ValueEnumerator.cpp revision 78aeae2d7b771e33c5ff5218802cd2e9dab13df0
1//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ValueEnumerator class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ValueEnumerator.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Module.h"
18#include "llvm/TypeSymbolTable.h"
19#include "llvm/ValueSymbolTable.h"
20#include "llvm/Instructions.h"
21#include <algorithm>
22using namespace llvm;
23
24static bool isSingleValueType(const std::pair<const llvm::Type*,
25                              unsigned int> &P) {
26  return P.first->isSingleValueType();
27}
28
29static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
30  return V.first->getType()->isIntegerTy();
31}
32
33static bool CompareByFrequency(const std::pair<const llvm::Type*,
34                               unsigned int> &P1,
35                               const std::pair<const llvm::Type*,
36                               unsigned int> &P2) {
37  return P1.second > P2.second;
38}
39
40/// ValueEnumerator - Enumerate module-level information.
41ValueEnumerator::ValueEnumerator(const Module *M) {
42  // Enumerate the global variables.
43  for (Module::const_global_iterator I = M->global_begin(),
44         E = M->global_end(); I != E; ++I)
45    EnumerateValue(I);
46
47  // Enumerate the functions.
48  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
49    EnumerateValue(I);
50    EnumerateAttributes(cast<Function>(I)->getAttributes());
51  }
52
53  // Enumerate the aliases.
54  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
55       I != E; ++I)
56    EnumerateValue(I);
57
58  // Remember what is the cutoff between globalvalue's and other constants.
59  unsigned FirstConstant = Values.size();
60
61  // Enumerate the global variable initializers.
62  for (Module::const_global_iterator I = M->global_begin(),
63         E = M->global_end(); I != E; ++I)
64    if (I->hasInitializer())
65      EnumerateValue(I->getInitializer());
66
67  // Enumerate the aliasees.
68  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
69       I != E; ++I)
70    EnumerateValue(I->getAliasee());
71
72  // Enumerate types used by the type symbol table.
73  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
74
75  // Insert constants and metadata that are named at module level into the slot
76  // pool so that the module symbol table can refer to them...
77  EnumerateValueSymbolTable(M->getValueSymbolTable());
78  EnumerateNamedMetadata(M);
79
80  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
81
82  // Enumerate types used by function bodies and argument lists.
83  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
84
85    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
86         I != E; ++I)
87      EnumerateType(I->getType());
88
89    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
90      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
91        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
92             OI != E; ++OI) {
93          if (MDNode *MD = dyn_cast<MDNode>(*OI))
94            if (MD->isFunctionLocal() && MD->getFunction())
95              // These will get enumerated during function-incorporation.
96              continue;
97          EnumerateOperandType(*OI);
98        }
99        EnumerateType(I->getType());
100        if (const CallInst *CI = dyn_cast<CallInst>(I))
101          EnumerateAttributes(CI->getAttributes());
102        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
103          EnumerateAttributes(II->getAttributes());
104
105        // Enumerate metadata attached with this instruction.
106        MDs.clear();
107        I->getAllMetadataOtherThanDebugLoc(MDs);
108        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
109          EnumerateMetadata(MDs[i].second);
110
111        if (!I->getDebugLoc().isUnknown()) {
112          MDNode *Scope, *IA;
113          I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
114          if (Scope) EnumerateMetadata(Scope);
115          if (IA) EnumerateMetadata(IA);
116        }
117      }
118  }
119
120  // Optimize constant ordering.
121  OptimizeConstants(FirstConstant, Values.size());
122
123  // Sort the type table by frequency so that most commonly used types are early
124  // in the table (have low bit-width).
125  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
126
127  // Partition the Type ID's so that the single-value types occur before the
128  // aggregate types.  This allows the aggregate types to be dropped from the
129  // type table after parsing the global variable initializers.
130  std::partition(Types.begin(), Types.end(), isSingleValueType);
131
132  // Now that we rearranged the type table, rebuild TypeMap.
133  for (unsigned i = 0, e = Types.size(); i != e; ++i)
134    TypeMap[Types[i].first] = i+1;
135}
136
137unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
138  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
139  assert (I != InstructionMap.end() && "Instruction is not mapped!");
140    return I->second;
141}
142
143void ValueEnumerator::setInstructionID(const Instruction *I) {
144  InstructionMap[I] = InstructionCount++;
145}
146
147unsigned ValueEnumerator::getValueID(const Value *V) const {
148  if (isa<MDNode>(V) || isa<MDString>(V)) {
149    ValueMapType::const_iterator I = MDValueMap.find(V);
150    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
151    return I->second-1;
152  }
153
154  ValueMapType::const_iterator I = ValueMap.find(V);
155  assert(I != ValueMap.end() && "Value not in slotcalculator!");
156  return I->second-1;
157}
158
159// Optimize constant ordering.
160namespace {
161  struct CstSortPredicate {
162    ValueEnumerator &VE;
163    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
164    bool operator()(const std::pair<const Value*, unsigned> &LHS,
165                    const std::pair<const Value*, unsigned> &RHS) {
166      // Sort by plane.
167      if (LHS.first->getType() != RHS.first->getType())
168        return VE.getTypeID(LHS.first->getType()) <
169               VE.getTypeID(RHS.first->getType());
170      // Then by frequency.
171      return LHS.second > RHS.second;
172    }
173  };
174}
175
176/// OptimizeConstants - Reorder constant pool for denser encoding.
177void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
178  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
179
180  CstSortPredicate P(*this);
181  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
182
183  // Ensure that integer constants are at the start of the constant pool.  This
184  // is important so that GEP structure indices come before gep constant exprs.
185  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
186                 isIntegerValue);
187
188  // Rebuild the modified portion of ValueMap.
189  for (; CstStart != CstEnd; ++CstStart)
190    ValueMap[Values[CstStart].first] = CstStart+1;
191}
192
193
194/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
195/// table.
196void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
197  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
198       TI != TE; ++TI)
199    EnumerateType(TI->second);
200}
201
202/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
203/// table into the values table.
204void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
205  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
206       VI != VE; ++VI)
207    EnumerateValue(VI->getValue());
208}
209
210/// EnumerateNamedMetadata - Insert all of the values referenced by
211/// named metadata in the specified module.
212void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
213  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
214       E = M->named_metadata_end(); I != E; ++I)
215    EnumerateNamedMDNode(I);
216}
217
218void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
219  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
220    EnumerateMetadata(MD->getOperand(i));
221}
222
223void ValueEnumerator::EnumerateMetadata(const Value *MD) {
224  assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
225  // Check to see if it's already in!
226  unsigned &MDValueID = MDValueMap[MD];
227  if (MDValueID) {
228    // Increment use count.
229    MDValues[MDValueID-1].second++;
230    return;
231  }
232
233  // Enumerate the type of this value.
234  EnumerateType(MD->getType());
235
236  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
237    MDValues.push_back(std::make_pair(MD, 1U));
238    MDValueMap[MD] = MDValues.size();
239    MDValueID = MDValues.size();
240    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
241      if (Value *V = N->getOperand(i))
242        EnumerateValue(V);
243      else
244        EnumerateType(Type::getVoidTy(MD->getContext()));
245    }
246    if (N->isFunctionLocal() && N->getFunction())
247      FunctionLocalMDs.push_back(N);
248    return;
249  }
250
251  // Add the value.
252  assert(isa<MDString>(MD) && "Unknown metadata kind");
253  MDValues.push_back(std::make_pair(MD, 1U));
254  MDValueID = MDValues.size();
255}
256
257void ValueEnumerator::EnumerateValue(const Value *V) {
258  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
259  if (isa<MDNode>(V) || isa<MDString>(V))
260    return EnumerateMetadata(V);
261
262  // Check to see if it's already in!
263  unsigned &ValueID = ValueMap[V];
264  if (ValueID) {
265    // Increment use count.
266    Values[ValueID-1].second++;
267    return;
268  }
269
270  // Enumerate the type of this value.
271  EnumerateType(V->getType());
272
273  if (const Constant *C = dyn_cast<Constant>(V)) {
274    if (isa<GlobalValue>(C)) {
275      // Initializers for globals are handled explicitly elsewhere.
276    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
277      // Do not enumerate the initializers for an array of simple characters.
278      // The initializers just polute the value table, and we emit the strings
279      // specially.
280    } else if (C->getNumOperands()) {
281      // If a constant has operands, enumerate them.  This makes sure that if a
282      // constant has uses (for example an array of const ints), that they are
283      // inserted also.
284
285      // We prefer to enumerate them with values before we enumerate the user
286      // itself.  This makes it more likely that we can avoid forward references
287      // in the reader.  We know that there can be no cycles in the constants
288      // graph that don't go through a global variable.
289      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
290           I != E; ++I)
291        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
292          EnumerateValue(*I);
293
294      // Finally, add the value.  Doing this could make the ValueID reference be
295      // dangling, don't reuse it.
296      Values.push_back(std::make_pair(V, 1U));
297      ValueMap[V] = Values.size();
298      return;
299    }
300  }
301
302  // Add the value.
303  Values.push_back(std::make_pair(V, 1U));
304  ValueID = Values.size();
305}
306
307
308void ValueEnumerator::EnumerateType(const Type *Ty) {
309  unsigned &TypeID = TypeMap[Ty];
310
311  if (TypeID) {
312    // If we've already seen this type, just increase its occurrence count.
313    Types[TypeID-1].second++;
314    return;
315  }
316
317  // First time we saw this type, add it.
318  Types.push_back(std::make_pair(Ty, 1U));
319  TypeID = Types.size();
320
321  // Enumerate subtypes.
322  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
323       I != E; ++I)
324    EnumerateType(*I);
325}
326
327// Enumerate the types for the specified value.  If the value is a constant,
328// walk through it, enumerating the types of the constant.
329void ValueEnumerator::EnumerateOperandType(const Value *V) {
330  EnumerateType(V->getType());
331
332  if (const Constant *C = dyn_cast<Constant>(V)) {
333    // If this constant is already enumerated, ignore it, we know its type must
334    // be enumerated.
335    if (ValueMap.count(V)) return;
336
337    // This constant may have operands, make sure to enumerate the types in
338    // them.
339    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
340      const User *Op = C->getOperand(i);
341
342      // Don't enumerate basic blocks here, this happens as operands to
343      // blockaddress.
344      if (isa<BasicBlock>(Op)) continue;
345
346      EnumerateOperandType(cast<Constant>(Op));
347    }
348
349    if (const MDNode *N = dyn_cast<MDNode>(V)) {
350      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
351        if (Value *Elem = N->getOperand(i))
352          EnumerateOperandType(Elem);
353    }
354  } else if (isa<MDString>(V) || isa<MDNode>(V))
355    EnumerateMetadata(V);
356}
357
358void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
359  if (PAL.isEmpty()) return;  // null is always 0.
360  // Do a lookup.
361  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
362  if (Entry == 0) {
363    // Never saw this before, add it.
364    Attributes.push_back(PAL);
365    Entry = Attributes.size();
366  }
367}
368
369
370void ValueEnumerator::incorporateFunction(const Function &F) {
371  InstructionCount = 0;
372  NumModuleValues = Values.size();
373
374  // Adding function arguments to the value table.
375  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
376       I != E; ++I)
377    EnumerateValue(I);
378
379  FirstFuncConstantID = Values.size();
380
381  // Add all function-level constants to the value table.
382  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
383    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
384      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
385           OI != E; ++OI) {
386        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
387            isa<InlineAsm>(*OI))
388          EnumerateValue(*OI);
389      }
390    BasicBlocks.push_back(BB);
391    ValueMap[BB] = BasicBlocks.size();
392  }
393
394  // Optimize the constant layout.
395  OptimizeConstants(FirstFuncConstantID, Values.size());
396
397  // Add the function's parameter attributes so they are available for use in
398  // the function's instruction.
399  EnumerateAttributes(F.getAttributes());
400
401  FirstInstID = Values.size();
402
403  FunctionLocalMDs.clear();
404  SmallVector<MDNode *, 8> FnLocalMDVector;
405  // Add all of the instructions.
406  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
407    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
408      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
409           OI != E; ++OI) {
410        if (MDNode *MD = dyn_cast<MDNode>(*OI))
411          if (MD->isFunctionLocal() && MD->getFunction())
412            // Enumerate metadata after the instructions they might refer to.
413            FnLocalMDVector.push_back(MD);
414      }
415      if (!I->getType()->isVoidTy())
416        EnumerateValue(I);
417    }
418  }
419
420  // Add all of the function-local metadata.
421  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
422    EnumerateOperandType(FnLocalMDVector[i]);
423}
424
425void ValueEnumerator::purgeFunction() {
426  /// Remove purged values from the ValueMap.
427  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
428    ValueMap.erase(Values[i].first);
429  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
430    ValueMap.erase(BasicBlocks[i]);
431
432  Values.resize(NumModuleValues);
433  BasicBlocks.clear();
434}
435
436static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
437                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
438  unsigned Counter = 0;
439  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
440    IDMap[BB] = ++Counter;
441}
442
443/// getGlobalBasicBlockID - This returns the function-specific ID for the
444/// specified basic block.  This is relatively expensive information, so it
445/// should only be used by rare constructs such as address-of-label.
446unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
447  unsigned &Idx = GlobalBasicBlockIDs[BB];
448  if (Idx != 0)
449    return Idx-1;
450
451  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
452  return getGlobalBasicBlockID(BB);
453}
454
455