInits.push_back(AliasInitWorklist.back());
1144    } else {
1145      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1146        AliasInitWorklist.back().first->setAliasee(C);
1147      else
1148        return Error(ExpectedConstant);
1149    }
1150    AliasInitWorklist.pop_back();
1151  }
1152
1153  while (!FunctionPrefixWorklist.empty()) {
1154    unsigned ValID = FunctionPrefixWorklist.back().second;
1155    if (ValID >= ValueList.size()) {
1156      FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1157    } else {
1158      if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1159        FunctionPrefixWorklist.back().first->setPrefixData(C);
1160      else
1161        return Error(ExpectedConstant);
1162    }
1163    FunctionPrefixWorklist.pop_back();
1164  }
1165
1166  return std::error_code();
1167}
1168
1169static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1170  SmallVector<uint64_t, 8> Words(Vals.size());
1171  std::transform(Vals.begin(), Vals.end(), Words.begin(),
1172                 BitcodeReader::decodeSignRotatedValue);
1173
1174  return APInt(TypeBits, Words);
1175}
1176
1177std::error_code BitcodeReader::ParseConstants() {
1178  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1179    return Error(InvalidRecord);
1180
1181  SmallVector<uint64_t, 64> Record;
1182
1183  // Read all the records for this value table.
1184  Type *CurTy = Type::getInt32Ty(Context);
1185  unsigned NextCstNo = ValueList.size();
1186  while (1) {
1187    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1188
1189    switch (Entry.Kind) {
1190    case BitstreamEntry::SubBlock: // Handled for us already.
1191    case BitstreamEntry::Error:
1192      return Error(MalformedBlock);
1193    case BitstreamEntry::EndBlock:
1194      if (NextCstNo != ValueList.size())
1195        return Error(InvalidConstantReference);
1196
1197      // Once all the constants have been read, go through and resolve forward
1198      // references.
1199      ValueList.ResolveConstantForwardRefs();
1200      return std::error_code();
1201    case BitstreamEntry::Record:
1202      // The interesting case.
1203      break;
1204    }
1205
1206    // Read a record.
1207    Record.clear();
1208    Value *V = nullptr;
1209    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1210    switch (BitCode) {
1211    default:  // Default behavior: unknown constant
1212    case bitc::CST_CODE_UNDEF:     // UNDEF
1213      V = UndefValue::get(CurTy);
1214      break;
1215    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1216      if (Record.empty())
1217        return Error(InvalidRecord);
1218      if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
1219        return Error(InvalidRecord);
1220      CurTy = TypeList[Record[0]];
1221      continue;  // Skip the ValueList manipulation.
1222    case bitc::CST_CODE_NULL:      // NULL
1223      V = Constant::getNullValue(CurTy);
1224      break;
1225    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1226      if (!CurTy->isIntegerTy() || Record.empty())
1227        return Error(InvalidRecord);
1228      V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1229      break;
1230    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1231      if (!CurTy->isIntegerTy() || Record.empty())
1232        return Error(InvalidRecord);
1233
1234      APInt VInt = ReadWideAPInt(Record,
1235                                 cast<IntegerType>(CurTy)->getBitWidth());
1236      V = ConstantInt::get(Context, VInt);
1237
1238      break;
1239    }
1240    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1241      if (Record.empty())
1242        return Error(InvalidRecord);
1243      if (CurTy->isHalfTy())
1244        V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1245                                             APInt(16, (uint16_t)Record[0])));
1246      else if (CurTy->isFloatTy())
1247        V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1248                                             APInt(32, (uint32_t)Record[0])));
1249      else if (CurTy->isDoubleTy())
1250        V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1251                                             APInt(64, Record[0])));
1252      else if (CurTy->isX86_FP80Ty()) {
1253        // Bits are not stored the same way as a normal i80 APInt, compensate.
1254        uint64_t Rearrange[2];
1255        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1256        Rearrange[1] = Record[0] >> 48;
1257        V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1258                                             APInt(80, Rearrange)));
1259      } else if (CurTy->isFP128Ty())
1260        V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1261                                             APInt(128, Record)));
1262      else if (CurTy->isPPC_FP128Ty())
1263        V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1264                                             APInt(128, Record)));
1265      else
1266        V = UndefValue::get(CurTy);
1267      break;
1268    }
1269
1270    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1271      if (Record.empty())
1272        return Error(InvalidRecord);
1273
1274      unsigned Size = Record.size();
1275      SmallVector<Constant*, 16> Elts;
1276
1277      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1278        for (unsigned i = 0; i != Size; ++i)
1279          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1280                                                     STy->getElementType(i)));
1281        V = ConstantStruct::get(STy, Elts);
1282      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1283        Type *EltTy = ATy->getElementType();
1284        for (unsigned i = 0; i != Size; ++i)
1285          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1286        V = ConstantArray::get(ATy, Elts);
1287      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1288        Type *EltTy = VTy->getElementType();
1289        for (unsigned i = 0; i != Size; ++i)
1290          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1291        V = ConstantVector::get(Elts);
1292      } else {
1293        V = UndefValue::get(CurTy);
1294      }
1295      break;
1296    }
1297    case bitc::CST_CODE_STRING:    // STRING: [values]
1298    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1299      if (Record.empty())
1300        return Error(InvalidRecord);
1301
1302      SmallString<16> Elts(Record.begin(), Record.end());
1303      V = ConstantDataArray::getString(Context, Elts,
1304                                       BitCode == bitc::CST_CODE_CSTRING);
1305      break;
1306    }
1307    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1308      if (Record.empty())
1309        return Error(InvalidRecord);
1310
1311      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1312      unsigned Size = Record.size();
1313
1314      if (EltTy->isIntegerTy(8)) {
1315        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1316        if (isa<VectorType>(CurTy))
1317          V = ConstantDataVector::get(Context, Elts);
1318        else
1319          V = ConstantDataArray::get(Context, Elts);
1320      } else if (EltTy->isIntegerTy(16)) {
1321        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1322        if (isa<VectorType>(CurTy))
1323          V = ConstantDataVector::get(Context, Elts);
1324        else
1325          V = ConstantDataArray::get(Context, Elts);
1326      } else if (EltTy->isIntegerTy(32)) {
1327        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1328        if (isa<VectorType>(CurTy))
1329          V = ConstantDataVector::get(Context, Elts);
1330        else
1331          V = ConstantDataArray::get(Context, Elts);
1332      } else if (EltTy->isIntegerTy(64)) {
1333        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1334        if (isa<VectorType>(CurTy))
1335          V = ConstantDataVector::get(Context, Elts);
1336        else
1337          V = ConstantDataArray::get(Context, Elts);
1338      } else if (EltTy->isFloatTy()) {
1339        SmallVector<float, 16> Elts(Size);
1340        std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1341        if (isa<VectorType>(CurTy))
1342          V = ConstantDataVector::get(Context, Elts);
1343        else
1344          V = ConstantDataArray::get(Context, Elts);
1345      } else if (EltTy->isDoubleTy()) {
1346        SmallVector<double, 16> Elts(Size);
1347        std::transform(Record.begin(), Record.end(), Elts.begin(),
1348                       BitsToDouble);
1349        if (isa<VectorType>(CurTy))
1350          V = ConstantDataVector::get(Context, Elts);
1351        else
1352          V = ConstantDataArray::get(Context, Elts);
1353      } else {
1354        return Error(InvalidTypeForValue);
1355      }
1356      break;
1357    }
1358
1359    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1360      if (Record.size() < 3)
1361        return Error(InvalidRecord);
1362      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1363      if (Opc < 0) {
1364        V = UndefValue::get(CurTy);  // Unknown binop.
1365      } else {
1366        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1367        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1368        unsigned Flags = 0;
1369        if (Record.size() >= 4) {
1370          if (Opc == Instruction::Add ||
1371              Opc == Instruction::Sub ||
1372              Opc == Instruction::Mul ||
1373              Opc == Instruction::Shl) {
1374            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1375              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1376            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1377              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1378          } else if (Opc == Instruction::SDiv ||
1379                     Opc == Instruction::UDiv ||
1380                     Opc == Instruction::LShr ||
1381                     Opc == Instruction::AShr) {
1382            if (Record[3] & (1 << bitc::PEO_EXACT))
1383              Flags |= SDivOperator::IsExact;
1384          }
1385        }
1386        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1387      }
1388      break;
1389    }
1390    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1391      if (Record.size() < 3)
1392        return Error(InvalidRecord);
1393      int Opc = GetDecodedCastOpcode(Record[0]);
1394      if (Opc < 0) {
1395        V = UndefValue::get(CurTy);  // Unknown cast.
1396      } else {
1397        Type *OpTy = getTypeByID(Record[1]);
1398        if (!OpTy)
1399          return Error(InvalidRecord);
1400        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1401        V = UpgradeBitCastExpr(Opc, Op, CurTy);
1402        if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
1403      }
1404      break;
1405    }
1406    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1407    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1408      if (Record.size() & 1)
1409        return Error(InvalidRecord);
1410      SmallVector<Constant*, 16> Elts;
1411      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1412        Type *ElTy = getTypeByID(Record[i]);
1413        if (!ElTy)
1414          return Error(InvalidRecord);
1415        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1416      }
1417      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1418      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1419                                         BitCode ==
1420                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1421      break;
1422    }
1423    case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1424      if (Record.size() < 3)
1425        return Error(InvalidRecord);
1426
1427      Type *SelectorTy = Type::getInt1Ty(Context);
1428
1429      // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1430      // vector. Otherwise, it must be a single bit.
1431      if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1432        SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1433                                     VTy->getNumElements());
1434
1435      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1436                                                              SelectorTy),
1437                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1438                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1439      break;
1440    }
1441    case bitc::CST_CODE_CE_EXTRACTELT
1442        : { // CE_EXTRACTELT: [opty, opval, opty, opval]
1443      if (Record.size() < 3)
1444        return Error(InvalidRecord);
1445      VectorType *OpTy =
1446        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1447      if (!OpTy)
1448        return Error(InvalidRecord);
1449      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1450      Constant *Op1 = nullptr;
1451      if (Record.size() == 4) {
1452        Type *IdxTy = getTypeByID(Record[2]);
1453        if (!IdxTy)
1454          return Error(InvalidRecord);
1455        Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
1456      } else // TODO: Remove with llvm 4.0
1457        Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1458      if (!Op1)
1459        return Error(InvalidRecord);
1460      V = ConstantExpr::getExtractElement(Op0, Op1);
1461      break;
1462    }
1463    case bitc::CST_CODE_CE_INSERTELT
1464        : { // CE_INSERTELT: [opval, opval, opty, opval]
1465      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1466      if (Record.size() < 3 || !OpTy)
1467        return Error(InvalidRecord);
1468      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1469      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1470                                                  OpTy->getElementType());
1471      Constant *Op2 = nullptr;
1472      if (Record.size() == 4) {
1473        Type *IdxTy = getTypeByID(Record[2]);
1474        if (!IdxTy)
1475          return Error(InvalidRecord);
1476        Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
1477      } else // TODO: Remove with llvm 4.0
1478        Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1479      if (!Op2)
1480        return Error(InvalidRecord);
1481      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1482      break;
1483    }
1484    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1485      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1486      if (Record.size() < 3 || !OpTy)
1487        return Error(InvalidRecord);
1488      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1489      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1490      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1491                                                 OpTy->getNumElements());
1492      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1493      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1494      break;
1495    }
1496    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1497      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1498      VectorType *OpTy =
1499        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1500      if (Record.size() < 4 || !RTy || !OpTy)
1501        return Error(InvalidRecord);
1502      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1503      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1504      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1505                                                 RTy->getNumElements());
1506      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1507      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1508      break;
1509    }
1510    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1511      if (Record.size() < 4)
1512        return Error(InvalidRecord);
1513      Type *OpTy = getTypeByID(Record[0]);
1514      if (!OpTy)
1515        return Error(InvalidRecord);
1516      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1517      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1518
1519      if (OpTy->isFPOrFPVectorTy())
1520        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1521      else
1522        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1523      break;
1524    }
1525    // This maintains backward compatibility, pre-asm dialect keywords.
1526    // FIXME: Remove with the 4.0 release.
1527    case bitc::CST_CODE_INLINEASM_OLD: {
1528      if (Record.size() < 2)
1529        return Error(InvalidRecord);
1530      std::string AsmStr, ConstrStr;
1531      bool HasSideEffects = Record[0] & 1;
1532      bool IsAlignStack = Record[0] >> 1;
1533      unsigned AsmStrSize = Record[1];
1534      if (2+AsmStrSize >= Record.size())
1535        return Error(InvalidRecord);
1536      unsigned ConstStrSize = Record[2+AsmStrSize];
1537      if (3+AsmStrSize+ConstStrSize > Record.size())
1538        return Error(InvalidRecord);
1539
1540      for (unsigned i = 0; i != AsmStrSize; ++i)
1541        AsmStr += (char)Record[2+i];
1542      for (unsigned i = 0; i != ConstStrSize; ++i)
1543        ConstrStr += (char)Record[3+AsmStrSize+i];
1544      PointerType *PTy = cast<PointerType>(CurTy);
1545      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1546                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1547      break;
1548    }
1549    // This version adds support for the asm dialect keywords (e.g.,
1550    // inteldialect).
1551    case bitc::CST_CODE_INLINEASM: {
1552      if (Record.size() < 2)
1553        return Error(InvalidRecord);
1554      std::string AsmStr, ConstrStr;
1555      bool HasSideEffects = Record[0] & 1;
1556      bool IsAlignStack = (Record[0] >> 1) & 1;
1557      unsigned AsmDialect = Record[0] >> 2;
1558      unsigned AsmStrSize = Record[1];
1559      if (2+AsmStrSize >= Record.size())
1560        return Error(InvalidRecord);
1561      unsigned ConstStrSize = Record[2+AsmStrSize];
1562      if (3+AsmStrSize+ConstStrSize > Record.size())
1563        return Error(InvalidRecord);
1564
1565      for (unsigned i = 0; i != AsmStrSize; ++i)
1566        AsmStr += (char)Record[2+i];
1567      for (unsigned i = 0; i != ConstStrSize; ++i)
1568        ConstrStr += (char)Record[3+AsmStrSize+i];
1569      PointerType *PTy = cast<PointerType>(CurTy);
1570      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1571                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1572                         InlineAsm::AsmDialect(AsmDialect));
1573      break;
1574    }
1575    case bitc::CST_CODE_BLOCKADDRESS:{
1576      if (Record.size() < 3)
1577        return Error(InvalidRecord);
1578      Type *FnTy = getTypeByID(Record[0]);
1579      if (!FnTy)
1580        return Error(InvalidRecord);
1581      Function *Fn =
1582        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1583      if (!Fn)
1584        return Error(InvalidRecord);
1585
1586      // If the function is already parsed we can insert the block address right
1587      // away.
1588      if (!Fn->empty()) {
1589        Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1590        for (size_t I = 0, E = Record[2]; I != E; ++I) {
1591          if (BBI == BBE)
1592            return Error(InvalidID);
1593          ++BBI;
1594        }
1595        V = BlockAddress::get(Fn, BBI);
1596      } else {
1597        // Otherwise insert a placeholder and remember it so it can be inserted
1598        // when the function is parsed.
1599        GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1600                                                    Type::getInt8Ty(Context),
1601                                            false, GlobalValue::InternalLinkage,
1602                                                    nullptr, "");
1603        BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1604        V = FwdRef;
1605      }
1606      break;
1607    }
1608    }
1609
1610    ValueList.AssignValue(V, NextCstNo);
1611    ++NextCstNo;
1612  }
1613}
1614
1615std::error_code BitcodeReader::ParseUseLists() {
1616  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1617    return Error(InvalidRecord);
1618
1619  SmallVector<uint64_t, 64> Record;
1620
1621  // Read all the records.
1622  while (1) {
1623    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1624
1625    switch (Entry.Kind) {
1626    case BitstreamEntry::SubBlock: // Handled for us already.
1627    case BitstreamEntry::Error:
1628      return Error(MalformedBlock);
1629    case BitstreamEntry::EndBlock:
1630      return std::error_code();
1631    case BitstreamEntry::Record:
1632      // The interesting case.
1633      break;
1634    }
1635
1636    // Read a use list record.
1637    Record.clear();
1638    switch (Stream.readRecord(Entry.ID, Record)) {
1639    default:  // Default behavior: unknown type.
1640      break;
1641    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1642      unsigned RecordLength = Record.size();
1643      if (RecordLength < 1)
1644        return Error(InvalidRecord);
1645      UseListRecords.push_back(Record);
1646      break;
1647    }
1648    }
1649  }
1650}
1651
1652/// RememberAndSkipFunctionBody - When we see the block for a function body,
1653/// remember where it is and then skip it.  This lets us lazily deserialize the
1654/// functions.
1655std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
1656  // Get the function we are talking about.
1657  if (FunctionsWithBodies.empty())
1658    return Error(InsufficientFunctionProtos);
1659
1660  Function *Fn = FunctionsWithBodies.back();
1661  FunctionsWithBodies.pop_back();
1662
1663  // Save the current stream state.
1664  uint64_t CurBit = Stream.GetCurrentBitNo();
1665  DeferredFunctionInfo[Fn] = CurBit;
1666
1667  // Skip over the function block for now.
1668  if (Stream.SkipBlock())
1669    return Error(InvalidRecord);
1670  return std::error_code();
1671}
1672
1673std::error_code BitcodeReader::GlobalCleanup() {
1674  // Patch the initializers for globals and aliases up.
1675  ResolveGlobalAndAliasInits();
1676  if (!GlobalInits.empty() || !AliasInits.empty())
1677    return Error(MalformedGlobalInitializerSet);
1678
1679  // Look for intrinsic functions which need to be upgraded at some point
1680  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1681       FI != FE; ++FI) {
1682    Function *NewFn;
1683    if (UpgradeIntrinsicFunction(FI, NewFn))
1684      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1685  }
1686
1687  // Look for global variables which need to be renamed.
1688  for (Module::global_iterator
1689         GI = TheModule->global_begin(), GE = TheModule->global_end();
1690       GI != GE;) {
1691    GlobalVariable *GV = GI++;
1692    UpgradeGlobalVariable(GV);
1693  }
1694
1695  // Force deallocation of memory for these vectors to favor the client that
1696  // want lazy deserialization.
1697  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1698  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1699  return std::error_code();
1700}
1701
1702std::error_code BitcodeReader::ParseModule(bool Resume) {
1703  if (Resume)
1704    Stream.JumpToBit(NextUnreadBit);
1705  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1706    return Error(InvalidRecord);
1707
1708  SmallVector<uint64_t, 64> Record;
1709  std::vector<std::string> SectionTable;
1710  std::vector<std::string> GCTable;
1711
1712  // Read all the records for this module.
1713  while (1) {
1714    BitstreamEntry Entry = Stream.advance();
1715
1716    switch (Entry.Kind) {
1717    case BitstreamEntry::Error:
1718      return Error(MalformedBlock);
1719    case BitstreamEntry::EndBlock:
1720      return GlobalCleanup();
1721
1722    case BitstreamEntry::SubBlock:
1723      switch (Entry.ID) {
1724      default:  // Skip unknown content.
1725        if (Stream.SkipBlock())
1726          return Error(InvalidRecord);
1727        break;
1728      case bitc::BLOCKINFO_BLOCK_ID:
1729        if (Stream.ReadBlockInfoBlock())
1730          return Error(MalformedBlock);
1731        break;
1732      case bitc::PARAMATTR_BLOCK_ID:
1733        if (std::error_code EC = ParseAttributeBlock())
1734          return EC;
1735        break;
1736      case bitc::PARAMATTR_GROUP_BLOCK_ID:
1737        if (std::error_code EC = ParseAttributeGroupBlock())
1738          return EC;
1739        break;
1740      case bitc::TYPE_BLOCK_ID_NEW:
1741        if (std::error_code EC = ParseTypeTable())
1742          return EC;
1743        break;
1744      case bitc::VALUE_SYMTAB_BLOCK_ID:
1745        if (std::error_code EC = ParseValueSymbolTable())
1746          return EC;
1747        SeenValueSymbolTable = true;
1748        break;
1749      case bitc::CONSTANTS_BLOCK_ID:
1750        if (std::error_code EC = ParseConstants())
1751          return EC;
1752        if (std::error_code EC = ResolveGlobalAndAliasInits())
1753          return EC;
1754        break;
1755      case bitc::METADATA_BLOCK_ID:
1756        if (std::error_code EC = ParseMetadata())
1757          return EC;
1758        break;
1759      case bitc::FUNCTION_BLOCK_ID:
1760        // If this is the first function body we've seen, reverse the
1761        // FunctionsWithBodies list.
1762        if (!SeenFirstFunctionBody) {
1763          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1764          if (std::error_code EC = GlobalCleanup())
1765            return EC;
1766          SeenFirstFunctionBody = true;
1767        }
1768
1769        if (std::error_code EC = RememberAndSkipFunctionBody())
1770          return EC;
1771        // For streaming bitcode, suspend parsing when we reach the function
1772        // bodies. Subsequent materialization calls will resume it when
1773        // necessary. For streaming, the function bodies must be at the end of
1774        // the bitcode. If the bitcode file is old, the symbol table will be
1775        // at the end instead and will not have been seen yet. In this case,
1776        // just finish the parse now.
1777        if (LazyStreamer && SeenValueSymbolTable) {
1778          NextUnreadBit = Stream.GetCurrentBitNo();
1779          return std::error_code();
1780        }
1781        break;
1782      case bitc::USELIST_BLOCK_ID:
1783        if (std::error_code EC = ParseUseLists())
1784          return EC;
1785        break;
1786      }
1787      continue;
1788
1789    case BitstreamEntry::Record:
1790      // The interesting case.
1791      break;
1792    }
1793
1794
1795    // Read a record.
1796    switch (Stream.readRecord(Entry.ID, Record)) {
1797    default: break;  // Default behavior, ignore unknown content.
1798    case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1799      if (Record.size() < 1)
1800        return Error(InvalidRecord);
1801      // Only version #0 and #1 are supported so far.
1802      unsigned module_version = Record[0];
1803      switch (module_version) {
1804        default:
1805          return Error(InvalidValue);
1806        case 0:
1807          UseRelativeIDs = false;
1808          break;
1809        case 1:
1810          UseRelativeIDs = true;
1811          break;
1812      }
1813      break;
1814    }
1815    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1816      std::string S;
1817      if (ConvertToString(Record, 0, S))
1818        return Error(InvalidRecord);
1819      TheModule->setTargetTriple(S);
1820      break;
1821    }
1822    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1823      std::string S;
1824      if (ConvertToString(Record, 0, S))
1825        return Error(InvalidRecord);
1826      TheModule->setDataLayout(S);
1827      break;
1828    }
1829    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1830      std::string S;
1831      if (ConvertToString(Record, 0, S))
1832        return Error(InvalidRecord);
1833      TheModule->setModuleInlineAsm(S);
1834      break;
1835    }
1836    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1837      // FIXME: Remove in 4.0.
1838      std::string S;
1839      if (ConvertToString(Record, 0, S))
1840        return Error(InvalidRecord);
1841      // Ignore value.
1842      break;
1843    }
1844    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1845      std::string S;
1846      if (ConvertToString(Record, 0, S))
1847        return Error(InvalidRecord);
1848      SectionTable.push_back(S);
1849      break;
1850    }
1851    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1852      std::string S;
1853      if (ConvertToString(Record, 0, S))
1854        return Error(InvalidRecord);
1855      GCTable.push_back(S);
1856      break;
1857    }
1858    case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
1859      if (Record.size() < 2)
1860        return Error(InvalidRecord);
1861      Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
1862      unsigned ComdatNameSize = Record[1];
1863      std::string ComdatName;
1864      ComdatName.reserve(ComdatNameSize);
1865      for (unsigned i = 0; i != ComdatNameSize; ++i)
1866        ComdatName += (char)Record[2 + i];
1867      Comdat *C = TheModule->getOrInsertComdat(ComdatName);
1868      C->setSelectionKind(SK);
1869      ComdatList.push_back(C);
1870      break;
1871    }
1872    // GLOBALVAR: [pointer type, isconst, initid,
1873    //             linkage, alignment, section, visibility, threadlocal,
1874    //             unnamed_addr, dllstorageclass]
1875    case bitc::MODULE_CODE_GLOBALVAR: {
1876      if (Record.size() < 6)
1877        return Error(InvalidRecord);
1878      Type *Ty = getTypeByID(Record[0]);
1879      if (!Ty)
1880        return Error(InvalidRecord);
1881      if (!Ty->isPointerTy())
1882        return Error(InvalidTypeForValue);
1883      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1884      Ty = cast<PointerType>(Ty)->getElementType();
1885
1886      bool isConstant = Record[1];
1887      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1888      unsigned Alignment = (1 << Record[4]) >> 1;
1889      std::string Section;
1890      if (Record[5]) {
1891        if (Record[5]-1 >= SectionTable.size())
1892          return Error(InvalidID);
1893        Section = SectionTable[Record[5]-1];
1894      }
1895      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1896      // Local linkage must have default visibility.
1897      if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
1898        // FIXME: Change to an error if non-default in 4.0.
1899        Visibility = GetDecodedVisibility(Record[6]);
1900
1901      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1902      if (Record.size() > 7)
1903        TLM = GetDecodedThreadLocalMode(Record[7]);
1904
1905      bool UnnamedAddr = false;
1906      if (Record.size() > 8)
1907        UnnamedAddr = Record[8];
1908
1909      bool ExternallyInitialized = false;
1910      if (Record.size() > 9)
1911        ExternallyInitialized = Record[9];
1912
1913      GlobalVariable *NewGV =
1914        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
1915                           TLM, AddressSpace, ExternallyInitialized);
1916      NewGV->setAlignment(Alignment);
1917      if (!Section.empty())
1918        NewGV->setSection(Section);
1919      NewGV->setVisibility(Visibility);
1920      NewGV->setUnnamedAddr(UnnamedAddr);
1921
1922      if (Record.size() > 10)
1923        NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
1924      else
1925        UpgradeDLLImportExportLinkage(NewGV, Record[3]);
1926
1927      ValueList.push_back(NewGV);
1928
1929      // Remember which value to use for the global initializer.
1930      if (unsigned InitID = Record[2])
1931        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1932
1933      if (Record.size() > 11)
1934        if (unsigned ComdatID = Record[11]) {
1935          assert(ComdatID <= ComdatList.size());
1936          NewGV->setComdat(ComdatList[ComdatID - 1]);
1937        }
1938      break;
1939    }
1940    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1941    //             alignment, section, visibility, gc, unnamed_addr,
1942    //             dllstorageclass]
1943    case bitc::MODULE_CODE_FUNCTION: {
1944      if (Record.size() < 8)
1945        return Error(InvalidRecord);
1946      Type *Ty = getTypeByID(Record[0]);
1947      if (!Ty)
1948        return Error(InvalidRecord);
1949      if (!Ty->isPointerTy())
1950        return Error(InvalidTypeForValue);
1951      FunctionType *FTy =
1952        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1953      if (!FTy)
1954        return Error(InvalidTypeForValue);
1955
1956      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1957                                        "", TheModule);
1958
1959      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1960      bool isProto = Record[2];
1961      Func->setLinkage(GetDecodedLinkage(Record[3]));
1962      Func->setAttributes(getAttributes(Record[4]));
1963
1964      Func->setAlignment((1 << Record[5]) >> 1);
1965      if (Record[6]) {
1966        if (Record[6]-1 >= SectionTable.size())
1967          return Error(InvalidID);
1968        Func->setSection(SectionTable[Record[6]-1]);
1969      }
1970      // Local linkage must have default visibility.
1971      if (!Func->hasLocalLinkage())
1972        // FIXME: Change to an error if non-default in 4.0.
1973        Func->setVisibility(GetDecodedVisibility(Record[7]));
1974      if (Record.size() > 8 && Record[8]) {
1975        if (Record[8]-1 > GCTable.size())
1976          return Error(InvalidID);
1977        Func->setGC(GCTable[Record[8]-1].c_str());
1978      }
1979      bool UnnamedAddr = false;
1980      if (Record.size() > 9)
1981        UnnamedAddr = Record[9];
1982      Func->setUnnamedAddr(UnnamedAddr);
1983      if (Record.size() > 10 && Record[10] != 0)
1984        FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
1985
1986      if (Record.size() > 11)
1987        Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
1988      else
1989        UpgradeDLLImportExportLinkage(Func, Record[3]);
1990
1991      if (Record.size() > 12)
1992        if (unsigned ComdatID = Record[12]) {
1993          assert(ComdatID <= ComdatList.size());
1994          Func->setComdat(ComdatList[ComdatID - 1]);
1995        }
1996
1997      ValueList.push_back(Func);
1998
1999      // If this is a function with a body, remember the prototype we are
2000      // creating now, so that we can match up the body with them later.
2001      if (!isProto) {
2002        FunctionsWithBodies.push_back(Func);
2003        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
2004      }
2005      break;
2006    }
2007    // ALIAS: [alias type, aliasee val#, linkage]
2008    // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
2009    case bitc::MODULE_CODE_ALIAS: {
2010      if (Record.size() < 3)
2011        return Error(InvalidRecord);
2012      Type *Ty = getTypeByID(Record[0]);
2013      if (!Ty)
2014        return Error(InvalidRecord);
2015      auto *PTy = dyn_cast<PointerType>(Ty);
2016      if (!PTy)
2017        return Error(InvalidTypeForValue);
2018
2019      auto *NewGA =
2020          GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2021                              GetDecodedLinkage(Record[2]), "", TheModule);
2022      // Old bitcode files didn't have visibility field.
2023      // Local linkage must have default visibility.
2024      if (Record.size() > 3 && !NewGA->hasLocalLinkage())
2025        // FIXME: Change to an error if non-default in 4.0.
2026        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2027      if (Record.size() > 4)
2028        NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
2029      else
2030        UpgradeDLLImportExportLinkage(NewGA, Record[2]);
2031      if (Record.size() > 5)
2032	NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
2033      if (Record.size() > 6)
2034	NewGA->setUnnamedAddr(Record[6]);
2035      ValueList.push_back(NewGA);
2036      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2037      break;
2038    }
2039    /// MODULE_CODE_PURGEVALS: [numvals]
2040    case bitc::MODULE_CODE_PURGEVALS:
2041      // Trim down the value list to the specified size.
2042      if (Record.size() < 1 || Record[0] > ValueList.size())
2043        return Error(InvalidRecord);
2044      ValueList.shrinkTo(Record[0]);
2045      break;
2046    }
2047    Record.clear();
2048  }
2049}
2050
2051std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2052  TheModule = nullptr;
2053
2054  if (std::error_code EC = InitStream())
2055    return EC;
2056
2057  // Sniff for the signature.
2058  if (Stream.Read(8) != 'B' ||
2059      Stream.Read(8) != 'C' ||
2060      Stream.Read(4) != 0x0 ||
2061      Stream.Read(4) != 0xC ||
2062      Stream.Read(4) != 0xE ||
2063      Stream.Read(4) != 0xD)
2064    return Error(InvalidBitcodeSignature);
2065
2066  // We expect a number of well-defined blocks, though we don't necessarily
2067  // need to understand them all.
2068  while (1) {
2069    if (Stream.AtEndOfStream())
2070      return std::error_code();
2071
2072    BitstreamEntry Entry =
2073      Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2074
2075    switch (Entry.Kind) {
2076    case BitstreamEntry::Error:
2077      return Error(MalformedBlock);
2078    case BitstreamEntry::EndBlock:
2079      return std::error_code();
2080
2081    case BitstreamEntry::SubBlock:
2082      switch (Entry.ID) {
2083      case bitc::BLOCKINFO_BLOCK_ID:
2084        if (Stream.ReadBlockInfoBlock())
2085          return Error(MalformedBlock);
2086        break;
2087      case bitc::MODULE_BLOCK_ID:
2088        // Reject multiple MODULE_BLOCK's in a single bitstream.
2089        if (TheModule)
2090          return Error(InvalidMultipleBlocks);
2091        TheModule = M;
2092        if (std::error_code EC = ParseModule(false))
2093          return EC;
2094        if (LazyStreamer)
2095          return std::error_code();
2096        break;
2097      default:
2098        if (Stream.SkipBlock())
2099          return Error(InvalidRecord);
2100        break;
2101      }
2102      continue;
2103    case BitstreamEntry::Record:
2104      // There should be no records in the top-level of blocks.
2105
2106      // The ranlib in Xcode 4 will align archive members by appending newlines
2107      // to the end of them. If this file size is a multiple of 4 but not 8, we
2108      // have to read and ignore these final 4 bytes :-(
2109      if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2110          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2111          Stream.AtEndOfStream())
2112        return std::error_code();
2113
2114      return Error(InvalidRecord);
2115    }
2116  }
2117}
2118
2119ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2120  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2121    return Error(InvalidRecord);
2122
2123  SmallVector<uint64_t, 64> Record;
2124
2125  std::string Triple;
2126  // Read all the records for this module.
2127  while (1) {
2128    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2129
2130    switch (Entry.Kind) {
2131    case BitstreamEntry::SubBlock: // Handled for us already.
2132    case BitstreamEntry::Error:
2133      return Error(MalformedBlock);
2134    case BitstreamEntry::EndBlock:
2135      return Triple;
2136    case BitstreamEntry::Record:
2137      // The interesting case.
2138      break;
2139    }
2140
2141    // Read a record.
2142    switch (Stream.readRecord(Entry.ID, Record)) {
2143    default: break;  // Default behavior, ignore unknown content.
2144    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2145      std::string S;
2146      if (ConvertToString(Record, 0, S))
2147        return Error(InvalidRecord);
2148      Triple = S;
2149      break;
2150    }
2151    }
2152    Record.clear();
2153  }
2154  llvm_unreachable("Exit infinite loop");
2155}
2156
2157ErrorOr<std::string> BitcodeReader::parseTriple() {
2158  if (std::error_code EC = InitStream())
2159    return EC;
2160
2161  // Sniff for the signature.
2162  if (Stream.Read(8) != 'B' ||
2163      Stream.Read(8) != 'C' ||
2164      Stream.Read(4) != 0x0 ||
2165      Stream.Read(4) != 0xC ||
2166      Stream.Read(4) != 0xE ||
2167      Stream.Read(4) != 0xD)
2168    return Error(InvalidBitcodeSignature);
2169
2170  // We expect a number of well-defined blocks, though we don't necessarily
2171  // need to understand them all.
2172  while (1) {
2173    BitstreamEntry Entry = Stream.advance();
2174
2175    switch (Entry.Kind) {
2176    case BitstreamEntry::Error:
2177      return Error(MalformedBlock);
2178    case BitstreamEntry::EndBlock:
2179      return std::error_code();
2180
2181    case BitstreamEntry::SubBlock:
2182      if (Entry.ID == bitc::MODULE_BLOCK_ID)
2183        return parseModuleTriple();
2184
2185      // Ignore other sub-blocks.
2186      if (Stream.SkipBlock())
2187        return Error(MalformedBlock);
2188      continue;
2189
2190    case BitstreamEntry::Record:
2191      Stream.skipRecord(Entry.ID);
2192      continue;
2193    }
2194  }
2195}
2196
2197/// ParseMetadataAttachment - Parse metadata attachments.
2198std::error_code BitcodeReader::ParseMetadataAttachment() {
2199  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2200    return Error(InvalidRecord);
2201
2202  SmallVector<uint64_t, 64> Record;
2203  while (1) {
2204    BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2205
2206    switch (Entry.Kind) {
2207    case BitstreamEntry::SubBlock: // Handled for us already.
2208    case BitstreamEntry::Error:
2209      return Error(MalformedBlock);
2210    case BitstreamEntry::EndBlock:
2211      return std::error_code();
2212    case BitstreamEntry::Record:
2213      // The interesting case.
2214      break;
2215    }
2216
2217    // Read a metadata attachment record.
2218    Record.clear();
2219    switch (Stream.readRecord(Entry.ID, Record)) {
2220    default:  // Default behavior: ignore.
2221      break;
2222    case bitc::METADATA_ATTACHMENT: {
2223      unsigned RecordLength = Record.size();
2224      if (Record.empty() || (RecordLength - 1) % 2 == 1)
2225        return Error(InvalidRecord);
2226      Instruction *Inst = InstructionList[Record[0]];
2227      for (unsigned i = 1; i != RecordLength; i = i+2) {
2228        unsigned Kind = Record[i];
2229        DenseMap<unsigned, unsigned>::iterator I =
2230          MDKindMap.find(Kind);
2231        if (I == MDKindMap.end())
2232          return Error(InvalidID);
2233        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2234        Inst->setMetadata(I->second, cast<MDNode>(Node));
2235        if (I->second == LLVMContext::MD_tbaa)
2236          InstsWithTBAATag.push_back(Inst);
2237      }
2238      break;
2239    }
2240    }
2241  }
2242}
2243
2244/// ParseFunctionBody - Lazily parse the specified function body block.
2245std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2246  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2247    return Error(InvalidRecord);
2248
2249  InstructionList.clear();
2250  unsigned ModuleValueListSize = ValueList.size();
2251  unsigned ModuleMDValueListSize = MDValueList.size();
2252
2253  // Add all the function arguments to the value table.
2254  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2255    ValueList.push_back(I);
2256
2257  unsigned NextValueNo = ValueList.size();
2258  BasicBlock *CurBB = nullptr;
2259  unsigned CurBBNo = 0;
2260
2261  DebugLoc LastLoc;
2262
2263  // Read all the records.
2264  SmallVector<uint64_t, 64> Record;
2265  while (1) {
2266    BitstreamEntry Entry = Stream.advance();
2267
2268    switch (Entry.Kind) {
2269    case BitstreamEntry::Error:
2270      return Error(MalformedBlock);
2271    case BitstreamEntry::EndBlock:
2272      goto OutOfRecordLoop;
2273
2274    case BitstreamEntry::SubBlock:
2275      switch (Entry.ID) {
2276      default:  // Skip unknown content.
2277        if (Stream.SkipBlock())
2278          return Error(InvalidRecord);
2279        break;
2280      case bitc::CONSTANTS_BLOCK_ID:
2281        if (std::error_code EC = ParseConstants())
2282          return EC;
2283        NextValueNo = ValueList.size();
2284        break;
2285      case bitc::VALUE_SYMTAB_BLOCK_ID:
2286        if (std::error_code EC = ParseValueSymbolTable())
2287          return EC;
2288        break;
2289      case bitc::METADATA_ATTACHMENT_ID:
2290        if (std::error_code EC = ParseMetadataAttachment())
2291          return EC;
2292        break;
2293      case bitc::METADATA_BLOCK_ID:
2294        if (std::error_code EC = ParseMetadata())
2295          return EC;
2296        break;
2297      }
2298      continue;
2299
2300    case BitstreamEntry::Record:
2301      // The interesting case.
2302      break;
2303    }
2304
2305    // Read a record.
2306    Record.clear();
2307    Instruction *I = nullptr;
2308    unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2309    switch (BitCode) {
2310    default: // Default behavior: reject
2311      return Error(InvalidValue);
2312    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2313      if (Record.size() < 1 || Record[0] == 0)
2314        return Error(InvalidRecord);
2315      // Create all the basic blocks for the function.
2316      FunctionBBs.resize(Record[0]);
2317      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2318        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2319      CurBB = FunctionBBs[0];
2320      continue;
2321
2322    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2323      // This record indicates that the last instruction is at the same
2324      // location as the previous instruction with a location.
2325      I = nullptr;
2326
2327      // Get the last instruction emitted.
2328      if (CurBB && !CurBB->empty())
2329        I = &CurBB->back();
2330      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2331               !FunctionBBs[CurBBNo-1]->empty())
2332        I = &FunctionBBs[CurBBNo-1]->back();
2333
2334      if (!I)
2335        return Error(InvalidRecord);
2336      I->setDebugLoc(LastLoc);
2337      I = nullptr;
2338      continue;
2339
2340    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2341      I = nullptr;     // Get the last instruction emitted.
2342      if (CurBB && !CurBB->empty())
2343        I = &CurBB->back();
2344      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2345               !FunctionBBs[CurBBNo-1]->empty())
2346        I = &FunctionBBs[CurBBNo-1]->back();
2347      if (!I || Record.size() < 4)
2348        return Error(InvalidRecord);
2349
2350      unsigned Line = Record[0], Col = Record[1];
2351      unsigned ScopeID = Record[2], IAID = Record[3];
2352
2353      MDNode *Scope = nullptr, *IA = nullptr;
2354      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2355      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2356      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2357      I->setDebugLoc(LastLoc);
2358      I = nullptr;
2359      continue;
2360    }
2361
2362    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2363      unsigned OpNum = 0;
2364      Value *LHS, *RHS;
2365      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2366          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2367          OpNum+1 > Record.size())
2368        return Error(InvalidRecord);
2369
2370      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2371      if (Opc == -1)
2372        return Error(InvalidRecord);
2373      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2374      InstructionList.push_back(I);
2375      if (OpNum < Record.size()) {
2376        if (Opc == Instruction::Add ||
2377            Opc == Instruction::Sub ||
2378            Opc == Instruction::Mul ||
2379            Opc == Instruction::Shl) {
2380          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2381            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2382          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2383            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2384        } else if (Opc == Instruction::SDiv ||
2385                   Opc == Instruction::UDiv ||
2386                   Opc == Instruction::LShr ||
2387                   Opc == Instruction::AShr) {
2388          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2389            cast<BinaryOperator>(I)->setIsExact(true);
2390        } else if (isa<FPMathOperator>(I)) {
2391          FastMathFlags FMF;
2392          if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2393            FMF.setUnsafeAlgebra();
2394          if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2395            FMF.setNoNaNs();
2396          if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2397            FMF.setNoInfs();
2398          if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2399            FMF.setNoSignedZeros();
2400          if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2401            FMF.setAllowReciprocal();
2402          if (FMF.any())
2403            I->setFastMathFlags(FMF);
2404        }
2405
2406      }
2407      break;
2408    }
2409    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2410      unsigned OpNum = 0;
2411      Value *Op;
2412      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2413          OpNum+2 != Record.size())
2414        return Error(InvalidRecord);
2415
2416      Type *ResTy = getTypeByID(Record[OpNum]);
2417      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2418      if (Opc == -1 || !ResTy)
2419        return Error(InvalidRecord);
2420      Instruction *Temp = nullptr;
2421      if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
2422        if (Temp) {
2423          InstructionList.push_back(Temp);
2424          CurBB->getInstList().push_back(Temp);
2425        }
2426      } else {
2427        I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2428      }
2429      InstructionList.push_back(I);
2430      break;
2431    }
2432    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2433    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2434      unsigned OpNum = 0;
2435      Value *BasePtr;
2436      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2437        return Error(InvalidRecord);
2438
2439      SmallVector<Value*, 16> GEPIdx;
2440      while (OpNum != Record.size()) {
2441        Value *Op;
2442        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2443          return Error(InvalidRecord);
2444        GEPIdx.push_back(Op);
2445      }
2446
2447      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2448      InstructionList.push_back(I);
2449      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2450        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2451      break;
2452    }
2453
2454    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2455                                       // EXTRACTVAL: [opty, opval, n x indices]
2456      unsigned OpNum = 0;
2457      Value *Agg;
2458      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2459        return Error(InvalidRecord);
2460
2461      SmallVector<unsigned, 4> EXTRACTVALIdx;
2462      for (unsigned RecSize = Record.size();
2463           OpNum != RecSize; ++OpNum) {
2464        uint64_t Index = Record[OpNum];
2465        if ((unsigned)Index != Index)
2466          return Error(InvalidValue);
2467        EXTRACTVALIdx.push_back((unsigned)Index);
2468      }
2469
2470      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2471      InstructionList.push_back(I);
2472      break;
2473    }
2474
2475    case bitc::FUNC_CODE_INST_INSERTVAL: {
2476                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2477      unsigned OpNum = 0;
2478      Value *Agg;
2479      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2480        return Error(InvalidRecord);
2481      Value *Val;
2482      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2483        return Error(InvalidRecord);
2484
2485      SmallVector<unsigned, 4> INSERTVALIdx;
2486      for (unsigned RecSize = Record.size();
2487           OpNum != RecSize; ++OpNum) {
2488        uint64_t Index = Record[OpNum];
2489        if ((unsigned)Index != Index)
2490          return Error(InvalidValue);
2491        INSERTVALIdx.push_back((unsigned)Index);
2492      }
2493
2494      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2495      InstructionList.push_back(I);
2496      break;
2497    }
2498
2499    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2500      // obsolete form of select
2501      // handles select i1 ... in old bitcode
2502      unsigned OpNum = 0;
2503      Value *TrueVal, *FalseVal, *Cond;
2504      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2505          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2506          popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2507        return Error(InvalidRecord);
2508
2509      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2510      InstructionList.push_back(I);
2511      break;
2512    }
2513
2514    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2515      // new form of select
2516      // handles select i1 or select [N x i1]
2517      unsigned OpNum = 0;
2518      Value *TrueVal, *FalseVal, *Cond;
2519      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2520          popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2521          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2522        return Error(InvalidRecord);
2523
2524      // select condition can be either i1 or [N x i1]
2525      if (VectorType* vector_type =
2526          dyn_cast<VectorType>(Cond->getType())) {
2527        // expect <n x i1>
2528        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2529          return Error(InvalidTypeForValue);
2530      } else {
2531        // expect i1
2532        if (Cond->getType() != Type::getInt1Ty(Context))
2533          return Error(InvalidTypeForValue);
2534      }
2535
2536      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2537      InstructionList.push_back(I);
2538      break;
2539    }
2540
2541    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2542      unsigned OpNum = 0;
2543      Value *Vec, *Idx;
2544      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2545          getValueTypePair(Record, OpNum, NextValueNo, Idx))
2546        return Error(InvalidRecord);
2547      I = ExtractElementInst::Create(Vec, Idx);
2548      InstructionList.push_back(I);
2549      break;
2550    }
2551
2552    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2553      unsigned OpNum = 0;
2554      Value *Vec, *Elt, *Idx;
2555      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2556          popValue(Record, OpNum, NextValueNo,
2557                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2558          getValueTypePair(Record, OpNum, NextValueNo, Idx))
2559        return Error(InvalidRecord);
2560      I = InsertElementInst::Create(Vec, Elt, Idx);
2561      InstructionList.push_back(I);
2562      break;
2563    }
2564
2565    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2566      unsigned OpNum = 0;
2567      Value *Vec1, *Vec2, *Mask;
2568      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2569          popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2570        return Error(InvalidRecord);
2571
2572      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2573        return Error(InvalidRecord);
2574      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2575      InstructionList.push_back(I);
2576      break;
2577    }
2578
2579    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2580      // Old form of ICmp/FCmp returning bool
2581      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2582      // both legal on vectors but had different behaviour.
2583    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2584      // FCmp/ICmp returning bool or vector of bool
2585
2586      unsigned OpNum = 0;
2587      Value *LHS, *RHS;
2588      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2589          popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2590          OpNum+1 != Record.size())
2591        return Error(InvalidRecord);
2592
2593      if (LHS->getType()->isFPOrFPVectorTy())
2594        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2595      else
2596        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2597      InstructionList.push_back(I);
2598      break;
2599    }
2600
2601    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2602      {
2603        unsigned Size = Record.size();
2604        if (Size == 0) {
2605          I = ReturnInst::Create(Context);
2606          InstructionList.push_back(I);
2607          break;
2608        }
2609
2610        unsigned OpNum = 0;
2611        Value *Op = nullptr;
2612        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2613          return Error(InvalidRecord);
2614        if (OpNum != Record.size())
2615          return Error(InvalidRecord);
2616
2617        I = ReturnInst::Create(Context, Op);
2618        InstructionList.push_back(I);
2619        break;
2620      }
2621    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2622      if (Record.size() != 1 && Record.size() != 3)
2623        return Error(InvalidRecord);
2624      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2625      if (!TrueDest)
2626        return Error(InvalidRecord);
2627
2628      if (Record.size() == 1) {
2629        I = BranchInst::Create(TrueDest);
2630        InstructionList.push_back(I);
2631      }
2632      else {
2633        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2634        Value *Cond = getValue(Record, 2, NextValueNo,
2635                               Type::getInt1Ty(Context));
2636        if (!FalseDest || !Cond)
2637          return Error(InvalidRecord);
2638        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2639        InstructionList.push_back(I);
2640      }
2641      break;
2642    }
2643    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2644      // Check magic
2645      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2646        // "New" SwitchInst format with case ranges. The changes to write this
2647        // format were reverted but we still recognize bitcode that uses it.
2648        // Hopefully someday we will have support for case ranges and can use
2649        // this format again.
2650
2651        Type *OpTy = getTypeByID(Record[1]);
2652        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2653
2654        Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2655        BasicBlock *Default = getBasicBlock(Record[3]);
2656        if (!OpTy || !Cond || !Default)
2657          return Error(InvalidRecord);
2658
2659        unsigned NumCases = Record[4];
2660
2661        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2662        InstructionList.push_back(SI);
2663
2664        unsigned CurIdx = 5;
2665        for (unsigned i = 0; i != NumCases; ++i) {
2666          SmallVector<ConstantInt*, 1> CaseVals;
2667          unsigned NumItems = Record[CurIdx++];
2668          for (unsigned ci = 0; ci != NumItems; ++ci) {
2669            bool isSingleNumber = Record[CurIdx++];
2670
2671            APInt Low;
2672            unsigned ActiveWords = 1;
2673            if (ValueBitWidth > 64)
2674              ActiveWords = Record[CurIdx++];
2675            Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2676                                ValueBitWidth);
2677            CurIdx += ActiveWords;
2678
2679            if (!isSingleNumber) {
2680              ActiveWords = 1;
2681              if (ValueBitWidth > 64)
2682                ActiveWords = Record[CurIdx++];
2683              APInt High =
2684                  ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2685                                ValueBitWidth);
2686              CurIdx += ActiveWords;
2687
2688              // FIXME: It is not clear whether values in the range should be
2689              // compared as signed or unsigned values. The partially
2690              // implemented changes that used this format in the past used
2691              // unsigned comparisons.
2692              for ( ; Low.ule(High); ++Low)
2693                CaseVals.push_back(ConstantInt::get(Context, Low));
2694            } else
2695              CaseVals.push_back(ConstantInt::get(Context, Low));
2696          }
2697          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2698          for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
2699                 cve = CaseVals.end(); cvi != cve; ++cvi)
2700            SI->addCase(*cvi, DestBB);
2701        }
2702        I = SI;
2703        break;
2704      }
2705
2706      // Old SwitchInst format without case ranges.
2707
2708      if (Record.size() < 3 || (Record.size() & 1) == 0)
2709        return Error(InvalidRecord);
2710      Type *OpTy = getTypeByID(Record[0]);
2711      Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2712      BasicBlock *Default = getBasicBlock(Record[2]);
2713      if (!OpTy || !Cond || !Default)
2714        return Error(InvalidRecord);
2715      unsigned NumCases = (Record.size()-3)/2;
2716      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2717      InstructionList.push_back(SI);
2718      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2719        ConstantInt *CaseVal =
2720          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2721        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2722        if (!CaseVal || !DestBB) {
2723          delete SI;
2724          return Error(InvalidRecord);
2725        }
2726        SI->addCase(CaseVal, DestBB);
2727      }
2728      I = SI;
2729      break;
2730    }
2731    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2732      if (Record.size() < 2)
2733        return Error(InvalidRecord);
2734      Type *OpTy = getTypeByID(Record[0]);
2735      Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2736      if (!OpTy || !Address)
2737        return Error(InvalidRecord);
2738      unsigned NumDests = Record.size()-2;
2739      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2740      InstructionList.push_back(IBI);
2741      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2742        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2743          IBI->addDestination(DestBB);
2744        } else {
2745          delete IBI;
2746          return Error(InvalidRecord);
2747        }
2748      }
2749      I = IBI;
2750      break;
2751    }
2752
2753    case bitc::FUNC_CODE_INST_INVOKE: {
2754      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2755      if (Record.size() < 4)
2756        return Error(InvalidRecord);
2757      AttributeSet PAL = getAttributes(Record[0]);
2758      unsigned CCInfo = Record[1];
2759      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2760      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2761
2762      unsigned OpNum = 4;
2763      Value *Callee;
2764      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2765        return Error(InvalidRecord);
2766
2767      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2768      FunctionType *FTy = !CalleeTy ? nullptr :
2769        dyn_cast<FunctionType>(CalleeTy->getElementType());
2770
2771      // Check that the right number of fixed parameters are here.
2772      if (!FTy || !NormalBB || !UnwindBB ||
2773          Record.size() < OpNum+FTy->getNumParams())
2774        return Error(InvalidRecord);
2775
2776      SmallVector<Value*, 16> Ops;
2777      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2778        Ops.push_back(getValue(Record, OpNum, NextValueNo,
2779                               FTy->getParamType(i)));
2780        if (!Ops.back())
2781          return Error(InvalidRecord);
2782      }
2783
2784      if (!FTy->isVarArg()) {
2785        if (Record.size() != OpNum)
2786          return Error(InvalidRecord);
2787      } else {
2788        // Read type/value pairs for varargs params.
2789        while (OpNum != Record.size()) {
2790          Value *Op;
2791          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2792            return Error(InvalidRecord);
2793          Ops.push_back(Op);
2794        }
2795      }
2796
2797      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2798      InstructionList.push_back(I);
2799      cast<InvokeInst>(I)->setCallingConv(
2800        static_cast<CallingConv::ID>(CCInfo));
2801      cast<InvokeInst>(I)->setAttributes(PAL);
2802      break;
2803    }
2804    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2805      unsigned Idx = 0;
2806      Value *Val = nullptr;
2807      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2808        return Error(InvalidRecord);
2809      I = ResumeInst::Create(Val);
2810      InstructionList.push_back(I);
2811      break;
2812    }
2813    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2814      I = new UnreachableInst(Context);
2815      InstructionList.push_back(I);
2816      break;
2817    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2818      if (Record.size() < 1 || ((Record.size()-1)&1))
2819        return Error(InvalidRecord);
2820      Type *Ty = getTypeByID(Record[0]);
2821      if (!Ty)
2822        return Error(InvalidRecord);
2823
2824      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2825      InstructionList.push_back(PN);
2826
2827      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2828        Value *V;
2829        // With the new function encoding, it is possible that operands have
2830        // negative IDs (for forward references).  Use a signed VBR
2831        // representation to keep the encoding small.
2832        if (UseRelativeIDs)
2833          V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2834        else
2835          V = getValue(Record, 1+i, NextValueNo, Ty);
2836        BasicBlock *BB = getBasicBlock(Record[2+i]);
2837        if (!V || !BB)
2838          return Error(InvalidRecord);
2839        PN->addIncoming(V, BB);
2840      }
2841      I = PN;
2842      break;
2843    }
2844
2845    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2846      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2847      unsigned Idx = 0;
2848      if (Record.size() < 4)
2849        return Error(InvalidRecord);
2850      Type *Ty = getTypeByID(Record[Idx++]);
2851      if (!Ty)
2852        return Error(InvalidRecord);
2853      Value *PersFn = nullptr;
2854      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2855        return Error(InvalidRecord);
2856
2857      bool IsCleanup = !!Record[Idx++];
2858      unsigned NumClauses = Record[Idx++];
2859      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2860      LP->setCleanup(IsCleanup);
2861      for (unsigned J = 0; J != NumClauses; ++J) {
2862        LandingPadInst::ClauseType CT =
2863          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2864        Value *Val;
2865
2866        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2867          delete LP;
2868          return Error(InvalidRecord);
2869        }
2870
2871        assert((CT != LandingPadInst::Catch ||
2872                !isa<ArrayType>(Val->getType())) &&
2873               "Catch clause has a invalid type!");
2874        assert((CT != LandingPadInst::Filter ||
2875                isa<ArrayType>(Val->getType())) &&
2876               "Filter clause has invalid type!");
2877        LP->addClause(cast<Constant>(Val));
2878      }
2879
2880      I = LP;
2881      InstructionList.push_back(I);
2882      break;
2883    }
2884
2885    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2886      if (Record.size() != 4)
2887        return Error(InvalidRecord);
2888      PointerType *Ty =
2889        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2890      Type *OpTy = getTypeByID(Record[1]);
2891      Value *Size = getFnValueByID(Record[2], OpTy);
2892      unsigned Align = Record[3];
2893      if (!Ty || !Size)
2894        return Error(InvalidRecord);
2895      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2896      InstructionList.push_back(I);
2897      break;
2898    }
2899    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2900      unsigned OpNum = 0;
2901      Value *Op;
2902      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2903          OpNum+2 != Record.size())
2904        return Error(InvalidRecord);
2905
2906      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2907      InstructionList.push_back(I);
2908      break;
2909    }
2910    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2911       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2912      unsigned OpNum = 0;
2913      Value *Op;
2914      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2915          OpNum+4 != Record.size())
2916        return Error(InvalidRecord);
2917
2918
2919      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2920      if (Ordering == NotAtomic || Ordering == Release ||
2921          Ordering == AcquireRelease)
2922        return Error(InvalidRecord);
2923      if (Ordering != NotAtomic && Record[OpNum] == 0)
2924        return Error(InvalidRecord);
2925      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2926
2927      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2928                       Ordering, SynchScope);
2929      InstructionList.push_back(I);
2930      break;
2931    }
2932    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2933      unsigned OpNum = 0;
2934      Value *Val, *Ptr;
2935      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2936          popValue(Record, OpNum, NextValueNo,
2937                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2938          OpNum+2 != Record.size())
2939        return Error(InvalidRecord);
2940
2941      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2942      InstructionList.push_back(I);
2943      break;
2944    }
2945    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2946      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2947      unsigned OpNum = 0;
2948      Value *Val, *Ptr;
2949      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2950          popValue(Record, OpNum, NextValueNo,
2951                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2952          OpNum+4 != Record.size())
2953        return Error(InvalidRecord);
2954
2955      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2956      if (Ordering == NotAtomic || Ordering == Acquire ||
2957          Ordering == AcquireRelease)
2958        return Error(InvalidRecord);
2959      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2960      if (Ordering != NotAtomic && Record[OpNum] == 0)
2961        return Error(InvalidRecord);
2962
2963      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2964                        Ordering, SynchScope);
2965      InstructionList.push_back(I);
2966      break;
2967    }
2968    case bitc::FUNC_CODE_INST_CMPXCHG: {
2969      // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
2970      //          failureordering?, isweak?]
2971      unsigned OpNum = 0;
2972      Value *Ptr, *Cmp, *New;
2973      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2974          popValue(Record, OpNum, NextValueNo,
2975                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2976          popValue(Record, OpNum, NextValueNo,
2977                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2978          (Record.size() < OpNum + 3 || Record.size() > OpNum + 5))
2979        return Error(InvalidRecord);
2980      AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
2981      if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
2982        return Error(InvalidRecord);
2983      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2984
2985      AtomicOrdering FailureOrdering;
2986      if (Record.size() < 7)
2987        FailureOrdering =
2988            AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
2989      else
2990        FailureOrdering = GetDecodedOrdering(Record[OpNum+3]);
2991
2992      I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
2993                                SynchScope);
2994      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2995
2996      if (Record.size() < 8) {
2997        // Before weak cmpxchgs existed, the instruction simply returned the
2998        // value loaded from memory, so bitcode files from that era will be
2999        // expecting the first component of a modern cmpxchg.
3000        CurBB->getInstList().push_back(I);
3001        I = ExtractValueInst::Create(I, 0);
3002      } else {
3003        cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
3004      }
3005
3006      InstructionList.push_back(I);
3007      break;
3008    }
3009    case bitc::FUNC_CODE_INST_ATOMICRMW: {
3010      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
3011      unsigned OpNum = 0;
3012      Value *Ptr, *Val;
3013      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3014          popValue(Record, OpNum, NextValueNo,
3015                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3016          OpNum+4 != Record.size())
3017        return Error(InvalidRecord);
3018      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
3019      if (Operation < AtomicRMWInst::FIRST_BINOP ||
3020          Operation > AtomicRMWInst::LAST_BINOP)
3021        return Error(InvalidRecord);
3022      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3023      if (Ordering == NotAtomic || Ordering == Unordered)
3024        return Error(InvalidRecord);
3025      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3026      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
3027      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
3028      InstructionList.push_back(I);
3029      break;
3030    }
3031    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
3032      if (2 != Record.size())
3033        return Error(InvalidRecord);
3034      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
3035      if (Ordering == NotAtomic || Ordering == Unordered ||
3036          Ordering == Monotonic)
3037        return Error(InvalidRecord);
3038      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
3039      I = new FenceInst(Context, Ordering, SynchScope);
3040      InstructionList.push_back(I);
3041      break;
3042    }
3043    case bitc::FUNC_CODE_INST_CALL: {
3044      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3045      if (Record.size() < 3)
3046        return Error(InvalidRecord);
3047
3048      AttributeSet PAL = getAttributes(Record[0]);
3049      unsigned CCInfo = Record[1];
3050
3051      unsigned OpNum = 2;
3052      Value *Callee;
3053      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3054        return Error(InvalidRecord);
3055
3056      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3057      FunctionType *FTy = nullptr;
3058      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3059      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3060        return Error(InvalidRecord);
3061
3062      SmallVector<Value*, 16> Args;
3063      // Read the fixed params.
3064      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3065        if (FTy->getParamType(i)->isLabelTy())
3066          Args.push_back(getBasicBlock(Record[OpNum]));
3067        else
3068          Args.push_back(getValue(Record, OpNum, NextValueNo,
3069                                  FTy->getParamType(i)));
3070        if (!Args.back())
3071          return Error(InvalidRecord);
3072      }
3073
3074      // Read type/value pairs for varargs params.
3075      if (!FTy->isVarArg()) {
3076        if (OpNum != Record.size())
3077          return Error(InvalidRecord);
3078      } else {
3079        while (OpNum != Record.size()) {
3080          Value *Op;
3081          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3082            return Error(InvalidRecord);
3083          Args.push_back(Op);
3084        }
3085      }
3086
3087      I = CallInst::Create(Callee, Args);
3088      InstructionList.push_back(I);
3089      cast<CallInst>(I)->setCallingConv(
3090          static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
3091      CallInst::TailCallKind TCK = CallInst::TCK_None;
3092      if (CCInfo & 1)
3093        TCK = CallInst::TCK_Tail;
3094      if (CCInfo & (1 << 14))
3095        TCK = CallInst::TCK_MustTail;
3096      cast<CallInst>(I)->setTailCallKind(TCK);
3097      cast<CallInst>(I)->setAttributes(PAL);
3098      break;
3099    }
3100    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3101      if (Record.size() < 3)
3102        return Error(InvalidRecord);
3103      Type *OpTy = getTypeByID(Record[0]);
3104      Value *Op = getValue(Record, 1, NextValueNo, OpTy);
3105      Type *ResTy = getTypeByID(Record[2]);
3106      if (!OpTy || !Op || !ResTy)
3107        return Error(InvalidRecord);
3108      I = new VAArgInst(Op, ResTy);
3109      InstructionList.push_back(I);
3110      break;
3111    }
3112    }
3113
3114    // Add instruction to end of current BB.  If there is no current BB, reject
3115    // this file.
3116    if (!CurBB) {
3117      delete I;
3118      return Error(InvalidInstructionWithNoBB);
3119    }
3120    CurBB->getInstList().push_back(I);
3121
3122    // If this was a terminator instruction, move to the next block.
3123    if (isa<TerminatorInst>(I)) {
3124      ++CurBBNo;
3125      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3126    }
3127
3128    // Non-void values get registered in the value table for future use.
3129    if (I && !I->getType()->isVoidTy())
3130      ValueList.AssignValue(I, NextValueNo++);
3131  }
3132
3133OutOfRecordLoop:
3134
3135  // Check the function list for unresolved values.
3136  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3137    if (!A->getParent()) {
3138      // We found at least one unresolved value.  Nuke them all to avoid leaks.
3139      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3140        if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3141          A->replaceAllUsesWith(UndefValue::get(A->getType()));
3142          delete A;
3143        }
3144      }
3145      return Error(NeverResolvedValueFoundInFunction);
3146    }
3147  }
3148
3149  // FIXME: Check for unresolved forward-declared metadata references
3150  // and clean up leaks.
3151
3152  // See if anything took the address of blocks in this function.  If so,
3153  // resolve them now.
3154  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3155    BlockAddrFwdRefs.find(F);
3156  if (BAFRI != BlockAddrFwdRefs.end()) {
3157    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3158    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3159      unsigned BlockIdx = RefList[i].first;
3160      if (BlockIdx >= FunctionBBs.size())
3161        return Error(InvalidID);
3162
3163      GlobalVariable *FwdRef = RefList[i].second;
3164      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3165      FwdRef->eraseFromParent();
3166    }
3167
3168    BlockAddrFwdRefs.erase(BAFRI);
3169  }
3170
3171  // Trim the value list down to the size it was before we parsed this function.
3172  ValueList.shrinkTo(ModuleValueListSize);
3173  MDValueList.shrinkTo(ModuleMDValueListSize);
3174  std::vector<BasicBlock*>().swap(FunctionBBs);
3175  return std::error_code();
3176}
3177
3178/// Find the function body in the bitcode stream
3179std::error_code BitcodeReader::FindFunctionInStream(
3180    Function *F,
3181    DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
3182  while (DeferredFunctionInfoIterator->second == 0) {
3183    if (Stream.AtEndOfStream())
3184      return Error(CouldNotFindFunctionInStream);
3185    // ParseModule will parse the next body in the stream and set its
3186    // position in the DeferredFunctionInfo map.
3187    if (std::error_code EC = ParseModule(true))
3188      return EC;
3189  }
3190  return std::error_code();
3191}
3192
3193//===----------------------------------------------------------------------===//
3194// GVMaterializer implementation
3195//===----------------------------------------------------------------------===//
3196
3197void BitcodeReader::releaseBuffer() { Buffer.release(); }
3198
3199bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3200  if (const Function *F = dyn_cast<Function>(GV)) {
3201    return F->isDeclaration() &&
3202      DeferredFunctionInfo.count(const_cast<Function*>(F));
3203  }
3204  return false;
3205}
3206
3207std::error_code BitcodeReader::Materialize(GlobalValue *GV) {
3208  Function *F = dyn_cast<Function>(GV);
3209  // If it's not a function or is already material, ignore the request.
3210  if (!F || !F->isMaterializable())
3211    return std::error_code();
3212
3213  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3214  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3215  // If its position is recorded as 0, its body is somewhere in the stream
3216  // but we haven't seen it yet.
3217  if (DFII->second == 0 && LazyStreamer)
3218    if (std::error_code EC = FindFunctionInStream(F, DFII))
3219      return EC;
3220
3221  // Move the bit stream to the saved position of the deferred function body.
3222  Stream.JumpToBit(DFII->second);
3223
3224  if (std::error_code EC = ParseFunctionBody(F))
3225    return EC;
3226
3227  // Upgrade any old intrinsic calls in the function.
3228  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3229       E = UpgradedIntrinsics.end(); I != E; ++I) {
3230    if (I->first != I->second) {
3231      for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3232           UI != UE;) {
3233        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3234          UpgradeIntrinsicCall(CI, I->second);
3235      }
3236    }
3237  }
3238
3239  return std::error_code();
3240}
3241
3242bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3243  const Function *F = dyn_cast<Function>(GV);
3244  if (!F || F->isDeclaration())
3245    return false;
3246  return DeferredFunctionInfo.count(const_cast<Function*>(F));
3247}
3248
3249void BitcodeReader::Dematerialize(GlobalValue *GV) {
3250  Function *F = dyn_cast<Function>(GV);
3251  // If this function isn't dematerializable, this is a noop.
3252  if (!F || !isDematerializable(F))
3253    return;
3254
3255  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3256
3257  // Just forget the function body, we can remat it later.
3258  F->deleteBody();
3259}
3260
3261std::error_code BitcodeReader::MaterializeModule(Module *M) {
3262  assert(M == TheModule &&
3263         "Can only Materialize the Module this BitcodeReader is attached to.");
3264  // Iterate over the module, deserializing any functions that are still on
3265  // disk.
3266  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3267       F != E; ++F) {
3268    if (F->isMaterializable()) {
3269      if (std::error_code EC = Materialize(F))
3270        return EC;
3271    }
3272  }
3273  // At this point, if there are any function bodies, the current bit is
3274  // pointing to the END_BLOCK record after them. Now make sure the rest
3275  // of the bits in the module have been read.
3276  if (NextUnreadBit)
3277    ParseModule(true);
3278
3279  // Upgrade any intrinsic calls that slipped through (should not happen!) and
3280  // delete the old functions to clean up. We can't do this unless the entire
3281  // module is materialized because there could always be another function body
3282  // with calls to the old function.
3283  for (std::vector<std::pair<Function*, Function*> >::iterator I =
3284       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3285    if (I->first != I->second) {
3286      for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3287           UI != UE;) {
3288        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3289          UpgradeIntrinsicCall(CI, I->second);
3290      }
3291      if (!I->first->use_empty())
3292        I->first->replaceAllUsesWith(I->second);
3293      I->first->eraseFromParent();
3294    }
3295  }
3296  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3297
3298  for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
3299    UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
3300
3301  UpgradeDebugInfo(*M);
3302  return std::error_code();
3303}
3304
3305std::error_code BitcodeReader::InitStream() {
3306  if (LazyStreamer)
3307    return InitLazyStream();
3308  return InitStreamFromBuffer();
3309}
3310
3311std::error_code BitcodeReader::InitStreamFromBuffer() {
3312  const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3313  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3314
3315  if (Buffer->getBufferSize() & 3) {
3316    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3317      return Error(InvalidBitcodeSignature);
3318    else
3319      return Error(BitcodeStreamInvalidSize);
3320  }
3321
3322  // If we have a wrapper header, parse it and ignore the non-bc file contents.
3323  // The magic number is 0x0B17C0DE stored in little endian.
3324  if (isBitcodeWrapper(BufPtr, BufEnd))
3325    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3326      return Error(InvalidBitcodeWrapperHeader);
3327
3328  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3329  Stream.init(*StreamFile);
3330
3331  return std::error_code();
3332}
3333
3334std::error_code BitcodeReader::InitLazyStream() {
3335  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3336  // see it.
3337  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3338  StreamFile.reset(new BitstreamReader(Bytes));
3339  Stream.init(*StreamFile);
3340
3341  unsigned char buf[16];
3342  if (Bytes->readBytes(0, 16, buf) == -1)
3343    return Error(BitcodeStreamInvalidSize);
3344
3345  if (!isBitcode(buf, buf + 16))
3346    return Error(InvalidBitcodeSignature);
3347
3348  if (isBitcodeWrapper(buf, buf + 4)) {
3349    const unsigned char *bitcodeStart = buf;
3350    const unsigned char *bitcodeEnd = buf + 16;
3351    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3352    Bytes->dropLeadingBytes(bitcodeStart - buf);
3353    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3354  }
3355  return std::error_code();
3356}
3357
3358namespace {
3359class BitcodeErrorCategoryType : public std::error_category {
3360  const char *name() const LLVM_NOEXCEPT override {
3361    return "llvm.bitcode";
3362  }
3363  std::string message(int IE) const override {
3364    BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
3365    switch (E) {
3366    case BitcodeReader::BitcodeStreamInvalidSize:
3367      return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
3368    case BitcodeReader::ConflictingMETADATA_KINDRecords:
3369      return "Conflicting METADATA_KIND records";
3370    case BitcodeReader::CouldNotFindFunctionInStream:
3371      return "Could not find function in stream";
3372    case BitcodeReader::ExpectedConstant:
3373      return "Expected a constant";
3374    case BitcodeReader::InsufficientFunctionProtos:
3375      return "Insufficient function protos";
3376    case BitcodeReader::InvalidBitcodeSignature:
3377      return "Invalid bitcode signature";
3378    case BitcodeReader::InvalidBitcodeWrapperHeader:
3379      return "Invalid bitcode wrapper header";
3380    case BitcodeReader::InvalidConstantReference:
3381      return "Invalid ronstant reference";
3382    case BitcodeReader::InvalidID:
3383      return "Invalid ID";
3384    case BitcodeReader::InvalidInstructionWithNoBB:
3385      return "Invalid instruction with no BB";
3386    case BitcodeReader::InvalidRecord:
3387      return "Invalid record";
3388    case BitcodeReader::InvalidTypeForValue:
3389      return "Invalid type for value";
3390    case BitcodeReader::InvalidTYPETable:
3391      return "Invalid TYPE table";
3392    case BitcodeReader::InvalidType:
3393      return "Invalid type";
3394    case BitcodeReader::MalformedBlock:
3395      return "Malformed block";
3396    case BitcodeReader::MalformedGlobalInitializerSet:
3397      return "Malformed global initializer set";
3398    case BitcodeReader::InvalidMultipleBlocks:
3399      return "Invalid multiple blocks";
3400    case BitcodeReader::NeverResolvedValueFoundInFunction:
3401      return "Never resolved value found in function";
3402    case BitcodeReader::InvalidValue:
3403      return "Invalid value";
3404    }
3405    llvm_unreachable("Unknown error type!");
3406  }
3407};
3408}
3409
3410const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3411  static BitcodeErrorCategoryType O;
3412  return O;
3413}
3414
3415//===----------------------------------------------------------------------===//
3416// External interface
3417//===----------------------------------------------------------------------===//
3418
3419/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3420///
3421ErrorOr<Module *> llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3422                                             LLVMContext &Context) {
3423  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3424  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3425  M->setMaterializer(R);
3426  if (std::error_code EC = R->ParseBitcodeInto(M)) {
3427    R->releaseBuffer(); // Never take ownership on error.
3428    delete M;  // Also deletes R.
3429    return EC;
3430  }
3431
3432  R->materializeForwardReferencedFunctions();
3433
3434  return M;
3435}
3436
3437
3438Module *llvm::getStreamedBitcodeModule(const std::string &name,
3439                                       DataStreamer *streamer,
3440                                       LLVMContext &Context,
3441                                       std::string *ErrMsg) {
3442  Module *M = new Module(name, Context);
3443  BitcodeReader *R = new BitcodeReader(streamer, Context);
3444  M->setMaterializer(R);
3445  if (std::error_code EC = R->ParseBitcodeInto(M)) {
3446    if (ErrMsg)
3447      *ErrMsg = EC.message();
3448    delete M;  // Also deletes R.
3449    return nullptr;
3450  }
3451  return M;
3452}
3453
3454ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBuffer *Buffer,
3455                                         LLVMContext &Context) {
3456  ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModule(Buffer, Context);
3457  if (!ModuleOrErr)
3458    return ModuleOrErr;
3459  Module *M = ModuleOrErr.get();
3460  // Read in the entire module, and destroy the BitcodeReader.
3461  if (std::error_code EC = M->materializeAllPermanently(true)) {
3462    delete M;
3463    return EC;
3464  }
3465
3466  // TODO: Restore the use-lists to the in-memory state when the bitcode was
3467  // written.  We must defer until the Module has been fully materialized.
3468
3469  return M;
3470}
3471
3472std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3473                                         LLVMContext &Context) {
3474  BitcodeReader *R = new BitcodeReader(Buffer, Context);
3475  ErrorOr<std::string> Triple = R->parseTriple();
3476  R->releaseBuffer();
3477  delete R;
3478  if (Triple.getError())
3479    return "";
3480  return Triple.get();
3481}
3482