BitcodeReader.cpp revision d408f06048797a43b17a7740acb766cc5f0adfbb
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::materializeForwardReferencedFunctions() {
31  while (!BlockAddrFwdRefs.empty()) {
32    Function *F = BlockAddrFwdRefs.begin()->first;
33    F->Materialize();
34  }
35}
36
37void BitcodeReader::FreeState() {
38  if (BufferOwned)
39    delete Buffer;
40  Buffer = 0;
41  std::vector<Type*>().swap(TypeList);
42  ValueList.clear();
43  MDValueList.clear();
44
45  std::vector<AttrListPtr>().swap(MAttributes);
46  std::vector<BasicBlock*>().swap(FunctionBBs);
47  std::vector<Function*>().swap(FunctionsWithBodies);
48  DeferredFunctionInfo.clear();
49  MDKindMap.clear();
50}
51
52//===----------------------------------------------------------------------===//
53//  Helper functions to implement forward reference resolution, etc.
54//===----------------------------------------------------------------------===//
55
56/// ConvertToString - Convert a string from a record into an std::string, return
57/// true on failure.
58template<typename StrTy>
59static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
60                            StrTy &Result) {
61  if (Idx > Record.size())
62    return true;
63
64  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
65    Result += (char)Record[i];
66  return false;
67}
68
69static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
70  switch (Val) {
71  default: // Map unknown/new linkages to external
72  case 0:  return GlobalValue::ExternalLinkage;
73  case 1:  return GlobalValue::WeakAnyLinkage;
74  case 2:  return GlobalValue::AppendingLinkage;
75  case 3:  return GlobalValue::InternalLinkage;
76  case 4:  return GlobalValue::LinkOnceAnyLinkage;
77  case 5:  return GlobalValue::DLLImportLinkage;
78  case 6:  return GlobalValue::DLLExportLinkage;
79  case 7:  return GlobalValue::ExternalWeakLinkage;
80  case 8:  return GlobalValue::CommonLinkage;
81  case 9:  return GlobalValue::PrivateLinkage;
82  case 10: return GlobalValue::WeakODRLinkage;
83  case 11: return GlobalValue::LinkOnceODRLinkage;
84  case 12: return GlobalValue::AvailableExternallyLinkage;
85  case 13: return GlobalValue::LinkerPrivateLinkage;
86  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
87  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
88  }
89}
90
91static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
92  switch (Val) {
93  default: // Map unknown visibilities to default.
94  case 0: return GlobalValue::DefaultVisibility;
95  case 1: return GlobalValue::HiddenVisibility;
96  case 2: return GlobalValue::ProtectedVisibility;
97  }
98}
99
100static int GetDecodedCastOpcode(unsigned Val) {
101  switch (Val) {
102  default: return -1;
103  case bitc::CAST_TRUNC   : return Instruction::Trunc;
104  case bitc::CAST_ZEXT    : return Instruction::ZExt;
105  case bitc::CAST_SEXT    : return Instruction::SExt;
106  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
107  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
108  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
109  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
110  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
111  case bitc::CAST_FPEXT   : return Instruction::FPExt;
112  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
113  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
114  case bitc::CAST_BITCAST : return Instruction::BitCast;
115  }
116}
117static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
118  switch (Val) {
119  default: return -1;
120  case bitc::BINOP_ADD:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
122  case bitc::BINOP_SUB:
123    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
124  case bitc::BINOP_MUL:
125    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
126  case bitc::BINOP_UDIV: return Instruction::UDiv;
127  case bitc::BINOP_SDIV:
128    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
129  case bitc::BINOP_UREM: return Instruction::URem;
130  case bitc::BINOP_SREM:
131    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
132  case bitc::BINOP_SHL:  return Instruction::Shl;
133  case bitc::BINOP_LSHR: return Instruction::LShr;
134  case bitc::BINOP_ASHR: return Instruction::AShr;
135  case bitc::BINOP_AND:  return Instruction::And;
136  case bitc::BINOP_OR:   return Instruction::Or;
137  case bitc::BINOP_XOR:  return Instruction::Xor;
138  }
139}
140
141static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
142  switch (Val) {
143  default: return AtomicRMWInst::BAD_BINOP;
144  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
145  case bitc::RMW_ADD: return AtomicRMWInst::Add;
146  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
147  case bitc::RMW_AND: return AtomicRMWInst::And;
148  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
149  case bitc::RMW_OR: return AtomicRMWInst::Or;
150  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
151  case bitc::RMW_MAX: return AtomicRMWInst::Max;
152  case bitc::RMW_MIN: return AtomicRMWInst::Min;
153  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
154  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
155  }
156}
157
158static AtomicOrdering GetDecodedOrdering(unsigned Val) {
159  switch (Val) {
160  case bitc::ORDERING_NOTATOMIC: return NotAtomic;
161  case bitc::ORDERING_UNORDERED: return Unordered;
162  case bitc::ORDERING_MONOTONIC: return Monotonic;
163  case bitc::ORDERING_ACQUIRE: return Acquire;
164  case bitc::ORDERING_RELEASE: return Release;
165  case bitc::ORDERING_ACQREL: return AcquireRelease;
166  default: // Map unknown orderings to sequentially-consistent.
167  case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
168  }
169}
170
171static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
172  switch (Val) {
173  case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
174  default: // Map unknown scopes to cross-thread.
175  case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
176  }
177}
178
179namespace llvm {
180namespace {
181  /// @brief A class for maintaining the slot number definition
182  /// as a placeholder for the actual definition for forward constants defs.
183  class ConstantPlaceHolder : public ConstantExpr {
184    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
185  public:
186    // allocate space for exactly one operand
187    void *operator new(size_t s) {
188      return User::operator new(s, 1);
189    }
190    explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
191      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
192      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
193    }
194
195    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
196    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
197    static bool classof(const Value *V) {
198      return isa<ConstantExpr>(V) &&
199             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
200    }
201
202
203    /// Provide fast operand accessors
204    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
205  };
206}
207
208// FIXME: can we inherit this from ConstantExpr?
209template <>
210struct OperandTraits<ConstantPlaceHolder> :
211  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
212};
213}
214
215
216void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
217  if (Idx == size()) {
218    push_back(V);
219    return;
220  }
221
222  if (Idx >= size())
223    resize(Idx+1);
224
225  WeakVH &OldV = ValuePtrs[Idx];
226  if (OldV == 0) {
227    OldV = V;
228    return;
229  }
230
231  // Handle constants and non-constants (e.g. instrs) differently for
232  // efficiency.
233  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
234    ResolveConstants.push_back(std::make_pair(PHC, Idx));
235    OldV = V;
236  } else {
237    // If there was a forward reference to this value, replace it.
238    Value *PrevVal = OldV;
239    OldV->replaceAllUsesWith(V);
240    delete PrevVal;
241  }
242}
243
244
245Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
246                                                    Type *Ty) {
247  if (Idx >= size())
248    resize(Idx + 1);
249
250  if (Value *V = ValuePtrs[Idx]) {
251    assert(Ty == V->getType() && "Type mismatch in constant table!");
252    return cast<Constant>(V);
253  }
254
255  // Create and return a placeholder, which will later be RAUW'd.
256  Constant *C = new ConstantPlaceHolder(Ty, Context);
257  ValuePtrs[Idx] = C;
258  return C;
259}
260
261Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
262  if (Idx >= size())
263    resize(Idx + 1);
264
265  if (Value *V = ValuePtrs[Idx]) {
266    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
267    return V;
268  }
269
270  // No type specified, must be invalid reference.
271  if (Ty == 0) return 0;
272
273  // Create and return a placeholder, which will later be RAUW'd.
274  Value *V = new Argument(Ty);
275  ValuePtrs[Idx] = V;
276  return V;
277}
278
279/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
280/// resolves any forward references.  The idea behind this is that we sometimes
281/// get constants (such as large arrays) which reference *many* forward ref
282/// constants.  Replacing each of these causes a lot of thrashing when
283/// building/reuniquing the constant.  Instead of doing this, we look at all the
284/// uses and rewrite all the place holders at once for any constant that uses
285/// a placeholder.
286void BitcodeReaderValueList::ResolveConstantForwardRefs() {
287  // Sort the values by-pointer so that they are efficient to look up with a
288  // binary search.
289  std::sort(ResolveConstants.begin(), ResolveConstants.end());
290
291  SmallVector<Constant*, 64> NewOps;
292
293  while (!ResolveConstants.empty()) {
294    Value *RealVal = operator[](ResolveConstants.back().second);
295    Constant *Placeholder = ResolveConstants.back().first;
296    ResolveConstants.pop_back();
297
298    // Loop over all users of the placeholder, updating them to reference the
299    // new value.  If they reference more than one placeholder, update them all
300    // at once.
301    while (!Placeholder->use_empty()) {
302      Value::use_iterator UI = Placeholder->use_begin();
303      User *U = *UI;
304
305      // If the using object isn't uniqued, just update the operands.  This
306      // handles instructions and initializers for global variables.
307      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
308        UI.getUse().set(RealVal);
309        continue;
310      }
311
312      // Otherwise, we have a constant that uses the placeholder.  Replace that
313      // constant with a new constant that has *all* placeholder uses updated.
314      Constant *UserC = cast<Constant>(U);
315      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
316           I != E; ++I) {
317        Value *NewOp;
318        if (!isa<ConstantPlaceHolder>(*I)) {
319          // Not a placeholder reference.
320          NewOp = *I;
321        } else if (*I == Placeholder) {
322          // Common case is that it just references this one placeholder.
323          NewOp = RealVal;
324        } else {
325          // Otherwise, look up the placeholder in ResolveConstants.
326          ResolveConstantsTy::iterator It =
327            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
328                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
329                                                            0));
330          assert(It != ResolveConstants.end() && It->first == *I);
331          NewOp = operator[](It->second);
332        }
333
334        NewOps.push_back(cast<Constant>(NewOp));
335      }
336
337      // Make the new constant.
338      Constant *NewC;
339      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
340        NewC = ConstantArray::get(UserCA->getType(), NewOps);
341      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
342        NewC = ConstantStruct::get(UserCS->getType(), NewOps);
343      } else if (isa<ConstantVector>(UserC)) {
344        NewC = ConstantVector::get(NewOps);
345      } else {
346        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
347        NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
348      }
349
350      UserC->replaceAllUsesWith(NewC);
351      UserC->destroyConstant();
352      NewOps.clear();
353    }
354
355    // Update all ValueHandles, they should be the only users at this point.
356    Placeholder->replaceAllUsesWith(RealVal);
357    delete Placeholder;
358  }
359}
360
361void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
362  if (Idx == size()) {
363    push_back(V);
364    return;
365  }
366
367  if (Idx >= size())
368    resize(Idx+1);
369
370  WeakVH &OldV = MDValuePtrs[Idx];
371  if (OldV == 0) {
372    OldV = V;
373    return;
374  }
375
376  // If there was a forward reference to this value, replace it.
377  MDNode *PrevVal = cast<MDNode>(OldV);
378  OldV->replaceAllUsesWith(V);
379  MDNode::deleteTemporary(PrevVal);
380  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
381  // value for Idx.
382  MDValuePtrs[Idx] = V;
383}
384
385Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
386  if (Idx >= size())
387    resize(Idx + 1);
388
389  if (Value *V = MDValuePtrs[Idx]) {
390    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
391    return V;
392  }
393
394  // Create and return a placeholder, which will later be RAUW'd.
395  Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
396  MDValuePtrs[Idx] = V;
397  return V;
398}
399
400Type *BitcodeReader::getTypeByID(unsigned ID) {
401  // The type table size is always specified correctly.
402  if (ID >= TypeList.size())
403    return 0;
404
405  if (Type *Ty = TypeList[ID])
406    return Ty;
407
408  // If we have a forward reference, the only possible case is when it is to a
409  // named struct.  Just create a placeholder for now.
410  return TypeList[ID] = StructType::create(Context);
411}
412
413
414//===----------------------------------------------------------------------===//
415//  Functions for parsing blocks from the bitcode file
416//===----------------------------------------------------------------------===//
417
418bool BitcodeReader::ParseAttributeBlock() {
419  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
420    return Error("Malformed block record");
421
422  if (!MAttributes.empty())
423    return Error("Multiple PARAMATTR blocks found!");
424
425  SmallVector<uint64_t, 64> Record;
426
427  SmallVector<AttributeWithIndex, 8> Attrs;
428
429  // Read all the records.
430  while (1) {
431    unsigned Code = Stream.ReadCode();
432    if (Code == bitc::END_BLOCK) {
433      if (Stream.ReadBlockEnd())
434        return Error("Error at end of PARAMATTR block");
435      return false;
436    }
437
438    if (Code == bitc::ENTER_SUBBLOCK) {
439      // No known subblocks, always skip them.
440      Stream.ReadSubBlockID();
441      if (Stream.SkipBlock())
442        return Error("Malformed block record");
443      continue;
444    }
445
446    if (Code == bitc::DEFINE_ABBREV) {
447      Stream.ReadAbbrevRecord();
448      continue;
449    }
450
451    // Read a record.
452    Record.clear();
453    switch (Stream.ReadRecord(Code, Record)) {
454    default:  // Default behavior: ignore.
455      break;
456    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
457      if (Record.size() & 1)
458        return Error("Invalid ENTRY record");
459
460      // FIXME : Remove this autoupgrade code in LLVM 3.0.
461      // If Function attributes are using index 0 then transfer them
462      // to index ~0. Index 0 is used for return value attributes but used to be
463      // used for function attributes.
464      Attributes RetAttribute;
465      Attributes FnAttribute;
466      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
467        // FIXME: remove in LLVM 3.0
468        // The alignment is stored as a 16-bit raw value from bits 31--16.
469        // We shift the bits above 31 down by 11 bits.
470
471        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
472        if (Alignment && !isPowerOf2_32(Alignment))
473          return Error("Alignment is not a power of two.");
474
475        Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
476        if (Alignment)
477          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
478        ReconstitutedAttr |=
479            Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
480
481        Record[i+1] = ReconstitutedAttr.Raw();
482        if (Record[i] == 0)
483          RetAttribute = ReconstitutedAttr;
484        else if (Record[i] == ~0U)
485          FnAttribute = ReconstitutedAttr;
486      }
487
488      Attributes OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
489                              Attribute::ReadOnly|Attribute::ReadNone);
490
491      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
492          (RetAttribute & OldRetAttrs)) {
493        if (FnAttribute == Attribute::None) { // add a slot so they get added.
494          Record.push_back(~0U);
495          Record.push_back(0);
496        }
497
498        FnAttribute  |= RetAttribute & OldRetAttrs;
499        RetAttribute &= ~OldRetAttrs;
500      }
501
502      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
503        if (Record[i] == 0) {
504          if (RetAttribute != Attribute::None)
505            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
506        } else if (Record[i] == ~0U) {
507          if (FnAttribute != Attribute::None)
508            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
509        } else if (Attributes(Record[i+1]) != Attribute::None)
510          Attrs.push_back(AttributeWithIndex::get(Record[i],
511                                                  Attributes(Record[i+1])));
512      }
513
514      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
515      Attrs.clear();
516      break;
517    }
518    }
519  }
520}
521
522bool BitcodeReader::ParseTypeTable() {
523  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
524    return Error("Malformed block record");
525
526  return ParseTypeTableBody();
527}
528
529bool BitcodeReader::ParseTypeTableBody() {
530  if (!TypeList.empty())
531    return Error("Multiple TYPE_BLOCKs found!");
532
533  SmallVector<uint64_t, 64> Record;
534  unsigned NumRecords = 0;
535
536  SmallString<64> TypeName;
537
538  // Read all the records for this type table.
539  while (1) {
540    unsigned Code = Stream.ReadCode();
541    if (Code == bitc::END_BLOCK) {
542      if (NumRecords != TypeList.size())
543        return Error("Invalid type forward reference in TYPE_BLOCK");
544      if (Stream.ReadBlockEnd())
545        return Error("Error at end of type table block");
546      return false;
547    }
548
549    if (Code == bitc::ENTER_SUBBLOCK) {
550      // No known subblocks, always skip them.
551      Stream.ReadSubBlockID();
552      if (Stream.SkipBlock())
553        return Error("Malformed block record");
554      continue;
555    }
556
557    if (Code == bitc::DEFINE_ABBREV) {
558      Stream.ReadAbbrevRecord();
559      continue;
560    }
561
562    // Read a record.
563    Record.clear();
564    Type *ResultTy = 0;
565    switch (Stream.ReadRecord(Code, Record)) {
566    default: return Error("unknown type in type table");
567    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
568      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
569      // type list.  This allows us to reserve space.
570      if (Record.size() < 1)
571        return Error("Invalid TYPE_CODE_NUMENTRY record");
572      TypeList.resize(Record[0]);
573      continue;
574    case bitc::TYPE_CODE_VOID:      // VOID
575      ResultTy = Type::getVoidTy(Context);
576      break;
577    case bitc::TYPE_CODE_HALF:     // HALF
578      ResultTy = Type::getHalfTy(Context);
579      break;
580    case bitc::TYPE_CODE_FLOAT:     // FLOAT
581      ResultTy = Type::getFloatTy(Context);
582      break;
583    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
584      ResultTy = Type::getDoubleTy(Context);
585      break;
586    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
587      ResultTy = Type::getX86_FP80Ty(Context);
588      break;
589    case bitc::TYPE_CODE_FP128:     // FP128
590      ResultTy = Type::getFP128Ty(Context);
591      break;
592    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
593      ResultTy = Type::getPPC_FP128Ty(Context);
594      break;
595    case bitc::TYPE_CODE_LABEL:     // LABEL
596      ResultTy = Type::getLabelTy(Context);
597      break;
598    case bitc::TYPE_CODE_METADATA:  // METADATA
599      ResultTy = Type::getMetadataTy(Context);
600      break;
601    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
602      ResultTy = Type::getX86_MMXTy(Context);
603      break;
604    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
605      if (Record.size() < 1)
606        return Error("Invalid Integer type record");
607
608      ResultTy = IntegerType::get(Context, Record[0]);
609      break;
610    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
611                                    //          [pointee type, address space]
612      if (Record.size() < 1)
613        return Error("Invalid POINTER type record");
614      unsigned AddressSpace = 0;
615      if (Record.size() == 2)
616        AddressSpace = Record[1];
617      ResultTy = getTypeByID(Record[0]);
618      if (ResultTy == 0) return Error("invalid element type in pointer type");
619      ResultTy = PointerType::get(ResultTy, AddressSpace);
620      break;
621    }
622    case bitc::TYPE_CODE_FUNCTION_OLD: {
623      // FIXME: attrid is dead, remove it in LLVM 3.0
624      // FUNCTION: [vararg, attrid, retty, paramty x N]
625      if (Record.size() < 3)
626        return Error("Invalid FUNCTION type record");
627      SmallVector<Type*, 8> ArgTys;
628      for (unsigned i = 3, e = Record.size(); i != e; ++i) {
629        if (Type *T = getTypeByID(Record[i]))
630          ArgTys.push_back(T);
631        else
632          break;
633      }
634
635      ResultTy = getTypeByID(Record[2]);
636      if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
637        return Error("invalid type in function type");
638
639      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
640      break;
641    }
642    case bitc::TYPE_CODE_FUNCTION: {
643      // FUNCTION: [vararg, retty, paramty x N]
644      if (Record.size() < 2)
645        return Error("Invalid FUNCTION type record");
646      SmallVector<Type*, 8> ArgTys;
647      for (unsigned i = 2, e = Record.size(); i != e; ++i) {
648        if (Type *T = getTypeByID(Record[i]))
649          ArgTys.push_back(T);
650        else
651          break;
652      }
653
654      ResultTy = getTypeByID(Record[1]);
655      if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
656        return Error("invalid type in function type");
657
658      ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
659      break;
660    }
661    case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
662      if (Record.size() < 1)
663        return Error("Invalid STRUCT type record");
664      SmallVector<Type*, 8> EltTys;
665      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
666        if (Type *T = getTypeByID(Record[i]))
667          EltTys.push_back(T);
668        else
669          break;
670      }
671      if (EltTys.size() != Record.size()-1)
672        return Error("invalid type in struct type");
673      ResultTy = StructType::get(Context, EltTys, Record[0]);
674      break;
675    }
676    case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
677      if (ConvertToString(Record, 0, TypeName))
678        return Error("Invalid STRUCT_NAME record");
679      continue;
680
681    case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
682      if (Record.size() < 1)
683        return Error("Invalid STRUCT type record");
684
685      if (NumRecords >= TypeList.size())
686        return Error("invalid TYPE table");
687
688      // Check to see if this was forward referenced, if so fill in the temp.
689      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
690      if (Res) {
691        Res->setName(TypeName);
692        TypeList[NumRecords] = 0;
693      } else  // Otherwise, create a new struct.
694        Res = StructType::create(Context, TypeName);
695      TypeName.clear();
696
697      SmallVector<Type*, 8> EltTys;
698      for (unsigned i = 1, e = Record.size(); i != e; ++i) {
699        if (Type *T = getTypeByID(Record[i]))
700          EltTys.push_back(T);
701        else
702          break;
703      }
704      if (EltTys.size() != Record.size()-1)
705        return Error("invalid STRUCT type record");
706      Res->setBody(EltTys, Record[0]);
707      ResultTy = Res;
708      break;
709    }
710    case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
711      if (Record.size() != 1)
712        return Error("Invalid OPAQUE type record");
713
714      if (NumRecords >= TypeList.size())
715        return Error("invalid TYPE table");
716
717      // Check to see if this was forward referenced, if so fill in the temp.
718      StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
719      if (Res) {
720        Res->setName(TypeName);
721        TypeList[NumRecords] = 0;
722      } else  // Otherwise, create a new struct with no body.
723        Res = StructType::create(Context, TypeName);
724      TypeName.clear();
725      ResultTy = Res;
726      break;
727    }
728    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
729      if (Record.size() < 2)
730        return Error("Invalid ARRAY type record");
731      if ((ResultTy = getTypeByID(Record[1])))
732        ResultTy = ArrayType::get(ResultTy, Record[0]);
733      else
734        return Error("Invalid ARRAY type element");
735      break;
736    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
737      if (Record.size() < 2)
738        return Error("Invalid VECTOR type record");
739      if ((ResultTy = getTypeByID(Record[1])))
740        ResultTy = VectorType::get(ResultTy, Record[0]);
741      else
742        return Error("Invalid ARRAY type element");
743      break;
744    }
745
746    if (NumRecords >= TypeList.size())
747      return Error("invalid TYPE table");
748    assert(ResultTy && "Didn't read a type?");
749    assert(TypeList[NumRecords] == 0 && "Already read type?");
750    TypeList[NumRecords++] = ResultTy;
751  }
752}
753
754bool BitcodeReader::ParseValueSymbolTable() {
755  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
756    return Error("Malformed block record");
757
758  SmallVector<uint64_t, 64> Record;
759
760  // Read all the records for this value table.
761  SmallString<128> ValueName;
762  while (1) {
763    unsigned Code = Stream.ReadCode();
764    if (Code == bitc::END_BLOCK) {
765      if (Stream.ReadBlockEnd())
766        return Error("Error at end of value symbol table block");
767      return false;
768    }
769    if (Code == bitc::ENTER_SUBBLOCK) {
770      // No known subblocks, always skip them.
771      Stream.ReadSubBlockID();
772      if (Stream.SkipBlock())
773        return Error("Malformed block record");
774      continue;
775    }
776
777    if (Code == bitc::DEFINE_ABBREV) {
778      Stream.ReadAbbrevRecord();
779      continue;
780    }
781
782    // Read a record.
783    Record.clear();
784    switch (Stream.ReadRecord(Code, Record)) {
785    default:  // Default behavior: unknown type.
786      break;
787    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
788      if (ConvertToString(Record, 1, ValueName))
789        return Error("Invalid VST_ENTRY record");
790      unsigned ValueID = Record[0];
791      if (ValueID >= ValueList.size())
792        return Error("Invalid Value ID in VST_ENTRY record");
793      Value *V = ValueList[ValueID];
794
795      V->setName(StringRef(ValueName.data(), ValueName.size()));
796      ValueName.clear();
797      break;
798    }
799    case bitc::VST_CODE_BBENTRY: {
800      if (ConvertToString(Record, 1, ValueName))
801        return Error("Invalid VST_BBENTRY record");
802      BasicBlock *BB = getBasicBlock(Record[0]);
803      if (BB == 0)
804        return Error("Invalid BB ID in VST_BBENTRY record");
805
806      BB->setName(StringRef(ValueName.data(), ValueName.size()));
807      ValueName.clear();
808      break;
809    }
810    }
811  }
812}
813
814bool BitcodeReader::ParseMetadata() {
815  unsigned NextMDValueNo = MDValueList.size();
816
817  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
818    return Error("Malformed block record");
819
820  SmallVector<uint64_t, 64> Record;
821
822  // Read all the records.
823  while (1) {
824    unsigned Code = Stream.ReadCode();
825    if (Code == bitc::END_BLOCK) {
826      if (Stream.ReadBlockEnd())
827        return Error("Error at end of PARAMATTR block");
828      return false;
829    }
830
831    if (Code == bitc::ENTER_SUBBLOCK) {
832      // No known subblocks, always skip them.
833      Stream.ReadSubBlockID();
834      if (Stream.SkipBlock())
835        return Error("Malformed block record");
836      continue;
837    }
838
839    if (Code == bitc::DEFINE_ABBREV) {
840      Stream.ReadAbbrevRecord();
841      continue;
842    }
843
844    bool IsFunctionLocal = false;
845    // Read a record.
846    Record.clear();
847    Code = Stream.ReadRecord(Code, Record);
848    switch (Code) {
849    default:  // Default behavior: ignore.
850      break;
851    case bitc::METADATA_NAME: {
852      // Read named of the named metadata.
853      unsigned NameLength = Record.size();
854      SmallString<8> Name;
855      Name.resize(NameLength);
856      for (unsigned i = 0; i != NameLength; ++i)
857        Name[i] = Record[i];
858      Record.clear();
859      Code = Stream.ReadCode();
860
861      // METADATA_NAME is always followed by METADATA_NAMED_NODE.
862      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
863      assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
864
865      // Read named metadata elements.
866      unsigned Size = Record.size();
867      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
868      for (unsigned i = 0; i != Size; ++i) {
869        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
870        if (MD == 0)
871          return Error("Malformed metadata record");
872        NMD->addOperand(MD);
873      }
874      break;
875    }
876    case bitc::METADATA_FN_NODE:
877      IsFunctionLocal = true;
878      // fall-through
879    case bitc::METADATA_NODE: {
880      if (Record.size() % 2 == 1)
881        return Error("Invalid METADATA_NODE record");
882
883      unsigned Size = Record.size();
884      SmallVector<Value*, 8> Elts;
885      for (unsigned i = 0; i != Size; i += 2) {
886        Type *Ty = getTypeByID(Record[i]);
887        if (!Ty) return Error("Invalid METADATA_NODE record");
888        if (Ty->isMetadataTy())
889          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
890        else if (!Ty->isVoidTy())
891          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
892        else
893          Elts.push_back(NULL);
894      }
895      Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
896      IsFunctionLocal = false;
897      MDValueList.AssignValue(V, NextMDValueNo++);
898      break;
899    }
900    case bitc::METADATA_STRING: {
901      unsigned MDStringLength = Record.size();
902      SmallString<8> String;
903      String.resize(MDStringLength);
904      for (unsigned i = 0; i != MDStringLength; ++i)
905        String[i] = Record[i];
906      Value *V = MDString::get(Context,
907                               StringRef(String.data(), String.size()));
908      MDValueList.AssignValue(V, NextMDValueNo++);
909      break;
910    }
911    case bitc::METADATA_KIND: {
912      unsigned RecordLength = Record.size();
913      if (Record.empty() || RecordLength < 2)
914        return Error("Invalid METADATA_KIND record");
915      SmallString<8> Name;
916      Name.resize(RecordLength-1);
917      unsigned Kind = Record[0];
918      for (unsigned i = 1; i != RecordLength; ++i)
919        Name[i-1] = Record[i];
920
921      unsigned NewKind = TheModule->getMDKindID(Name.str());
922      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
923        return Error("Conflicting METADATA_KIND records");
924      break;
925    }
926    }
927  }
928}
929
930/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
931/// the LSB for dense VBR encoding.
932static uint64_t DecodeSignRotatedValue(uint64_t V) {
933  if ((V & 1) == 0)
934    return V >> 1;
935  if (V != 1)
936    return -(V >> 1);
937  // There is no such thing as -0 with integers.  "-0" really means MININT.
938  return 1ULL << 63;
939}
940
941/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
942/// values and aliases that we can.
943bool BitcodeReader::ResolveGlobalAndAliasInits() {
944  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
945  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
946
947  GlobalInitWorklist.swap(GlobalInits);
948  AliasInitWorklist.swap(AliasInits);
949
950  while (!GlobalInitWorklist.empty()) {
951    unsigned ValID = GlobalInitWorklist.back().second;
952    if (ValID >= ValueList.size()) {
953      // Not ready to resolve this yet, it requires something later in the file.
954      GlobalInits.push_back(GlobalInitWorklist.back());
955    } else {
956      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
957        GlobalInitWorklist.back().first->setInitializer(C);
958      else
959        return Error("Global variable initializer is not a constant!");
960    }
961    GlobalInitWorklist.pop_back();
962  }
963
964  while (!AliasInitWorklist.empty()) {
965    unsigned ValID = AliasInitWorklist.back().second;
966    if (ValID >= ValueList.size()) {
967      AliasInits.push_back(AliasInitWorklist.back());
968    } else {
969      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
970        AliasInitWorklist.back().first->setAliasee(C);
971      else
972        return Error("Alias initializer is not a constant!");
973    }
974    AliasInitWorklist.pop_back();
975  }
976  return false;
977}
978
979bool BitcodeReader::ParseConstants() {
980  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
981    return Error("Malformed block record");
982
983  SmallVector<uint64_t, 64> Record;
984
985  // Read all the records for this value table.
986  Type *CurTy = Type::getInt32Ty(Context);
987  unsigned NextCstNo = ValueList.size();
988  while (1) {
989    unsigned Code = Stream.ReadCode();
990    if (Code == bitc::END_BLOCK)
991      break;
992
993    if (Code == bitc::ENTER_SUBBLOCK) {
994      // No known subblocks, always skip them.
995      Stream.ReadSubBlockID();
996      if (Stream.SkipBlock())
997        return Error("Malformed block record");
998      continue;
999    }
1000
1001    if (Code == bitc::DEFINE_ABBREV) {
1002      Stream.ReadAbbrevRecord();
1003      continue;
1004    }
1005
1006    // Read a record.
1007    Record.clear();
1008    Value *V = 0;
1009    unsigned BitCode = Stream.ReadRecord(Code, Record);
1010    switch (BitCode) {
1011    default:  // Default behavior: unknown constant
1012    case bitc::CST_CODE_UNDEF:     // UNDEF
1013      V = UndefValue::get(CurTy);
1014      break;
1015    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1016      if (Record.empty())
1017        return Error("Malformed CST_SETTYPE record");
1018      if (Record[0] >= TypeList.size())
1019        return Error("Invalid Type ID in CST_SETTYPE record");
1020      CurTy = TypeList[Record[0]];
1021      continue;  // Skip the ValueList manipulation.
1022    case bitc::CST_CODE_NULL:      // NULL
1023      V = Constant::getNullValue(CurTy);
1024      break;
1025    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1026      if (!CurTy->isIntegerTy() || Record.empty())
1027        return Error("Invalid CST_INTEGER record");
1028      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
1029      break;
1030    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1031      if (!CurTy->isIntegerTy() || Record.empty())
1032        return Error("Invalid WIDE_INTEGER record");
1033
1034      unsigned NumWords = Record.size();
1035      SmallVector<uint64_t, 8> Words;
1036      Words.resize(NumWords);
1037      for (unsigned i = 0; i != NumWords; ++i)
1038        Words[i] = DecodeSignRotatedValue(Record[i]);
1039      V = ConstantInt::get(Context,
1040                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1041                                 Words));
1042      break;
1043    }
1044    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1045      if (Record.empty())
1046        return Error("Invalid FLOAT record");
1047      if (CurTy->isHalfTy())
1048        V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0])));
1049      else if (CurTy->isFloatTy())
1050        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1051      else if (CurTy->isDoubleTy())
1052        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1053      else if (CurTy->isX86_FP80Ty()) {
1054        // Bits are not stored the same way as a normal i80 APInt, compensate.
1055        uint64_t Rearrange[2];
1056        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1057        Rearrange[1] = Record[0] >> 48;
1058        V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1059      } else if (CurTy->isFP128Ty())
1060        V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1061      else if (CurTy->isPPC_FP128Ty())
1062        V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1063      else
1064        V = UndefValue::get(CurTy);
1065      break;
1066    }
1067
1068    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1069      if (Record.empty())
1070        return Error("Invalid CST_AGGREGATE record");
1071
1072      unsigned Size = Record.size();
1073      SmallVector<Constant*, 16> Elts;
1074
1075      if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1076        for (unsigned i = 0; i != Size; ++i)
1077          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1078                                                     STy->getElementType(i)));
1079        V = ConstantStruct::get(STy, Elts);
1080      } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1081        Type *EltTy = ATy->getElementType();
1082        for (unsigned i = 0; i != Size; ++i)
1083          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1084        V = ConstantArray::get(ATy, Elts);
1085      } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1086        Type *EltTy = VTy->getElementType();
1087        for (unsigned i = 0; i != Size; ++i)
1088          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1089        V = ConstantVector::get(Elts);
1090      } else {
1091        V = UndefValue::get(CurTy);
1092      }
1093      break;
1094    }
1095    case bitc::CST_CODE_STRING: { // STRING: [values]
1096      if (Record.empty())
1097        return Error("Invalid CST_AGGREGATE record");
1098
1099      ArrayType *ATy = cast<ArrayType>(CurTy);
1100      Type *EltTy = ATy->getElementType();
1101
1102      unsigned Size = Record.size();
1103      SmallVector<Constant*, 16> Elts;
1104      for (unsigned i = 0; i != Size; ++i)
1105        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1106      V = ConstantArray::get(ATy, Elts);
1107      break;
1108    }
1109    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1110      if (Record.empty())
1111        return Error("Invalid CST_AGGREGATE record");
1112
1113      ArrayType *ATy = cast<ArrayType>(CurTy);
1114      Type *EltTy = ATy->getElementType();
1115
1116      unsigned Size = Record.size();
1117      SmallVector<Constant*, 16> Elts;
1118      for (unsigned i = 0; i != Size; ++i)
1119        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1120      Elts.push_back(Constant::getNullValue(EltTy));
1121      V = ConstantArray::get(ATy, Elts);
1122      break;
1123    }
1124    case bitc::CST_CODE_DATA: {// DATA: [n x value]
1125      if (Record.empty())
1126        return Error("Invalid CST_DATA record");
1127
1128      Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1129      unsigned Size = Record.size();
1130
1131      if (EltTy->isIntegerTy(8)) {
1132        SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1133        if (isa<VectorType>(CurTy))
1134          V = ConstantDataVector::get(Context, Elts);
1135        else
1136          V = ConstantDataArray::get(Context, Elts);
1137      } else if (EltTy->isIntegerTy(16)) {
1138        SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1139        if (isa<VectorType>(CurTy))
1140          V = ConstantDataVector::get(Context, Elts);
1141        else
1142          V = ConstantDataArray::get(Context, Elts);
1143      } else if (EltTy->isIntegerTy(32)) {
1144        SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1145        if (isa<VectorType>(CurTy))
1146          V = ConstantDataVector::get(Context, Elts);
1147        else
1148          V = ConstantDataArray::get(Context, Elts);
1149      } else if (EltTy->isIntegerTy(64)) {
1150        SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1151        if (isa<VectorType>(CurTy))
1152          V = ConstantDataVector::get(Context, Elts);
1153        else
1154          V = ConstantDataArray::get(Context, Elts);
1155      } else if (EltTy->isFloatTy()) {
1156        SmallVector<float, 16> Elts;
1157        for (unsigned i = 0; i != Size; ++i) {
1158          union { uint32_t I; float F; };
1159          I = Record[i];
1160          Elts.push_back(F);
1161        }
1162        if (isa<VectorType>(CurTy))
1163          V = ConstantDataVector::get(Context, Elts);
1164        else
1165          V = ConstantDataArray::get(Context, Elts);
1166      } else if (EltTy->isDoubleTy()) {
1167        SmallVector<double, 16> Elts;
1168        for (unsigned i = 0; i != Size; ++i) {
1169          union { uint64_t I; double F; };
1170          I = Record[i];
1171          Elts.push_back(F);
1172        }
1173        if (isa<VectorType>(CurTy))
1174          V = ConstantDataVector::get(Context, Elts);
1175        else
1176          V = ConstantDataArray::get(Context, Elts);
1177      } else {
1178        return Error("Unknown element type in CE_DATA");
1179      }
1180      break;
1181    }
1182
1183    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1184      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1185      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1186      if (Opc < 0) {
1187        V = UndefValue::get(CurTy);  // Unknown binop.
1188      } else {
1189        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1190        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1191        unsigned Flags = 0;
1192        if (Record.size() >= 4) {
1193          if (Opc == Instruction::Add ||
1194              Opc == Instruction::Sub ||
1195              Opc == Instruction::Mul ||
1196              Opc == Instruction::Shl) {
1197            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1198              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1199            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1200              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1201          } else if (Opc == Instruction::SDiv ||
1202                     Opc == Instruction::UDiv ||
1203                     Opc == Instruction::LShr ||
1204                     Opc == Instruction::AShr) {
1205            if (Record[3] & (1 << bitc::PEO_EXACT))
1206              Flags |= SDivOperator::IsExact;
1207          }
1208        }
1209        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1210      }
1211      break;
1212    }
1213    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1214      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1215      int Opc = GetDecodedCastOpcode(Record[0]);
1216      if (Opc < 0) {
1217        V = UndefValue::get(CurTy);  // Unknown cast.
1218      } else {
1219        Type *OpTy = getTypeByID(Record[1]);
1220        if (!OpTy) return Error("Invalid CE_CAST record");
1221        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1222        V = ConstantExpr::getCast(Opc, Op, CurTy);
1223      }
1224      break;
1225    }
1226    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1227    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1228      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1229      SmallVector<Constant*, 16> Elts;
1230      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1231        Type *ElTy = getTypeByID(Record[i]);
1232        if (!ElTy) return Error("Invalid CE_GEP record");
1233        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1234      }
1235      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1236      V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1237                                         BitCode ==
1238                                           bitc::CST_CODE_CE_INBOUNDS_GEP);
1239      break;
1240    }
1241    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1242      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1243      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1244                                                              Type::getInt1Ty(Context)),
1245                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1246                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1247      break;
1248    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1249      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1250      VectorType *OpTy =
1251        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1252      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1253      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1254      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1255      V = ConstantExpr::getExtractElement(Op0, Op1);
1256      break;
1257    }
1258    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1259      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1260      if (Record.size() < 3 || OpTy == 0)
1261        return Error("Invalid CE_INSERTELT record");
1262      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1263      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1264                                                  OpTy->getElementType());
1265      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1266      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1267      break;
1268    }
1269    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1270      VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1271      if (Record.size() < 3 || OpTy == 0)
1272        return Error("Invalid CE_SHUFFLEVEC record");
1273      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1274      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1275      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1276                                                 OpTy->getNumElements());
1277      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1278      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1279      break;
1280    }
1281    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1282      VectorType *RTy = dyn_cast<VectorType>(CurTy);
1283      VectorType *OpTy =
1284        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1285      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1286        return Error("Invalid CE_SHUFVEC_EX record");
1287      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1288      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1289      Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1290                                                 RTy->getNumElements());
1291      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1292      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1293      break;
1294    }
1295    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1296      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1297      Type *OpTy = getTypeByID(Record[0]);
1298      if (OpTy == 0) return Error("Invalid CE_CMP record");
1299      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1300      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1301
1302      if (OpTy->isFPOrFPVectorTy())
1303        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1304      else
1305        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1306      break;
1307    }
1308    case bitc::CST_CODE_INLINEASM: {
1309      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1310      std::string AsmStr, ConstrStr;
1311      bool HasSideEffects = Record[0] & 1;
1312      bool IsAlignStack = Record[0] >> 1;
1313      unsigned AsmStrSize = Record[1];
1314      if (2+AsmStrSize >= Record.size())
1315        return Error("Invalid INLINEASM record");
1316      unsigned ConstStrSize = Record[2+AsmStrSize];
1317      if (3+AsmStrSize+ConstStrSize > Record.size())
1318        return Error("Invalid INLINEASM record");
1319
1320      for (unsigned i = 0; i != AsmStrSize; ++i)
1321        AsmStr += (char)Record[2+i];
1322      for (unsigned i = 0; i != ConstStrSize; ++i)
1323        ConstrStr += (char)Record[3+AsmStrSize+i];
1324      PointerType *PTy = cast<PointerType>(CurTy);
1325      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1326                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1327      break;
1328    }
1329    case bitc::CST_CODE_BLOCKADDRESS:{
1330      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1331      Type *FnTy = getTypeByID(Record[0]);
1332      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1333      Function *Fn =
1334        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1335      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1336
1337      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1338                                                  Type::getInt8Ty(Context),
1339                                            false, GlobalValue::InternalLinkage,
1340                                                  0, "");
1341      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1342      V = FwdRef;
1343      break;
1344    }
1345    }
1346
1347    ValueList.AssignValue(V, NextCstNo);
1348    ++NextCstNo;
1349  }
1350
1351  if (NextCstNo != ValueList.size())
1352    return Error("Invalid constant reference!");
1353
1354  if (Stream.ReadBlockEnd())
1355    return Error("Error at end of constants block");
1356
1357  // Once all the constants have been read, go through and resolve forward
1358  // references.
1359  ValueList.ResolveConstantForwardRefs();
1360  return false;
1361}
1362
1363bool BitcodeReader::ParseUseLists() {
1364  if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1365    return Error("Malformed block record");
1366
1367  SmallVector<uint64_t, 64> Record;
1368
1369  // Read all the records.
1370  while (1) {
1371    unsigned Code = Stream.ReadCode();
1372    if (Code == bitc::END_BLOCK) {
1373      if (Stream.ReadBlockEnd())
1374        return Error("Error at end of use-list table block");
1375      return false;
1376    }
1377
1378    if (Code == bitc::ENTER_SUBBLOCK) {
1379      // No known subblocks, always skip them.
1380      Stream.ReadSubBlockID();
1381      if (Stream.SkipBlock())
1382        return Error("Malformed block record");
1383      continue;
1384    }
1385
1386    if (Code == bitc::DEFINE_ABBREV) {
1387      Stream.ReadAbbrevRecord();
1388      continue;
1389    }
1390
1391    // Read a use list record.
1392    Record.clear();
1393    switch (Stream.ReadRecord(Code, Record)) {
1394    default:  // Default behavior: unknown type.
1395      break;
1396    case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1397      unsigned RecordLength = Record.size();
1398      if (RecordLength < 1)
1399        return Error ("Invalid UseList reader!");
1400      UseListRecords.push_back(Record);
1401      break;
1402    }
1403    }
1404  }
1405}
1406
1407/// RememberAndSkipFunctionBody - When we see the block for a function body,
1408/// remember where it is and then skip it.  This lets us lazily deserialize the
1409/// functions.
1410bool BitcodeReader::RememberAndSkipFunctionBody() {
1411  // Get the function we are talking about.
1412  if (FunctionsWithBodies.empty())
1413    return Error("Insufficient function protos");
1414
1415  Function *Fn = FunctionsWithBodies.back();
1416  FunctionsWithBodies.pop_back();
1417
1418  // Save the current stream state.
1419  uint64_t CurBit = Stream.GetCurrentBitNo();
1420  DeferredFunctionInfo[Fn] = CurBit;
1421
1422  // Skip over the function block for now.
1423  if (Stream.SkipBlock())
1424    return Error("Malformed block record");
1425  return false;
1426}
1427
1428bool BitcodeReader::ParseModule() {
1429  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1430    return Error("Malformed block record");
1431
1432  SmallVector<uint64_t, 64> Record;
1433  std::vector<std::string> SectionTable;
1434  std::vector<std::string> GCTable;
1435
1436  // Read all the records for this module.
1437  while (!Stream.AtEndOfStream()) {
1438    unsigned Code = Stream.ReadCode();
1439    if (Code == bitc::END_BLOCK) {
1440      if (Stream.ReadBlockEnd())
1441        return Error("Error at end of module block");
1442
1443      // Patch the initializers for globals and aliases up.
1444      ResolveGlobalAndAliasInits();
1445      if (!GlobalInits.empty() || !AliasInits.empty())
1446        return Error("Malformed global initializer set");
1447      if (!FunctionsWithBodies.empty())
1448        return Error("Too few function bodies found");
1449
1450      // Look for intrinsic functions which need to be upgraded at some point
1451      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1452           FI != FE; ++FI) {
1453        Function* NewFn;
1454        if (UpgradeIntrinsicFunction(FI, NewFn))
1455          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1456      }
1457
1458      // Look for global variables which need to be renamed.
1459      for (Module::global_iterator
1460             GI = TheModule->global_begin(), GE = TheModule->global_end();
1461           GI != GE; ++GI)
1462        UpgradeGlobalVariable(GI);
1463
1464      // Force deallocation of memory for these vectors to favor the client that
1465      // want lazy deserialization.
1466      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1467      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1468      std::vector<Function*>().swap(FunctionsWithBodies);
1469      return false;
1470    }
1471
1472    if (Code == bitc::ENTER_SUBBLOCK) {
1473      switch (Stream.ReadSubBlockID()) {
1474      default:  // Skip unknown content.
1475        if (Stream.SkipBlock())
1476          return Error("Malformed block record");
1477        break;
1478      case bitc::BLOCKINFO_BLOCK_ID:
1479        if (Stream.ReadBlockInfoBlock())
1480          return Error("Malformed BlockInfoBlock");
1481        break;
1482      case bitc::PARAMATTR_BLOCK_ID:
1483        if (ParseAttributeBlock())
1484          return true;
1485        break;
1486      case bitc::TYPE_BLOCK_ID_NEW:
1487        if (ParseTypeTable())
1488          return true;
1489        break;
1490      case bitc::VALUE_SYMTAB_BLOCK_ID:
1491        if (ParseValueSymbolTable())
1492          return true;
1493        break;
1494      case bitc::CONSTANTS_BLOCK_ID:
1495        if (ParseConstants() || ResolveGlobalAndAliasInits())
1496          return true;
1497        break;
1498      case bitc::METADATA_BLOCK_ID:
1499        if (ParseMetadata())
1500          return true;
1501        break;
1502      case bitc::FUNCTION_BLOCK_ID:
1503        // If this is the first function body we've seen, reverse the
1504        // FunctionsWithBodies list.
1505        if (!HasReversedFunctionsWithBodies) {
1506          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1507          HasReversedFunctionsWithBodies = true;
1508        }
1509
1510        if (RememberAndSkipFunctionBody())
1511          return true;
1512        break;
1513      case bitc::USELIST_BLOCK_ID:
1514        if (ParseUseLists())
1515          return true;
1516        break;
1517      }
1518      continue;
1519    }
1520
1521    if (Code == bitc::DEFINE_ABBREV) {
1522      Stream.ReadAbbrevRecord();
1523      continue;
1524    }
1525
1526    // Read a record.
1527    switch (Stream.ReadRecord(Code, Record)) {
1528    default: break;  // Default behavior, ignore unknown content.
1529    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1530      if (Record.size() < 1)
1531        return Error("Malformed MODULE_CODE_VERSION");
1532      // Only version #0 is supported so far.
1533      if (Record[0] != 0)
1534        return Error("Unknown bitstream version!");
1535      break;
1536    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1537      std::string S;
1538      if (ConvertToString(Record, 0, S))
1539        return Error("Invalid MODULE_CODE_TRIPLE record");
1540      TheModule->setTargetTriple(S);
1541      break;
1542    }
1543    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1544      std::string S;
1545      if (ConvertToString(Record, 0, S))
1546        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1547      TheModule->setDataLayout(S);
1548      break;
1549    }
1550    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1551      std::string S;
1552      if (ConvertToString(Record, 0, S))
1553        return Error("Invalid MODULE_CODE_ASM record");
1554      TheModule->setModuleInlineAsm(S);
1555      break;
1556    }
1557    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1558      std::string S;
1559      if (ConvertToString(Record, 0, S))
1560        return Error("Invalid MODULE_CODE_DEPLIB record");
1561      TheModule->addLibrary(S);
1562      break;
1563    }
1564    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1565      std::string S;
1566      if (ConvertToString(Record, 0, S))
1567        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1568      SectionTable.push_back(S);
1569      break;
1570    }
1571    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1572      std::string S;
1573      if (ConvertToString(Record, 0, S))
1574        return Error("Invalid MODULE_CODE_GCNAME record");
1575      GCTable.push_back(S);
1576      break;
1577    }
1578    // GLOBALVAR: [pointer type, isconst, initid,
1579    //             linkage, alignment, section, visibility, threadlocal,
1580    //             unnamed_addr]
1581    case bitc::MODULE_CODE_GLOBALVAR: {
1582      if (Record.size() < 6)
1583        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1584      Type *Ty = getTypeByID(Record[0]);
1585      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1586      if (!Ty->isPointerTy())
1587        return Error("Global not a pointer type!");
1588      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1589      Ty = cast<PointerType>(Ty)->getElementType();
1590
1591      bool isConstant = Record[1];
1592      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1593      unsigned Alignment = (1 << Record[4]) >> 1;
1594      std::string Section;
1595      if (Record[5]) {
1596        if (Record[5]-1 >= SectionTable.size())
1597          return Error("Invalid section ID");
1598        Section = SectionTable[Record[5]-1];
1599      }
1600      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1601      if (Record.size() > 6)
1602        Visibility = GetDecodedVisibility(Record[6]);
1603      bool isThreadLocal = false;
1604      if (Record.size() > 7)
1605        isThreadLocal = Record[7];
1606
1607      bool UnnamedAddr = false;
1608      if (Record.size() > 8)
1609        UnnamedAddr = Record[8];
1610
1611      GlobalVariable *NewGV =
1612        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1613                           isThreadLocal, AddressSpace);
1614      NewGV->setAlignment(Alignment);
1615      if (!Section.empty())
1616        NewGV->setSection(Section);
1617      NewGV->setVisibility(Visibility);
1618      NewGV->setThreadLocal(isThreadLocal);
1619      NewGV->setUnnamedAddr(UnnamedAddr);
1620
1621      ValueList.push_back(NewGV);
1622
1623      // Remember which value to use for the global initializer.
1624      if (unsigned InitID = Record[2])
1625        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1626      break;
1627    }
1628    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1629    //             alignment, section, visibility, gc, unnamed_addr]
1630    case bitc::MODULE_CODE_FUNCTION: {
1631      if (Record.size() < 8)
1632        return Error("Invalid MODULE_CODE_FUNCTION record");
1633      Type *Ty = getTypeByID(Record[0]);
1634      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1635      if (!Ty->isPointerTy())
1636        return Error("Function not a pointer type!");
1637      FunctionType *FTy =
1638        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1639      if (!FTy)
1640        return Error("Function not a pointer to function type!");
1641
1642      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1643                                        "", TheModule);
1644
1645      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1646      bool isProto = Record[2];
1647      Func->setLinkage(GetDecodedLinkage(Record[3]));
1648      Func->setAttributes(getAttributes(Record[4]));
1649
1650      Func->setAlignment((1 << Record[5]) >> 1);
1651      if (Record[6]) {
1652        if (Record[6]-1 >= SectionTable.size())
1653          return Error("Invalid section ID");
1654        Func->setSection(SectionTable[Record[6]-1]);
1655      }
1656      Func->setVisibility(GetDecodedVisibility(Record[7]));
1657      if (Record.size() > 8 && Record[8]) {
1658        if (Record[8]-1 > GCTable.size())
1659          return Error("Invalid GC ID");
1660        Func->setGC(GCTable[Record[8]-1].c_str());
1661      }
1662      bool UnnamedAddr = false;
1663      if (Record.size() > 9)
1664        UnnamedAddr = Record[9];
1665      Func->setUnnamedAddr(UnnamedAddr);
1666      ValueList.push_back(Func);
1667
1668      // If this is a function with a body, remember the prototype we are
1669      // creating now, so that we can match up the body with them later.
1670      if (!isProto)
1671        FunctionsWithBodies.push_back(Func);
1672      break;
1673    }
1674    // ALIAS: [alias type, aliasee val#, linkage]
1675    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1676    case bitc::MODULE_CODE_ALIAS: {
1677      if (Record.size() < 3)
1678        return Error("Invalid MODULE_ALIAS record");
1679      Type *Ty = getTypeByID(Record[0]);
1680      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1681      if (!Ty->isPointerTy())
1682        return Error("Function not a pointer type!");
1683
1684      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1685                                           "", 0, TheModule);
1686      // Old bitcode files didn't have visibility field.
1687      if (Record.size() > 3)
1688        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1689      ValueList.push_back(NewGA);
1690      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1691      break;
1692    }
1693    /// MODULE_CODE_PURGEVALS: [numvals]
1694    case bitc::MODULE_CODE_PURGEVALS:
1695      // Trim down the value list to the specified size.
1696      if (Record.size() < 1 || Record[0] > ValueList.size())
1697        return Error("Invalid MODULE_PURGEVALS record");
1698      ValueList.shrinkTo(Record[0]);
1699      break;
1700    }
1701    Record.clear();
1702  }
1703
1704  return Error("Premature end of bitstream");
1705}
1706
1707bool BitcodeReader::ParseBitcodeInto(Module *M) {
1708  TheModule = 0;
1709
1710  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1711  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1712
1713  if (Buffer->getBufferSize() & 3) {
1714    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1715      return Error("Invalid bitcode signature");
1716    else
1717      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1718  }
1719
1720  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1721  // The magic number is 0x0B17C0DE stored in little endian.
1722  if (isBitcodeWrapper(BufPtr, BufEnd))
1723    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1724      return Error("Invalid bitcode wrapper header");
1725
1726  StreamFile.init(BufPtr, BufEnd);
1727  Stream.init(StreamFile);
1728
1729  // Sniff for the signature.
1730  if (Stream.Read(8) != 'B' ||
1731      Stream.Read(8) != 'C' ||
1732      Stream.Read(4) != 0x0 ||
1733      Stream.Read(4) != 0xC ||
1734      Stream.Read(4) != 0xE ||
1735      Stream.Read(4) != 0xD)
1736    return Error("Invalid bitcode signature");
1737
1738  // We expect a number of well-defined blocks, though we don't necessarily
1739  // need to understand them all.
1740  while (!Stream.AtEndOfStream()) {
1741    unsigned Code = Stream.ReadCode();
1742
1743    if (Code != bitc::ENTER_SUBBLOCK) {
1744
1745      // The ranlib in xcode 4 will align archive members by appending newlines
1746      // to the end of them. If this file size is a multiple of 4 but not 8, we
1747      // have to read and ignore these final 4 bytes :-(
1748      if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1749          Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1750	  Stream.AtEndOfStream())
1751        return false;
1752
1753      return Error("Invalid record at top-level");
1754    }
1755
1756    unsigned BlockID = Stream.ReadSubBlockID();
1757
1758    // We only know the MODULE subblock ID.
1759    switch (BlockID) {
1760    case bitc::BLOCKINFO_BLOCK_ID:
1761      if (Stream.ReadBlockInfoBlock())
1762        return Error("Malformed BlockInfoBlock");
1763      break;
1764    case bitc::MODULE_BLOCK_ID:
1765      // Reject multiple MODULE_BLOCK's in a single bitstream.
1766      if (TheModule)
1767        return Error("Multiple MODULE_BLOCKs in same stream");
1768      TheModule = M;
1769      if (ParseModule())
1770        return true;
1771      break;
1772    default:
1773      if (Stream.SkipBlock())
1774        return Error("Malformed block record");
1775      break;
1776    }
1777  }
1778
1779  return false;
1780}
1781
1782bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1783  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1784    return Error("Malformed block record");
1785
1786  SmallVector<uint64_t, 64> Record;
1787
1788  // Read all the records for this module.
1789  while (!Stream.AtEndOfStream()) {
1790    unsigned Code = Stream.ReadCode();
1791    if (Code == bitc::END_BLOCK) {
1792      if (Stream.ReadBlockEnd())
1793        return Error("Error at end of module block");
1794
1795      return false;
1796    }
1797
1798    if (Code == bitc::ENTER_SUBBLOCK) {
1799      switch (Stream.ReadSubBlockID()) {
1800      default:  // Skip unknown content.
1801        if (Stream.SkipBlock())
1802          return Error("Malformed block record");
1803        break;
1804      }
1805      continue;
1806    }
1807
1808    if (Code == bitc::DEFINE_ABBREV) {
1809      Stream.ReadAbbrevRecord();
1810      continue;
1811    }
1812
1813    // Read a record.
1814    switch (Stream.ReadRecord(Code, Record)) {
1815    default: break;  // Default behavior, ignore unknown content.
1816    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1817      if (Record.size() < 1)
1818        return Error("Malformed MODULE_CODE_VERSION");
1819      // Only version #0 is supported so far.
1820      if (Record[0] != 0)
1821        return Error("Unknown bitstream version!");
1822      break;
1823    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1824      std::string S;
1825      if (ConvertToString(Record, 0, S))
1826        return Error("Invalid MODULE_CODE_TRIPLE record");
1827      Triple = S;
1828      break;
1829    }
1830    }
1831    Record.clear();
1832  }
1833
1834  return Error("Premature end of bitstream");
1835}
1836
1837bool BitcodeReader::ParseTriple(std::string &Triple) {
1838  if (Buffer->getBufferSize() & 3)
1839    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1840
1841  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1842  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1843
1844  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1845  // The magic number is 0x0B17C0DE stored in little endian.
1846  if (isBitcodeWrapper(BufPtr, BufEnd))
1847    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1848      return Error("Invalid bitcode wrapper header");
1849
1850  StreamFile.init(BufPtr, BufEnd);
1851  Stream.init(StreamFile);
1852
1853  // Sniff for the signature.
1854  if (Stream.Read(8) != 'B' ||
1855      Stream.Read(8) != 'C' ||
1856      Stream.Read(4) != 0x0 ||
1857      Stream.Read(4) != 0xC ||
1858      Stream.Read(4) != 0xE ||
1859      Stream.Read(4) != 0xD)
1860    return Error("Invalid bitcode signature");
1861
1862  // We expect a number of well-defined blocks, though we don't necessarily
1863  // need to understand them all.
1864  while (!Stream.AtEndOfStream()) {
1865    unsigned Code = Stream.ReadCode();
1866
1867    if (Code != bitc::ENTER_SUBBLOCK)
1868      return Error("Invalid record at top-level");
1869
1870    unsigned BlockID = Stream.ReadSubBlockID();
1871
1872    // We only know the MODULE subblock ID.
1873    switch (BlockID) {
1874    case bitc::MODULE_BLOCK_ID:
1875      if (ParseModuleTriple(Triple))
1876        return true;
1877      break;
1878    default:
1879      if (Stream.SkipBlock())
1880        return Error("Malformed block record");
1881      break;
1882    }
1883  }
1884
1885  return false;
1886}
1887
1888/// ParseMetadataAttachment - Parse metadata attachments.
1889bool BitcodeReader::ParseMetadataAttachment() {
1890  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1891    return Error("Malformed block record");
1892
1893  SmallVector<uint64_t, 64> Record;
1894  while(1) {
1895    unsigned Code = Stream.ReadCode();
1896    if (Code == bitc::END_BLOCK) {
1897      if (Stream.ReadBlockEnd())
1898        return Error("Error at end of PARAMATTR block");
1899      break;
1900    }
1901    if (Code == bitc::DEFINE_ABBREV) {
1902      Stream.ReadAbbrevRecord();
1903      continue;
1904    }
1905    // Read a metadata attachment record.
1906    Record.clear();
1907    switch (Stream.ReadRecord(Code, Record)) {
1908    default:  // Default behavior: ignore.
1909      break;
1910    case bitc::METADATA_ATTACHMENT: {
1911      unsigned RecordLength = Record.size();
1912      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1913        return Error ("Invalid METADATA_ATTACHMENT reader!");
1914      Instruction *Inst = InstructionList[Record[0]];
1915      for (unsigned i = 1; i != RecordLength; i = i+2) {
1916        unsigned Kind = Record[i];
1917        DenseMap<unsigned, unsigned>::iterator I =
1918          MDKindMap.find(Kind);
1919        if (I == MDKindMap.end())
1920          return Error("Invalid metadata kind ID");
1921        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1922        Inst->setMetadata(I->second, cast<MDNode>(Node));
1923      }
1924      break;
1925    }
1926    }
1927  }
1928  return false;
1929}
1930
1931/// ParseFunctionBody - Lazily parse the specified function body block.
1932bool BitcodeReader::ParseFunctionBody(Function *F) {
1933  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1934    return Error("Malformed block record");
1935
1936  InstructionList.clear();
1937  unsigned ModuleValueListSize = ValueList.size();
1938  unsigned ModuleMDValueListSize = MDValueList.size();
1939
1940  // Add all the function arguments to the value table.
1941  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1942    ValueList.push_back(I);
1943
1944  unsigned NextValueNo = ValueList.size();
1945  BasicBlock *CurBB = 0;
1946  unsigned CurBBNo = 0;
1947
1948  DebugLoc LastLoc;
1949
1950  // Read all the records.
1951  SmallVector<uint64_t, 64> Record;
1952  while (1) {
1953    unsigned Code = Stream.ReadCode();
1954    if (Code == bitc::END_BLOCK) {
1955      if (Stream.ReadBlockEnd())
1956        return Error("Error at end of function block");
1957      break;
1958    }
1959
1960    if (Code == bitc::ENTER_SUBBLOCK) {
1961      switch (Stream.ReadSubBlockID()) {
1962      default:  // Skip unknown content.
1963        if (Stream.SkipBlock())
1964          return Error("Malformed block record");
1965        break;
1966      case bitc::CONSTANTS_BLOCK_ID:
1967        if (ParseConstants()) return true;
1968        NextValueNo = ValueList.size();
1969        break;
1970      case bitc::VALUE_SYMTAB_BLOCK_ID:
1971        if (ParseValueSymbolTable()) return true;
1972        break;
1973      case bitc::METADATA_ATTACHMENT_ID:
1974        if (ParseMetadataAttachment()) return true;
1975        break;
1976      case bitc::METADATA_BLOCK_ID:
1977        if (ParseMetadata()) return true;
1978        break;
1979      }
1980      continue;
1981    }
1982
1983    if (Code == bitc::DEFINE_ABBREV) {
1984      Stream.ReadAbbrevRecord();
1985      continue;
1986    }
1987
1988    // Read a record.
1989    Record.clear();
1990    Instruction *I = 0;
1991    unsigned BitCode = Stream.ReadRecord(Code, Record);
1992    switch (BitCode) {
1993    default: // Default behavior: reject
1994      return Error("Unknown instruction");
1995    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1996      if (Record.size() < 1 || Record[0] == 0)
1997        return Error("Invalid DECLAREBLOCKS record");
1998      // Create all the basic blocks for the function.
1999      FunctionBBs.resize(Record[0]);
2000      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2001        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2002      CurBB = FunctionBBs[0];
2003      continue;
2004
2005    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2006      // This record indicates that the last instruction is at the same
2007      // location as the previous instruction with a location.
2008      I = 0;
2009
2010      // Get the last instruction emitted.
2011      if (CurBB && !CurBB->empty())
2012        I = &CurBB->back();
2013      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2014               !FunctionBBs[CurBBNo-1]->empty())
2015        I = &FunctionBBs[CurBBNo-1]->back();
2016
2017      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2018      I->setDebugLoc(LastLoc);
2019      I = 0;
2020      continue;
2021
2022    case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2023      I = 0;     // Get the last instruction emitted.
2024      if (CurBB && !CurBB->empty())
2025        I = &CurBB->back();
2026      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2027               !FunctionBBs[CurBBNo-1]->empty())
2028        I = &FunctionBBs[CurBBNo-1]->back();
2029      if (I == 0 || Record.size() < 4)
2030        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2031
2032      unsigned Line = Record[0], Col = Record[1];
2033      unsigned ScopeID = Record[2], IAID = Record[3];
2034
2035      MDNode *Scope = 0, *IA = 0;
2036      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2037      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2038      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2039      I->setDebugLoc(LastLoc);
2040      I = 0;
2041      continue;
2042    }
2043
2044    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2045      unsigned OpNum = 0;
2046      Value *LHS, *RHS;
2047      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2048          getValue(Record, OpNum, LHS->getType(), RHS) ||
2049          OpNum+1 > Record.size())
2050        return Error("Invalid BINOP record");
2051
2052      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2053      if (Opc == -1) return Error("Invalid BINOP record");
2054      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2055      InstructionList.push_back(I);
2056      if (OpNum < Record.size()) {
2057        if (Opc == Instruction::Add ||
2058            Opc == Instruction::Sub ||
2059            Opc == Instruction::Mul ||
2060            Opc == Instruction::Shl) {
2061          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2062            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2063          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2064            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2065        } else if (Opc == Instruction::SDiv ||
2066                   Opc == Instruction::UDiv ||
2067                   Opc == Instruction::LShr ||
2068                   Opc == Instruction::AShr) {
2069          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2070            cast<BinaryOperator>(I)->setIsExact(true);
2071        }
2072      }
2073      break;
2074    }
2075    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2076      unsigned OpNum = 0;
2077      Value *Op;
2078      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2079          OpNum+2 != Record.size())
2080        return Error("Invalid CAST record");
2081
2082      Type *ResTy = getTypeByID(Record[OpNum]);
2083      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2084      if (Opc == -1 || ResTy == 0)
2085        return Error("Invalid CAST record");
2086      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2087      InstructionList.push_back(I);
2088      break;
2089    }
2090    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2091    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2092      unsigned OpNum = 0;
2093      Value *BasePtr;
2094      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2095        return Error("Invalid GEP record");
2096
2097      SmallVector<Value*, 16> GEPIdx;
2098      while (OpNum != Record.size()) {
2099        Value *Op;
2100        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2101          return Error("Invalid GEP record");
2102        GEPIdx.push_back(Op);
2103      }
2104
2105      I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2106      InstructionList.push_back(I);
2107      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2108        cast<GetElementPtrInst>(I)->setIsInBounds(true);
2109      break;
2110    }
2111
2112    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2113                                       // EXTRACTVAL: [opty, opval, n x indices]
2114      unsigned OpNum = 0;
2115      Value *Agg;
2116      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2117        return Error("Invalid EXTRACTVAL record");
2118
2119      SmallVector<unsigned, 4> EXTRACTVALIdx;
2120      for (unsigned RecSize = Record.size();
2121           OpNum != RecSize; ++OpNum) {
2122        uint64_t Index = Record[OpNum];
2123        if ((unsigned)Index != Index)
2124          return Error("Invalid EXTRACTVAL index");
2125        EXTRACTVALIdx.push_back((unsigned)Index);
2126      }
2127
2128      I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2129      InstructionList.push_back(I);
2130      break;
2131    }
2132
2133    case bitc::FUNC_CODE_INST_INSERTVAL: {
2134                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
2135      unsigned OpNum = 0;
2136      Value *Agg;
2137      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2138        return Error("Invalid INSERTVAL record");
2139      Value *Val;
2140      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2141        return Error("Invalid INSERTVAL record");
2142
2143      SmallVector<unsigned, 4> INSERTVALIdx;
2144      for (unsigned RecSize = Record.size();
2145           OpNum != RecSize; ++OpNum) {
2146        uint64_t Index = Record[OpNum];
2147        if ((unsigned)Index != Index)
2148          return Error("Invalid INSERTVAL index");
2149        INSERTVALIdx.push_back((unsigned)Index);
2150      }
2151
2152      I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2153      InstructionList.push_back(I);
2154      break;
2155    }
2156
2157    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2158      // obsolete form of select
2159      // handles select i1 ... in old bitcode
2160      unsigned OpNum = 0;
2161      Value *TrueVal, *FalseVal, *Cond;
2162      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2163          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2164          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2165        return Error("Invalid SELECT record");
2166
2167      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2168      InstructionList.push_back(I);
2169      break;
2170    }
2171
2172    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2173      // new form of select
2174      // handles select i1 or select [N x i1]
2175      unsigned OpNum = 0;
2176      Value *TrueVal, *FalseVal, *Cond;
2177      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2178          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2179          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2180        return Error("Invalid SELECT record");
2181
2182      // select condition can be either i1 or [N x i1]
2183      if (VectorType* vector_type =
2184          dyn_cast<VectorType>(Cond->getType())) {
2185        // expect <n x i1>
2186        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2187          return Error("Invalid SELECT condition type");
2188      } else {
2189        // expect i1
2190        if (Cond->getType() != Type::getInt1Ty(Context))
2191          return Error("Invalid SELECT condition type");
2192      }
2193
2194      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2195      InstructionList.push_back(I);
2196      break;
2197    }
2198
2199    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2200      unsigned OpNum = 0;
2201      Value *Vec, *Idx;
2202      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2203          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2204        return Error("Invalid EXTRACTELT record");
2205      I = ExtractElementInst::Create(Vec, Idx);
2206      InstructionList.push_back(I);
2207      break;
2208    }
2209
2210    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2211      unsigned OpNum = 0;
2212      Value *Vec, *Elt, *Idx;
2213      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2214          getValue(Record, OpNum,
2215                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2216          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2217        return Error("Invalid INSERTELT record");
2218      I = InsertElementInst::Create(Vec, Elt, Idx);
2219      InstructionList.push_back(I);
2220      break;
2221    }
2222
2223    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2224      unsigned OpNum = 0;
2225      Value *Vec1, *Vec2, *Mask;
2226      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2227          getValue(Record, OpNum, Vec1->getType(), Vec2))
2228        return Error("Invalid SHUFFLEVEC record");
2229
2230      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2231        return Error("Invalid SHUFFLEVEC record");
2232      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2233      InstructionList.push_back(I);
2234      break;
2235    }
2236
2237    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2238      // Old form of ICmp/FCmp returning bool
2239      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2240      // both legal on vectors but had different behaviour.
2241    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2242      // FCmp/ICmp returning bool or vector of bool
2243
2244      unsigned OpNum = 0;
2245      Value *LHS, *RHS;
2246      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2247          getValue(Record, OpNum, LHS->getType(), RHS) ||
2248          OpNum+1 != Record.size())
2249        return Error("Invalid CMP record");
2250
2251      if (LHS->getType()->isFPOrFPVectorTy())
2252        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2253      else
2254        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2255      InstructionList.push_back(I);
2256      break;
2257    }
2258
2259    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2260      {
2261        unsigned Size = Record.size();
2262        if (Size == 0) {
2263          I = ReturnInst::Create(Context);
2264          InstructionList.push_back(I);
2265          break;
2266        }
2267
2268        unsigned OpNum = 0;
2269        Value *Op = NULL;
2270        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2271          return Error("Invalid RET record");
2272        if (OpNum != Record.size())
2273          return Error("Invalid RET record");
2274
2275        I = ReturnInst::Create(Context, Op);
2276        InstructionList.push_back(I);
2277        break;
2278      }
2279    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2280      if (Record.size() != 1 && Record.size() != 3)
2281        return Error("Invalid BR record");
2282      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2283      if (TrueDest == 0)
2284        return Error("Invalid BR record");
2285
2286      if (Record.size() == 1) {
2287        I = BranchInst::Create(TrueDest);
2288        InstructionList.push_back(I);
2289      }
2290      else {
2291        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2292        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2293        if (FalseDest == 0 || Cond == 0)
2294          return Error("Invalid BR record");
2295        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2296        InstructionList.push_back(I);
2297      }
2298      break;
2299    }
2300    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2301      if (Record.size() < 3 || (Record.size() & 1) == 0)
2302        return Error("Invalid SWITCH record");
2303      Type *OpTy = getTypeByID(Record[0]);
2304      Value *Cond = getFnValueByID(Record[1], OpTy);
2305      BasicBlock *Default = getBasicBlock(Record[2]);
2306      if (OpTy == 0 || Cond == 0 || Default == 0)
2307        return Error("Invalid SWITCH record");
2308      unsigned NumCases = (Record.size()-3)/2;
2309      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2310      InstructionList.push_back(SI);
2311      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2312        ConstantInt *CaseVal =
2313          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2314        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2315        if (CaseVal == 0 || DestBB == 0) {
2316          delete SI;
2317          return Error("Invalid SWITCH record!");
2318        }
2319        SI->addCase(CaseVal, DestBB);
2320      }
2321      I = SI;
2322      break;
2323    }
2324    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2325      if (Record.size() < 2)
2326        return Error("Invalid INDIRECTBR record");
2327      Type *OpTy = getTypeByID(Record[0]);
2328      Value *Address = getFnValueByID(Record[1], OpTy);
2329      if (OpTy == 0 || Address == 0)
2330        return Error("Invalid INDIRECTBR record");
2331      unsigned NumDests = Record.size()-2;
2332      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2333      InstructionList.push_back(IBI);
2334      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2335        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2336          IBI->addDestination(DestBB);
2337        } else {
2338          delete IBI;
2339          return Error("Invalid INDIRECTBR record!");
2340        }
2341      }
2342      I = IBI;
2343      break;
2344    }
2345
2346    case bitc::FUNC_CODE_INST_INVOKE: {
2347      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2348      if (Record.size() < 4) return Error("Invalid INVOKE record");
2349      AttrListPtr PAL = getAttributes(Record[0]);
2350      unsigned CCInfo = Record[1];
2351      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2352      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2353
2354      unsigned OpNum = 4;
2355      Value *Callee;
2356      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2357        return Error("Invalid INVOKE record");
2358
2359      PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2360      FunctionType *FTy = !CalleeTy ? 0 :
2361        dyn_cast<FunctionType>(CalleeTy->getElementType());
2362
2363      // Check that the right number of fixed parameters are here.
2364      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2365          Record.size() < OpNum+FTy->getNumParams())
2366        return Error("Invalid INVOKE record");
2367
2368      SmallVector<Value*, 16> Ops;
2369      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2370        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2371        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2372      }
2373
2374      if (!FTy->isVarArg()) {
2375        if (Record.size() != OpNum)
2376          return Error("Invalid INVOKE record");
2377      } else {
2378        // Read type/value pairs for varargs params.
2379        while (OpNum != Record.size()) {
2380          Value *Op;
2381          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2382            return Error("Invalid INVOKE record");
2383          Ops.push_back(Op);
2384        }
2385      }
2386
2387      I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2388      InstructionList.push_back(I);
2389      cast<InvokeInst>(I)->setCallingConv(
2390        static_cast<CallingConv::ID>(CCInfo));
2391      cast<InvokeInst>(I)->setAttributes(PAL);
2392      break;
2393    }
2394    case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2395      unsigned Idx = 0;
2396      Value *Val = 0;
2397      if (getValueTypePair(Record, Idx, NextValueNo, Val))
2398        return Error("Invalid RESUME record");
2399      I = ResumeInst::Create(Val);
2400      InstructionList.push_back(I);
2401      break;
2402    }
2403    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2404      I = new UnwindInst(Context);
2405      InstructionList.push_back(I);
2406      break;
2407    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2408      I = new UnreachableInst(Context);
2409      InstructionList.push_back(I);
2410      break;
2411    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2412      if (Record.size() < 1 || ((Record.size()-1)&1))
2413        return Error("Invalid PHI record");
2414      Type *Ty = getTypeByID(Record[0]);
2415      if (!Ty) return Error("Invalid PHI record");
2416
2417      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2418      InstructionList.push_back(PN);
2419
2420      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2421        Value *V = getFnValueByID(Record[1+i], Ty);
2422        BasicBlock *BB = getBasicBlock(Record[2+i]);
2423        if (!V || !BB) return Error("Invalid PHI record");
2424        PN->addIncoming(V, BB);
2425      }
2426      I = PN;
2427      break;
2428    }
2429
2430    case bitc::FUNC_CODE_INST_LANDINGPAD: {
2431      // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2432      unsigned Idx = 0;
2433      if (Record.size() < 4)
2434        return Error("Invalid LANDINGPAD record");
2435      Type *Ty = getTypeByID(Record[Idx++]);
2436      if (!Ty) return Error("Invalid LANDINGPAD record");
2437      Value *PersFn = 0;
2438      if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2439        return Error("Invalid LANDINGPAD record");
2440
2441      bool IsCleanup = !!Record[Idx++];
2442      unsigned NumClauses = Record[Idx++];
2443      LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2444      LP->setCleanup(IsCleanup);
2445      for (unsigned J = 0; J != NumClauses; ++J) {
2446        LandingPadInst::ClauseType CT =
2447          LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2448        Value *Val;
2449
2450        if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2451          delete LP;
2452          return Error("Invalid LANDINGPAD record");
2453        }
2454
2455        assert((CT != LandingPadInst::Catch ||
2456                !isa<ArrayType>(Val->getType())) &&
2457               "Catch clause has a invalid type!");
2458        assert((CT != LandingPadInst::Filter ||
2459                isa<ArrayType>(Val->getType())) &&
2460               "Filter clause has invalid type!");
2461        LP->addClause(Val);
2462      }
2463
2464      I = LP;
2465      InstructionList.push_back(I);
2466      break;
2467    }
2468
2469    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2470      if (Record.size() != 4)
2471        return Error("Invalid ALLOCA record");
2472      PointerType *Ty =
2473        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2474      Type *OpTy = getTypeByID(Record[1]);
2475      Value *Size = getFnValueByID(Record[2], OpTy);
2476      unsigned Align = Record[3];
2477      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2478      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2479      InstructionList.push_back(I);
2480      break;
2481    }
2482    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2483      unsigned OpNum = 0;
2484      Value *Op;
2485      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2486          OpNum+2 != Record.size())
2487        return Error("Invalid LOAD record");
2488
2489      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2490      InstructionList.push_back(I);
2491      break;
2492    }
2493    case bitc::FUNC_CODE_INST_LOADATOMIC: {
2494       // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2495      unsigned OpNum = 0;
2496      Value *Op;
2497      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2498          OpNum+4 != Record.size())
2499        return Error("Invalid LOADATOMIC record");
2500
2501
2502      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2503      if (Ordering == NotAtomic || Ordering == Release ||
2504          Ordering == AcquireRelease)
2505        return Error("Invalid LOADATOMIC record");
2506      if (Ordering != NotAtomic && Record[OpNum] == 0)
2507        return Error("Invalid LOADATOMIC record");
2508      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2509
2510      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2511                       Ordering, SynchScope);
2512      InstructionList.push_back(I);
2513      break;
2514    }
2515    case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2516      unsigned OpNum = 0;
2517      Value *Val, *Ptr;
2518      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2519          getValue(Record, OpNum,
2520                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2521          OpNum+2 != Record.size())
2522        return Error("Invalid STORE record");
2523
2524      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2525      InstructionList.push_back(I);
2526      break;
2527    }
2528    case bitc::FUNC_CODE_INST_STOREATOMIC: {
2529      // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2530      unsigned OpNum = 0;
2531      Value *Val, *Ptr;
2532      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2533          getValue(Record, OpNum,
2534                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2535          OpNum+4 != Record.size())
2536        return Error("Invalid STOREATOMIC record");
2537
2538      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2539      if (Ordering == NotAtomic || Ordering == Acquire ||
2540          Ordering == AcquireRelease)
2541        return Error("Invalid STOREATOMIC record");
2542      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2543      if (Ordering != NotAtomic && Record[OpNum] == 0)
2544        return Error("Invalid STOREATOMIC record");
2545
2546      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2547                        Ordering, SynchScope);
2548      InstructionList.push_back(I);
2549      break;
2550    }
2551    case bitc::FUNC_CODE_INST_CMPXCHG: {
2552      // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2553      unsigned OpNum = 0;
2554      Value *Ptr, *Cmp, *New;
2555      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2556          getValue(Record, OpNum,
2557                    cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2558          getValue(Record, OpNum,
2559                    cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2560          OpNum+3 != Record.size())
2561        return Error("Invalid CMPXCHG record");
2562      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2563      if (Ordering == NotAtomic || Ordering == Unordered)
2564        return Error("Invalid CMPXCHG record");
2565      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2566      I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2567      cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2568      InstructionList.push_back(I);
2569      break;
2570    }
2571    case bitc::FUNC_CODE_INST_ATOMICRMW: {
2572      // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2573      unsigned OpNum = 0;
2574      Value *Ptr, *Val;
2575      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2576          getValue(Record, OpNum,
2577                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2578          OpNum+4 != Record.size())
2579        return Error("Invalid ATOMICRMW record");
2580      AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2581      if (Operation < AtomicRMWInst::FIRST_BINOP ||
2582          Operation > AtomicRMWInst::LAST_BINOP)
2583        return Error("Invalid ATOMICRMW record");
2584      AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2585      if (Ordering == NotAtomic || Ordering == Unordered)
2586        return Error("Invalid ATOMICRMW record");
2587      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2588      I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2589      cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2590      InstructionList.push_back(I);
2591      break;
2592    }
2593    case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2594      if (2 != Record.size())
2595        return Error("Invalid FENCE record");
2596      AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2597      if (Ordering == NotAtomic || Ordering == Unordered ||
2598          Ordering == Monotonic)
2599        return Error("Invalid FENCE record");
2600      SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2601      I = new FenceInst(Context, Ordering, SynchScope);
2602      InstructionList.push_back(I);
2603      break;
2604    }
2605    case bitc::FUNC_CODE_INST_CALL: {
2606      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2607      if (Record.size() < 3)
2608        return Error("Invalid CALL record");
2609
2610      AttrListPtr PAL = getAttributes(Record[0]);
2611      unsigned CCInfo = Record[1];
2612
2613      unsigned OpNum = 2;
2614      Value *Callee;
2615      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2616        return Error("Invalid CALL record");
2617
2618      PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2619      FunctionType *FTy = 0;
2620      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2621      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2622        return Error("Invalid CALL record");
2623
2624      SmallVector<Value*, 16> Args;
2625      // Read the fixed params.
2626      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2627        if (FTy->getParamType(i)->isLabelTy())
2628          Args.push_back(getBasicBlock(Record[OpNum]));
2629        else
2630          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2631        if (Args.back() == 0) return Error("Invalid CALL record");
2632      }
2633
2634      // Read type/value pairs for varargs params.
2635      if (!FTy->isVarArg()) {
2636        if (OpNum != Record.size())
2637          return Error("Invalid CALL record");
2638      } else {
2639        while (OpNum != Record.size()) {
2640          Value *Op;
2641          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2642            return Error("Invalid CALL record");
2643          Args.push_back(Op);
2644        }
2645      }
2646
2647      I = CallInst::Create(Callee, Args);
2648      InstructionList.push_back(I);
2649      cast<CallInst>(I)->setCallingConv(
2650        static_cast<CallingConv::ID>(CCInfo>>1));
2651      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2652      cast<CallInst>(I)->setAttributes(PAL);
2653      break;
2654    }
2655    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2656      if (Record.size() < 3)
2657        return Error("Invalid VAARG record");
2658      Type *OpTy = getTypeByID(Record[0]);
2659      Value *Op = getFnValueByID(Record[1], OpTy);
2660      Type *ResTy = getTypeByID(Record[2]);
2661      if (!OpTy || !Op || !ResTy)
2662        return Error("Invalid VAARG record");
2663      I = new VAArgInst(Op, ResTy);
2664      InstructionList.push_back(I);
2665      break;
2666    }
2667    }
2668
2669    // Add instruction to end of current BB.  If there is no current BB, reject
2670    // this file.
2671    if (CurBB == 0) {
2672      delete I;
2673      return Error("Invalid instruction with no BB");
2674    }
2675    CurBB->getInstList().push_back(I);
2676
2677    // If this was a terminator instruction, move to the next block.
2678    if (isa<TerminatorInst>(I)) {
2679      ++CurBBNo;
2680      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2681    }
2682
2683    // Non-void values get registered in the value table for future use.
2684    if (I && !I->getType()->isVoidTy())
2685      ValueList.AssignValue(I, NextValueNo++);
2686  }
2687
2688  // Check the function list for unresolved values.
2689  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2690    if (A->getParent() == 0) {
2691      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2692      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2693        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2694          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2695          delete A;
2696        }
2697      }
2698      return Error("Never resolved value found in function!");
2699    }
2700  }
2701
2702  // FIXME: Check for unresolved forward-declared metadata references
2703  // and clean up leaks.
2704
2705  // See if anything took the address of blocks in this function.  If so,
2706  // resolve them now.
2707  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2708    BlockAddrFwdRefs.find(F);
2709  if (BAFRI != BlockAddrFwdRefs.end()) {
2710    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2711    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2712      unsigned BlockIdx = RefList[i].first;
2713      if (BlockIdx >= FunctionBBs.size())
2714        return Error("Invalid blockaddress block #");
2715
2716      GlobalVariable *FwdRef = RefList[i].second;
2717      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2718      FwdRef->eraseFromParent();
2719    }
2720
2721    BlockAddrFwdRefs.erase(BAFRI);
2722  }
2723
2724  // Trim the value list down to the size it was before we parsed this function.
2725  ValueList.shrinkTo(ModuleValueListSize);
2726  MDValueList.shrinkTo(ModuleMDValueListSize);
2727  std::vector<BasicBlock*>().swap(FunctionBBs);
2728  return false;
2729}
2730
2731//===----------------------------------------------------------------------===//
2732// GVMaterializer implementation
2733//===----------------------------------------------------------------------===//
2734
2735
2736bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2737  if (const Function *F = dyn_cast<Function>(GV)) {
2738    return F->isDeclaration() &&
2739      DeferredFunctionInfo.count(const_cast<Function*>(F));
2740  }
2741  return false;
2742}
2743
2744bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2745  Function *F = dyn_cast<Function>(GV);
2746  // If it's not a function or is already material, ignore the request.
2747  if (!F || !F->isMaterializable()) return false;
2748
2749  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2750  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2751
2752  // Move the bit stream to the saved position of the deferred function body.
2753  Stream.JumpToBit(DFII->second);
2754
2755  if (ParseFunctionBody(F)) {
2756    if (ErrInfo) *ErrInfo = ErrorString;
2757    return true;
2758  }
2759
2760  // Upgrade any old intrinsic calls in the function.
2761  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2762       E = UpgradedIntrinsics.end(); I != E; ++I) {
2763    if (I->first != I->second) {
2764      for (Value::use_iterator UI = I->first->use_begin(),
2765           UE = I->first->use_end(); UI != UE; ) {
2766        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2767          UpgradeIntrinsicCall(CI, I->second);
2768      }
2769    }
2770  }
2771
2772  return false;
2773}
2774
2775bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2776  const Function *F = dyn_cast<Function>(GV);
2777  if (!F || F->isDeclaration())
2778    return false;
2779  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2780}
2781
2782void BitcodeReader::Dematerialize(GlobalValue *GV) {
2783  Function *F = dyn_cast<Function>(GV);
2784  // If this function isn't dematerializable, this is a noop.
2785  if (!F || !isDematerializable(F))
2786    return;
2787
2788  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2789
2790  // Just forget the function body, we can remat it later.
2791  F->deleteBody();
2792}
2793
2794
2795bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2796  assert(M == TheModule &&
2797         "Can only Materialize the Module this BitcodeReader is attached to.");
2798  // Iterate over the module, deserializing any functions that are still on
2799  // disk.
2800  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2801       F != E; ++F)
2802    if (F->isMaterializable() &&
2803        Materialize(F, ErrInfo))
2804      return true;
2805
2806  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2807  // delete the old functions to clean up. We can't do this unless the entire
2808  // module is materialized because there could always be another function body
2809  // with calls to the old function.
2810  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2811       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2812    if (I->first != I->second) {
2813      for (Value::use_iterator UI = I->first->use_begin(),
2814           UE = I->first->use_end(); UI != UE; ) {
2815        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2816          UpgradeIntrinsicCall(CI, I->second);
2817      }
2818      if (!I->first->use_empty())
2819        I->first->replaceAllUsesWith(I->second);
2820      I->first->eraseFromParent();
2821    }
2822  }
2823  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2824
2825  return false;
2826}
2827
2828
2829//===----------------------------------------------------------------------===//
2830// External interface
2831//===----------------------------------------------------------------------===//
2832
2833/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2834///
2835Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2836                                   LLVMContext& Context,
2837                                   std::string *ErrMsg) {
2838  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2839  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2840  M->setMaterializer(R);
2841  if (R->ParseBitcodeInto(M)) {
2842    if (ErrMsg)
2843      *ErrMsg = R->getErrorString();
2844
2845    delete M;  // Also deletes R.
2846    return 0;
2847  }
2848  // Have the BitcodeReader dtor delete 'Buffer'.
2849  R->setBufferOwned(true);
2850
2851  R->materializeForwardReferencedFunctions();
2852
2853  return M;
2854}
2855
2856/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2857/// If an error occurs, return null and fill in *ErrMsg if non-null.
2858Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2859                               std::string *ErrMsg){
2860  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2861  if (!M) return 0;
2862
2863  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2864  // there was an error.
2865  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2866
2867  // Read in the entire module, and destroy the BitcodeReader.
2868  if (M->MaterializeAllPermanently(ErrMsg)) {
2869    delete M;
2870    return 0;
2871  }
2872
2873  // TODO: Restore the use-lists to the in-memory state when the bitcode was
2874  // written.  We must defer until the Module has been fully materialized.
2875
2876  return M;
2877}
2878
2879std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2880                                         LLVMContext& Context,
2881                                         std::string *ErrMsg) {
2882  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2883  // Don't let the BitcodeReader dtor delete 'Buffer'.
2884  R->setBufferOwned(false);
2885
2886  std::string Triple("");
2887  if (R->ParseTriple(Triple))
2888    if (ErrMsg)
2889      *ErrMsg = R->getErrorString();
2890
2891  delete R;
2892  return Triple;
2893}
2894