BitcodeReader.cpp revision d7bb295d223e028aa9ba7fbeafc8928db4a74972
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This header defines the BitcodeReader class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Bitcode/ReaderWriter.h"
15#include "BitcodeReader.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InlineAsm.h"
19#include "llvm/IntrinsicInst.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/AutoUpgrade.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Support/MemoryBuffer.h"
27#include "llvm/OperandTraits.h"
28using namespace llvm;
29
30void BitcodeReader::FreeState() {
31  if (BufferOwned)
32    delete Buffer;
33  Buffer = 0;
34  std::vector<PATypeHolder>().swap(TypeList);
35  ValueList.clear();
36  MDValueList.clear();
37
38  std::vector<AttrListPtr>().swap(MAttributes);
39  std::vector<BasicBlock*>().swap(FunctionBBs);
40  std::vector<Function*>().swap(FunctionsWithBodies);
41  DeferredFunctionInfo.clear();
42  MDKindMap.clear();
43}
44
45//===----------------------------------------------------------------------===//
46//  Helper functions to implement forward reference resolution, etc.
47//===----------------------------------------------------------------------===//
48
49/// ConvertToString - Convert a string from a record into an std::string, return
50/// true on failure.
51template<typename StrTy>
52static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                            StrTy &Result) {
54  if (Idx > Record.size())
55    return true;
56
57  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58    Result += (char)Record[i];
59  return false;
60}
61
62static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63  switch (Val) {
64  default: // Map unknown/new linkages to external
65  case 0:  return GlobalValue::ExternalLinkage;
66  case 1:  return GlobalValue::WeakAnyLinkage;
67  case 2:  return GlobalValue::AppendingLinkage;
68  case 3:  return GlobalValue::InternalLinkage;
69  case 4:  return GlobalValue::LinkOnceAnyLinkage;
70  case 5:  return GlobalValue::DLLImportLinkage;
71  case 6:  return GlobalValue::DLLExportLinkage;
72  case 7:  return GlobalValue::ExternalWeakLinkage;
73  case 8:  return GlobalValue::CommonLinkage;
74  case 9:  return GlobalValue::PrivateLinkage;
75  case 10: return GlobalValue::WeakODRLinkage;
76  case 11: return GlobalValue::LinkOnceODRLinkage;
77  case 12: return GlobalValue::AvailableExternallyLinkage;
78  case 13: return GlobalValue::LinkerPrivateLinkage;
79  case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80  case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81  }
82}
83
84static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85  switch (Val) {
86  default: // Map unknown visibilities to default.
87  case 0: return GlobalValue::DefaultVisibility;
88  case 1: return GlobalValue::HiddenVisibility;
89  case 2: return GlobalValue::ProtectedVisibility;
90  }
91}
92
93static int GetDecodedCastOpcode(unsigned Val) {
94  switch (Val) {
95  default: return -1;
96  case bitc::CAST_TRUNC   : return Instruction::Trunc;
97  case bitc::CAST_ZEXT    : return Instruction::ZExt;
98  case bitc::CAST_SEXT    : return Instruction::SExt;
99  case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100  case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101  case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102  case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104  case bitc::CAST_FPEXT   : return Instruction::FPExt;
105  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107  case bitc::CAST_BITCAST : return Instruction::BitCast;
108  }
109}
110static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111  switch (Val) {
112  default: return -1;
113  case bitc::BINOP_ADD:
114    return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115  case bitc::BINOP_SUB:
116    return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117  case bitc::BINOP_MUL:
118    return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119  case bitc::BINOP_UDIV: return Instruction::UDiv;
120  case bitc::BINOP_SDIV:
121    return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122  case bitc::BINOP_UREM: return Instruction::URem;
123  case bitc::BINOP_SREM:
124    return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125  case bitc::BINOP_SHL:  return Instruction::Shl;
126  case bitc::BINOP_LSHR: return Instruction::LShr;
127  case bitc::BINOP_ASHR: return Instruction::AShr;
128  case bitc::BINOP_AND:  return Instruction::And;
129  case bitc::BINOP_OR:   return Instruction::Or;
130  case bitc::BINOP_XOR:  return Instruction::Xor;
131  }
132}
133
134namespace llvm {
135namespace {
136  /// @brief A class for maintaining the slot number definition
137  /// as a placeholder for the actual definition for forward constants defs.
138  class ConstantPlaceHolder : public ConstantExpr {
139    void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140  public:
141    // allocate space for exactly one operand
142    void *operator new(size_t s) {
143      return User::operator new(s, 1);
144    }
145    explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146      : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147      Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148    }
149
150    /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151    //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152    static bool classof(const Value *V) {
153      return isa<ConstantExpr>(V) &&
154             cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155    }
156
157
158    /// Provide fast operand accessors
159    //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160  };
161}
162
163// FIXME: can we inherit this from ConstantExpr?
164template <>
165struct OperandTraits<ConstantPlaceHolder> :
166  public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167};
168}
169
170
171void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172  if (Idx == size()) {
173    push_back(V);
174    return;
175  }
176
177  if (Idx >= size())
178    resize(Idx+1);
179
180  WeakVH &OldV = ValuePtrs[Idx];
181  if (OldV == 0) {
182    OldV = V;
183    return;
184  }
185
186  // Handle constants and non-constants (e.g. instrs) differently for
187  // efficiency.
188  if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189    ResolveConstants.push_back(std::make_pair(PHC, Idx));
190    OldV = V;
191  } else {
192    // If there was a forward reference to this value, replace it.
193    Value *PrevVal = OldV;
194    OldV->replaceAllUsesWith(V);
195    delete PrevVal;
196  }
197}
198
199
200Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                    const Type *Ty) {
202  if (Idx >= size())
203    resize(Idx + 1);
204
205  if (Value *V = ValuePtrs[Idx]) {
206    assert(Ty == V->getType() && "Type mismatch in constant table!");
207    return cast<Constant>(V);
208  }
209
210  // Create and return a placeholder, which will later be RAUW'd.
211  Constant *C = new ConstantPlaceHolder(Ty, Context);
212  ValuePtrs[Idx] = C;
213  return C;
214}
215
216Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217  if (Idx >= size())
218    resize(Idx + 1);
219
220  if (Value *V = ValuePtrs[Idx]) {
221    assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222    return V;
223  }
224
225  // No type specified, must be invalid reference.
226  if (Ty == 0) return 0;
227
228  // Create and return a placeholder, which will later be RAUW'd.
229  Value *V = new Argument(Ty);
230  ValuePtrs[Idx] = V;
231  return V;
232}
233
234/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235/// resolves any forward references.  The idea behind this is that we sometimes
236/// get constants (such as large arrays) which reference *many* forward ref
237/// constants.  Replacing each of these causes a lot of thrashing when
238/// building/reuniquing the constant.  Instead of doing this, we look at all the
239/// uses and rewrite all the place holders at once for any constant that uses
240/// a placeholder.
241void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242  // Sort the values by-pointer so that they are efficient to look up with a
243  // binary search.
244  std::sort(ResolveConstants.begin(), ResolveConstants.end());
245
246  SmallVector<Constant*, 64> NewOps;
247
248  while (!ResolveConstants.empty()) {
249    Value *RealVal = operator[](ResolveConstants.back().second);
250    Constant *Placeholder = ResolveConstants.back().first;
251    ResolveConstants.pop_back();
252
253    // Loop over all users of the placeholder, updating them to reference the
254    // new value.  If they reference more than one placeholder, update them all
255    // at once.
256    while (!Placeholder->use_empty()) {
257      Value::use_iterator UI = Placeholder->use_begin();
258      User *U = *UI;
259
260      // If the using object isn't uniqued, just update the operands.  This
261      // handles instructions and initializers for global variables.
262      if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263        UI.getUse().set(RealVal);
264        continue;
265      }
266
267      // Otherwise, we have a constant that uses the placeholder.  Replace that
268      // constant with a new constant that has *all* placeholder uses updated.
269      Constant *UserC = cast<Constant>(U);
270      for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271           I != E; ++I) {
272        Value *NewOp;
273        if (!isa<ConstantPlaceHolder>(*I)) {
274          // Not a placeholder reference.
275          NewOp = *I;
276        } else if (*I == Placeholder) {
277          // Common case is that it just references this one placeholder.
278          NewOp = RealVal;
279        } else {
280          // Otherwise, look up the placeholder in ResolveConstants.
281          ResolveConstantsTy::iterator It =
282            std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                             std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                            0));
285          assert(It != ResolveConstants.end() && It->first == *I);
286          NewOp = operator[](It->second);
287        }
288
289        NewOps.push_back(cast<Constant>(NewOp));
290      }
291
292      // Make the new constant.
293      Constant *NewC;
294      if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295        NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                        NewOps.size());
297      } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298        NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                         UserCS->getType()->isPacked());
300      } else if (isa<ConstantVector>(UserC)) {
301        NewC = ConstantVector::get(NewOps);
302      } else {
303        assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304        NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                          NewOps.size());
306      }
307
308      UserC->replaceAllUsesWith(NewC);
309      UserC->destroyConstant();
310      NewOps.clear();
311    }
312
313    // Update all ValueHandles, they should be the only users at this point.
314    Placeholder->replaceAllUsesWith(RealVal);
315    delete Placeholder;
316  }
317}
318
319void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320  if (Idx == size()) {
321    push_back(V);
322    return;
323  }
324
325  if (Idx >= size())
326    resize(Idx+1);
327
328  WeakVH &OldV = MDValuePtrs[Idx];
329  if (OldV == 0) {
330    OldV = V;
331    return;
332  }
333
334  // If there was a forward reference to this value, replace it.
335  MDNode *PrevVal = cast<MDNode>(OldV);
336  OldV->replaceAllUsesWith(V);
337  MDNode::deleteTemporary(PrevVal);
338  // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339  // value for Idx.
340  MDValuePtrs[Idx] = V;
341}
342
343Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344  if (Idx >= size())
345    resize(Idx + 1);
346
347  if (Value *V = MDValuePtrs[Idx]) {
348    assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349    return V;
350  }
351
352  // Create and return a placeholder, which will later be RAUW'd.
353  Value *V = MDNode::getTemporary(Context, 0, 0);
354  MDValuePtrs[Idx] = V;
355  return V;
356}
357
358const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359  // If the TypeID is in range, return it.
360  if (ID < TypeList.size())
361    return TypeList[ID].get();
362  if (!isTypeTable) return 0;
363
364  // The type table allows forward references.  Push as many Opaque types as
365  // needed to get up to ID.
366  while (TypeList.size() <= ID)
367    TypeList.push_back(OpaqueType::get(Context));
368  return TypeList.back().get();
369}
370
371//===----------------------------------------------------------------------===//
372//  Functions for parsing blocks from the bitcode file
373//===----------------------------------------------------------------------===//
374
375bool BitcodeReader::ParseAttributeBlock() {
376  if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377    return Error("Malformed block record");
378
379  if (!MAttributes.empty())
380    return Error("Multiple PARAMATTR blocks found!");
381
382  SmallVector<uint64_t, 64> Record;
383
384  SmallVector<AttributeWithIndex, 8> Attrs;
385
386  // Read all the records.
387  while (1) {
388    unsigned Code = Stream.ReadCode();
389    if (Code == bitc::END_BLOCK) {
390      if (Stream.ReadBlockEnd())
391        return Error("Error at end of PARAMATTR block");
392      return false;
393    }
394
395    if (Code == bitc::ENTER_SUBBLOCK) {
396      // No known subblocks, always skip them.
397      Stream.ReadSubBlockID();
398      if (Stream.SkipBlock())
399        return Error("Malformed block record");
400      continue;
401    }
402
403    if (Code == bitc::DEFINE_ABBREV) {
404      Stream.ReadAbbrevRecord();
405      continue;
406    }
407
408    // Read a record.
409    Record.clear();
410    switch (Stream.ReadRecord(Code, Record)) {
411    default:  // Default behavior: ignore.
412      break;
413    case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414      if (Record.size() & 1)
415        return Error("Invalid ENTRY record");
416
417      // FIXME : Remove this autoupgrade code in LLVM 3.0.
418      // If Function attributes are using index 0 then transfer them
419      // to index ~0. Index 0 is used for return value attributes but used to be
420      // used for function attributes.
421      Attributes RetAttribute = Attribute::None;
422      Attributes FnAttribute = Attribute::None;
423      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424        // FIXME: remove in LLVM 3.0
425        // The alignment is stored as a 16-bit raw value from bits 31--16.
426        // We shift the bits above 31 down by 11 bits.
427
428        unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429        if (Alignment && !isPowerOf2_32(Alignment))
430          return Error("Alignment is not a power of two.");
431
432        Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433        if (Alignment)
434          ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435        ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436        Record[i+1] = ReconstitutedAttr;
437
438        if (Record[i] == 0)
439          RetAttribute = Record[i+1];
440        else if (Record[i] == ~0U)
441          FnAttribute = Record[i+1];
442      }
443
444      unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                              Attribute::ReadOnly|Attribute::ReadNone);
446
447      if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448          (RetAttribute & OldRetAttrs) != 0) {
449        if (FnAttribute == Attribute::None) { // add a slot so they get added.
450          Record.push_back(~0U);
451          Record.push_back(0);
452        }
453
454        FnAttribute  |= RetAttribute & OldRetAttrs;
455        RetAttribute &= ~OldRetAttrs;
456      }
457
458      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459        if (Record[i] == 0) {
460          if (RetAttribute != Attribute::None)
461            Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462        } else if (Record[i] == ~0U) {
463          if (FnAttribute != Attribute::None)
464            Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465        } else if (Record[i+1] != Attribute::None)
466          Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467      }
468
469      MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470      Attrs.clear();
471      break;
472    }
473    }
474  }
475}
476
477
478bool BitcodeReader::ParseTypeTable() {
479  if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480    return Error("Malformed block record");
481
482  if (!TypeList.empty())
483    return Error("Multiple TYPE_BLOCKs found!");
484
485  SmallVector<uint64_t, 64> Record;
486  unsigned NumRecords = 0;
487
488  // Read all the records for this type table.
489  while (1) {
490    unsigned Code = Stream.ReadCode();
491    if (Code == bitc::END_BLOCK) {
492      if (NumRecords != TypeList.size())
493        return Error("Invalid type forward reference in TYPE_BLOCK");
494      if (Stream.ReadBlockEnd())
495        return Error("Error at end of type table block");
496      return false;
497    }
498
499    if (Code == bitc::ENTER_SUBBLOCK) {
500      // No known subblocks, always skip them.
501      Stream.ReadSubBlockID();
502      if (Stream.SkipBlock())
503        return Error("Malformed block record");
504      continue;
505    }
506
507    if (Code == bitc::DEFINE_ABBREV) {
508      Stream.ReadAbbrevRecord();
509      continue;
510    }
511
512    // Read a record.
513    Record.clear();
514    const Type *ResultTy = 0;
515    switch (Stream.ReadRecord(Code, Record)) {
516    default:  // Default behavior: unknown type.
517      ResultTy = 0;
518      break;
519    case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520      // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521      // type list.  This allows us to reserve space.
522      if (Record.size() < 1)
523        return Error("Invalid TYPE_CODE_NUMENTRY record");
524      TypeList.reserve(Record[0]);
525      continue;
526    case bitc::TYPE_CODE_VOID:      // VOID
527      ResultTy = Type::getVoidTy(Context);
528      break;
529    case bitc::TYPE_CODE_FLOAT:     // FLOAT
530      ResultTy = Type::getFloatTy(Context);
531      break;
532    case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533      ResultTy = Type::getDoubleTy(Context);
534      break;
535    case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536      ResultTy = Type::getX86_FP80Ty(Context);
537      break;
538    case bitc::TYPE_CODE_FP128:     // FP128
539      ResultTy = Type::getFP128Ty(Context);
540      break;
541    case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542      ResultTy = Type::getPPC_FP128Ty(Context);
543      break;
544    case bitc::TYPE_CODE_LABEL:     // LABEL
545      ResultTy = Type::getLabelTy(Context);
546      break;
547    case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548      ResultTy = 0;
549      break;
550    case bitc::TYPE_CODE_METADATA:  // METADATA
551      ResultTy = Type::getMetadataTy(Context);
552      break;
553    case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
554      ResultTy = Type::getX86_MMXTy(Context);
555      break;
556    case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
557      if (Record.size() < 1)
558        return Error("Invalid Integer type record");
559
560      ResultTy = IntegerType::get(Context, Record[0]);
561      break;
562    case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
563                                    //          [pointee type, address space]
564      if (Record.size() < 1)
565        return Error("Invalid POINTER type record");
566      unsigned AddressSpace = 0;
567      if (Record.size() == 2)
568        AddressSpace = Record[1];
569      ResultTy = PointerType::get(getTypeByID(Record[0], true),
570                                        AddressSpace);
571      break;
572    }
573    case bitc::TYPE_CODE_FUNCTION: {
574      // FIXME: attrid is dead, remove it in LLVM 3.0
575      // FUNCTION: [vararg, attrid, retty, paramty x N]
576      if (Record.size() < 3)
577        return Error("Invalid FUNCTION type record");
578      std::vector<const Type*> ArgTys;
579      for (unsigned i = 3, e = Record.size(); i != e; ++i)
580        ArgTys.push_back(getTypeByID(Record[i], true));
581
582      ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
583                                   Record[0]);
584      break;
585    }
586    case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
587      if (Record.size() < 1)
588        return Error("Invalid STRUCT type record");
589      std::vector<const Type*> EltTys;
590      for (unsigned i = 1, e = Record.size(); i != e; ++i)
591        EltTys.push_back(getTypeByID(Record[i], true));
592      ResultTy = StructType::get(Context, EltTys, Record[0]);
593      break;
594    }
595    case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
596      if (Record.size() < 2)
597        return Error("Invalid ARRAY type record");
598      ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
599      break;
600    case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
601      if (Record.size() < 2)
602        return Error("Invalid VECTOR type record");
603      ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
604      break;
605    }
606
607    if (NumRecords == TypeList.size()) {
608      // If this is a new type slot, just append it.
609      TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
610      ++NumRecords;
611    } else if (ResultTy == 0) {
612      // Otherwise, this was forward referenced, so an opaque type was created,
613      // but the result type is actually just an opaque.  Leave the one we
614      // created previously.
615      ++NumRecords;
616    } else {
617      // Otherwise, this was forward referenced, so an opaque type was created.
618      // Resolve the opaque type to the real type now.
619      assert(NumRecords < TypeList.size() && "Typelist imbalance");
620      const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
621
622      // Don't directly push the new type on the Tab. Instead we want to replace
623      // the opaque type we previously inserted with the new concrete value. The
624      // refinement from the abstract (opaque) type to the new type causes all
625      // uses of the abstract type to use the concrete type (NewTy). This will
626      // also cause the opaque type to be deleted.
627      const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
628
629      // This should have replaced the old opaque type with the new type in the
630      // value table... or with a preexisting type that was already in the
631      // system.  Let's just make sure it did.
632      assert(TypeList[NumRecords-1].get() != OldTy &&
633             "refineAbstractType didn't work!");
634    }
635  }
636}
637
638
639bool BitcodeReader::ParseTypeSymbolTable() {
640  if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
641    return Error("Malformed block record");
642
643  SmallVector<uint64_t, 64> Record;
644
645  // Read all the records for this type table.
646  std::string TypeName;
647  while (1) {
648    unsigned Code = Stream.ReadCode();
649    if (Code == bitc::END_BLOCK) {
650      if (Stream.ReadBlockEnd())
651        return Error("Error at end of type symbol table block");
652      return false;
653    }
654
655    if (Code == bitc::ENTER_SUBBLOCK) {
656      // No known subblocks, always skip them.
657      Stream.ReadSubBlockID();
658      if (Stream.SkipBlock())
659        return Error("Malformed block record");
660      continue;
661    }
662
663    if (Code == bitc::DEFINE_ABBREV) {
664      Stream.ReadAbbrevRecord();
665      continue;
666    }
667
668    // Read a record.
669    Record.clear();
670    switch (Stream.ReadRecord(Code, Record)) {
671    default:  // Default behavior: unknown type.
672      break;
673    case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
674      if (ConvertToString(Record, 1, TypeName))
675        return Error("Invalid TST_ENTRY record");
676      unsigned TypeID = Record[0];
677      if (TypeID >= TypeList.size())
678        return Error("Invalid Type ID in TST_ENTRY record");
679
680      TheModule->addTypeName(TypeName, TypeList[TypeID].get());
681      TypeName.clear();
682      break;
683    }
684  }
685}
686
687bool BitcodeReader::ParseValueSymbolTable() {
688  if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
689    return Error("Malformed block record");
690
691  SmallVector<uint64_t, 64> Record;
692
693  // Read all the records for this value table.
694  SmallString<128> ValueName;
695  while (1) {
696    unsigned Code = Stream.ReadCode();
697    if (Code == bitc::END_BLOCK) {
698      if (Stream.ReadBlockEnd())
699        return Error("Error at end of value symbol table block");
700      return false;
701    }
702    if (Code == bitc::ENTER_SUBBLOCK) {
703      // No known subblocks, always skip them.
704      Stream.ReadSubBlockID();
705      if (Stream.SkipBlock())
706        return Error("Malformed block record");
707      continue;
708    }
709
710    if (Code == bitc::DEFINE_ABBREV) {
711      Stream.ReadAbbrevRecord();
712      continue;
713    }
714
715    // Read a record.
716    Record.clear();
717    unsigned VSTCode = Stream.ReadRecord(Code, Record);
718    switch (VSTCode) {
719    default:  // Default behavior: unknown type.
720      break;
721    case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
722      if (ConvertToString(Record, 1, ValueName))
723        return Error("Invalid VST_ENTRY record");
724      unsigned ValueID = Record[0];
725      if (ValueID >= ValueList.size())
726        return Error("Invalid Value ID in VST_ENTRY record");
727      Value *V = ValueList[ValueID];
728
729      V->setName(StringRef(ValueName.data(), ValueName.size()));
730      ValueName.clear();
731      break;
732    }
733    case bitc::VST_CODE_BBENTRY:
734    case bitc::VST_CODE_LPADENTRY: {
735      if (ConvertToString(Record, 1, ValueName))
736        return Error("Invalid VST_BBENTRY record");
737      BasicBlock *BB = getBasicBlock(Record[0]);
738      if (BB == 0)
739        return Error("Invalid BB ID in VST_BBENTRY record");
740
741      if (VSTCode == bitc::VST_CODE_LPADENTRY)
742        BB->setIsLandingPad(true);
743
744      BB->setName(StringRef(ValueName.data(), ValueName.size()));
745      ValueName.clear();
746      break;
747    }
748    }
749  }
750}
751
752bool BitcodeReader::ParseMetadata() {
753  unsigned NextMDValueNo = MDValueList.size();
754
755  if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
756    return Error("Malformed block record");
757
758  SmallVector<uint64_t, 64> Record;
759
760  // Read all the records.
761  while (1) {
762    unsigned Code = Stream.ReadCode();
763    if (Code == bitc::END_BLOCK) {
764      if (Stream.ReadBlockEnd())
765        return Error("Error at end of PARAMATTR block");
766      return false;
767    }
768
769    if (Code == bitc::ENTER_SUBBLOCK) {
770      // No known subblocks, always skip them.
771      Stream.ReadSubBlockID();
772      if (Stream.SkipBlock())
773        return Error("Malformed block record");
774      continue;
775    }
776
777    if (Code == bitc::DEFINE_ABBREV) {
778      Stream.ReadAbbrevRecord();
779      continue;
780    }
781
782    bool IsFunctionLocal = false;
783    // Read a record.
784    Record.clear();
785    Code = Stream.ReadRecord(Code, Record);
786    switch (Code) {
787    default:  // Default behavior: ignore.
788      break;
789    case bitc::METADATA_NAME: {
790      // Read named of the named metadata.
791      unsigned NameLength = Record.size();
792      SmallString<8> Name;
793      Name.resize(NameLength);
794      for (unsigned i = 0; i != NameLength; ++i)
795        Name[i] = Record[i];
796      Record.clear();
797      Code = Stream.ReadCode();
798
799      // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
800      // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
801      unsigned NextBitCode = Stream.ReadRecord(Code, Record);
802      if (NextBitCode == bitc::METADATA_NAMED_NODE) {
803        LLVM2_7MetadataDetected = true;
804      } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
805        assert ( 0 && "Invalid Named Metadata record");
806
807      // Read named metadata elements.
808      unsigned Size = Record.size();
809      NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
810      for (unsigned i = 0; i != Size; ++i) {
811        MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
812        if (MD == 0)
813          return Error("Malformed metadata record");
814        NMD->addOperand(MD);
815      }
816      // Backwards compatibility hack: NamedMDValues used to be Values,
817      // and they got their own slots in the value numbering. They are no
818      // longer Values, however we still need to account for them in the
819      // numbering in order to be able to read old bitcode files.
820      // FIXME: Remove this in LLVM 3.0.
821      if (LLVM2_7MetadataDetected)
822        MDValueList.AssignValue(0, NextMDValueNo++);
823      break;
824    }
825    case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
826    case bitc::METADATA_FN_NODE2:
827      IsFunctionLocal = true;
828      // fall-through
829    case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
830    case bitc::METADATA_NODE2: {
831
832      // Detect 2.7-era metadata.
833      // FIXME: Remove in LLVM 3.0.
834      if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
835        LLVM2_7MetadataDetected = true;
836
837      if (Record.size() % 2 == 1)
838        return Error("Invalid METADATA_NODE2 record");
839
840      unsigned Size = Record.size();
841      SmallVector<Value*, 8> Elts;
842      for (unsigned i = 0; i != Size; i += 2) {
843        const Type *Ty = getTypeByID(Record[i]);
844        if (!Ty) return Error("Invalid METADATA_NODE2 record");
845        if (Ty->isMetadataTy())
846          Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
847        else if (!Ty->isVoidTy())
848          Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
849        else
850          Elts.push_back(NULL);
851      }
852      Value *V = MDNode::getWhenValsUnresolved(Context,
853                                               Elts.data(), Elts.size(),
854                                               IsFunctionLocal);
855      IsFunctionLocal = false;
856      MDValueList.AssignValue(V, NextMDValueNo++);
857      break;
858    }
859    case bitc::METADATA_STRING: {
860      unsigned MDStringLength = Record.size();
861      SmallString<8> String;
862      String.resize(MDStringLength);
863      for (unsigned i = 0; i != MDStringLength; ++i)
864        String[i] = Record[i];
865      Value *V = MDString::get(Context,
866                               StringRef(String.data(), String.size()));
867      MDValueList.AssignValue(V, NextMDValueNo++);
868      break;
869    }
870    case bitc::METADATA_KIND: {
871      unsigned RecordLength = Record.size();
872      if (Record.empty() || RecordLength < 2)
873        return Error("Invalid METADATA_KIND record");
874      SmallString<8> Name;
875      Name.resize(RecordLength-1);
876      unsigned Kind = Record[0];
877      for (unsigned i = 1; i != RecordLength; ++i)
878        Name[i-1] = Record[i];
879
880      unsigned NewKind = TheModule->getMDKindID(Name.str());
881      if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
882        return Error("Conflicting METADATA_KIND records");
883      break;
884    }
885    }
886  }
887}
888
889/// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
890/// the LSB for dense VBR encoding.
891static uint64_t DecodeSignRotatedValue(uint64_t V) {
892  if ((V & 1) == 0)
893    return V >> 1;
894  if (V != 1)
895    return -(V >> 1);
896  // There is no such thing as -0 with integers.  "-0" really means MININT.
897  return 1ULL << 63;
898}
899
900/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
901/// values and aliases that we can.
902bool BitcodeReader::ResolveGlobalAndAliasInits() {
903  std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
904  std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
905
906  GlobalInitWorklist.swap(GlobalInits);
907  AliasInitWorklist.swap(AliasInits);
908
909  while (!GlobalInitWorklist.empty()) {
910    unsigned ValID = GlobalInitWorklist.back().second;
911    if (ValID >= ValueList.size()) {
912      // Not ready to resolve this yet, it requires something later in the file.
913      GlobalInits.push_back(GlobalInitWorklist.back());
914    } else {
915      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
916        GlobalInitWorklist.back().first->setInitializer(C);
917      else
918        return Error("Global variable initializer is not a constant!");
919    }
920    GlobalInitWorklist.pop_back();
921  }
922
923  while (!AliasInitWorklist.empty()) {
924    unsigned ValID = AliasInitWorklist.back().second;
925    if (ValID >= ValueList.size()) {
926      AliasInits.push_back(AliasInitWorklist.back());
927    } else {
928      if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
929        AliasInitWorklist.back().first->setAliasee(C);
930      else
931        return Error("Alias initializer is not a constant!");
932    }
933    AliasInitWorklist.pop_back();
934  }
935  return false;
936}
937
938bool BitcodeReader::ParseConstants() {
939  if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
940    return Error("Malformed block record");
941
942  SmallVector<uint64_t, 64> Record;
943
944  // Read all the records for this value table.
945  const Type *CurTy = Type::getInt32Ty(Context);
946  unsigned NextCstNo = ValueList.size();
947  while (1) {
948    unsigned Code = Stream.ReadCode();
949    if (Code == bitc::END_BLOCK)
950      break;
951
952    if (Code == bitc::ENTER_SUBBLOCK) {
953      // No known subblocks, always skip them.
954      Stream.ReadSubBlockID();
955      if (Stream.SkipBlock())
956        return Error("Malformed block record");
957      continue;
958    }
959
960    if (Code == bitc::DEFINE_ABBREV) {
961      Stream.ReadAbbrevRecord();
962      continue;
963    }
964
965    // Read a record.
966    Record.clear();
967    Value *V = 0;
968    unsigned BitCode = Stream.ReadRecord(Code, Record);
969    switch (BitCode) {
970    default:  // Default behavior: unknown constant
971    case bitc::CST_CODE_UNDEF:     // UNDEF
972      V = UndefValue::get(CurTy);
973      break;
974    case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
975      if (Record.empty())
976        return Error("Malformed CST_SETTYPE record");
977      if (Record[0] >= TypeList.size())
978        return Error("Invalid Type ID in CST_SETTYPE record");
979      CurTy = TypeList[Record[0]];
980      continue;  // Skip the ValueList manipulation.
981    case bitc::CST_CODE_NULL:      // NULL
982      V = Constant::getNullValue(CurTy);
983      break;
984    case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
985      if (!CurTy->isIntegerTy() || Record.empty())
986        return Error("Invalid CST_INTEGER record");
987      V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
988      break;
989    case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
990      if (!CurTy->isIntegerTy() || Record.empty())
991        return Error("Invalid WIDE_INTEGER record");
992
993      unsigned NumWords = Record.size();
994      SmallVector<uint64_t, 8> Words;
995      Words.resize(NumWords);
996      for (unsigned i = 0; i != NumWords; ++i)
997        Words[i] = DecodeSignRotatedValue(Record[i]);
998      V = ConstantInt::get(Context,
999                           APInt(cast<IntegerType>(CurTy)->getBitWidth(),
1000                           NumWords, &Words[0]));
1001      break;
1002    }
1003    case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1004      if (Record.empty())
1005        return Error("Invalid FLOAT record");
1006      if (CurTy->isFloatTy())
1007        V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1008      else if (CurTy->isDoubleTy())
1009        V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1010      else if (CurTy->isX86_FP80Ty()) {
1011        // Bits are not stored the same way as a normal i80 APInt, compensate.
1012        uint64_t Rearrange[2];
1013        Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1014        Rearrange[1] = Record[0] >> 48;
1015        V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1016      } else if (CurTy->isFP128Ty())
1017        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1018      else if (CurTy->isPPC_FP128Ty())
1019        V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1020      else
1021        V = UndefValue::get(CurTy);
1022      break;
1023    }
1024
1025    case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1026      if (Record.empty())
1027        return Error("Invalid CST_AGGREGATE record");
1028
1029      unsigned Size = Record.size();
1030      std::vector<Constant*> Elts;
1031
1032      if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1033        for (unsigned i = 0; i != Size; ++i)
1034          Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1035                                                     STy->getElementType(i)));
1036        V = ConstantStruct::get(STy, Elts);
1037      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1038        const Type *EltTy = ATy->getElementType();
1039        for (unsigned i = 0; i != Size; ++i)
1040          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1041        V = ConstantArray::get(ATy, Elts);
1042      } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1043        const Type *EltTy = VTy->getElementType();
1044        for (unsigned i = 0; i != Size; ++i)
1045          Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1046        V = ConstantVector::get(Elts);
1047      } else {
1048        V = UndefValue::get(CurTy);
1049      }
1050      break;
1051    }
1052    case bitc::CST_CODE_STRING: { // STRING: [values]
1053      if (Record.empty())
1054        return Error("Invalid CST_AGGREGATE record");
1055
1056      const ArrayType *ATy = cast<ArrayType>(CurTy);
1057      const Type *EltTy = ATy->getElementType();
1058
1059      unsigned Size = Record.size();
1060      std::vector<Constant*> Elts;
1061      for (unsigned i = 0; i != Size; ++i)
1062        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1063      V = ConstantArray::get(ATy, Elts);
1064      break;
1065    }
1066    case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1067      if (Record.empty())
1068        return Error("Invalid CST_AGGREGATE record");
1069
1070      const ArrayType *ATy = cast<ArrayType>(CurTy);
1071      const Type *EltTy = ATy->getElementType();
1072
1073      unsigned Size = Record.size();
1074      std::vector<Constant*> Elts;
1075      for (unsigned i = 0; i != Size; ++i)
1076        Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1077      Elts.push_back(Constant::getNullValue(EltTy));
1078      V = ConstantArray::get(ATy, Elts);
1079      break;
1080    }
1081    case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1082      if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1083      int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1084      if (Opc < 0) {
1085        V = UndefValue::get(CurTy);  // Unknown binop.
1086      } else {
1087        Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1088        Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1089        unsigned Flags = 0;
1090        if (Record.size() >= 4) {
1091          if (Opc == Instruction::Add ||
1092              Opc == Instruction::Sub ||
1093              Opc == Instruction::Mul ||
1094              Opc == Instruction::Shl) {
1095            if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1096              Flags |= OverflowingBinaryOperator::NoSignedWrap;
1097            if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1098              Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1099          } else if (Opc == Instruction::SDiv ||
1100                     Opc == Instruction::UDiv ||
1101                     Opc == Instruction::LShr ||
1102                     Opc == Instruction::AShr) {
1103            if (Record[3] & (1 << bitc::PEO_EXACT))
1104              Flags |= SDivOperator::IsExact;
1105          }
1106        }
1107        V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1108      }
1109      break;
1110    }
1111    case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1112      if (Record.size() < 3) return Error("Invalid CE_CAST record");
1113      int Opc = GetDecodedCastOpcode(Record[0]);
1114      if (Opc < 0) {
1115        V = UndefValue::get(CurTy);  // Unknown cast.
1116      } else {
1117        const Type *OpTy = getTypeByID(Record[1]);
1118        if (!OpTy) return Error("Invalid CE_CAST record");
1119        Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1120        V = ConstantExpr::getCast(Opc, Op, CurTy);
1121      }
1122      break;
1123    }
1124    case bitc::CST_CODE_CE_INBOUNDS_GEP:
1125    case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1126      if (Record.size() & 1) return Error("Invalid CE_GEP record");
1127      SmallVector<Constant*, 16> Elts;
1128      for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1129        const Type *ElTy = getTypeByID(Record[i]);
1130        if (!ElTy) return Error("Invalid CE_GEP record");
1131        Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1132      }
1133      if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1134        V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1135                                                   Elts.size()-1);
1136      else
1137        V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1138                                           Elts.size()-1);
1139      break;
1140    }
1141    case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1142      if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1143      V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1144                                                              Type::getInt1Ty(Context)),
1145                                  ValueList.getConstantFwdRef(Record[1],CurTy),
1146                                  ValueList.getConstantFwdRef(Record[2],CurTy));
1147      break;
1148    case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1149      if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1150      const VectorType *OpTy =
1151        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1152      if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1153      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1154      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1155      V = ConstantExpr::getExtractElement(Op0, Op1);
1156      break;
1157    }
1158    case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1159      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1160      if (Record.size() < 3 || OpTy == 0)
1161        return Error("Invalid CE_INSERTELT record");
1162      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1163      Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1164                                                  OpTy->getElementType());
1165      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1166      V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1167      break;
1168    }
1169    case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1170      const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1171      if (Record.size() < 3 || OpTy == 0)
1172        return Error("Invalid CE_SHUFFLEVEC record");
1173      Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1174      Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1175      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1176                                                 OpTy->getNumElements());
1177      Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1178      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1179      break;
1180    }
1181    case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1182      const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1183      const VectorType *OpTy =
1184        dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1185      if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1186        return Error("Invalid CE_SHUFVEC_EX record");
1187      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1188      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1189      const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1190                                                 RTy->getNumElements());
1191      Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1192      V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1193      break;
1194    }
1195    case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1196      if (Record.size() < 4) return Error("Invalid CE_CMP record");
1197      const Type *OpTy = getTypeByID(Record[0]);
1198      if (OpTy == 0) return Error("Invalid CE_CMP record");
1199      Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1200      Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1201
1202      if (OpTy->isFPOrFPVectorTy())
1203        V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1204      else
1205        V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1206      break;
1207    }
1208    case bitc::CST_CODE_INLINEASM: {
1209      if (Record.size() < 2) return Error("Invalid INLINEASM record");
1210      std::string AsmStr, ConstrStr;
1211      bool HasSideEffects = Record[0] & 1;
1212      bool IsAlignStack = Record[0] >> 1;
1213      unsigned AsmStrSize = Record[1];
1214      if (2+AsmStrSize >= Record.size())
1215        return Error("Invalid INLINEASM record");
1216      unsigned ConstStrSize = Record[2+AsmStrSize];
1217      if (3+AsmStrSize+ConstStrSize > Record.size())
1218        return Error("Invalid INLINEASM record");
1219
1220      for (unsigned i = 0; i != AsmStrSize; ++i)
1221        AsmStr += (char)Record[2+i];
1222      for (unsigned i = 0; i != ConstStrSize; ++i)
1223        ConstrStr += (char)Record[3+AsmStrSize+i];
1224      const PointerType *PTy = cast<PointerType>(CurTy);
1225      V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1226                         AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1227      break;
1228    }
1229    case bitc::CST_CODE_BLOCKADDRESS:{
1230      if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1231      const Type *FnTy = getTypeByID(Record[0]);
1232      if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1233      Function *Fn =
1234        dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1235      if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1236
1237      GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1238                                                  Type::getInt8Ty(Context),
1239                                            false, GlobalValue::InternalLinkage,
1240                                                  0, "");
1241      BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1242      V = FwdRef;
1243      break;
1244    }
1245    }
1246
1247    ValueList.AssignValue(V, NextCstNo);
1248    ++NextCstNo;
1249  }
1250
1251  if (NextCstNo != ValueList.size())
1252    return Error("Invalid constant reference!");
1253
1254  if (Stream.ReadBlockEnd())
1255    return Error("Error at end of constants block");
1256
1257  // Once all the constants have been read, go through and resolve forward
1258  // references.
1259  ValueList.ResolveConstantForwardRefs();
1260  return false;
1261}
1262
1263/// RememberAndSkipFunctionBody - When we see the block for a function body,
1264/// remember where it is and then skip it.  This lets us lazily deserialize the
1265/// functions.
1266bool BitcodeReader::RememberAndSkipFunctionBody() {
1267  // Get the function we are talking about.
1268  if (FunctionsWithBodies.empty())
1269    return Error("Insufficient function protos");
1270
1271  Function *Fn = FunctionsWithBodies.back();
1272  FunctionsWithBodies.pop_back();
1273
1274  // Save the current stream state.
1275  uint64_t CurBit = Stream.GetCurrentBitNo();
1276  DeferredFunctionInfo[Fn] = CurBit;
1277
1278  // Skip over the function block for now.
1279  if (Stream.SkipBlock())
1280    return Error("Malformed block record");
1281  return false;
1282}
1283
1284bool BitcodeReader::ParseModule() {
1285  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1286    return Error("Malformed block record");
1287
1288  SmallVector<uint64_t, 64> Record;
1289  std::vector<std::string> SectionTable;
1290  std::vector<std::string> GCTable;
1291
1292  // Read all the records for this module.
1293  while (!Stream.AtEndOfStream()) {
1294    unsigned Code = Stream.ReadCode();
1295    if (Code == bitc::END_BLOCK) {
1296      if (Stream.ReadBlockEnd())
1297        return Error("Error at end of module block");
1298
1299      // Patch the initializers for globals and aliases up.
1300      ResolveGlobalAndAliasInits();
1301      if (!GlobalInits.empty() || !AliasInits.empty())
1302        return Error("Malformed global initializer set");
1303      if (!FunctionsWithBodies.empty())
1304        return Error("Too few function bodies found");
1305
1306      // Look for intrinsic functions which need to be upgraded at some point
1307      for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1308           FI != FE; ++FI) {
1309        Function* NewFn;
1310        if (UpgradeIntrinsicFunction(FI, NewFn))
1311          UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1312      }
1313
1314      // Look for global variables which need to be renamed.
1315      for (Module::global_iterator
1316             GI = TheModule->global_begin(), GE = TheModule->global_end();
1317           GI != GE; ++GI)
1318        UpgradeGlobalVariable(GI);
1319
1320      // Force deallocation of memory for these vectors to favor the client that
1321      // want lazy deserialization.
1322      std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1323      std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1324      std::vector<Function*>().swap(FunctionsWithBodies);
1325      return false;
1326    }
1327
1328    if (Code == bitc::ENTER_SUBBLOCK) {
1329      switch (Stream.ReadSubBlockID()) {
1330      default:  // Skip unknown content.
1331        if (Stream.SkipBlock())
1332          return Error("Malformed block record");
1333        break;
1334      case bitc::BLOCKINFO_BLOCK_ID:
1335        if (Stream.ReadBlockInfoBlock())
1336          return Error("Malformed BlockInfoBlock");
1337        break;
1338      case bitc::PARAMATTR_BLOCK_ID:
1339        if (ParseAttributeBlock())
1340          return true;
1341        break;
1342      case bitc::TYPE_BLOCK_ID:
1343        if (ParseTypeTable())
1344          return true;
1345        break;
1346      case bitc::TYPE_SYMTAB_BLOCK_ID:
1347        if (ParseTypeSymbolTable())
1348          return true;
1349        break;
1350      case bitc::VALUE_SYMTAB_BLOCK_ID:
1351        if (ParseValueSymbolTable())
1352          return true;
1353        break;
1354      case bitc::CONSTANTS_BLOCK_ID:
1355        if (ParseConstants() || ResolveGlobalAndAliasInits())
1356          return true;
1357        break;
1358      case bitc::METADATA_BLOCK_ID:
1359        if (ParseMetadata())
1360          return true;
1361        break;
1362      case bitc::FUNCTION_BLOCK_ID:
1363        // If this is the first function body we've seen, reverse the
1364        // FunctionsWithBodies list.
1365        if (!HasReversedFunctionsWithBodies) {
1366          std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1367          HasReversedFunctionsWithBodies = true;
1368        }
1369
1370        if (RememberAndSkipFunctionBody())
1371          return true;
1372        break;
1373      }
1374      continue;
1375    }
1376
1377    if (Code == bitc::DEFINE_ABBREV) {
1378      Stream.ReadAbbrevRecord();
1379      continue;
1380    }
1381
1382    // Read a record.
1383    switch (Stream.ReadRecord(Code, Record)) {
1384    default: break;  // Default behavior, ignore unknown content.
1385    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1386      if (Record.size() < 1)
1387        return Error("Malformed MODULE_CODE_VERSION");
1388      // Only version #0 is supported so far.
1389      if (Record[0] != 0)
1390        return Error("Unknown bitstream version!");
1391      break;
1392    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1393      std::string S;
1394      if (ConvertToString(Record, 0, S))
1395        return Error("Invalid MODULE_CODE_TRIPLE record");
1396      TheModule->setTargetTriple(S);
1397      break;
1398    }
1399    case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1400      std::string S;
1401      if (ConvertToString(Record, 0, S))
1402        return Error("Invalid MODULE_CODE_DATALAYOUT record");
1403      TheModule->setDataLayout(S);
1404      break;
1405    }
1406    case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1407      std::string S;
1408      if (ConvertToString(Record, 0, S))
1409        return Error("Invalid MODULE_CODE_ASM record");
1410      TheModule->setModuleInlineAsm(S);
1411      break;
1412    }
1413    case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1414      std::string S;
1415      if (ConvertToString(Record, 0, S))
1416        return Error("Invalid MODULE_CODE_DEPLIB record");
1417      TheModule->addLibrary(S);
1418      break;
1419    }
1420    case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1421      std::string S;
1422      if (ConvertToString(Record, 0, S))
1423        return Error("Invalid MODULE_CODE_SECTIONNAME record");
1424      SectionTable.push_back(S);
1425      break;
1426    }
1427    case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1428      std::string S;
1429      if (ConvertToString(Record, 0, S))
1430        return Error("Invalid MODULE_CODE_GCNAME record");
1431      GCTable.push_back(S);
1432      break;
1433    }
1434    // GLOBALVAR: [pointer type, isconst, initid,
1435    //             linkage, alignment, section, visibility, threadlocal,
1436    //             unnamed_addr]
1437    case bitc::MODULE_CODE_GLOBALVAR: {
1438      if (Record.size() < 6)
1439        return Error("Invalid MODULE_CODE_GLOBALVAR record");
1440      const Type *Ty = getTypeByID(Record[0]);
1441      if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1442      if (!Ty->isPointerTy())
1443        return Error("Global not a pointer type!");
1444      unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1445      Ty = cast<PointerType>(Ty)->getElementType();
1446
1447      bool isConstant = Record[1];
1448      GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1449      unsigned Alignment = (1 << Record[4]) >> 1;
1450      std::string Section;
1451      if (Record[5]) {
1452        if (Record[5]-1 >= SectionTable.size())
1453          return Error("Invalid section ID");
1454        Section = SectionTable[Record[5]-1];
1455      }
1456      GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1457      if (Record.size() > 6)
1458        Visibility = GetDecodedVisibility(Record[6]);
1459      bool isThreadLocal = false;
1460      if (Record.size() > 7)
1461        isThreadLocal = Record[7];
1462
1463      bool UnnamedAddr = false;
1464      if (Record.size() > 8)
1465        UnnamedAddr = Record[8];
1466
1467      GlobalVariable *NewGV =
1468        new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1469                           isThreadLocal, AddressSpace);
1470      NewGV->setAlignment(Alignment);
1471      if (!Section.empty())
1472        NewGV->setSection(Section);
1473      NewGV->setVisibility(Visibility);
1474      NewGV->setThreadLocal(isThreadLocal);
1475      NewGV->setUnnamedAddr(UnnamedAddr);
1476
1477      ValueList.push_back(NewGV);
1478
1479      // Remember which value to use for the global initializer.
1480      if (unsigned InitID = Record[2])
1481        GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1482      break;
1483    }
1484    // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1485    //             alignment, section, visibility, gc, unnamed_addr]
1486    case bitc::MODULE_CODE_FUNCTION: {
1487      if (Record.size() < 8)
1488        return Error("Invalid MODULE_CODE_FUNCTION record");
1489      const Type *Ty = getTypeByID(Record[0]);
1490      if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1491      if (!Ty->isPointerTy())
1492        return Error("Function not a pointer type!");
1493      const FunctionType *FTy =
1494        dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1495      if (!FTy)
1496        return Error("Function not a pointer to function type!");
1497
1498      Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1499                                        "", TheModule);
1500
1501      Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1502      bool isProto = Record[2];
1503      Func->setLinkage(GetDecodedLinkage(Record[3]));
1504      Func->setAttributes(getAttributes(Record[4]));
1505
1506      Func->setAlignment((1 << Record[5]) >> 1);
1507      if (Record[6]) {
1508        if (Record[6]-1 >= SectionTable.size())
1509          return Error("Invalid section ID");
1510        Func->setSection(SectionTable[Record[6]-1]);
1511      }
1512      Func->setVisibility(GetDecodedVisibility(Record[7]));
1513      if (Record.size() > 8 && Record[8]) {
1514        if (Record[8]-1 > GCTable.size())
1515          return Error("Invalid GC ID");
1516        Func->setGC(GCTable[Record[8]-1].c_str());
1517      }
1518      bool UnnamedAddr = false;
1519      if (Record.size() > 9)
1520        UnnamedAddr = Record[9];
1521      Func->setUnnamedAddr(UnnamedAddr);
1522      ValueList.push_back(Func);
1523
1524      // If this is a function with a body, remember the prototype we are
1525      // creating now, so that we can match up the body with them later.
1526      if (!isProto)
1527        FunctionsWithBodies.push_back(Func);
1528      break;
1529    }
1530    // ALIAS: [alias type, aliasee val#, linkage]
1531    // ALIAS: [alias type, aliasee val#, linkage, visibility]
1532    case bitc::MODULE_CODE_ALIAS: {
1533      if (Record.size() < 3)
1534        return Error("Invalid MODULE_ALIAS record");
1535      const Type *Ty = getTypeByID(Record[0]);
1536      if (!Ty) return Error("Invalid MODULE_ALIAS record");
1537      if (!Ty->isPointerTy())
1538        return Error("Function not a pointer type!");
1539
1540      GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1541                                           "", 0, TheModule);
1542      // Old bitcode files didn't have visibility field.
1543      if (Record.size() > 3)
1544        NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1545      ValueList.push_back(NewGA);
1546      AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1547      break;
1548    }
1549    /// MODULE_CODE_PURGEVALS: [numvals]
1550    case bitc::MODULE_CODE_PURGEVALS:
1551      // Trim down the value list to the specified size.
1552      if (Record.size() < 1 || Record[0] > ValueList.size())
1553        return Error("Invalid MODULE_PURGEVALS record");
1554      ValueList.shrinkTo(Record[0]);
1555      break;
1556    }
1557    Record.clear();
1558  }
1559
1560  return Error("Premature end of bitstream");
1561}
1562
1563bool BitcodeReader::ParseBitcodeInto(Module *M) {
1564  TheModule = 0;
1565
1566  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1567  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1568
1569  if (Buffer->getBufferSize() & 3) {
1570    if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1571      return Error("Invalid bitcode signature");
1572    else
1573      return Error("Bitcode stream should be a multiple of 4 bytes in length");
1574  }
1575
1576  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1577  // The magic number is 0x0B17C0DE stored in little endian.
1578  if (isBitcodeWrapper(BufPtr, BufEnd))
1579    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1580      return Error("Invalid bitcode wrapper header");
1581
1582  StreamFile.init(BufPtr, BufEnd);
1583  Stream.init(StreamFile);
1584
1585  // Sniff for the signature.
1586  if (Stream.Read(8) != 'B' ||
1587      Stream.Read(8) != 'C' ||
1588      Stream.Read(4) != 0x0 ||
1589      Stream.Read(4) != 0xC ||
1590      Stream.Read(4) != 0xE ||
1591      Stream.Read(4) != 0xD)
1592    return Error("Invalid bitcode signature");
1593
1594  // We expect a number of well-defined blocks, though we don't necessarily
1595  // need to understand them all.
1596  while (!Stream.AtEndOfStream()) {
1597    unsigned Code = Stream.ReadCode();
1598
1599    if (Code != bitc::ENTER_SUBBLOCK)
1600      return Error("Invalid record at top-level");
1601
1602    unsigned BlockID = Stream.ReadSubBlockID();
1603
1604    // We only know the MODULE subblock ID.
1605    switch (BlockID) {
1606    case bitc::BLOCKINFO_BLOCK_ID:
1607      if (Stream.ReadBlockInfoBlock())
1608        return Error("Malformed BlockInfoBlock");
1609      break;
1610    case bitc::MODULE_BLOCK_ID:
1611      // Reject multiple MODULE_BLOCK's in a single bitstream.
1612      if (TheModule)
1613        return Error("Multiple MODULE_BLOCKs in same stream");
1614      TheModule = M;
1615      if (ParseModule())
1616        return true;
1617      break;
1618    default:
1619      if (Stream.SkipBlock())
1620        return Error("Malformed block record");
1621      break;
1622    }
1623  }
1624
1625  return false;
1626}
1627
1628bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1629  if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1630    return Error("Malformed block record");
1631
1632  SmallVector<uint64_t, 64> Record;
1633
1634  // Read all the records for this module.
1635  while (!Stream.AtEndOfStream()) {
1636    unsigned Code = Stream.ReadCode();
1637    if (Code == bitc::END_BLOCK) {
1638      if (Stream.ReadBlockEnd())
1639        return Error("Error at end of module block");
1640
1641      return false;
1642    }
1643
1644    if (Code == bitc::ENTER_SUBBLOCK) {
1645      switch (Stream.ReadSubBlockID()) {
1646      default:  // Skip unknown content.
1647        if (Stream.SkipBlock())
1648          return Error("Malformed block record");
1649        break;
1650      }
1651      continue;
1652    }
1653
1654    if (Code == bitc::DEFINE_ABBREV) {
1655      Stream.ReadAbbrevRecord();
1656      continue;
1657    }
1658
1659    // Read a record.
1660    switch (Stream.ReadRecord(Code, Record)) {
1661    default: break;  // Default behavior, ignore unknown content.
1662    case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1663      if (Record.size() < 1)
1664        return Error("Malformed MODULE_CODE_VERSION");
1665      // Only version #0 is supported so far.
1666      if (Record[0] != 0)
1667        return Error("Unknown bitstream version!");
1668      break;
1669    case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1670      std::string S;
1671      if (ConvertToString(Record, 0, S))
1672        return Error("Invalid MODULE_CODE_TRIPLE record");
1673      Triple = S;
1674      break;
1675    }
1676    }
1677    Record.clear();
1678  }
1679
1680  return Error("Premature end of bitstream");
1681}
1682
1683bool BitcodeReader::ParseTriple(std::string &Triple) {
1684  if (Buffer->getBufferSize() & 3)
1685    return Error("Bitcode stream should be a multiple of 4 bytes in length");
1686
1687  unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1688  unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1689
1690  // If we have a wrapper header, parse it and ignore the non-bc file contents.
1691  // The magic number is 0x0B17C0DE stored in little endian.
1692  if (isBitcodeWrapper(BufPtr, BufEnd))
1693    if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1694      return Error("Invalid bitcode wrapper header");
1695
1696  StreamFile.init(BufPtr, BufEnd);
1697  Stream.init(StreamFile);
1698
1699  // Sniff for the signature.
1700  if (Stream.Read(8) != 'B' ||
1701      Stream.Read(8) != 'C' ||
1702      Stream.Read(4) != 0x0 ||
1703      Stream.Read(4) != 0xC ||
1704      Stream.Read(4) != 0xE ||
1705      Stream.Read(4) != 0xD)
1706    return Error("Invalid bitcode signature");
1707
1708  // We expect a number of well-defined blocks, though we don't necessarily
1709  // need to understand them all.
1710  while (!Stream.AtEndOfStream()) {
1711    unsigned Code = Stream.ReadCode();
1712
1713    if (Code != bitc::ENTER_SUBBLOCK)
1714      return Error("Invalid record at top-level");
1715
1716    unsigned BlockID = Stream.ReadSubBlockID();
1717
1718    // We only know the MODULE subblock ID.
1719    switch (BlockID) {
1720    case bitc::MODULE_BLOCK_ID:
1721      if (ParseModuleTriple(Triple))
1722        return true;
1723      break;
1724    default:
1725      if (Stream.SkipBlock())
1726        return Error("Malformed block record");
1727      break;
1728    }
1729  }
1730
1731  return false;
1732}
1733
1734/// ParseMetadataAttachment - Parse metadata attachments.
1735bool BitcodeReader::ParseMetadataAttachment() {
1736  if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1737    return Error("Malformed block record");
1738
1739  SmallVector<uint64_t, 64> Record;
1740  while(1) {
1741    unsigned Code = Stream.ReadCode();
1742    if (Code == bitc::END_BLOCK) {
1743      if (Stream.ReadBlockEnd())
1744        return Error("Error at end of PARAMATTR block");
1745      break;
1746    }
1747    if (Code == bitc::DEFINE_ABBREV) {
1748      Stream.ReadAbbrevRecord();
1749      continue;
1750    }
1751    // Read a metadata attachment record.
1752    Record.clear();
1753    switch (Stream.ReadRecord(Code, Record)) {
1754    default:  // Default behavior: ignore.
1755      break;
1756    // FIXME: Remove in LLVM 3.0.
1757    case bitc::METADATA_ATTACHMENT:
1758      LLVM2_7MetadataDetected = true;
1759    case bitc::METADATA_ATTACHMENT2: {
1760      unsigned RecordLength = Record.size();
1761      if (Record.empty() || (RecordLength - 1) % 2 == 1)
1762        return Error ("Invalid METADATA_ATTACHMENT reader!");
1763      Instruction *Inst = InstructionList[Record[0]];
1764      for (unsigned i = 1; i != RecordLength; i = i+2) {
1765        unsigned Kind = Record[i];
1766        DenseMap<unsigned, unsigned>::iterator I =
1767          MDKindMap.find(Kind);
1768        if (I == MDKindMap.end())
1769          return Error("Invalid metadata kind ID");
1770        Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1771        Inst->setMetadata(I->second, cast<MDNode>(Node));
1772      }
1773      break;
1774    }
1775    }
1776  }
1777  return false;
1778}
1779
1780/// ParseFunctionBody - Lazily parse the specified function body block.
1781bool BitcodeReader::ParseFunctionBody(Function *F) {
1782  if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1783    return Error("Malformed block record");
1784
1785  InstructionList.clear();
1786  unsigned ModuleValueListSize = ValueList.size();
1787  unsigned ModuleMDValueListSize = MDValueList.size();
1788
1789  // Add all the function arguments to the value table.
1790  for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1791    ValueList.push_back(I);
1792
1793  unsigned NextValueNo = ValueList.size();
1794  BasicBlock *CurBB = 0;
1795  unsigned CurBBNo = 0;
1796
1797  DebugLoc LastLoc;
1798
1799  // Read all the records.
1800  SmallVector<uint64_t, 64> Record;
1801  while (1) {
1802    unsigned Code = Stream.ReadCode();
1803    if (Code == bitc::END_BLOCK) {
1804      if (Stream.ReadBlockEnd())
1805        return Error("Error at end of function block");
1806      break;
1807    }
1808
1809    if (Code == bitc::ENTER_SUBBLOCK) {
1810      switch (Stream.ReadSubBlockID()) {
1811      default:  // Skip unknown content.
1812        if (Stream.SkipBlock())
1813          return Error("Malformed block record");
1814        break;
1815      case bitc::CONSTANTS_BLOCK_ID:
1816        if (ParseConstants()) return true;
1817        NextValueNo = ValueList.size();
1818        break;
1819      case bitc::VALUE_SYMTAB_BLOCK_ID:
1820        if (ParseValueSymbolTable()) return true;
1821        break;
1822      case bitc::METADATA_ATTACHMENT_ID:
1823        if (ParseMetadataAttachment()) return true;
1824        break;
1825      case bitc::METADATA_BLOCK_ID:
1826        if (ParseMetadata()) return true;
1827        break;
1828      }
1829      continue;
1830    }
1831
1832    if (Code == bitc::DEFINE_ABBREV) {
1833      Stream.ReadAbbrevRecord();
1834      continue;
1835    }
1836
1837    // Read a record.
1838    Record.clear();
1839    Instruction *I = 0;
1840    unsigned BitCode = Stream.ReadRecord(Code, Record);
1841    switch (BitCode) {
1842    default: // Default behavior: reject
1843      return Error("Unknown instruction");
1844    case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1845      if (Record.size() < 1 || Record[0] == 0)
1846        return Error("Invalid DECLAREBLOCKS record");
1847      // Create all the basic blocks for the function.
1848      FunctionBBs.resize(Record[0]);
1849      for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1850        FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1851      CurBB = FunctionBBs[0];
1852      continue;
1853
1854
1855    case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1856      // This record indicates that the last instruction is at the same
1857      // location as the previous instruction with a location.
1858      I = 0;
1859
1860      // Get the last instruction emitted.
1861      if (CurBB && !CurBB->empty())
1862        I = &CurBB->back();
1863      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1864               !FunctionBBs[CurBBNo-1]->empty())
1865        I = &FunctionBBs[CurBBNo-1]->back();
1866
1867      if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1868      I->setDebugLoc(LastLoc);
1869      I = 0;
1870      continue;
1871
1872    // FIXME: Remove this in LLVM 3.0.
1873    case bitc::FUNC_CODE_DEBUG_LOC:
1874      LLVM2_7MetadataDetected = true;
1875    case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1876      I = 0;     // Get the last instruction emitted.
1877      if (CurBB && !CurBB->empty())
1878        I = &CurBB->back();
1879      else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1880               !FunctionBBs[CurBBNo-1]->empty())
1881        I = &FunctionBBs[CurBBNo-1]->back();
1882      if (I == 0 || Record.size() < 4)
1883        return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1884
1885      unsigned Line = Record[0], Col = Record[1];
1886      unsigned ScopeID = Record[2], IAID = Record[3];
1887
1888      MDNode *Scope = 0, *IA = 0;
1889      if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1890      if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1891      LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1892      I->setDebugLoc(LastLoc);
1893      I = 0;
1894      continue;
1895    }
1896
1897    case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1898      unsigned OpNum = 0;
1899      Value *LHS, *RHS;
1900      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1901          getValue(Record, OpNum, LHS->getType(), RHS) ||
1902          OpNum+1 > Record.size())
1903        return Error("Invalid BINOP record");
1904
1905      int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1906      if (Opc == -1) return Error("Invalid BINOP record");
1907      I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1908      InstructionList.push_back(I);
1909      if (OpNum < Record.size()) {
1910        if (Opc == Instruction::Add ||
1911            Opc == Instruction::Sub ||
1912            Opc == Instruction::Mul ||
1913            Opc == Instruction::Shl) {
1914          if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1915            cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1916          if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1917            cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1918        } else if (Opc == Instruction::SDiv ||
1919                   Opc == Instruction::UDiv ||
1920                   Opc == Instruction::LShr ||
1921                   Opc == Instruction::AShr) {
1922          if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1923            cast<BinaryOperator>(I)->setIsExact(true);
1924        }
1925      }
1926      break;
1927    }
1928    case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1929      unsigned OpNum = 0;
1930      Value *Op;
1931      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1932          OpNum+2 != Record.size())
1933        return Error("Invalid CAST record");
1934
1935      const Type *ResTy = getTypeByID(Record[OpNum]);
1936      int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1937      if (Opc == -1 || ResTy == 0)
1938        return Error("Invalid CAST record");
1939      I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1940      InstructionList.push_back(I);
1941      break;
1942    }
1943    case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1944    case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1945      unsigned OpNum = 0;
1946      Value *BasePtr;
1947      if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1948        return Error("Invalid GEP record");
1949
1950      SmallVector<Value*, 16> GEPIdx;
1951      while (OpNum != Record.size()) {
1952        Value *Op;
1953        if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1954          return Error("Invalid GEP record");
1955        GEPIdx.push_back(Op);
1956      }
1957
1958      I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1959      InstructionList.push_back(I);
1960      if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1961        cast<GetElementPtrInst>(I)->setIsInBounds(true);
1962      break;
1963    }
1964
1965    case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1966                                       // EXTRACTVAL: [opty, opval, n x indices]
1967      unsigned OpNum = 0;
1968      Value *Agg;
1969      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1970        return Error("Invalid EXTRACTVAL record");
1971
1972      SmallVector<unsigned, 4> EXTRACTVALIdx;
1973      for (unsigned RecSize = Record.size();
1974           OpNum != RecSize; ++OpNum) {
1975        uint64_t Index = Record[OpNum];
1976        if ((unsigned)Index != Index)
1977          return Error("Invalid EXTRACTVAL index");
1978        EXTRACTVALIdx.push_back((unsigned)Index);
1979      }
1980
1981      I = ExtractValueInst::Create(Agg,
1982                                   EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1983      InstructionList.push_back(I);
1984      break;
1985    }
1986
1987    case bitc::FUNC_CODE_INST_INSERTVAL: {
1988                           // INSERTVAL: [opty, opval, opty, opval, n x indices]
1989      unsigned OpNum = 0;
1990      Value *Agg;
1991      if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1992        return Error("Invalid INSERTVAL record");
1993      Value *Val;
1994      if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1995        return Error("Invalid INSERTVAL record");
1996
1997      SmallVector<unsigned, 4> INSERTVALIdx;
1998      for (unsigned RecSize = Record.size();
1999           OpNum != RecSize; ++OpNum) {
2000        uint64_t Index = Record[OpNum];
2001        if ((unsigned)Index != Index)
2002          return Error("Invalid INSERTVAL index");
2003        INSERTVALIdx.push_back((unsigned)Index);
2004      }
2005
2006      I = InsertValueInst::Create(Agg, Val,
2007                                  INSERTVALIdx.begin(), INSERTVALIdx.end());
2008      InstructionList.push_back(I);
2009      break;
2010    }
2011
2012    case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2013      // obsolete form of select
2014      // handles select i1 ... in old bitcode
2015      unsigned OpNum = 0;
2016      Value *TrueVal, *FalseVal, *Cond;
2017      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2018          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2019          getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2020        return Error("Invalid SELECT record");
2021
2022      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2023      InstructionList.push_back(I);
2024      break;
2025    }
2026
2027    case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2028      // new form of select
2029      // handles select i1 or select [N x i1]
2030      unsigned OpNum = 0;
2031      Value *TrueVal, *FalseVal, *Cond;
2032      if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2033          getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2034          getValueTypePair(Record, OpNum, NextValueNo, Cond))
2035        return Error("Invalid SELECT record");
2036
2037      // select condition can be either i1 or [N x i1]
2038      if (const VectorType* vector_type =
2039          dyn_cast<const VectorType>(Cond->getType())) {
2040        // expect <n x i1>
2041        if (vector_type->getElementType() != Type::getInt1Ty(Context))
2042          return Error("Invalid SELECT condition type");
2043      } else {
2044        // expect i1
2045        if (Cond->getType() != Type::getInt1Ty(Context))
2046          return Error("Invalid SELECT condition type");
2047      }
2048
2049      I = SelectInst::Create(Cond, TrueVal, FalseVal);
2050      InstructionList.push_back(I);
2051      break;
2052    }
2053
2054    case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2055      unsigned OpNum = 0;
2056      Value *Vec, *Idx;
2057      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2058          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2059        return Error("Invalid EXTRACTELT record");
2060      I = ExtractElementInst::Create(Vec, Idx);
2061      InstructionList.push_back(I);
2062      break;
2063    }
2064
2065    case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2066      unsigned OpNum = 0;
2067      Value *Vec, *Elt, *Idx;
2068      if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2069          getValue(Record, OpNum,
2070                   cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2071          getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2072        return Error("Invalid INSERTELT record");
2073      I = InsertElementInst::Create(Vec, Elt, Idx);
2074      InstructionList.push_back(I);
2075      break;
2076    }
2077
2078    case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2079      unsigned OpNum = 0;
2080      Value *Vec1, *Vec2, *Mask;
2081      if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2082          getValue(Record, OpNum, Vec1->getType(), Vec2))
2083        return Error("Invalid SHUFFLEVEC record");
2084
2085      if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2086        return Error("Invalid SHUFFLEVEC record");
2087      I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2088      InstructionList.push_back(I);
2089      break;
2090    }
2091
2092    case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2093      // Old form of ICmp/FCmp returning bool
2094      // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2095      // both legal on vectors but had different behaviour.
2096    case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2097      // FCmp/ICmp returning bool or vector of bool
2098
2099      unsigned OpNum = 0;
2100      Value *LHS, *RHS;
2101      if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2102          getValue(Record, OpNum, LHS->getType(), RHS) ||
2103          OpNum+1 != Record.size())
2104        return Error("Invalid CMP record");
2105
2106      if (LHS->getType()->isFPOrFPVectorTy())
2107        I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2108      else
2109        I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2110      InstructionList.push_back(I);
2111      break;
2112    }
2113
2114    case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2115      if (Record.size() != 2)
2116        return Error("Invalid GETRESULT record");
2117      unsigned OpNum = 0;
2118      Value *Op;
2119      getValueTypePair(Record, OpNum, NextValueNo, Op);
2120      unsigned Index = Record[1];
2121      I = ExtractValueInst::Create(Op, Index);
2122      InstructionList.push_back(I);
2123      break;
2124    }
2125
2126    case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2127      {
2128        unsigned Size = Record.size();
2129        if (Size == 0) {
2130          I = ReturnInst::Create(Context);
2131          InstructionList.push_back(I);
2132          break;
2133        }
2134
2135        unsigned OpNum = 0;
2136        SmallVector<Value *,4> Vs;
2137        do {
2138          Value *Op = NULL;
2139          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2140            return Error("Invalid RET record");
2141          Vs.push_back(Op);
2142        } while(OpNum != Record.size());
2143
2144        const Type *ReturnType = F->getReturnType();
2145        // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2146        if (Vs.size() > 1 ||
2147            (ReturnType->isStructTy() &&
2148             (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2149          Value *RV = UndefValue::get(ReturnType);
2150          for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2151            I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2152            InstructionList.push_back(I);
2153            CurBB->getInstList().push_back(I);
2154            ValueList.AssignValue(I, NextValueNo++);
2155            RV = I;
2156          }
2157          I = ReturnInst::Create(Context, RV);
2158          InstructionList.push_back(I);
2159          break;
2160        }
2161
2162        I = ReturnInst::Create(Context, Vs[0]);
2163        InstructionList.push_back(I);
2164        break;
2165      }
2166    case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2167      if (Record.size() != 1 && Record.size() != 3)
2168        return Error("Invalid BR record");
2169      BasicBlock *TrueDest = getBasicBlock(Record[0]);
2170      if (TrueDest == 0)
2171        return Error("Invalid BR record");
2172
2173      if (Record.size() == 1) {
2174        I = BranchInst::Create(TrueDest);
2175        InstructionList.push_back(I);
2176      }
2177      else {
2178        BasicBlock *FalseDest = getBasicBlock(Record[1]);
2179        Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2180        if (FalseDest == 0 || Cond == 0)
2181          return Error("Invalid BR record");
2182        I = BranchInst::Create(TrueDest, FalseDest, Cond);
2183        InstructionList.push_back(I);
2184      }
2185      break;
2186    }
2187    case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2188      if (Record.size() < 3 || (Record.size() & 1) == 0)
2189        return Error("Invalid SWITCH record");
2190      const Type *OpTy = getTypeByID(Record[0]);
2191      Value *Cond = getFnValueByID(Record[1], OpTy);
2192      BasicBlock *Default = getBasicBlock(Record[2]);
2193      if (OpTy == 0 || Cond == 0 || Default == 0)
2194        return Error("Invalid SWITCH record");
2195      unsigned NumCases = (Record.size()-3)/2;
2196      SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2197      InstructionList.push_back(SI);
2198      for (unsigned i = 0, e = NumCases; i != e; ++i) {
2199        ConstantInt *CaseVal =
2200          dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2201        BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2202        if (CaseVal == 0 || DestBB == 0) {
2203          delete SI;
2204          return Error("Invalid SWITCH record!");
2205        }
2206        SI->addCase(CaseVal, DestBB);
2207      }
2208      I = SI;
2209      break;
2210    }
2211    case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2212      if (Record.size() < 2)
2213        return Error("Invalid INDIRECTBR record");
2214      const Type *OpTy = getTypeByID(Record[0]);
2215      Value *Address = getFnValueByID(Record[1], OpTy);
2216      if (OpTy == 0 || Address == 0)
2217        return Error("Invalid INDIRECTBR record");
2218      unsigned NumDests = Record.size()-2;
2219      IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2220      InstructionList.push_back(IBI);
2221      for (unsigned i = 0, e = NumDests; i != e; ++i) {
2222        if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2223          IBI->addDestination(DestBB);
2224        } else {
2225          delete IBI;
2226          return Error("Invalid INDIRECTBR record!");
2227        }
2228      }
2229      I = IBI;
2230      break;
2231    }
2232
2233    case bitc::FUNC_CODE_INST_INVOKE: {
2234      // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2235      if (Record.size() < 4) return Error("Invalid INVOKE record");
2236      AttrListPtr PAL = getAttributes(Record[0]);
2237      unsigned CCInfo = Record[1];
2238      BasicBlock *NormalBB = getBasicBlock(Record[2]);
2239      BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2240
2241      unsigned OpNum = 4;
2242      Value *Callee;
2243      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2244        return Error("Invalid INVOKE record");
2245
2246      const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2247      const FunctionType *FTy = !CalleeTy ? 0 :
2248        dyn_cast<FunctionType>(CalleeTy->getElementType());
2249
2250      // Check that the right number of fixed parameters are here.
2251      if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2252          Record.size() < OpNum+FTy->getNumParams())
2253        return Error("Invalid INVOKE record");
2254
2255      SmallVector<Value*, 16> Ops;
2256      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2257        Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2258        if (Ops.back() == 0) return Error("Invalid INVOKE record");
2259      }
2260
2261      if (!FTy->isVarArg()) {
2262        if (Record.size() != OpNum)
2263          return Error("Invalid INVOKE record");
2264      } else {
2265        // Read type/value pairs for varargs params.
2266        while (OpNum != Record.size()) {
2267          Value *Op;
2268          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2269            return Error("Invalid INVOKE record");
2270          Ops.push_back(Op);
2271        }
2272      }
2273
2274      I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2275                             Ops.begin(), Ops.end());
2276      InstructionList.push_back(I);
2277      cast<InvokeInst>(I)->setCallingConv(
2278        static_cast<CallingConv::ID>(CCInfo));
2279      cast<InvokeInst>(I)->setAttributes(PAL);
2280      break;
2281    }
2282    case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2283      I = new UnwindInst(Context);
2284      InstructionList.push_back(I);
2285      break;
2286    case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2287      I = new UnreachableInst(Context);
2288      InstructionList.push_back(I);
2289      break;
2290    case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2291      if (Record.size() < 1 || ((Record.size()-1)&1))
2292        return Error("Invalid PHI record");
2293      const Type *Ty = getTypeByID(Record[0]);
2294      if (!Ty) return Error("Invalid PHI record");
2295
2296      PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2297      InstructionList.push_back(PN);
2298
2299      for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2300        Value *V = getFnValueByID(Record[1+i], Ty);
2301        BasicBlock *BB = getBasicBlock(Record[2+i]);
2302        if (!V || !BB) return Error("Invalid PHI record");
2303        PN->addIncoming(V, BB);
2304      }
2305      I = PN;
2306      break;
2307    }
2308
2309    case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2310      // Autoupgrade malloc instruction to malloc call.
2311      // FIXME: Remove in LLVM 3.0.
2312      if (Record.size() < 3)
2313        return Error("Invalid MALLOC record");
2314      const PointerType *Ty =
2315        dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2316      Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2317      if (!Ty || !Size) return Error("Invalid MALLOC record");
2318      if (!CurBB) return Error("Invalid malloc instruction with no BB");
2319      const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2320      Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2321      AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2322      I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2323                                 AllocSize, Size, NULL);
2324      InstructionList.push_back(I);
2325      break;
2326    }
2327    case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2328      unsigned OpNum = 0;
2329      Value *Op;
2330      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2331          OpNum != Record.size())
2332        return Error("Invalid FREE record");
2333      if (!CurBB) return Error("Invalid free instruction with no BB");
2334      I = CallInst::CreateFree(Op, CurBB);
2335      InstructionList.push_back(I);
2336      break;
2337    }
2338    case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2339      // For backward compatibility, tolerate a lack of an opty, and use i32.
2340      // Remove this in LLVM 3.0.
2341      if (Record.size() < 3 || Record.size() > 4)
2342        return Error("Invalid ALLOCA record");
2343      unsigned OpNum = 0;
2344      const PointerType *Ty =
2345        dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2346      const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2347                                              Type::getInt32Ty(Context);
2348      Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2349      unsigned Align = Record[OpNum++];
2350      if (!Ty || !Size) return Error("Invalid ALLOCA record");
2351      I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2352      InstructionList.push_back(I);
2353      break;
2354    }
2355    case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2356      unsigned OpNum = 0;
2357      Value *Op;
2358      if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2359          OpNum+2 != Record.size())
2360        return Error("Invalid LOAD record");
2361
2362      I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2363      InstructionList.push_back(I);
2364      break;
2365    }
2366    case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2367      unsigned OpNum = 0;
2368      Value *Val, *Ptr;
2369      if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2370          getValue(Record, OpNum,
2371                    cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2372          OpNum+2 != Record.size())
2373        return Error("Invalid STORE record");
2374
2375      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2376      InstructionList.push_back(I);
2377      break;
2378    }
2379    case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2380      // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2381      unsigned OpNum = 0;
2382      Value *Val, *Ptr;
2383      if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2384          getValue(Record, OpNum,
2385                   PointerType::getUnqual(Val->getType()), Ptr)||
2386          OpNum+2 != Record.size())
2387        return Error("Invalid STORE record");
2388
2389      I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2390      InstructionList.push_back(I);
2391      break;
2392    }
2393    // FIXME: Remove this in LLVM 3.0.
2394    case bitc::FUNC_CODE_INST_CALL:
2395      LLVM2_7MetadataDetected = true;
2396    case bitc::FUNC_CODE_INST_CALL2: {
2397      // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2398      if (Record.size() < 3)
2399        return Error("Invalid CALL record");
2400
2401      AttrListPtr PAL = getAttributes(Record[0]);
2402      unsigned CCInfo = Record[1];
2403
2404      unsigned OpNum = 2;
2405      Value *Callee;
2406      if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2407        return Error("Invalid CALL record");
2408
2409      const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2410      const FunctionType *FTy = 0;
2411      if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2412      if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2413        return Error("Invalid CALL record");
2414
2415      SmallVector<Value*, 16> Args;
2416      // Read the fixed params.
2417      for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2418        if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2419          Args.push_back(getBasicBlock(Record[OpNum]));
2420        else
2421          Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2422        if (Args.back() == 0) return Error("Invalid CALL record");
2423      }
2424
2425      // Read type/value pairs for varargs params.
2426      if (!FTy->isVarArg()) {
2427        if (OpNum != Record.size())
2428          return Error("Invalid CALL record");
2429      } else {
2430        while (OpNum != Record.size()) {
2431          Value *Op;
2432          if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2433            return Error("Invalid CALL record");
2434          Args.push_back(Op);
2435        }
2436      }
2437
2438      I = CallInst::Create(Callee, Args.begin(), Args.end());
2439      InstructionList.push_back(I);
2440      cast<CallInst>(I)->setCallingConv(
2441        static_cast<CallingConv::ID>(CCInfo>>1));
2442      cast<CallInst>(I)->setTailCall(CCInfo & 1);
2443      cast<CallInst>(I)->setAttributes(PAL);
2444      break;
2445    }
2446    case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2447      if (Record.size() < 3)
2448        return Error("Invalid VAARG record");
2449      const Type *OpTy = getTypeByID(Record[0]);
2450      Value *Op = getFnValueByID(Record[1], OpTy);
2451      const Type *ResTy = getTypeByID(Record[2]);
2452      if (!OpTy || !Op || !ResTy)
2453        return Error("Invalid VAARG record");
2454      I = new VAArgInst(Op, ResTy);
2455      InstructionList.push_back(I);
2456      break;
2457    }
2458    }
2459
2460    // Add instruction to end of current BB.  If there is no current BB, reject
2461    // this file.
2462    if (CurBB == 0) {
2463      delete I;
2464      return Error("Invalid instruction with no BB");
2465    }
2466    CurBB->getInstList().push_back(I);
2467
2468    // If this was a terminator instruction, move to the next block.
2469    if (isa<TerminatorInst>(I)) {
2470      ++CurBBNo;
2471      CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2472    }
2473
2474    // Non-void values get registered in the value table for future use.
2475    if (I && !I->getType()->isVoidTy())
2476      ValueList.AssignValue(I, NextValueNo++);
2477  }
2478
2479  // Check the function list for unresolved values.
2480  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2481    if (A->getParent() == 0) {
2482      // We found at least one unresolved value.  Nuke them all to avoid leaks.
2483      for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2484        if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2485          A->replaceAllUsesWith(UndefValue::get(A->getType()));
2486          delete A;
2487        }
2488      }
2489      return Error("Never resolved value found in function!");
2490    }
2491  }
2492
2493  // FIXME: Check for unresolved forward-declared metadata references
2494  // and clean up leaks.
2495
2496  // See if anything took the address of blocks in this function.  If so,
2497  // resolve them now.
2498  DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2499    BlockAddrFwdRefs.find(F);
2500  if (BAFRI != BlockAddrFwdRefs.end()) {
2501    std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2502    for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2503      unsigned BlockIdx = RefList[i].first;
2504      if (BlockIdx >= FunctionBBs.size())
2505        return Error("Invalid blockaddress block #");
2506
2507      GlobalVariable *FwdRef = RefList[i].second;
2508      FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2509      FwdRef->eraseFromParent();
2510    }
2511
2512    BlockAddrFwdRefs.erase(BAFRI);
2513  }
2514
2515  // FIXME: Remove this in LLVM 3.0.
2516  unsigned NewMDValueListSize = MDValueList.size();
2517
2518  // Trim the value list down to the size it was before we parsed this function.
2519  ValueList.shrinkTo(ModuleValueListSize);
2520  MDValueList.shrinkTo(ModuleMDValueListSize);
2521
2522  // Backwards compatibility hack: Function-local metadata numbers
2523  // were previously not reset between functions. This is now fixed,
2524  // however we still need to understand the old numbering in order
2525  // to be able to read old bitcode files.
2526  // FIXME: Remove this in LLVM 3.0.
2527  if (LLVM2_7MetadataDetected)
2528    MDValueList.resize(NewMDValueListSize);
2529
2530  std::vector<BasicBlock*>().swap(FunctionBBs);
2531
2532  return false;
2533}
2534
2535//===----------------------------------------------------------------------===//
2536// GVMaterializer implementation
2537//===----------------------------------------------------------------------===//
2538
2539
2540bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2541  if (const Function *F = dyn_cast<Function>(GV)) {
2542    return F->isDeclaration() &&
2543      DeferredFunctionInfo.count(const_cast<Function*>(F));
2544  }
2545  return false;
2546}
2547
2548bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2549  Function *F = dyn_cast<Function>(GV);
2550  // If it's not a function or is already material, ignore the request.
2551  if (!F || !F->isMaterializable()) return false;
2552
2553  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2554  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2555
2556  // Move the bit stream to the saved position of the deferred function body.
2557  Stream.JumpToBit(DFII->second);
2558
2559  if (ParseFunctionBody(F)) {
2560    if (ErrInfo) *ErrInfo = ErrorString;
2561    return true;
2562  }
2563
2564  // Upgrade any old intrinsic calls in the function.
2565  for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2566       E = UpgradedIntrinsics.end(); I != E; ++I) {
2567    if (I->first != I->second) {
2568      for (Value::use_iterator UI = I->first->use_begin(),
2569           UE = I->first->use_end(); UI != UE; ) {
2570        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2571          UpgradeIntrinsicCall(CI, I->second);
2572      }
2573    }
2574  }
2575
2576  return false;
2577}
2578
2579bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2580  const Function *F = dyn_cast<Function>(GV);
2581  if (!F || F->isDeclaration())
2582    return false;
2583  return DeferredFunctionInfo.count(const_cast<Function*>(F));
2584}
2585
2586void BitcodeReader::Dematerialize(GlobalValue *GV) {
2587  Function *F = dyn_cast<Function>(GV);
2588  // If this function isn't dematerializable, this is a noop.
2589  if (!F || !isDematerializable(F))
2590    return;
2591
2592  assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2593
2594  // Just forget the function body, we can remat it later.
2595  F->deleteBody();
2596}
2597
2598
2599bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2600  assert(M == TheModule &&
2601         "Can only Materialize the Module this BitcodeReader is attached to.");
2602  // Iterate over the module, deserializing any functions that are still on
2603  // disk.
2604  for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2605       F != E; ++F)
2606    if (F->isMaterializable() &&
2607        Materialize(F, ErrInfo))
2608      return true;
2609
2610  // Upgrade any intrinsic calls that slipped through (should not happen!) and
2611  // delete the old functions to clean up. We can't do this unless the entire
2612  // module is materialized because there could always be another function body
2613  // with calls to the old function.
2614  for (std::vector<std::pair<Function*, Function*> >::iterator I =
2615       UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2616    if (I->first != I->second) {
2617      for (Value::use_iterator UI = I->first->use_begin(),
2618           UE = I->first->use_end(); UI != UE; ) {
2619        if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2620          UpgradeIntrinsicCall(CI, I->second);
2621      }
2622      if (!I->first->use_empty())
2623        I->first->replaceAllUsesWith(I->second);
2624      I->first->eraseFromParent();
2625    }
2626  }
2627  std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2628
2629  // Check debug info intrinsics.
2630  CheckDebugInfoIntrinsics(TheModule);
2631
2632  return false;
2633}
2634
2635
2636//===----------------------------------------------------------------------===//
2637// External interface
2638//===----------------------------------------------------------------------===//
2639
2640/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2641///
2642Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2643                                   LLVMContext& Context,
2644                                   std::string *ErrMsg) {
2645  Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2646  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2647  M->setMaterializer(R);
2648  if (R->ParseBitcodeInto(M)) {
2649    if (ErrMsg)
2650      *ErrMsg = R->getErrorString();
2651
2652    delete M;  // Also deletes R.
2653    return 0;
2654  }
2655  // Have the BitcodeReader dtor delete 'Buffer'.
2656  R->setBufferOwned(true);
2657  return M;
2658}
2659
2660/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2661/// If an error occurs, return null and fill in *ErrMsg if non-null.
2662Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2663                               std::string *ErrMsg){
2664  Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2665  if (!M) return 0;
2666
2667  // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2668  // there was an error.
2669  static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2670
2671  // Read in the entire module, and destroy the BitcodeReader.
2672  if (M->MaterializeAllPermanently(ErrMsg)) {
2673    delete M;
2674    return 0;
2675  }
2676
2677  return M;
2678}
2679
2680std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2681                                         LLVMContext& Context,
2682                                         std::string *ErrMsg) {
2683  BitcodeReader *R = new BitcodeReader(Buffer, Context);
2684  // Don't let the BitcodeReader dtor delete 'Buffer'.
2685  R->setBufferOwned(false);
2686
2687  std::string Triple("");
2688  if (R->ParseTriple(Triple))
2689    if (ErrMsg)
2690      *ErrMsg = R->getErrorString();
2691
2692  delete R;
2693  return Triple;
2694}
2695