BitcodeReader.cpp revision ce718ff9f42c7da092eaa01dd0242e8d5ba84713
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/DataStream.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/OperandTraits.h"
29using namespace llvm;
30
31enum {
32  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
33};
34
35void BitcodeReader::materializeForwardReferencedFunctions() {
36  while (!BlockAddrFwdRefs.empty()) {
37    Function *F = BlockAddrFwdRefs.begin()->first;
38    F->Materialize();
39  }
40}
41
42void BitcodeReader::FreeState() {
43  if (BufferOwned)
44    delete Buffer;
45  Buffer = 0;
46  std::vector<Type*>().swap(TypeList);
47  ValueList.clear();
48  MDValueList.clear();
49
50  std::vector<AttrListPtr>().swap(MAttributes);
51  std::vector<BasicBlock*>().swap(FunctionBBs);
52  std::vector<Function*>().swap(FunctionsWithBodies);
53  DeferredFunctionInfo.clear();
54  MDKindMap.clear();
55}
56
57//===----------------------------------------------------------------------===//
58//  Helper functions to implement forward reference resolution, etc.
59//===----------------------------------------------------------------------===//
60
61/// ConvertToString - Convert a string from a record into an std::string, return
62/// true on failure.
63template<typename StrTy>
64static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
65                            StrTy &Result) {
66  if (Idx > Record.size())
67    return true;
68
69  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
70    Result += (char)Record[i];
71  return false;
72}
73
74static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
75  switch (Val) {
76  default: // Map unknown/new linkages to external
77  case 0:  return GlobalValue::ExternalLinkage;
78  case 1:  return GlobalValue::WeakAnyLinkage;
79  case 2:  return GlobalValue::AppendingLinkage;
80  case 3:  return GlobalValue::InternalLinkage;
81  case 4:  return GlobalValue::LinkOnceAnyLinkage;
82  case 5:  return GlobalValue::DLLImportLinkage;
83  case 6:  return GlobalValue::DLLExportLinkage;
84  case 7:  return GlobalValue::ExternalWeakLinkage;
85  case 8:  return GlobalValue::CommonLinkage;
86  case 9:  return GlobalValue::PrivateLinkage;
87  case 10: return GlobalValue::WeakODRLinkage;
88  case 11: return GlobalValue::LinkOnceODRLinkage;
89  case 12: return GlobalValue::AvailableExternallyLinkage;
90  case 13: return GlobalValue::LinkerPrivateLinkage;
91  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
92  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
93  }
94}
95
96static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97  switch (Val) {
98  default: // Map unknown visibilities to default.
99  case 0: return GlobalValue::DefaultVisibility;
100  case 1: return GlobalValue::HiddenVisibility;
101  case 2: return GlobalValue::ProtectedVisibility;
102  }
103}
104
105static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
106  switch (Val) {
107    case 0: return GlobalVariable::NotThreadLocal;
108    default: // Map unknown non-zero value to general dynamic.
109    case 1: return GlobalVariable::GeneralDynamicTLSModel;
110    case 2: return GlobalVariable::LocalDynamicTLSModel;
111    case 3: return GlobalVariable::InitialExecTLSModel;
112    case 4: return GlobalVariable::LocalExecTLSModel;
113  }
114}
115
116static int GetDecodedCastOpcode(unsigned Val) {
117  switch (Val) {
118  default: return -1;
119  case bitc::CAST_TRUNC   : return Instruction::Trunc;
120  case bitc::CAST_ZEXT    : return Instruction::ZExt;
121  case bitc::CAST_SEXT    : return Instruction::SExt;
122  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
123  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
124  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
125  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
126  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
127  case bitc::CAST_FPEXT   : return Instruction::FPExt;
128  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
129  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
130  case bitc::CAST_BITCAST : return Instruction::BitCast;
131  }
132}
133static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
134  switch (Val) {
135  default: return -1;
136  case bitc::BINOP_ADD:
137    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
138  case bitc::BINOP_SUB:
139    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
140  case bitc::BINOP_MUL:
141    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
142  case bitc::BINOP_UDIV: return Instruction::UDiv;
143  case bitc::BINOP_SDIV:
144    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
145  case bitc::BINOP_UREM: return Instruction::URem;
146  case bitc::BINOP_SREM:
147    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
148  case bitc::BINOP_SHL:  return Instruction::Shl;
149  case bitc::BINOP_LSHR: return Instruction::LShr;
150  case bitc::BINOP_ASHR: return Instruction::AShr;
151  case bitc::BINOP_AND:  return Instruction::And;
152  case bitc::BINOP_OR:   return Instruction::Or;
153  case bitc::BINOP_XOR:  return Instruction::Xor;
154  }
155}
156
157static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
158  switch (Val) {
159  default: return AtomicRMWInst::BAD_BINOP;
160  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
161  case bitc::RMW_ADD: return AtomicRMWInst::Add;
162  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
163  case bitc::RMW_AND: return AtomicRMWInst::And;
164  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
165  case bitc::RMW_OR: return AtomicRMWInst::Or;
166  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
167  case bitc::RMW_MAX: return AtomicRMWInst::Max;
168  case bitc::RMW_MIN: return AtomicRMWInst::Min;
169  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
170  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
171  }
172}
173
174static AtomicOrdering GetDecodedOrdering(unsigned Val) {
175  switch (Val) {
176  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
177  case bitc::ORDERING_UNORDERED: return Unordered;
178  case bitc::ORDERING_MONOTONIC: return Monotonic;
179  case bitc::ORDERING_ACQUIRE: return Acquire;
180  case bitc::ORDERING_RELEASE: return Release;
181  case bitc::ORDERING_ACQREL: return AcquireRelease;
182  default: // Map unknown orderings to sequentially-consistent.
183  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
184  }
185}
186
187static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
188  switch (Val) {
189  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
190  default: // Map unknown scopes to cross-thread.
191  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
192  }
193}
194
195namespace llvm {
196namespace {
197  /// @brief A class for maintaining the slot number definition
198  /// as a placeholder for the actual definition for forward constants defs.
199  class ConstantPlaceHolder : public ConstantExpr {
200    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
201  public:
202    // allocate space for exactly one operand
203    void *operator new(size_t s) {
204      return User::operator new(s, 1);
205    }
206    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
207      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
208      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
209    }
210
211    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
212    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
213    static bool classof(const Value *V) {
214      return isa<ConstantExpr>(V) &&
215             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
216    }
217
218
219    /// Provide fast operand accessors
220    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221  };
222}
223
224// FIXME: can we inherit this from ConstantExpr?
225template <>
226struct OperandTraits<ConstantPlaceHolder> :
227  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
228};
229}
230
231
232void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
233  if (Idx == size()) {
234    push_back(V);
235    return;
236  }
237
238  if (Idx >= size())
239    resize(Idx+1);
240
241  WeakVH &OldV = ValuePtrs[Idx];
242  if (OldV == 0) {
243    OldV = V;
244    return;
245  }
246
247  // Handle constants and non-constants (e.g. instrs) differently for
248  // efficiency.
249  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
250    ResolveConstants.push_back(std::make_pair(PHC, Idx));
251    OldV = V;
252  } else {
253    // If there was a forward reference to this value, replace it.
254    Value *PrevVal = OldV;
255    OldV->replaceAllUsesWith(V);
256    delete PrevVal;
257  }
258}
259
260
261Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
262                                                    Type *Ty) {
263  if (Idx >= size())
264    resize(Idx + 1);
265
266  if (Value *V = ValuePtrs[Idx]) {
267    assert(Ty == V->getType() && "Type mismatch in constant table!");
268    return cast<Constant>(V);
269  }
270
271  // Create and return a placeholder, which will later be RAUW'd.
272  Constant *C = new ConstantPlaceHolder(Ty, Context);
273  ValuePtrs[Idx] = C;
274  return C;
275}
276
277Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
278  if (Idx >= size())
279    resize(Idx + 1);
280
281  if (Value *V = ValuePtrs[Idx]) {
282    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
283    return V;
284  }
285
286  // No type specified, must be invalid reference.
287  if (Ty == 0) return 0;
288
289  // Create and return a placeholder, which will later be RAUW'd.
290  Value *V = new Argument(Ty);
291  ValuePtrs[Idx] = V;
292  return V;
293}
294
295/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
296/// resolves any forward references.  The idea behind this is that we sometimes
297/// get constants (such as large arrays) which reference *many* forward ref
298/// constants.  Replacing each of these causes a lot of thrashing when
299/// building/reuniquing the constant.  Instead of doing this, we look at all the
300/// uses and rewrite all the place holders at once for any constant that uses
301/// a placeholder.
302void BitcodeReaderValueList::ResolveConstantForwardRefs() {
303  // Sort the values by-pointer so that they are efficient to look up with a
304  // binary search.
305  std::sort(ResolveConstants.begin(), ResolveConstants.end());
306
307  SmallVector<Constant*, 64> NewOps;
308
309  while (!ResolveConstants.empty()) {
310    Value *RealVal = operator[](ResolveConstants.back().second);
311    Constant *Placeholder = ResolveConstants.back().first;
312    ResolveConstants.pop_back();
313
314    // Loop over all users of the placeholder, updating them to reference the
315    // new value.  If they reference more than one placeholder, update them all
316    // at once.
317    while (!Placeholder->use_empty()) {
318      Value::use_iterator UI = Placeholder->use_begin();
319      User *U = *UI;
320
321      // If the using object isn't uniqued, just update the operands.  This
322      // handles instructions and initializers for global variables.
323      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
324        UI.getUse().set(RealVal);
325        continue;
326      }
327
328      // Otherwise, we have a constant that uses the placeholder.  Replace that
329      // constant with a new constant that has *all* placeholder uses updated.
330      Constant *UserC = cast<Constant>(U);
331      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
332           I != E; ++I) {
333        Value *NewOp;
334        if (!isa<ConstantPlaceHolder>(*I)) {
335          // Not a placeholder reference.
336          NewOp = *I;
337        } else if (*I == Placeholder) {
338          // Common case is that it just references this one placeholder.
339          NewOp = RealVal;
340        } else {
341          // Otherwise, look up the placeholder in ResolveConstants.
342          ResolveConstantsTy::iterator It =
343            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
344                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
345                                                            0));
346          assert(It != ResolveConstants.end() && It->first == *I);
347          NewOp = operator[](It->second);
348        }
349
350        NewOps.push_back(cast<Constant>(NewOp));
351      }
352
353      // Make the new constant.
354      Constant *NewC;
355      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
356        NewC = ConstantArray::get(UserCA->getType(), NewOps);
357      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
358        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
359      } else if (isa<ConstantVector>(UserC)) {
360        NewC = ConstantVector::get(NewOps);
361      } else {
362        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
363        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
364      }
365
366      UserC->replaceAllUsesWith(NewC);
367      UserC->destroyConstant();
368      NewOps.clear();
369    }
370
371    // Update all ValueHandles, they should be the only users at this point.
372    Placeholder->replaceAllUsesWith(RealVal);
373    delete Placeholder;
374  }
375}
376
377void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
378  if (Idx == size()) {
379    push_back(V);
380    return;
381  }
382
383  if (Idx >= size())
384    resize(Idx+1);
385
386  WeakVH &OldV = MDValuePtrs[Idx];
387  if (OldV == 0) {
388    OldV = V;
389    return;
390  }
391
392  // If there was a forward reference to this value, replace it.
393  MDNode *PrevVal = cast<MDNode>(OldV);
394  OldV->replaceAllUsesWith(V);
395  MDNode::deleteTemporary(PrevVal);
396  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
397  // value for Idx.
398  MDValuePtrs[Idx] = V;
399}
400
401Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
402  if (Idx >= size())
403    resize(Idx + 1);
404
405  if (Value *V = MDValuePtrs[Idx]) {
406    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
407    return V;
408  }
409
410  // Create and return a placeholder, which will later be RAUW'd.
411  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
412  MDValuePtrs[Idx] = V;
413  return V;
414}
415
416Type *BitcodeReader::getTypeByID(unsigned ID) {
417  // The type table size is always specified correctly.
418  if (ID >= TypeList.size())
419    return 0;
420
421  if (Type *Ty = TypeList[ID])
422    return Ty;
423
424  // If we have a forward reference, the only possible case is when it is to a
425  // named struct.  Just create a placeholder for now.
426  return TypeList[ID] = StructType::create(Context);
427}
428
429
430//===----------------------------------------------------------------------===//
431//  Functions for parsing blocks from the bitcode file
432//===----------------------------------------------------------------------===//
433
434bool BitcodeReader::ParseAttributeBlock() {
435  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
436    return Error("Malformed block record");
437
438  if (!MAttributes.empty())
439    return Error("Multiple PARAMATTR blocks found!");
440
441  SmallVector<uint64_t, 64> Record;
442
443  SmallVector<AttributeWithIndex, 8> Attrs;
444
445  // Read all the records.
446  while (1) {
447    unsigned Code = Stream.ReadCode();
448    if (Code == bitc::END_BLOCK) {
449      if (Stream.ReadBlockEnd())
450        return Error("Error at end of PARAMATTR block");
451      return false;
452    }
453
454    if (Code == bitc::ENTER_SUBBLOCK) {
455      // No known subblocks, always skip them.
456      Stream.ReadSubBlockID();
457      if (Stream.SkipBlock())
458        return Error("Malformed block record");
459      continue;
460    }
461
462    if (Code == bitc::DEFINE_ABBREV) {
463      Stream.ReadAbbrevRecord();
464      continue;
465    }
466
467    // Read a record.
468    Record.clear();
469    switch (Stream.ReadRecord(Code, Record)) {
470    default:  // Default behavior: ignore.
471      break;
472    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
473      if (Record.size() & 1)
474        return Error("Invalid ENTRY record");
475
476      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
477        Attributes ReconstitutedAttr =
478          Attribute::decodeLLVMAttributesForBitcode(Record[i+1]);
479        Record[i+1] = ReconstitutedAttr.Raw();
480      }
481
482      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
483        if (Attributes(Record[i+1]) != Attribute::None)
484          Attrs.push_back(AttributeWithIndex::get(Record[i],
485                                                  Attributes(Record[i+1])));
486      }
487
488      MAttributes.push_back(AttrListPtr::get(Attrs));
489      Attrs.clear();
490      break;
491    }
492    }
493  }
494}
495
496bool BitcodeReader::ParseTypeTable() {
497  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
498    return Error("Malformed block record");
499
500  return ParseTypeTableBody();
501}
502
503bool BitcodeReader::ParseTypeTableBody() {
504  if (!TypeList.empty())
505    return Error("Multiple TYPE_BLOCKs found!");
506
507  SmallVector<uint64_t, 64> Record;
508  unsigned NumRecords = 0;
509
510  SmallString<64> TypeName;
511
512  // Read all the records for this type table.
513  while (1) {
514    unsigned Code = Stream.ReadCode();
515    if (Code == bitc::END_BLOCK) {
516      if (NumRecords != TypeList.size())
517        return Error("Invalid type forward reference in TYPE_BLOCK");
518      if (Stream.ReadBlockEnd())
519        return Error("Error at end of type table block");
520      return false;
521    }
522
523    if (Code == bitc::ENTER_SUBBLOCK) {
524      // No known subblocks, always skip them.
525      Stream.ReadSubBlockID();
526      if (Stream.SkipBlock())
527        return Error("Malformed block record");
528      continue;
529    }
530
531    if (Code == bitc::DEFINE_ABBREV) {
532      Stream.ReadAbbrevRecord();
533      continue;
534    }
535
536    // Read a record.
537    Record.clear();
538    Type *ResultTy = 0;
539    switch (Stream.ReadRecord(Code, Record)) {
540    default: return Error("unknown type in type table");
541    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
542      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
543      // type list.  This allows us to reserve space.
544      if (Record.size() < 1)
545        return Error("Invalid TYPE_CODE_NUMENTRY record");
546      TypeList.resize(Record[0]);
547      continue;
548    case bitc::TYPE_CODE_VOID:      // VOID
549      ResultTy = Type::getVoidTy(Context);
550      break;
551    case bitc::TYPE_CODE_HALF:     // HALF
552      ResultTy = Type::getHalfTy(Context);
553      break;
554    case bitc::TYPE_CODE_FLOAT:     // FLOAT
555      ResultTy = Type::getFloatTy(Context);
556      break;
557    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
558      ResultTy = Type::getDoubleTy(Context);
559      break;
560    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
561      ResultTy = Type::getX86_FP80Ty(Context);
562      break;
563    case bitc::TYPE_CODE_FP128:     // FP128
564      ResultTy = Type::getFP128Ty(Context);
565      break;
566    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
567      ResultTy = Type::getPPC_FP128Ty(Context);
568      break;
569    case bitc::TYPE_CODE_LABEL:     // LABEL
570      ResultTy = Type::getLabelTy(Context);
571      break;
572    case bitc::TYPE_CODE_METADATA:  // METADATA
573      ResultTy = Type::getMetadataTy(Context);
574      break;
575    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
576      ResultTy = Type::getX86_MMXTy(Context);
577      break;
578    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
579      if (Record.size() < 1)
580        return Error("Invalid Integer type record");
581
582      ResultTy = IntegerType::get(Context, Record[0]);
583      break;
584    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
585                                    //          [pointee type, address space]
586      if (Record.size() < 1)
587        return Error("Invalid POINTER type record");
588      unsigned AddressSpace = 0;
589      if (Record.size() == 2)
590        AddressSpace = Record[1];
591      ResultTy = getTypeByID(Record[0]);
592      if (ResultTy == 0) return Error("invalid element type in pointer type");
593      ResultTy = PointerType::get(ResultTy, AddressSpace);
594      break;
595    }
596    case bitc::TYPE_CODE_FUNCTION_OLD: {
597      // FIXME: attrid is dead, remove it in LLVM 4.0
598      // FUNCTION: [vararg, attrid, retty, paramty x N]
599      if (Record.size() < 3)
600        return Error("Invalid FUNCTION type record");
601      SmallVector<Type*, 8> ArgTys;
602      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
603        if (Type *T = getTypeByID(Record[i]))
604          ArgTys.push_back(T);
605        else
606          break;
607      }
608
609      ResultTy = getTypeByID(Record[2]);
610      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
611        return Error("invalid type in function type");
612
613      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
614      break;
615    }
616    case bitc::TYPE_CODE_FUNCTION: {
617      // FUNCTION: [vararg, retty, paramty x N]
618      if (Record.size() < 2)
619        return Error("Invalid FUNCTION type record");
620      SmallVector<Type*, 8> ArgTys;
621      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
622        if (Type *T = getTypeByID(Record[i]))
623          ArgTys.push_back(T);
624        else
625          break;
626      }
627
628      ResultTy = getTypeByID(Record[1]);
629      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
630        return Error("invalid type in function type");
631
632      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
633      break;
634    }
635    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
636      if (Record.size() < 1)
637        return Error("Invalid STRUCT type record");
638      SmallVector<Type*, 8> EltTys;
639      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
640        if (Type *T = getTypeByID(Record[i]))
641          EltTys.push_back(T);
642        else
643          break;
644      }
645      if (EltTys.size() != Record.size()-1)
646        return Error("invalid type in struct type");
647      ResultTy = StructType::get(Context, EltTys, Record[0]);
648      break;
649    }
650    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
651      if (ConvertToString(Record, 0, TypeName))
652        return Error("Invalid STRUCT_NAME record");
653      continue;
654
655    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
656      if (Record.size() < 1)
657        return Error("Invalid STRUCT type record");
658
659      if (NumRecords >= TypeList.size())
660        return Error("invalid TYPE table");
661
662      // Check to see if this was forward referenced, if so fill in the temp.
663      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
664      if (Res) {
665        Res->setName(TypeName);
666        TypeList[NumRecords] = 0;
667      } else  // Otherwise, create a new struct.
668        Res = StructType::create(Context, TypeName);
669      TypeName.clear();
670
671      SmallVector<Type*, 8> EltTys;
672      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
673        if (Type *T = getTypeByID(Record[i]))
674          EltTys.push_back(T);
675        else
676          break;
677      }
678      if (EltTys.size() != Record.size()-1)
679        return Error("invalid STRUCT type record");
680      Res->setBody(EltTys, Record[0]);
681      ResultTy = Res;
682      break;
683    }
684    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
685      if (Record.size() != 1)
686        return Error("Invalid OPAQUE type record");
687
688      if (NumRecords >= TypeList.size())
689        return Error("invalid TYPE table");
690
691      // Check to see if this was forward referenced, if so fill in the temp.
692      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
693      if (Res) {
694        Res->setName(TypeName);
695        TypeList[NumRecords] = 0;
696      } else  // Otherwise, create a new struct with no body.
697        Res = StructType::create(Context, TypeName);
698      TypeName.clear();
699      ResultTy = Res;
700      break;
701    }
702    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
703      if (Record.size() < 2)
704        return Error("Invalid ARRAY type record");
705      if ((ResultTy = getTypeByID(Record[1])))
706        ResultTy = ArrayType::get(ResultTy, Record[0]);
707      else
708        return Error("Invalid ARRAY type element");
709      break;
710    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
711      if (Record.size() < 2)
712        return Error("Invalid VECTOR type record");
713      if ((ResultTy = getTypeByID(Record[1])))
714        ResultTy = VectorType::get(ResultTy, Record[0]);
715      else
716        return Error("Invalid ARRAY type element");
717      break;
718    }
719
720    if (NumRecords >= TypeList.size())
721      return Error("invalid TYPE table");
722    assert(ResultTy && "Didn't read a type?");
723    assert(TypeList[NumRecords] == 0 && "Already read type?");
724    TypeList[NumRecords++] = ResultTy;
725  }
726}
727
728bool BitcodeReader::ParseValueSymbolTable() {
729  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
730    return Error("Malformed block record");
731
732  SmallVector<uint64_t, 64> Record;
733
734  // Read all the records for this value table.
735  SmallString<128> ValueName;
736  while (1) {
737    unsigned Code = Stream.ReadCode();
738    if (Code == bitc::END_BLOCK) {
739      if (Stream.ReadBlockEnd())
740        return Error("Error at end of value symbol table block");
741      return false;
742    }
743    if (Code == bitc::ENTER_SUBBLOCK) {
744      // No known subblocks, always skip them.
745      Stream.ReadSubBlockID();
746      if (Stream.SkipBlock())
747        return Error("Malformed block record");
748      continue;
749    }
750
751    if (Code == bitc::DEFINE_ABBREV) {
752      Stream.ReadAbbrevRecord();
753      continue;
754    }
755
756    // Read a record.
757    Record.clear();
758    switch (Stream.ReadRecord(Code, Record)) {
759    default:  // Default behavior: unknown type.
760      break;
761    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
762      if (ConvertToString(Record, 1, ValueName))
763        return Error("Invalid VST_ENTRY record");
764      unsigned ValueID = Record[0];
765      if (ValueID >= ValueList.size())
766        return Error("Invalid Value ID in VST_ENTRY record");
767      Value *V = ValueList[ValueID];
768
769      V->setName(StringRef(ValueName.data(), ValueName.size()));
770      ValueName.clear();
771      break;
772    }
773    case bitc::VST_CODE_BBENTRY: {
774      if (ConvertToString(Record, 1, ValueName))
775        return Error("Invalid VST_BBENTRY record");
776      BasicBlock *BB = getBasicBlock(Record[0]);
777      if (BB == 0)
778        return Error("Invalid BB ID in VST_BBENTRY record");
779
780      BB->setName(StringRef(ValueName.data(), ValueName.size()));
781      ValueName.clear();
782      break;
783    }
784    }
785  }
786}
787
788bool BitcodeReader::ParseMetadata() {
789  unsigned NextMDValueNo = MDValueList.size();
790
791  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
792    return Error("Malformed block record");
793
794  SmallVector<uint64_t, 64> Record;
795
796  // Read all the records.
797  while (1) {
798    unsigned Code = Stream.ReadCode();
799    if (Code == bitc::END_BLOCK) {
800      if (Stream.ReadBlockEnd())
801        return Error("Error at end of PARAMATTR block");
802      return false;
803    }
804
805    if (Code == bitc::ENTER_SUBBLOCK) {
806      // No known subblocks, always skip them.
807      Stream.ReadSubBlockID();
808      if (Stream.SkipBlock())
809        return Error("Malformed block record");
810      continue;
811    }
812
813    if (Code == bitc::DEFINE_ABBREV) {
814      Stream.ReadAbbrevRecord();
815      continue;
816    }
817
818    bool IsFunctionLocal = false;
819    // Read a record.
820    Record.clear();
821    Code = Stream.ReadRecord(Code, Record);
822    switch (Code) {
823    default:  // Default behavior: ignore.
824      break;
825    case bitc::METADATA_NAME: {
826      // Read named of the named metadata.
827      SmallString<8> Name(Record.begin(), Record.end());
828      Record.clear();
829      Code = Stream.ReadCode();
830
831      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
832      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
833      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
834
835      // Read named metadata elements.
836      unsigned Size = Record.size();
837      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
838      for (unsigned i = 0; i != Size; ++i) {
839        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
840        if (MD == 0)
841          return Error("Malformed metadata record");
842        NMD->addOperand(MD);
843      }
844      break;
845    }
846    case bitc::METADATA_FN_NODE:
847      IsFunctionLocal = true;
848      // fall-through
849    case bitc::METADATA_NODE: {
850      if (Record.size() % 2 == 1)
851        return Error("Invalid METADATA_NODE record");
852
853      unsigned Size = Record.size();
854      SmallVector<Value*, 8> Elts;
855      for (unsigned i = 0; i != Size; i += 2) {
856        Type *Ty = getTypeByID(Record[i]);
857        if (!Ty) return Error("Invalid METADATA_NODE record");
858        if (Ty->isMetadataTy())
859          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
860        else if (!Ty->isVoidTy())
861          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
862        else
863          Elts.push_back(NULL);
864      }
865      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
866      IsFunctionLocal = false;
867      MDValueList.AssignValue(V, NextMDValueNo++);
868      break;
869    }
870    case bitc::METADATA_STRING: {
871      SmallString<8> String(Record.begin(), Record.end());
872      Value *V = MDString::get(Context, String);
873      MDValueList.AssignValue(V, NextMDValueNo++);
874      break;
875    }
876    case bitc::METADATA_KIND: {
877      if (Record.size() < 2)
878        return Error("Invalid METADATA_KIND record");
879
880      unsigned Kind = Record[0];
881      SmallString<8> Name(Record.begin()+1, Record.end());
882
883      unsigned NewKind = TheModule->getMDKindID(Name.str());
884      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
885        return Error("Conflicting METADATA_KIND records");
886      break;
887    }
888    }
889  }
890}
891
892/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
893/// the LSB for dense VBR encoding.
894static uint64_t DecodeSignRotatedValue(uint64_t V) {
895  if ((V & 1) == 0)
896    return V >> 1;
897  if (V != 1)
898    return -(V >> 1);
899  // There is no such thing as -0 with integers.  "-0" really means MININT.
900  return 1ULL << 63;
901}
902
903/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
904/// values and aliases that we can.
905bool BitcodeReader::ResolveGlobalAndAliasInits() {
906  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
907  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
908
909  GlobalInitWorklist.swap(GlobalInits);
910  AliasInitWorklist.swap(AliasInits);
911
912  while (!GlobalInitWorklist.empty()) {
913    unsigned ValID = GlobalInitWorklist.back().second;
914    if (ValID >= ValueList.size()) {
915      // Not ready to resolve this yet, it requires something later in the file.
916      GlobalInits.push_back(GlobalInitWorklist.back());
917    } else {
918      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
919        GlobalInitWorklist.back().first->setInitializer(C);
920      else
921        return Error("Global variable initializer is not a constant!");
922    }
923    GlobalInitWorklist.pop_back();
924  }
925
926  while (!AliasInitWorklist.empty()) {
927    unsigned ValID = AliasInitWorklist.back().second;
928    if (ValID >= ValueList.size()) {
929      AliasInits.push_back(AliasInitWorklist.back());
930    } else {
931      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
932        AliasInitWorklist.back().first->setAliasee(C);
933      else
934        return Error("Alias initializer is not a constant!");
935    }
936    AliasInitWorklist.pop_back();
937  }
938  return false;
939}
940
941static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
942  SmallVector<uint64_t, 8> Words(Vals.size());
943  std::transform(Vals.begin(), Vals.end(), Words.begin(),
944                 DecodeSignRotatedValue);
945
946  return APInt(TypeBits, Words);
947}
948
949bool BitcodeReader::ParseConstants() {
950  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
951    return Error("Malformed block record");
952
953  SmallVector<uint64_t, 64> Record;
954
955  // Read all the records for this value table.
956  Type *CurTy = Type::getInt32Ty(Context);
957  unsigned NextCstNo = ValueList.size();
958  while (1) {
959    unsigned Code = Stream.ReadCode();
960    if (Code == bitc::END_BLOCK)
961      break;
962
963    if (Code == bitc::ENTER_SUBBLOCK) {
964      // No known subblocks, always skip them.
965      Stream.ReadSubBlockID();
966      if (Stream.SkipBlock())
967        return Error("Malformed block record");
968      continue;
969    }
970
971    if (Code == bitc::DEFINE_ABBREV) {
972      Stream.ReadAbbrevRecord();
973      continue;
974    }
975
976    // Read a record.
977    Record.clear();
978    Value *V = 0;
979    unsigned BitCode = Stream.ReadRecord(Code, Record);
980    switch (BitCode) {
981    default:  // Default behavior: unknown constant
982    case bitc::CST_CODE_UNDEF:     // UNDEF
983      V = UndefValue::get(CurTy);
984      break;
985    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
986      if (Record.empty())
987        return Error("Malformed CST_SETTYPE record");
988      if (Record[0] >= TypeList.size())
989        return Error("Invalid Type ID in CST_SETTYPE record");
990      CurTy = TypeList[Record[0]];
991      continue;  // Skip the ValueList manipulation.
992    case bitc::CST_CODE_NULL:      // NULL
993      V = Constant::getNullValue(CurTy);
994      break;
995    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
996      if (!CurTy->isIntegerTy() || Record.empty())
997        return Error("Invalid CST_INTEGER record");
998      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
999      break;
1000    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1001      if (!CurTy->isIntegerTy() || Record.empty())
1002        return Error("Invalid WIDE_INTEGER record");
1003
1004      APInt VInt = ReadWideAPInt(Record,
1005                                 cast<IntegerType>(CurTy)->getBitWidth());
1006      V = ConstantInt::get(Context, VInt);
1007
1008      break;
1009    }
1010    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1011      if (Record.empty())
1012        return Error("Invalid FLOAT record");
1013      if (CurTy->isHalfTy())
1014        V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0])));
1015      else if (CurTy->isFloatTy())
1016        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1017      else if (CurTy->isDoubleTy())
1018        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1019      else if (CurTy->isX86_FP80Ty()) {
1020        // Bits are not stored the same way as a normal i80 APInt, compensate.
1021        uint64_t Rearrange[2];
1022        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1023        Rearrange[1] = Record[0] >> 48;
1024        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1025      } else if (CurTy->isFP128Ty())
1026        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1027      else if (CurTy->isPPC_FP128Ty())
1028        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1029      else
1030        V = UndefValue::get(CurTy);
1031      break;
1032    }
1033
1034    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1035      if (Record.empty())
1036        return Error("Invalid CST_AGGREGATE record");
1037
1038      unsigned Size = Record.size();
1039      SmallVector<Constant*, 16> Elts;
1040
1041      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1042        for (unsigned i = 0; i != Size; ++i)
1043          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1044                                                     STy->getElementType(i)));
1045        V = ConstantStruct::get(STy, Elts);
1046      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1047        Type *EltTy = ATy->getElementType();
1048        for (unsigned i = 0; i != Size; ++i)
1049          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1050        V = ConstantArray::get(ATy, Elts);
1051      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1052        Type *EltTy = VTy->getElementType();
1053        for (unsigned i = 0; i != Size; ++i)
1054          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1055        V = ConstantVector::get(Elts);
1056      } else {
1057        V = UndefValue::get(CurTy);
1058      }
1059      break;
1060    }
1061    case bitc::CST_CODE_STRING:    // STRING: [values]
1062    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1063      if (Record.empty())
1064        return Error("Invalid CST_STRING record");
1065
1066      SmallString<16> Elts(Record.begin(), Record.end());
1067      V = ConstantDataArray::getString(Context, Elts,
1068                                       BitCode == bitc::CST_CODE_CSTRING);
1069      break;
1070    }
1071    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1072      if (Record.empty())
1073        return Error("Invalid CST_DATA record");
1074
1075      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1076      unsigned Size = Record.size();
1077
1078      if (EltTy->isIntegerTy(8)) {
1079        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1080        if (isa<VectorType>(CurTy))
1081          V = ConstantDataVector::get(Context, Elts);
1082        else
1083          V = ConstantDataArray::get(Context, Elts);
1084      } else if (EltTy->isIntegerTy(16)) {
1085        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1086        if (isa<VectorType>(CurTy))
1087          V = ConstantDataVector::get(Context, Elts);
1088        else
1089          V = ConstantDataArray::get(Context, Elts);
1090      } else if (EltTy->isIntegerTy(32)) {
1091        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1092        if (isa<VectorType>(CurTy))
1093          V = ConstantDataVector::get(Context, Elts);
1094        else
1095          V = ConstantDataArray::get(Context, Elts);
1096      } else if (EltTy->isIntegerTy(64)) {
1097        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1098        if (isa<VectorType>(CurTy))
1099          V = ConstantDataVector::get(Context, Elts);
1100        else
1101          V = ConstantDataArray::get(Context, Elts);
1102      } else if (EltTy->isFloatTy()) {
1103        SmallVector<float, 16> Elts(Size);
1104        std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1105        if (isa<VectorType>(CurTy))
1106          V = ConstantDataVector::get(Context, Elts);
1107        else
1108          V = ConstantDataArray::get(Context, Elts);
1109      } else if (EltTy->isDoubleTy()) {
1110        SmallVector<double, 16> Elts(Size);
1111        std::transform(Record.begin(), Record.end(), Elts.begin(),
1112                       BitsToDouble);
1113        if (isa<VectorType>(CurTy))
1114          V = ConstantDataVector::get(Context, Elts);
1115        else
1116          V = ConstantDataArray::get(Context, Elts);
1117      } else {
1118        return Error("Unknown element type in CE_DATA");
1119      }
1120      break;
1121    }
1122
1123    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1124      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1125      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1126      if (Opc < 0) {
1127        V = UndefValue::get(CurTy);  // Unknown binop.
1128      } else {
1129        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1130        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1131        unsigned Flags = 0;
1132        if (Record.size() >= 4) {
1133          if (Opc == Instruction::Add ||
1134              Opc == Instruction::Sub ||
1135              Opc == Instruction::Mul ||
1136              Opc == Instruction::Shl) {
1137            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1138              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1139            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1140              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1141          } else if (Opc == Instruction::SDiv ||
1142                     Opc == Instruction::UDiv ||
1143                     Opc == Instruction::LShr ||
1144                     Opc == Instruction::AShr) {
1145            if (Record[3] & (1 << bitc::PEO_EXACT))
1146              Flags |= SDivOperator::IsExact;
1147          }
1148        }
1149        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1150      }
1151      break;
1152    }
1153    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1154      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1155      int Opc = GetDecodedCastOpcode(Record[0]);
1156      if (Opc < 0) {
1157        V = UndefValue::get(CurTy);  // Unknown cast.
1158      } else {
1159        Type *OpTy = getTypeByID(Record[1]);
1160        if (!OpTy) return Error("Invalid CE_CAST record");
1161        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1162        V = ConstantExpr::getCast(Opc, Op, CurTy);
1163      }
1164      break;
1165    }
1166    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1167    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1168      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1169      SmallVector<Constant*, 16> Elts;
1170      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1171        Type *ElTy = getTypeByID(Record[i]);
1172        if (!ElTy) return Error("Invalid CE_GEP record");
1173        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1174      }
1175      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1176      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1177                                         BitCode ==
1178                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1179      break;
1180    }
1181    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1182      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1183      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1184                                                              Type::getInt1Ty(Context)),
1185                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1186                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1187      break;
1188    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1189      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1190      VectorType *OpTy =
1191        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1192      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1193      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1194      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1195      V = ConstantExpr::getExtractElement(Op0, Op1);
1196      break;
1197    }
1198    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1199      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1200      if (Record.size() < 3 || OpTy == 0)
1201        return Error("Invalid CE_INSERTELT record");
1202      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1203      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1204                                                  OpTy->getElementType());
1205      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1206      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1207      break;
1208    }
1209    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1210      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1211      if (Record.size() < 3 || OpTy == 0)
1212        return Error("Invalid CE_SHUFFLEVEC record");
1213      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1214      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1215      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1216                                                 OpTy->getNumElements());
1217      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1218      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1219      break;
1220    }
1221    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1222      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1223      VectorType *OpTy =
1224        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1225      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1226        return Error("Invalid CE_SHUFVEC_EX record");
1227      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1228      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1229      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1230                                                 RTy->getNumElements());
1231      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1232      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1233      break;
1234    }
1235    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1236      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1237      Type *OpTy = getTypeByID(Record[0]);
1238      if (OpTy == 0) return Error("Invalid CE_CMP record");
1239      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1240      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1241
1242      if (OpTy->isFPOrFPVectorTy())
1243        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1244      else
1245        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1246      break;
1247    }
1248    case bitc::CST_CODE_INLINEASM: {
1249      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1250      std::string AsmStr, ConstrStr;
1251      bool HasSideEffects = Record[0] & 1;
1252      bool IsAlignStack = Record[0] >> 1;
1253      unsigned AsmStrSize = Record[1];
1254      if (2+AsmStrSize >= Record.size())
1255        return Error("Invalid INLINEASM record");
1256      unsigned ConstStrSize = Record[2+AsmStrSize];
1257      if (3+AsmStrSize+ConstStrSize > Record.size())
1258        return Error("Invalid INLINEASM record");
1259
1260      for (unsigned i = 0; i != AsmStrSize; ++i)
1261        AsmStr += (char)Record[2+i];
1262      for (unsigned i = 0; i != ConstStrSize; ++i)
1263        ConstrStr += (char)Record[3+AsmStrSize+i];
1264      PointerType *PTy = cast<PointerType>(CurTy);
1265      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1266                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1267      break;
1268    }
1269    case bitc::CST_CODE_BLOCKADDRESS:{
1270      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1271      Type *FnTy = getTypeByID(Record[0]);
1272      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1273      Function *Fn =
1274        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1275      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1276
1277      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1278                                                  Type::getInt8Ty(Context),
1279                                            false, GlobalValue::InternalLinkage,
1280                                                  0, "");
1281      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1282      V = FwdRef;
1283      break;
1284    }
1285    }
1286
1287    ValueList.AssignValue(V, NextCstNo);
1288    ++NextCstNo;
1289  }
1290
1291  if (NextCstNo != ValueList.size())
1292    return Error("Invalid constant reference!");
1293
1294  if (Stream.ReadBlockEnd())
1295    return Error("Error at end of constants block");
1296
1297  // Once all the constants have been read, go through and resolve forward
1298  // references.
1299  ValueList.ResolveConstantForwardRefs();
1300  return false;
1301}
1302
1303bool BitcodeReader::ParseUseLists() {
1304  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1305    return Error("Malformed block record");
1306
1307  SmallVector<uint64_t, 64> Record;
1308
1309  // Read all the records.
1310  while (1) {
1311    unsigned Code = Stream.ReadCode();
1312    if (Code == bitc::END_BLOCK) {
1313      if (Stream.ReadBlockEnd())
1314        return Error("Error at end of use-list table block");
1315      return false;
1316    }
1317
1318    if (Code == bitc::ENTER_SUBBLOCK) {
1319      // No known subblocks, always skip them.
1320      Stream.ReadSubBlockID();
1321      if (Stream.SkipBlock())
1322        return Error("Malformed block record");
1323      continue;
1324    }
1325
1326    if (Code == bitc::DEFINE_ABBREV) {
1327      Stream.ReadAbbrevRecord();
1328      continue;
1329    }
1330
1331    // Read a use list record.
1332    Record.clear();
1333    switch (Stream.ReadRecord(Code, Record)) {
1334    default:  // Default behavior: unknown type.
1335      break;
1336    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1337      unsigned RecordLength = Record.size();
1338      if (RecordLength < 1)
1339        return Error ("Invalid UseList reader!");
1340      UseListRecords.push_back(Record);
1341      break;
1342    }
1343    }
1344  }
1345}
1346
1347/// RememberAndSkipFunctionBody - When we see the block for a function body,
1348/// remember where it is and then skip it.  This lets us lazily deserialize the
1349/// functions.
1350bool BitcodeReader::RememberAndSkipFunctionBody() {
1351  // Get the function we are talking about.
1352  if (FunctionsWithBodies.empty())
1353    return Error("Insufficient function protos");
1354
1355  Function *Fn = FunctionsWithBodies.back();
1356  FunctionsWithBodies.pop_back();
1357
1358  // Save the current stream state.
1359  uint64_t CurBit = Stream.GetCurrentBitNo();
1360  DeferredFunctionInfo[Fn] = CurBit;
1361
1362  // Skip over the function block for now.
1363  if (Stream.SkipBlock())
1364    return Error("Malformed block record");
1365  return false;
1366}
1367
1368bool BitcodeReader::GlobalCleanup() {
1369  // Patch the initializers for globals and aliases up.
1370  ResolveGlobalAndAliasInits();
1371  if (!GlobalInits.empty() || !AliasInits.empty())
1372    return Error("Malformed global initializer set");
1373
1374  // Look for intrinsic functions which need to be upgraded at some point
1375  for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1376       FI != FE; ++FI) {
1377    Function *NewFn;
1378    if (UpgradeIntrinsicFunction(FI, NewFn))
1379      UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1380  }
1381
1382  // Look for global variables which need to be renamed.
1383  for (Module::global_iterator
1384         GI = TheModule->global_begin(), GE = TheModule->global_end();
1385       GI != GE; ++GI)
1386    UpgradeGlobalVariable(GI);
1387  // Force deallocation of memory for these vectors to favor the client that
1388  // want lazy deserialization.
1389  std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1390  std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1391  return false;
1392}
1393
1394bool BitcodeReader::ParseModule(bool Resume) {
1395  if (Resume)
1396    Stream.JumpToBit(NextUnreadBit);
1397  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1398    return Error("Malformed block record");
1399
1400  SmallVector<uint64_t, 64> Record;
1401  std::vector<std::string> SectionTable;
1402  std::vector<std::string> GCTable;
1403
1404  // Read all the records for this module.
1405  while (!Stream.AtEndOfStream()) {
1406    unsigned Code = Stream.ReadCode();
1407    if (Code == bitc::END_BLOCK) {
1408      if (Stream.ReadBlockEnd())
1409        return Error("Error at end of module block");
1410
1411      return GlobalCleanup();
1412    }
1413
1414    if (Code == bitc::ENTER_SUBBLOCK) {
1415      switch (Stream.ReadSubBlockID()) {
1416      default:  // Skip unknown content.
1417        if (Stream.SkipBlock())
1418          return Error("Malformed block record");
1419        break;
1420      case bitc::BLOCKINFO_BLOCK_ID:
1421        if (Stream.ReadBlockInfoBlock())
1422          return Error("Malformed BlockInfoBlock");
1423        break;
1424      case bitc::PARAMATTR_BLOCK_ID:
1425        if (ParseAttributeBlock())
1426          return true;
1427        break;
1428      case bitc::TYPE_BLOCK_ID_NEW:
1429        if (ParseTypeTable())
1430          return true;
1431        break;
1432      case bitc::VALUE_SYMTAB_BLOCK_ID:
1433        if (ParseValueSymbolTable())
1434          return true;
1435        SeenValueSymbolTable = true;
1436        break;
1437      case bitc::CONSTANTS_BLOCK_ID:
1438        if (ParseConstants() || ResolveGlobalAndAliasInits())
1439          return true;
1440        break;
1441      case bitc::METADATA_BLOCK_ID:
1442        if (ParseMetadata())
1443          return true;
1444        break;
1445      case bitc::FUNCTION_BLOCK_ID:
1446        // If this is the first function body we've seen, reverse the
1447        // FunctionsWithBodies list.
1448        if (!SeenFirstFunctionBody) {
1449          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1450          if (GlobalCleanup())
1451            return true;
1452          SeenFirstFunctionBody = true;
1453        }
1454
1455        if (RememberAndSkipFunctionBody())
1456          return true;
1457        // For streaming bitcode, suspend parsing when we reach the function
1458        // bodies. Subsequent materialization calls will resume it when
1459        // necessary. For streaming, the function bodies must be at the end of
1460        // the bitcode. If the bitcode file is old, the symbol table will be
1461        // at the end instead and will not have been seen yet. In this case,
1462        // just finish the parse now.
1463        if (LazyStreamer && SeenValueSymbolTable) {
1464          NextUnreadBit = Stream.GetCurrentBitNo();
1465          return false;
1466        }
1467        break;
1468      case bitc::USELIST_BLOCK_ID:
1469        if (ParseUseLists())
1470          return true;
1471        break;
1472      }
1473      continue;
1474    }
1475
1476    if (Code == bitc::DEFINE_ABBREV) {
1477      Stream.ReadAbbrevRecord();
1478      continue;
1479    }
1480
1481    // Read a record.
1482    switch (Stream.ReadRecord(Code, Record)) {
1483    default: break;  // Default behavior, ignore unknown content.
1484    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1485      if (Record.size() < 1)
1486        return Error("Malformed MODULE_CODE_VERSION");
1487      // Only version #0 is supported so far.
1488      if (Record[0] != 0)
1489        return Error("Unknown bitstream version!");
1490      break;
1491    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1492      std::string S;
1493      if (ConvertToString(Record, 0, S))
1494        return Error("Invalid MODULE_CODE_TRIPLE record");
1495      TheModule->setTargetTriple(S);
1496      break;
1497    }
1498    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1499      std::string S;
1500      if (ConvertToString(Record, 0, S))
1501        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1502      TheModule->setDataLayout(S);
1503      break;
1504    }
1505    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1506      std::string S;
1507      if (ConvertToString(Record, 0, S))
1508        return Error("Invalid MODULE_CODE_ASM record");
1509      TheModule->setModuleInlineAsm(S);
1510      break;
1511    }
1512    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1513      std::string S;
1514      if (ConvertToString(Record, 0, S))
1515        return Error("Invalid MODULE_CODE_DEPLIB record");
1516      TheModule->addLibrary(S);
1517      break;
1518    }
1519    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1520      std::string S;
1521      if (ConvertToString(Record, 0, S))
1522        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1523      SectionTable.push_back(S);
1524      break;
1525    }
1526    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1527      std::string S;
1528      if (ConvertToString(Record, 0, S))
1529        return Error("Invalid MODULE_CODE_GCNAME record");
1530      GCTable.push_back(S);
1531      break;
1532    }
1533    // GLOBALVAR: [pointer type, isconst, initid,
1534    //             linkage, alignment, section, visibility, threadlocal,
1535    //             unnamed_addr]
1536    case bitc::MODULE_CODE_GLOBALVAR: {
1537      if (Record.size() < 6)
1538        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1539      Type *Ty = getTypeByID(Record[0]);
1540      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1541      if (!Ty->isPointerTy())
1542        return Error("Global not a pointer type!");
1543      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1544      Ty = cast<PointerType>(Ty)->getElementType();
1545
1546      bool isConstant = Record[1];
1547      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1548      unsigned Alignment = (1 << Record[4]) >> 1;
1549      std::string Section;
1550      if (Record[5]) {
1551        if (Record[5]-1 >= SectionTable.size())
1552          return Error("Invalid section ID");
1553        Section = SectionTable[Record[5]-1];
1554      }
1555      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1556      if (Record.size() > 6)
1557        Visibility = GetDecodedVisibility(Record[6]);
1558
1559      GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1560      if (Record.size() > 7)
1561        TLM = GetDecodedThreadLocalMode(Record[7]);
1562
1563      bool UnnamedAddr = false;
1564      if (Record.size() > 8)
1565        UnnamedAddr = Record[8];
1566
1567      GlobalVariable *NewGV =
1568        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1569                           TLM, AddressSpace);
1570      NewGV->setAlignment(Alignment);
1571      if (!Section.empty())
1572        NewGV->setSection(Section);
1573      NewGV->setVisibility(Visibility);
1574      NewGV->setUnnamedAddr(UnnamedAddr);
1575
1576      ValueList.push_back(NewGV);
1577
1578      // Remember which value to use for the global initializer.
1579      if (unsigned InitID = Record[2])
1580        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1581      break;
1582    }
1583    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1584    //             alignment, section, visibility, gc, unnamed_addr]
1585    case bitc::MODULE_CODE_FUNCTION: {
1586      if (Record.size() < 8)
1587        return Error("Invalid MODULE_CODE_FUNCTION record");
1588      Type *Ty = getTypeByID(Record[0]);
1589      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1590      if (!Ty->isPointerTy())
1591        return Error("Function not a pointer type!");
1592      FunctionType *FTy =
1593        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1594      if (!FTy)
1595        return Error("Function not a pointer to function type!");
1596
1597      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1598                                        "", TheModule);
1599
1600      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1601      bool isProto = Record[2];
1602      Func->setLinkage(GetDecodedLinkage(Record[3]));
1603      Func->setAttributes(getAttributes(Record[4]));
1604
1605      Func->setAlignment((1 << Record[5]) >> 1);
1606      if (Record[6]) {
1607        if (Record[6]-1 >= SectionTable.size())
1608          return Error("Invalid section ID");
1609        Func->setSection(SectionTable[Record[6]-1]);
1610      }
1611      Func->setVisibility(GetDecodedVisibility(Record[7]));
1612      if (Record.size() > 8 && Record[8]) {
1613        if (Record[8]-1 > GCTable.size())
1614          return Error("Invalid GC ID");
1615        Func->setGC(GCTable[Record[8]-1].c_str());
1616      }
1617      bool UnnamedAddr = false;
1618      if (Record.size() > 9)
1619        UnnamedAddr = Record[9];
1620      Func->setUnnamedAddr(UnnamedAddr);
1621      ValueList.push_back(Func);
1622
1623      // If this is a function with a body, remember the prototype we are
1624      // creating now, so that we can match up the body with them later.
1625      if (!isProto) {
1626        FunctionsWithBodies.push_back(Func);
1627        if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1628      }
1629      break;
1630    }
1631    // ALIAS: [alias type, aliasee val#, linkage]
1632    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1633    case bitc::MODULE_CODE_ALIAS: {
1634      if (Record.size() < 3)
1635        return Error("Invalid MODULE_ALIAS record");
1636      Type *Ty = getTypeByID(Record[0]);
1637      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1638      if (!Ty->isPointerTy())
1639        return Error("Function not a pointer type!");
1640
1641      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1642                                           "", 0, TheModule);
1643      // Old bitcode files didn't have visibility field.
1644      if (Record.size() > 3)
1645        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1646      ValueList.push_back(NewGA);
1647      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1648      break;
1649    }
1650    /// MODULE_CODE_PURGEVALS: [numvals]
1651    case bitc::MODULE_CODE_PURGEVALS:
1652      // Trim down the value list to the specified size.
1653      if (Record.size() < 1 || Record[0] > ValueList.size())
1654        return Error("Invalid MODULE_PURGEVALS record");
1655      ValueList.shrinkTo(Record[0]);
1656      break;
1657    }
1658    Record.clear();
1659  }
1660
1661  return Error("Premature end of bitstream");
1662}
1663
1664bool BitcodeReader::ParseBitcodeInto(Module *M) {
1665  TheModule = 0;
1666
1667  if (InitStream()) return true;
1668
1669  // Sniff for the signature.
1670  if (Stream.Read(8) != 'B' ||
1671      Stream.Read(8) != 'C' ||
1672      Stream.Read(4) != 0x0 ||
1673      Stream.Read(4) != 0xC ||
1674      Stream.Read(4) != 0xE ||
1675      Stream.Read(4) != 0xD)
1676    return Error("Invalid bitcode signature");
1677
1678  // We expect a number of well-defined blocks, though we don't necessarily
1679  // need to understand them all.
1680  while (!Stream.AtEndOfStream()) {
1681    unsigned Code = Stream.ReadCode();
1682
1683    if (Code != bitc::ENTER_SUBBLOCK) {
1684
1685      // The ranlib in xcode 4 will align archive members by appending newlines
1686      // to the end of them. If this file size is a multiple of 4 but not 8, we
1687      // have to read and ignore these final 4 bytes :-(
1688      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1689          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1690	  Stream.AtEndOfStream())
1691        return false;
1692
1693      return Error("Invalid record at top-level");
1694    }
1695
1696    unsigned BlockID = Stream.ReadSubBlockID();
1697
1698    // We only know the MODULE subblock ID.
1699    switch (BlockID) {
1700    case bitc::BLOCKINFO_BLOCK_ID:
1701      if (Stream.ReadBlockInfoBlock())
1702        return Error("Malformed BlockInfoBlock");
1703      break;
1704    case bitc::MODULE_BLOCK_ID:
1705      // Reject multiple MODULE_BLOCK's in a single bitstream.
1706      if (TheModule)
1707        return Error("Multiple MODULE_BLOCKs in same stream");
1708      TheModule = M;
1709      if (ParseModule(false))
1710        return true;
1711      if (LazyStreamer) return false;
1712      break;
1713    default:
1714      if (Stream.SkipBlock())
1715        return Error("Malformed block record");
1716      break;
1717    }
1718  }
1719
1720  return false;
1721}
1722
1723bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1724  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1725    return Error("Malformed block record");
1726
1727  SmallVector<uint64_t, 64> Record;
1728
1729  // Read all the records for this module.
1730  while (!Stream.AtEndOfStream()) {
1731    unsigned Code = Stream.ReadCode();
1732    if (Code == bitc::END_BLOCK) {
1733      if (Stream.ReadBlockEnd())
1734        return Error("Error at end of module block");
1735
1736      return false;
1737    }
1738
1739    if (Code == bitc::ENTER_SUBBLOCK) {
1740      switch (Stream.ReadSubBlockID()) {
1741      default:  // Skip unknown content.
1742        if (Stream.SkipBlock())
1743          return Error("Malformed block record");
1744        break;
1745      }
1746      continue;
1747    }
1748
1749    if (Code == bitc::DEFINE_ABBREV) {
1750      Stream.ReadAbbrevRecord();
1751      continue;
1752    }
1753
1754    // Read a record.
1755    switch (Stream.ReadRecord(Code, Record)) {
1756    default: break;  // Default behavior, ignore unknown content.
1757    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1758      if (Record.size() < 1)
1759        return Error("Malformed MODULE_CODE_VERSION");
1760      // Only version #0 is supported so far.
1761      if (Record[0] != 0)
1762        return Error("Unknown bitstream version!");
1763      break;
1764    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1765      std::string S;
1766      if (ConvertToString(Record, 0, S))
1767        return Error("Invalid MODULE_CODE_TRIPLE record");
1768      Triple = S;
1769      break;
1770    }
1771    }
1772    Record.clear();
1773  }
1774
1775  return Error("Premature end of bitstream");
1776}
1777
1778bool BitcodeReader::ParseTriple(std::string &Triple) {
1779  if (InitStream()) return true;
1780
1781  // Sniff for the signature.
1782  if (Stream.Read(8) != 'B' ||
1783      Stream.Read(8) != 'C' ||
1784      Stream.Read(4) != 0x0 ||
1785      Stream.Read(4) != 0xC ||
1786      Stream.Read(4) != 0xE ||
1787      Stream.Read(4) != 0xD)
1788    return Error("Invalid bitcode signature");
1789
1790  // We expect a number of well-defined blocks, though we don't necessarily
1791  // need to understand them all.
1792  while (!Stream.AtEndOfStream()) {
1793    unsigned Code = Stream.ReadCode();
1794
1795    if (Code != bitc::ENTER_SUBBLOCK)
1796      return Error("Invalid record at top-level");
1797
1798    unsigned BlockID = Stream.ReadSubBlockID();
1799
1800    // We only know the MODULE subblock ID.
1801    switch (BlockID) {
1802    case bitc::MODULE_BLOCK_ID:
1803      if (ParseModuleTriple(Triple))
1804        return true;
1805      break;
1806    default:
1807      if (Stream.SkipBlock())
1808        return Error("Malformed block record");
1809      break;
1810    }
1811  }
1812
1813  return false;
1814}
1815
1816/// ParseMetadataAttachment - Parse metadata attachments.
1817bool BitcodeReader::ParseMetadataAttachment() {
1818  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1819    return Error("Malformed block record");
1820
1821  SmallVector<uint64_t, 64> Record;
1822  while(1) {
1823    unsigned Code = Stream.ReadCode();
1824    if (Code == bitc::END_BLOCK) {
1825      if (Stream.ReadBlockEnd())
1826        return Error("Error at end of PARAMATTR block");
1827      break;
1828    }
1829    if (Code == bitc::DEFINE_ABBREV) {
1830      Stream.ReadAbbrevRecord();
1831      continue;
1832    }
1833    // Read a metadata attachment record.
1834    Record.clear();
1835    switch (Stream.ReadRecord(Code, Record)) {
1836    default:  // Default behavior: ignore.
1837      break;
1838    case bitc::METADATA_ATTACHMENT: {
1839      unsigned RecordLength = Record.size();
1840      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1841        return Error ("Invalid METADATA_ATTACHMENT reader!");
1842      Instruction *Inst = InstructionList[Record[0]];
1843      for (unsigned i = 1; i != RecordLength; i = i+2) {
1844        unsigned Kind = Record[i];
1845        DenseMap<unsigned, unsigned>::iterator I =
1846          MDKindMap.find(Kind);
1847        if (I == MDKindMap.end())
1848          return Error("Invalid metadata kind ID");
1849        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1850        Inst->setMetadata(I->second, cast<MDNode>(Node));
1851      }
1852      break;
1853    }
1854    }
1855  }
1856  return false;
1857}
1858
1859/// ParseFunctionBody - Lazily parse the specified function body block.
1860bool BitcodeReader::ParseFunctionBody(Function *F) {
1861  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1862    return Error("Malformed block record");
1863
1864  InstructionList.clear();
1865  unsigned ModuleValueListSize = ValueList.size();
1866  unsigned ModuleMDValueListSize = MDValueList.size();
1867
1868  // Add all the function arguments to the value table.
1869  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1870    ValueList.push_back(I);
1871
1872  unsigned NextValueNo = ValueList.size();
1873  BasicBlock *CurBB = 0;
1874  unsigned CurBBNo = 0;
1875
1876  DebugLoc LastLoc;
1877
1878  // Read all the records.
1879  SmallVector<uint64_t, 64> Record;
1880  while (1) {
1881    unsigned Code = Stream.ReadCode();
1882    if (Code == bitc::END_BLOCK) {
1883      if (Stream.ReadBlockEnd())
1884        return Error("Error at end of function block");
1885      break;
1886    }
1887
1888    if (Code == bitc::ENTER_SUBBLOCK) {
1889      switch (Stream.ReadSubBlockID()) {
1890      default:  // Skip unknown content.
1891        if (Stream.SkipBlock())
1892          return Error("Malformed block record");
1893        break;
1894      case bitc::CONSTANTS_BLOCK_ID:
1895        if (ParseConstants()) return true;
1896        NextValueNo = ValueList.size();
1897        break;
1898      case bitc::VALUE_SYMTAB_BLOCK_ID:
1899        if (ParseValueSymbolTable()) return true;
1900        break;
1901      case bitc::METADATA_ATTACHMENT_ID:
1902        if (ParseMetadataAttachment()) return true;
1903        break;
1904      case bitc::METADATA_BLOCK_ID:
1905        if (ParseMetadata()) return true;
1906        break;
1907      }
1908      continue;
1909    }
1910
1911    if (Code == bitc::DEFINE_ABBREV) {
1912      Stream.ReadAbbrevRecord();
1913      continue;
1914    }
1915
1916    // Read a record.
1917    Record.clear();
1918    Instruction *I = 0;
1919    unsigned BitCode = Stream.ReadRecord(Code, Record);
1920    switch (BitCode) {
1921    default: // Default behavior: reject
1922      return Error("Unknown instruction");
1923    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1924      if (Record.size() < 1 || Record[0] == 0)
1925        return Error("Invalid DECLAREBLOCKS record");
1926      // Create all the basic blocks for the function.
1927      FunctionBBs.resize(Record[0]);
1928      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1929        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1930      CurBB = FunctionBBs[0];
1931      continue;
1932
1933    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1934      // This record indicates that the last instruction is at the same
1935      // location as the previous instruction with a location.
1936      I = 0;
1937
1938      // Get the last instruction emitted.
1939      if (CurBB && !CurBB->empty())
1940        I = &CurBB->back();
1941      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1942               !FunctionBBs[CurBBNo-1]->empty())
1943        I = &FunctionBBs[CurBBNo-1]->back();
1944
1945      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1946      I->setDebugLoc(LastLoc);
1947      I = 0;
1948      continue;
1949
1950    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1951      I = 0;     // Get the last instruction emitted.
1952      if (CurBB && !CurBB->empty())
1953        I = &CurBB->back();
1954      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1955               !FunctionBBs[CurBBNo-1]->empty())
1956        I = &FunctionBBs[CurBBNo-1]->back();
1957      if (I == 0 || Record.size() < 4)
1958        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1959
1960      unsigned Line = Record[0], Col = Record[1];
1961      unsigned ScopeID = Record[2], IAID = Record[3];
1962
1963      MDNode *Scope = 0, *IA = 0;
1964      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1965      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1966      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1967      I->setDebugLoc(LastLoc);
1968      I = 0;
1969      continue;
1970    }
1971
1972    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1973      unsigned OpNum = 0;
1974      Value *LHS, *RHS;
1975      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1976          getValue(Record, OpNum, LHS->getType(), RHS) ||
1977          OpNum+1 > Record.size())
1978        return Error("Invalid BINOP record");
1979
1980      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1981      if (Opc == -1) return Error("Invalid BINOP record");
1982      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1983      InstructionList.push_back(I);
1984      if (OpNum < Record.size()) {
1985        if (Opc == Instruction::Add ||
1986            Opc == Instruction::Sub ||
1987            Opc == Instruction::Mul ||
1988            Opc == Instruction::Shl) {
1989          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1990            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1991          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1992            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1993        } else if (Opc == Instruction::SDiv ||
1994                   Opc == Instruction::UDiv ||
1995                   Opc == Instruction::LShr ||
1996                   Opc == Instruction::AShr) {
1997          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1998            cast<BinaryOperator>(I)->setIsExact(true);
1999        }
2000      }
2001      break;
2002    }
2003    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2004      unsigned OpNum = 0;
2005      Value *Op;
2006      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2007          OpNum+2 != Record.size())
2008        return Error("Invalid CAST record");
2009
2010      Type *ResTy = getTypeByID(Record[OpNum]);
2011      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2012      if (Opc == -1 || ResTy == 0)
2013        return Error("Invalid CAST record");
2014      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2015      InstructionList.push_back(I);
2016      break;
2017    }
2018    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2019    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2020      unsigned OpNum = 0;
2021      Value *BasePtr;
2022      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2023        return Error("Invalid GEP record");
2024
2025      SmallVector<Value*, 16> GEPIdx;
2026      while (OpNum != Record.size()) {
2027        Value *Op;
2028        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2029          return Error("Invalid GEP record");
2030        GEPIdx.push_back(Op);
2031      }
2032
2033      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2034      InstructionList.push_back(I);
2035      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2036        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2037      break;
2038    }
2039
2040    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2041                                       // EXTRACTVAL: [opty, opval, n x indices]
2042      unsigned OpNum = 0;
2043      Value *Agg;
2044      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2045        return Error("Invalid EXTRACTVAL record");
2046
2047      SmallVector<unsigned, 4> EXTRACTVALIdx;
2048      for (unsigned RecSize = Record.size();
2049           OpNum != RecSize; ++OpNum) {
2050        uint64_t Index = Record[OpNum];
2051        if ((unsigned)Index != Index)
2052          return Error("Invalid EXTRACTVAL index");
2053        EXTRACTVALIdx.push_back((unsigned)Index);
2054      }
2055
2056      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2057      InstructionList.push_back(I);
2058      break;
2059    }
2060
2061    case bitc::FUNC_CODE_INST_INSERTVAL: {
2062                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2063      unsigned OpNum = 0;
2064      Value *Agg;
2065      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2066        return Error("Invalid INSERTVAL record");
2067      Value *Val;
2068      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2069        return Error("Invalid INSERTVAL record");
2070
2071      SmallVector<unsigned, 4> INSERTVALIdx;
2072      for (unsigned RecSize = Record.size();
2073           OpNum != RecSize; ++OpNum) {
2074        uint64_t Index = Record[OpNum];
2075        if ((unsigned)Index != Index)
2076          return Error("Invalid INSERTVAL index");
2077        INSERTVALIdx.push_back((unsigned)Index);
2078      }
2079
2080      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2081      InstructionList.push_back(I);
2082      break;
2083    }
2084
2085    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2086      // obsolete form of select
2087      // handles select i1 ... in old bitcode
2088      unsigned OpNum = 0;
2089      Value *TrueVal, *FalseVal, *Cond;
2090      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2091          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2092          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2093        return Error("Invalid SELECT record");
2094
2095      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2096      InstructionList.push_back(I);
2097      break;
2098    }
2099
2100    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2101      // new form of select
2102      // handles select i1 or select [N x i1]
2103      unsigned OpNum = 0;
2104      Value *TrueVal, *FalseVal, *Cond;
2105      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2106          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2107          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2108        return Error("Invalid SELECT record");
2109
2110      // select condition can be either i1 or [N x i1]
2111      if (VectorType* vector_type =
2112          dyn_cast<VectorType>(Cond->getType())) {
2113        // expect <n x i1>
2114        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2115          return Error("Invalid SELECT condition type");
2116      } else {
2117        // expect i1
2118        if (Cond->getType() != Type::getInt1Ty(Context))
2119          return Error("Invalid SELECT condition type");
2120      }
2121
2122      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2123      InstructionList.push_back(I);
2124      break;
2125    }
2126
2127    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2128      unsigned OpNum = 0;
2129      Value *Vec, *Idx;
2130      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2131          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2132        return Error("Invalid EXTRACTELT record");
2133      I = ExtractElementInst::Create(Vec, Idx);
2134      InstructionList.push_back(I);
2135      break;
2136    }
2137
2138    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2139      unsigned OpNum = 0;
2140      Value *Vec, *Elt, *Idx;
2141      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2142          getValue(Record, OpNum,
2143                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2144          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2145        return Error("Invalid INSERTELT record");
2146      I = InsertElementInst::Create(Vec, Elt, Idx);
2147      InstructionList.push_back(I);
2148      break;
2149    }
2150
2151    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2152      unsigned OpNum = 0;
2153      Value *Vec1, *Vec2, *Mask;
2154      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2155          getValue(Record, OpNum, Vec1->getType(), Vec2))
2156        return Error("Invalid SHUFFLEVEC record");
2157
2158      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2159        return Error("Invalid SHUFFLEVEC record");
2160      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2161      InstructionList.push_back(I);
2162      break;
2163    }
2164
2165    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2166      // Old form of ICmp/FCmp returning bool
2167      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2168      // both legal on vectors but had different behaviour.
2169    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2170      // FCmp/ICmp returning bool or vector of bool
2171
2172      unsigned OpNum = 0;
2173      Value *LHS, *RHS;
2174      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2175          getValue(Record, OpNum, LHS->getType(), RHS) ||
2176          OpNum+1 != Record.size())
2177        return Error("Invalid CMP record");
2178
2179      if (LHS->getType()->isFPOrFPVectorTy())
2180        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2181      else
2182        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2183      InstructionList.push_back(I);
2184      break;
2185    }
2186
2187    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2188      {
2189        unsigned Size = Record.size();
2190        if (Size == 0) {
2191          I = ReturnInst::Create(Context);
2192          InstructionList.push_back(I);
2193          break;
2194        }
2195
2196        unsigned OpNum = 0;
2197        Value *Op = NULL;
2198        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2199          return Error("Invalid RET record");
2200        if (OpNum != Record.size())
2201          return Error("Invalid RET record");
2202
2203        I = ReturnInst::Create(Context, Op);
2204        InstructionList.push_back(I);
2205        break;
2206      }
2207    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2208      if (Record.size() != 1 && Record.size() != 3)
2209        return Error("Invalid BR record");
2210      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2211      if (TrueDest == 0)
2212        return Error("Invalid BR record");
2213
2214      if (Record.size() == 1) {
2215        I = BranchInst::Create(TrueDest);
2216        InstructionList.push_back(I);
2217      }
2218      else {
2219        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2220        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2221        if (FalseDest == 0 || Cond == 0)
2222          return Error("Invalid BR record");
2223        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2224        InstructionList.push_back(I);
2225      }
2226      break;
2227    }
2228    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2229      // Check magic
2230      if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2231        // New SwitchInst format with case ranges.
2232
2233        Type *OpTy = getTypeByID(Record[1]);
2234        unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2235
2236        Value *Cond = getFnValueByID(Record[2], OpTy);
2237        BasicBlock *Default = getBasicBlock(Record[3]);
2238        if (OpTy == 0 || Cond == 0 || Default == 0)
2239          return Error("Invalid SWITCH record");
2240
2241        unsigned NumCases = Record[4];
2242
2243        SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2244        InstructionList.push_back(SI);
2245
2246        unsigned CurIdx = 5;
2247        for (unsigned i = 0; i != NumCases; ++i) {
2248          IntegersSubsetToBB CaseBuilder;
2249          unsigned NumItems = Record[CurIdx++];
2250          for (unsigned ci = 0; ci != NumItems; ++ci) {
2251            bool isSingleNumber = Record[CurIdx++];
2252
2253            APInt Low;
2254            unsigned ActiveWords = 1;
2255            if (ValueBitWidth > 64)
2256              ActiveWords = Record[CurIdx++];
2257            Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2258                                ValueBitWidth);
2259            CurIdx += ActiveWords;
2260
2261            if (!isSingleNumber) {
2262              ActiveWords = 1;
2263              if (ValueBitWidth > 64)
2264                ActiveWords = Record[CurIdx++];
2265              APInt High =
2266                  ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2267                                ValueBitWidth);
2268
2269              CaseBuilder.add(IntItem::fromType(OpTy, Low),
2270                              IntItem::fromType(OpTy, High));
2271              CurIdx += ActiveWords;
2272            } else
2273              CaseBuilder.add(IntItem::fromType(OpTy, Low));
2274          }
2275          BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2276          IntegersSubset Case = CaseBuilder.getCase();
2277          SI->addCase(Case, DestBB);
2278        }
2279        uint16_t Hash = SI->hash();
2280        if (Hash != (Record[0] & 0xFFFF))
2281          return Error("Invalid SWITCH record");
2282        I = SI;
2283        break;
2284      }
2285
2286      // Old SwitchInst format without case ranges.
2287
2288      if (Record.size() < 3 || (Record.size() & 1) == 0)
2289        return Error("Invalid SWITCH record");
2290      Type *OpTy = getTypeByID(Record[0]);
2291      Value *Cond = getFnValueByID(Record[1], OpTy);
2292      BasicBlock *Default = getBasicBlock(Record[2]);
2293      if (OpTy == 0 || Cond == 0 || Default == 0)
2294        return Error("Invalid SWITCH record");
2295      unsigned NumCases = (Record.size()-3)/2;
2296      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2297      InstructionList.push_back(SI);
2298      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2299        ConstantInt *CaseVal =
2300          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2301        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2302        if (CaseVal == 0 || DestBB == 0) {
2303          delete SI;
2304          return Error("Invalid SWITCH record!");
2305        }
2306        SI->addCase(CaseVal, DestBB);
2307      }
2308      I = SI;
2309      break;
2310    }
2311    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2312      if (Record.size() < 2)
2313        return Error("Invalid INDIRECTBR record");
2314      Type *OpTy = getTypeByID(Record[0]);
2315      Value *Address = getFnValueByID(Record[1], OpTy);
2316      if (OpTy == 0 || Address == 0)
2317        return Error("Invalid INDIRECTBR record");
2318      unsigned NumDests = Record.size()-2;
2319      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2320      InstructionList.push_back(IBI);
2321      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2322        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2323          IBI->addDestination(DestBB);
2324        } else {
2325          delete IBI;
2326          return Error("Invalid INDIRECTBR record!");
2327        }
2328      }
2329      I = IBI;
2330      break;
2331    }
2332
2333    case bitc::FUNC_CODE_INST_INVOKE: {
2334      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2335      if (Record.size() < 4) return Error("Invalid INVOKE record");
2336      AttrListPtr PAL = getAttributes(Record[0]);
2337      unsigned CCInfo = Record[1];
2338      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2339      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2340
2341      unsigned OpNum = 4;
2342      Value *Callee;
2343      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2344        return Error("Invalid INVOKE record");
2345
2346      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2347      FunctionType *FTy = !CalleeTy ? 0 :
2348        dyn_cast<FunctionType>(CalleeTy->getElementType());
2349
2350      // Check that the right number of fixed parameters are here.
2351      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2352          Record.size() < OpNum+FTy->getNumParams())
2353        return Error("Invalid INVOKE record");
2354
2355      SmallVector<Value*, 16> Ops;
2356      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2357        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2358        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2359      }
2360
2361      if (!FTy->isVarArg()) {
2362        if (Record.size() != OpNum)
2363          return Error("Invalid INVOKE record");
2364      } else {
2365        // Read type/value pairs for varargs params.
2366        while (OpNum != Record.size()) {
2367          Value *Op;
2368          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2369            return Error("Invalid INVOKE record");
2370          Ops.push_back(Op);
2371        }
2372      }
2373
2374      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2375      InstructionList.push_back(I);
2376      cast<InvokeInst>(I)->setCallingConv(
2377        static_cast<CallingConv::ID>(CCInfo));
2378      cast<InvokeInst>(I)->setAttributes(PAL);
2379      break;
2380    }
2381    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2382      unsigned Idx = 0;
2383      Value *Val = 0;
2384      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2385        return Error("Invalid RESUME record");
2386      I = ResumeInst::Create(Val);
2387      InstructionList.push_back(I);
2388      break;
2389    }
2390    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2391      I = new UnreachableInst(Context);
2392      InstructionList.push_back(I);
2393      break;
2394    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2395      if (Record.size() < 1 || ((Record.size()-1)&1))
2396        return Error("Invalid PHI record");
2397      Type *Ty = getTypeByID(Record[0]);
2398      if (!Ty) return Error("Invalid PHI record");
2399
2400      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2401      InstructionList.push_back(PN);
2402
2403      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2404        Value *V = getFnValueByID(Record[1+i], Ty);
2405        BasicBlock *BB = getBasicBlock(Record[2+i]);
2406        if (!V || !BB) return Error("Invalid PHI record");
2407        PN->addIncoming(V, BB);
2408      }
2409      I = PN;
2410      break;
2411    }
2412
2413    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2414      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2415      unsigned Idx = 0;
2416      if (Record.size() < 4)
2417        return Error("Invalid LANDINGPAD record");
2418      Type *Ty = getTypeByID(Record[Idx++]);
2419      if (!Ty) return Error("Invalid LANDINGPAD record");
2420      Value *PersFn = 0;
2421      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2422        return Error("Invalid LANDINGPAD record");
2423
2424      bool IsCleanup = !!Record[Idx++];
2425      unsigned NumClauses = Record[Idx++];
2426      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2427      LP->setCleanup(IsCleanup);
2428      for (unsigned J = 0; J != NumClauses; ++J) {
2429        LandingPadInst::ClauseType CT =
2430          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2431        Value *Val;
2432
2433        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2434          delete LP;
2435          return Error("Invalid LANDINGPAD record");
2436        }
2437
2438        assert((CT != LandingPadInst::Catch ||
2439                !isa<ArrayType>(Val->getType())) &&
2440               "Catch clause has a invalid type!");
2441        assert((CT != LandingPadInst::Filter ||
2442                isa<ArrayType>(Val->getType())) &&
2443               "Filter clause has invalid type!");
2444        LP->addClause(Val);
2445      }
2446
2447      I = LP;
2448      InstructionList.push_back(I);
2449      break;
2450    }
2451
2452    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2453      if (Record.size() != 4)
2454        return Error("Invalid ALLOCA record");
2455      PointerType *Ty =
2456        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2457      Type *OpTy = getTypeByID(Record[1]);
2458      Value *Size = getFnValueByID(Record[2], OpTy);
2459      unsigned Align = Record[3];
2460      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2461      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2462      InstructionList.push_back(I);
2463      break;
2464    }
2465    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2466      unsigned OpNum = 0;
2467      Value *Op;
2468      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2469          OpNum+2 != Record.size())
2470        return Error("Invalid LOAD record");
2471
2472      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2473      InstructionList.push_back(I);
2474      break;
2475    }
2476    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2477       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2478      unsigned OpNum = 0;
2479      Value *Op;
2480      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2481          OpNum+4 != Record.size())
2482        return Error("Invalid LOADATOMIC record");
2483
2484
2485      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2486      if (Ordering == NotAtomic || Ordering == Release ||
2487          Ordering == AcquireRelease)
2488        return Error("Invalid LOADATOMIC record");
2489      if (Ordering != NotAtomic && Record[OpNum] == 0)
2490        return Error("Invalid LOADATOMIC record");
2491      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2492
2493      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2494                       Ordering, SynchScope);
2495      InstructionList.push_back(I);
2496      break;
2497    }
2498    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2499      unsigned OpNum = 0;
2500      Value *Val, *Ptr;
2501      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2502          getValue(Record, OpNum,
2503                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2504          OpNum+2 != Record.size())
2505        return Error("Invalid STORE record");
2506
2507      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2508      InstructionList.push_back(I);
2509      break;
2510    }
2511    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2512      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2513      unsigned OpNum = 0;
2514      Value *Val, *Ptr;
2515      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2516          getValue(Record, OpNum,
2517                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2518          OpNum+4 != Record.size())
2519        return Error("Invalid STOREATOMIC record");
2520
2521      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2522      if (Ordering == NotAtomic || Ordering == Acquire ||
2523          Ordering == AcquireRelease)
2524        return Error("Invalid STOREATOMIC record");
2525      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2526      if (Ordering != NotAtomic && Record[OpNum] == 0)
2527        return Error("Invalid STOREATOMIC record");
2528
2529      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2530                        Ordering, SynchScope);
2531      InstructionList.push_back(I);
2532      break;
2533    }
2534    case bitc::FUNC_CODE_INST_CMPXCHG: {
2535      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2536      unsigned OpNum = 0;
2537      Value *Ptr, *Cmp, *New;
2538      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2539          getValue(Record, OpNum,
2540                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2541          getValue(Record, OpNum,
2542                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2543          OpNum+3 != Record.size())
2544        return Error("Invalid CMPXCHG record");
2545      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2546      if (Ordering == NotAtomic || Ordering == Unordered)
2547        return Error("Invalid CMPXCHG record");
2548      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2549      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2550      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2551      InstructionList.push_back(I);
2552      break;
2553    }
2554    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2555      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2556      unsigned OpNum = 0;
2557      Value *Ptr, *Val;
2558      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2559          getValue(Record, OpNum,
2560                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2561          OpNum+4 != Record.size())
2562        return Error("Invalid ATOMICRMW record");
2563      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2564      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2565          Operation > AtomicRMWInst::LAST_BINOP)
2566        return Error("Invalid ATOMICRMW record");
2567      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2568      if (Ordering == NotAtomic || Ordering == Unordered)
2569        return Error("Invalid ATOMICRMW record");
2570      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2571      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2572      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2573      InstructionList.push_back(I);
2574      break;
2575    }
2576    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2577      if (2 != Record.size())
2578        return Error("Invalid FENCE record");
2579      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2580      if (Ordering == NotAtomic || Ordering == Unordered ||
2581          Ordering == Monotonic)
2582        return Error("Invalid FENCE record");
2583      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2584      I = new FenceInst(Context, Ordering, SynchScope);
2585      InstructionList.push_back(I);
2586      break;
2587    }
2588    case bitc::FUNC_CODE_INST_CALL: {
2589      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2590      if (Record.size() < 3)
2591        return Error("Invalid CALL record");
2592
2593      AttrListPtr PAL = getAttributes(Record[0]);
2594      unsigned CCInfo = Record[1];
2595
2596      unsigned OpNum = 2;
2597      Value *Callee;
2598      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2599        return Error("Invalid CALL record");
2600
2601      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2602      FunctionType *FTy = 0;
2603      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2604      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2605        return Error("Invalid CALL record");
2606
2607      SmallVector<Value*, 16> Args;
2608      // Read the fixed params.
2609      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2610        if (FTy->getParamType(i)->isLabelTy())
2611          Args.push_back(getBasicBlock(Record[OpNum]));
2612        else
2613          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2614        if (Args.back() == 0) return Error("Invalid CALL record");
2615      }
2616
2617      // Read type/value pairs for varargs params.
2618      if (!FTy->isVarArg()) {
2619        if (OpNum != Record.size())
2620          return Error("Invalid CALL record");
2621      } else {
2622        while (OpNum != Record.size()) {
2623          Value *Op;
2624          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2625            return Error("Invalid CALL record");
2626          Args.push_back(Op);
2627        }
2628      }
2629
2630      I = CallInst::Create(Callee, Args);
2631      InstructionList.push_back(I);
2632      cast<CallInst>(I)->setCallingConv(
2633        static_cast<CallingConv::ID>(CCInfo>>1));
2634      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2635      cast<CallInst>(I)->setAttributes(PAL);
2636      break;
2637    }
2638    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2639      if (Record.size() < 3)
2640        return Error("Invalid VAARG record");
2641      Type *OpTy = getTypeByID(Record[0]);
2642      Value *Op = getFnValueByID(Record[1], OpTy);
2643      Type *ResTy = getTypeByID(Record[2]);
2644      if (!OpTy || !Op || !ResTy)
2645        return Error("Invalid VAARG record");
2646      I = new VAArgInst(Op, ResTy);
2647      InstructionList.push_back(I);
2648      break;
2649    }
2650    }
2651
2652    // Add instruction to end of current BB.  If there is no current BB, reject
2653    // this file.
2654    if (CurBB == 0) {
2655      delete I;
2656      return Error("Invalid instruction with no BB");
2657    }
2658    CurBB->getInstList().push_back(I);
2659
2660    // If this was a terminator instruction, move to the next block.
2661    if (isa<TerminatorInst>(I)) {
2662      ++CurBBNo;
2663      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2664    }
2665
2666    // Non-void values get registered in the value table for future use.
2667    if (I && !I->getType()->isVoidTy())
2668      ValueList.AssignValue(I, NextValueNo++);
2669  }
2670
2671  // Check the function list for unresolved values.
2672  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2673    if (A->getParent() == 0) {
2674      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2675      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2676        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2677          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2678          delete A;
2679        }
2680      }
2681      return Error("Never resolved value found in function!");
2682    }
2683  }
2684
2685  // FIXME: Check for unresolved forward-declared metadata references
2686  // and clean up leaks.
2687
2688  // See if anything took the address of blocks in this function.  If so,
2689  // resolve them now.
2690  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2691    BlockAddrFwdRefs.find(F);
2692  if (BAFRI != BlockAddrFwdRefs.end()) {
2693    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2694    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2695      unsigned BlockIdx = RefList[i].first;
2696      if (BlockIdx >= FunctionBBs.size())
2697        return Error("Invalid blockaddress block #");
2698
2699      GlobalVariable *FwdRef = RefList[i].second;
2700      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2701      FwdRef->eraseFromParent();
2702    }
2703
2704    BlockAddrFwdRefs.erase(BAFRI);
2705  }
2706
2707  // Trim the value list down to the size it was before we parsed this function.
2708  ValueList.shrinkTo(ModuleValueListSize);
2709  MDValueList.shrinkTo(ModuleMDValueListSize);
2710  std::vector<BasicBlock*>().swap(FunctionBBs);
2711  return false;
2712}
2713
2714/// FindFunctionInStream - Find the function body in the bitcode stream
2715bool BitcodeReader::FindFunctionInStream(Function *F,
2716       DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
2717  while (DeferredFunctionInfoIterator->second == 0) {
2718    if (Stream.AtEndOfStream())
2719      return Error("Could not find Function in stream");
2720    // ParseModule will parse the next body in the stream and set its
2721    // position in the DeferredFunctionInfo map.
2722    if (ParseModule(true)) return true;
2723  }
2724  return false;
2725}
2726
2727//===----------------------------------------------------------------------===//
2728// GVMaterializer implementation
2729//===----------------------------------------------------------------------===//
2730
2731
2732bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2733  if (const Function *F = dyn_cast<Function>(GV)) {
2734    return F->isDeclaration() &&
2735      DeferredFunctionInfo.count(const_cast<Function*>(F));
2736  }
2737  return false;
2738}
2739
2740bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2741  Function *F = dyn_cast<Function>(GV);
2742  // If it's not a function or is already material, ignore the request.
2743  if (!F || !F->isMaterializable()) return false;
2744
2745  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2746  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2747  // If its position is recorded as 0, its body is somewhere in the stream
2748  // but we haven't seen it yet.
2749  if (DFII->second == 0)
2750    if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
2751
2752  // Move the bit stream to the saved position of the deferred function body.
2753  Stream.JumpToBit(DFII->second);
2754
2755  if (ParseFunctionBody(F)) {
2756    if (ErrInfo) *ErrInfo = ErrorString;
2757    return true;
2758  }
2759
2760  // Upgrade any old intrinsic calls in the function.
2761  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2762       E = UpgradedIntrinsics.end(); I != E; ++I) {
2763    if (I->first != I->second) {
2764      for (Value::use_iterator UI = I->first->use_begin(),
2765           UE = I->first->use_end(); UI != UE; ) {
2766        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2767          UpgradeIntrinsicCall(CI, I->second);
2768      }
2769    }
2770  }
2771
2772  return false;
2773}
2774
2775bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2776  const Function *F = dyn_cast<Function>(GV);
2777  if (!F || F->isDeclaration())
2778    return false;
2779  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2780}
2781
2782void BitcodeReader::Dematerialize(GlobalValue *GV) {
2783  Function *F = dyn_cast<Function>(GV);
2784  // If this function isn't dematerializable, this is a noop.
2785  if (!F || !isDematerializable(F))
2786    return;
2787
2788  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2789
2790  // Just forget the function body, we can remat it later.
2791  F->deleteBody();
2792}
2793
2794
2795bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2796  assert(M == TheModule &&
2797         "Can only Materialize the Module this BitcodeReader is attached to.");
2798  // Iterate over the module, deserializing any functions that are still on
2799  // disk.
2800  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2801       F != E; ++F)
2802    if (F->isMaterializable() &&
2803        Materialize(F, ErrInfo))
2804      return true;
2805
2806  // At this point, if there are any function bodies, the current bit is
2807  // pointing to the END_BLOCK record after them. Now make sure the rest
2808  // of the bits in the module have been read.
2809  if (NextUnreadBit)
2810    ParseModule(true);
2811
2812  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2813  // delete the old functions to clean up. We can't do this unless the entire
2814  // module is materialized because there could always be another function body
2815  // with calls to the old function.
2816  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2817       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2818    if (I->first != I->second) {
2819      for (Value::use_iterator UI = I->first->use_begin(),
2820           UE = I->first->use_end(); UI != UE; ) {
2821        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2822          UpgradeIntrinsicCall(CI, I->second);
2823      }
2824      if (!I->first->use_empty())
2825        I->first->replaceAllUsesWith(I->second);
2826      I->first->eraseFromParent();
2827    }
2828  }
2829  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2830
2831  return false;
2832}
2833
2834bool BitcodeReader::InitStream() {
2835  if (LazyStreamer) return InitLazyStream();
2836  return InitStreamFromBuffer();
2837}
2838
2839bool BitcodeReader::InitStreamFromBuffer() {
2840  const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
2841  const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2842
2843  if (Buffer->getBufferSize() & 3) {
2844    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
2845      return Error("Invalid bitcode signature");
2846    else
2847      return Error("Bitcode stream should be a multiple of 4 bytes in length");
2848  }
2849
2850  // If we have a wrapper header, parse it and ignore the non-bc file contents.
2851  // The magic number is 0x0B17C0DE stored in little endian.
2852  if (isBitcodeWrapper(BufPtr, BufEnd))
2853    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
2854      return Error("Invalid bitcode wrapper header");
2855
2856  StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
2857  Stream.init(*StreamFile);
2858
2859  return false;
2860}
2861
2862bool BitcodeReader::InitLazyStream() {
2863  // Check and strip off the bitcode wrapper; BitstreamReader expects never to
2864  // see it.
2865  StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
2866  StreamFile.reset(new BitstreamReader(Bytes));
2867  Stream.init(*StreamFile);
2868
2869  unsigned char buf[16];
2870  if (Bytes->readBytes(0, 16, buf, NULL) == -1)
2871    return Error("Bitcode stream must be at least 16 bytes in length");
2872
2873  if (!isBitcode(buf, buf + 16))
2874    return Error("Invalid bitcode signature");
2875
2876  if (isBitcodeWrapper(buf, buf + 4)) {
2877    const unsigned char *bitcodeStart = buf;
2878    const unsigned char *bitcodeEnd = buf + 16;
2879    SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
2880    Bytes->dropLeadingBytes(bitcodeStart - buf);
2881    Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
2882  }
2883  return false;
2884}
2885
2886//===----------------------------------------------------------------------===//
2887// External interface
2888//===----------------------------------------------------------------------===//
2889
2890/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2891///
2892Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2893                                   LLVMContext& Context,
2894                                   std::string *ErrMsg) {
2895  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2896  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2897  M->setMaterializer(R);
2898  if (R->ParseBitcodeInto(M)) {
2899    if (ErrMsg)
2900      *ErrMsg = R->getErrorString();
2901
2902    delete M;  // Also deletes R.
2903    return 0;
2904  }
2905  // Have the BitcodeReader dtor delete 'Buffer'.
2906  R->setBufferOwned(true);
2907
2908  R->materializeForwardReferencedFunctions();
2909
2910  return M;
2911}
2912
2913
2914Module *llvm::getStreamedBitcodeModule(const std::string &name,
2915                                       DataStreamer *streamer,
2916                                       LLVMContext &Context,
2917                                       std::string *ErrMsg) {
2918  Module *M = new Module(name, Context);
2919  BitcodeReader *R = new BitcodeReader(streamer, Context);
2920  M->setMaterializer(R);
2921  if (R->ParseBitcodeInto(M)) {
2922    if (ErrMsg)
2923      *ErrMsg = R->getErrorString();
2924    delete M;  // Also deletes R.
2925    return 0;
2926  }
2927  R->setBufferOwned(false); // no buffer to delete
2928  return M;
2929}
2930
2931/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2932/// If an error occurs, return null and fill in *ErrMsg if non-null.
2933Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2934                               std::string *ErrMsg){
2935  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2936  if (!M) return 0;
2937
2938  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2939  // there was an error.
2940  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2941
2942  // Read in the entire module, and destroy the BitcodeReader.
2943  if (M->MaterializeAllPermanently(ErrMsg)) {
2944    delete M;
2945    return 0;
2946  }
2947
2948  // TODO: Restore the use-lists to the in-memory state when the bitcode was
2949  // written.  We must defer until the Module has been fully materialized.
2950
2951  return M;
2952}
2953
2954std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2955                                         LLVMContext& Context,
2956                                         std::string *ErrMsg) {
2957  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2958  // Don't let the BitcodeReader dtor delete 'Buffer'.
2959  R->setBufferOwned(false);
2960
2961  std::string Triple("");
2962  if (R->ParseTriple(Triple))
2963    if (ErrMsg)
2964      *ErrMsg = R->getErrorString();
2965
2966  delete R;
2967  return Triple;
2968}
2969