ValueEnumerator.cpp revision cc7b011728b9e8c3574247b81f79689840b3d33a
1//===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the ValueEnumerator class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ValueEnumerator.h"
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Module.h"
18#include "llvm/TypeSymbolTable.h"
19#include "llvm/ValueSymbolTable.h"
20#include "llvm/Instructions.h"
21#include <algorithm>
22using namespace llvm;
23
24static bool isSingleValueType(const std::pair<const llvm::Type*,
25                              unsigned int> &P) {
26  return P.first->isSingleValueType();
27}
28
29static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) {
30  return isa<IntegerType>(V.first->getType());
31}
32
33static bool CompareByFrequency(const std::pair<const llvm::Type*,
34                               unsigned int> &P1,
35                               const std::pair<const llvm::Type*,
36                               unsigned int> &P2) {
37  return P1.second > P2.second;
38}
39
40/// ValueEnumerator - Enumerate module-level information.
41ValueEnumerator::ValueEnumerator(const Module *M) {
42  InstructionCount = 0;
43
44  // Enumerate the global variables.
45  for (Module::const_global_iterator I = M->global_begin(),
46         E = M->global_end(); I != E; ++I)
47    EnumerateValue(I);
48
49  // Enumerate the functions.
50  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
51    EnumerateValue(I);
52    EnumerateAttributes(cast<Function>(I)->getAttributes());
53  }
54
55  // Enumerate the aliases.
56  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
57       I != E; ++I)
58    EnumerateValue(I);
59
60  // Remember what is the cutoff between globalvalue's and other constants.
61  unsigned FirstConstant = Values.size();
62
63  // Enumerate the global variable initializers.
64  for (Module::const_global_iterator I = M->global_begin(),
65         E = M->global_end(); I != E; ++I)
66    if (I->hasInitializer())
67      EnumerateValue(I->getInitializer());
68
69  // Enumerate the aliasees.
70  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
71       I != E; ++I)
72    EnumerateValue(I->getAliasee());
73
74  // Enumerate types used by the type symbol table.
75  EnumerateTypeSymbolTable(M->getTypeSymbolTable());
76
77  // Insert constants that are named at module level into the slot pool so that
78  // the module symbol table can refer to them...
79  EnumerateValueSymbolTable(M->getValueSymbolTable());
80
81  SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
82
83  // Enumerate types used by function bodies and argument lists.
84  for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
85
86    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
87         I != E; ++I)
88      EnumerateType(I->getType());
89
90    for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
91      for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
92        for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
93             OI != E; ++OI)
94          EnumerateOperandType(*OI);
95        EnumerateType(I->getType());
96        if (const CallInst *CI = dyn_cast<CallInst>(I))
97          EnumerateAttributes(CI->getAttributes());
98        else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
99          EnumerateAttributes(II->getAttributes());
100
101        // Enumerate metadata attached with this instruction.
102        MDs.clear();
103        I->getAllMetadata(MDs);
104        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
105          EnumerateMetadata(MDs[i].second);
106      }
107  }
108
109  // Optimize constant ordering.
110  OptimizeConstants(FirstConstant, Values.size());
111
112  // Sort the type table by frequency so that most commonly used types are early
113  // in the table (have low bit-width).
114  std::stable_sort(Types.begin(), Types.end(), CompareByFrequency);
115
116  // Partition the Type ID's so that the single-value types occur before the
117  // aggregate types.  This allows the aggregate types to be dropped from the
118  // type table after parsing the global variable initializers.
119  std::partition(Types.begin(), Types.end(), isSingleValueType);
120
121  // Now that we rearranged the type table, rebuild TypeMap.
122  for (unsigned i = 0, e = Types.size(); i != e; ++i)
123    TypeMap[Types[i].first] = i+1;
124}
125
126unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
127  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
128  assert (I != InstructionMap.end() && "Instruction is not mapped!");
129    return I->second;
130}
131
132void ValueEnumerator::setInstructionID(const Instruction *I) {
133  InstructionMap[I] = InstructionCount++;
134}
135
136unsigned ValueEnumerator::getValueID(const Value *V) const {
137  if (isa<MetadataBase>(V)) {
138    ValueMapType::const_iterator I = MDValueMap.find(V);
139    assert(I != MDValueMap.end() && "Value not in slotcalculator!");
140    return I->second-1;
141  }
142
143  ValueMapType::const_iterator I = ValueMap.find(V);
144  assert(I != ValueMap.end() && "Value not in slotcalculator!");
145  return I->second-1;
146}
147
148// Optimize constant ordering.
149namespace {
150  struct CstSortPredicate {
151    ValueEnumerator &VE;
152    explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
153    bool operator()(const std::pair<const Value*, unsigned> &LHS,
154                    const std::pair<const Value*, unsigned> &RHS) {
155      // Sort by plane.
156      if (LHS.first->getType() != RHS.first->getType())
157        return VE.getTypeID(LHS.first->getType()) <
158               VE.getTypeID(RHS.first->getType());
159      // Then by frequency.
160      return LHS.second > RHS.second;
161    }
162  };
163}
164
165/// OptimizeConstants - Reorder constant pool for denser encoding.
166void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
167  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
168
169  CstSortPredicate P(*this);
170  std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
171
172  // Ensure that integer constants are at the start of the constant pool.  This
173  // is important so that GEP structure indices come before gep constant exprs.
174  std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
175                 isIntegerValue);
176
177  // Rebuild the modified portion of ValueMap.
178  for (; CstStart != CstEnd; ++CstStart)
179    ValueMap[Values[CstStart].first] = CstStart+1;
180}
181
182
183/// EnumerateTypeSymbolTable - Insert all of the types in the specified symbol
184/// table.
185void ValueEnumerator::EnumerateTypeSymbolTable(const TypeSymbolTable &TST) {
186  for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
187       TI != TE; ++TI)
188    EnumerateType(TI->second);
189}
190
191/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
192/// table into the values table.
193void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
194  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
195       VI != VE; ++VI)
196    EnumerateValue(VI->getValue());
197}
198
199void ValueEnumerator::EnumerateMetadata(const MetadataBase *MD) {
200  // Check to see if it's already in!
201  unsigned &MDValueID = MDValueMap[MD];
202  if (MDValueID) {
203    // Increment use count.
204    MDValues[MDValueID-1].second++;
205    return;
206  }
207
208  // Enumerate the type of this value.
209  EnumerateType(MD->getType());
210
211  if (const MDNode *N = dyn_cast<MDNode>(MD)) {
212    MDValues.push_back(std::make_pair(MD, 1U));
213    MDValueMap[MD] = MDValues.size();
214    MDValueID = MDValues.size();
215    for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) {
216      if (Value *V = N->getElement(i))
217        EnumerateValue(V);
218      else
219        EnumerateType(Type::getVoidTy(MD->getContext()));
220    }
221    return;
222  }
223
224  if (const NamedMDNode *N = dyn_cast<NamedMDNode>(MD)) {
225    for (unsigned i = 0, e = N->getNumElements(); i != e; ++i)
226      EnumerateValue(N->getElement(i));
227    MDValues.push_back(std::make_pair(MD, 1U));
228    MDValueMap[MD] = Values.size();
229    return;
230  }
231
232  // Add the value.
233  assert(isa<MDString>(MD) && "Unknown metadata kind");
234  MDValues.push_back(std::make_pair(MD, 1U));
235  MDValueID = MDValues.size();
236}
237
238void ValueEnumerator::EnumerateValue(const Value *V) {
239  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
240  if (const MetadataBase *MB = dyn_cast<MetadataBase>(V))
241    return EnumerateMetadata(MB);
242
243  // Check to see if it's already in!
244  unsigned &ValueID = ValueMap[V];
245  if (ValueID) {
246    // Increment use count.
247    Values[ValueID-1].second++;
248    return;
249  }
250
251  // Enumerate the type of this value.
252  EnumerateType(V->getType());
253
254  if (const Constant *C = dyn_cast<Constant>(V)) {
255    if (isa<GlobalValue>(C)) {
256      // Initializers for globals are handled explicitly elsewhere.
257    } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) {
258      // Do not enumerate the initializers for an array of simple characters.
259      // The initializers just polute the value table, and we emit the strings
260      // specially.
261    } else if (C->getNumOperands()) {
262      // If a constant has operands, enumerate them.  This makes sure that if a
263      // constant has uses (for example an array of const ints), that they are
264      // inserted also.
265
266      // We prefer to enumerate them with values before we enumerate the user
267      // itself.  This makes it more likely that we can avoid forward references
268      // in the reader.  We know that there can be no cycles in the constants
269      // graph that don't go through a global variable.
270      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
271           I != E; ++I)
272        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
273          EnumerateValue(*I);
274
275      // Finally, add the value.  Doing this could make the ValueID reference be
276      // dangling, don't reuse it.
277      Values.push_back(std::make_pair(V, 1U));
278      ValueMap[V] = Values.size();
279      return;
280    }
281  }
282
283  // Add the value.
284  Values.push_back(std::make_pair(V, 1U));
285  ValueID = Values.size();
286}
287
288
289void ValueEnumerator::EnumerateType(const Type *Ty) {
290  unsigned &TypeID = TypeMap[Ty];
291
292  if (TypeID) {
293    // If we've already seen this type, just increase its occurrence count.
294    Types[TypeID-1].second++;
295    return;
296  }
297
298  // First time we saw this type, add it.
299  Types.push_back(std::make_pair(Ty, 1U));
300  TypeID = Types.size();
301
302  // Enumerate subtypes.
303  for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
304       I != E; ++I)
305    EnumerateType(*I);
306}
307
308// Enumerate the types for the specified value.  If the value is a constant,
309// walk through it, enumerating the types of the constant.
310void ValueEnumerator::EnumerateOperandType(const Value *V) {
311  EnumerateType(V->getType());
312  if (const Constant *C = dyn_cast<Constant>(V)) {
313    // If this constant is already enumerated, ignore it, we know its type must
314    // be enumerated.
315    if (ValueMap.count(V)) return;
316
317    // This constant may have operands, make sure to enumerate the types in
318    // them.
319    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
320      const User *Op = C->getOperand(i);
321
322      // Don't enumerate basic blocks here, this happens as operands to
323      // blockaddress.
324      if (isa<BasicBlock>(Op)) continue;
325
326      EnumerateOperandType(cast<Constant>(Op));
327    }
328
329    if (const MDNode *N = dyn_cast<MDNode>(V)) {
330      for (unsigned i = 0, e = N->getNumElements(); i != e; ++i)
331        if (Value *Elem = N->getElement(i))
332          EnumerateOperandType(Elem);
333    }
334  } else if (isa<MDString>(V) || isa<MDNode>(V))
335    EnumerateValue(V);
336}
337
338void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) {
339  if (PAL.isEmpty()) return;  // null is always 0.
340  // Do a lookup.
341  unsigned &Entry = AttributeMap[PAL.getRawPointer()];
342  if (Entry == 0) {
343    // Never saw this before, add it.
344    Attributes.push_back(PAL);
345    Entry = Attributes.size();
346  }
347}
348
349
350void ValueEnumerator::incorporateFunction(const Function &F) {
351  NumModuleValues = Values.size();
352
353  // Adding function arguments to the value table.
354  for(Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
355      I != E; ++I)
356    EnumerateValue(I);
357
358  FirstFuncConstantID = Values.size();
359
360  // Add all function-level constants to the value table.
361  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
362    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
363      for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
364           OI != E; ++OI) {
365        if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
366            isa<InlineAsm>(*OI))
367          EnumerateValue(*OI);
368      }
369    BasicBlocks.push_back(BB);
370    ValueMap[BB] = BasicBlocks.size();
371  }
372
373  // Optimize the constant layout.
374  OptimizeConstants(FirstFuncConstantID, Values.size());
375
376  // Add the function's parameter attributes so they are available for use in
377  // the function's instruction.
378  EnumerateAttributes(F.getAttributes());
379
380  FirstInstID = Values.size();
381
382  // Add all of the instructions.
383  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
384    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
385      if (I->getType() != Type::getVoidTy(F.getContext()))
386        EnumerateValue(I);
387    }
388  }
389}
390
391void ValueEnumerator::purgeFunction() {
392  /// Remove purged values from the ValueMap.
393  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
394    ValueMap.erase(Values[i].first);
395  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
396    ValueMap.erase(BasicBlocks[i]);
397
398  Values.resize(NumModuleValues);
399  BasicBlocks.clear();
400}
401
402static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
403                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
404  unsigned Counter = 0;
405  for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
406    IDMap[BB] = ++Counter;
407}
408
409/// getGlobalBasicBlockID - This returns the function-specific ID for the
410/// specified basic block.  This is relatively expensive information, so it
411/// should only be used by rare constructs such as address-of-label.
412unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
413  unsigned &Idx = GlobalBasicBlockIDs[BB];
414  if (Idx != 0)
415    return Idx-1;
416
417  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
418  return getGlobalBasicBlockID(BB);
419}
420
421