1//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines several CodeGen-specific LLVM IR analysis utilities.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/Analysis.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/SelectionDAG.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/IntrinsicInst.h"
23#include "llvm/IR/LLVMContext.h"
24#include "llvm/IR/Module.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetLowering.h"
28using namespace llvm;
29
30/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
31/// of insertvalue or extractvalue indices that identify a member, return
32/// the linearized index of the start of the member.
33///
34unsigned llvm::ComputeLinearIndex(Type *Ty,
35                                  const unsigned *Indices,
36                                  const unsigned *IndicesEnd,
37                                  unsigned CurIndex) {
38  // Base case: We're done.
39  if (Indices && Indices == IndicesEnd)
40    return CurIndex;
41
42  // Given a struct type, recursively traverse the elements.
43  if (StructType *STy = dyn_cast<StructType>(Ty)) {
44    for (StructType::element_iterator EB = STy->element_begin(),
45                                      EI = EB,
46                                      EE = STy->element_end();
47        EI != EE; ++EI) {
48      if (Indices && *Indices == unsigned(EI - EB))
49        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
50      CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
51    }
52    return CurIndex;
53  }
54  // Given an array type, recursively traverse the elements.
55  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
56    Type *EltTy = ATy->getElementType();
57    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
58      if (Indices && *Indices == i)
59        return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
60      CurIndex = ComputeLinearIndex(EltTy, nullptr, nullptr, CurIndex);
61    }
62    return CurIndex;
63  }
64  // We haven't found the type we're looking for, so keep searching.
65  return CurIndex + 1;
66}
67
68/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
69/// EVTs that represent all the individual underlying
70/// non-aggregate types that comprise it.
71///
72/// If Offsets is non-null, it points to a vector to be filled in
73/// with the in-memory offsets of each of the individual values.
74///
75void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
76                           SmallVectorImpl<EVT> &ValueVTs,
77                           SmallVectorImpl<uint64_t> *Offsets,
78                           uint64_t StartingOffset) {
79  // Given a struct type, recursively traverse the elements.
80  if (StructType *STy = dyn_cast<StructType>(Ty)) {
81    const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
82    for (StructType::element_iterator EB = STy->element_begin(),
83                                      EI = EB,
84                                      EE = STy->element_end();
85         EI != EE; ++EI)
86      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
87                      StartingOffset + SL->getElementOffset(EI - EB));
88    return;
89  }
90  // Given an array type, recursively traverse the elements.
91  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
92    Type *EltTy = ATy->getElementType();
93    uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
94    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
95      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
96                      StartingOffset + i * EltSize);
97    return;
98  }
99  // Interpret void as zero return values.
100  if (Ty->isVoidTy())
101    return;
102  // Base case: we can get an EVT for this LLVM IR type.
103  ValueVTs.push_back(TLI.getValueType(Ty));
104  if (Offsets)
105    Offsets->push_back(StartingOffset);
106}
107
108/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
109GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
110  V = V->stripPointerCasts();
111  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
112
113  if (GV && GV->getName() == "llvm.eh.catch.all.value") {
114    assert(GV->hasInitializer() &&
115           "The EH catch-all value must have an initializer");
116    Value *Init = GV->getInitializer();
117    GV = dyn_cast<GlobalVariable>(Init);
118    if (!GV) V = cast<ConstantPointerNull>(Init);
119  }
120
121  assert((GV || isa<ConstantPointerNull>(V)) &&
122         "TypeInfo must be a global variable or NULL");
123  return GV;
124}
125
126/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
127/// processed uses a memory 'm' constraint.
128bool
129llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
130                                const TargetLowering &TLI) {
131  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
132    InlineAsm::ConstraintInfo &CI = CInfos[i];
133    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
134      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
135      if (CType == TargetLowering::C_Memory)
136        return true;
137    }
138
139    // Indirect operand accesses access memory.
140    if (CI.isIndirect)
141      return true;
142  }
143
144  return false;
145}
146
147/// getFCmpCondCode - Return the ISD condition code corresponding to
148/// the given LLVM IR floating-point condition code.  This includes
149/// consideration of global floating-point math flags.
150///
151ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
152  switch (Pred) {
153  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
154  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
155  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
156  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
157  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
158  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
159  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
160  case FCmpInst::FCMP_ORD:   return ISD::SETO;
161  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
162  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
163  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
164  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
165  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
166  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
167  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
168  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
169  default: llvm_unreachable("Invalid FCmp predicate opcode!");
170  }
171}
172
173ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
174  switch (CC) {
175    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
176    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
177    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
178    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
179    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
180    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
181    default: return CC;
182  }
183}
184
185/// getICmpCondCode - Return the ISD condition code corresponding to
186/// the given LLVM IR integer condition code.
187///
188ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
189  switch (Pred) {
190  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
191  case ICmpInst::ICMP_NE:  return ISD::SETNE;
192  case ICmpInst::ICMP_SLE: return ISD::SETLE;
193  case ICmpInst::ICMP_ULE: return ISD::SETULE;
194  case ICmpInst::ICMP_SGE: return ISD::SETGE;
195  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
196  case ICmpInst::ICMP_SLT: return ISD::SETLT;
197  case ICmpInst::ICMP_ULT: return ISD::SETULT;
198  case ICmpInst::ICMP_SGT: return ISD::SETGT;
199  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
200  default:
201    llvm_unreachable("Invalid ICmp predicate opcode!");
202  }
203}
204
205static bool isNoopBitcast(Type *T1, Type *T2,
206                          const TargetLoweringBase& TLI) {
207  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
208         (isa<VectorType>(T1) && isa<VectorType>(T2) &&
209          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
210}
211
212/// Look through operations that will be free to find the earliest source of
213/// this value.
214///
215/// @param ValLoc If V has aggegate type, we will be interested in a particular
216/// scalar component. This records its address; the reverse of this list gives a
217/// sequence of indices appropriate for an extractvalue to locate the important
218/// value. This value is updated during the function and on exit will indicate
219/// similar information for the Value returned.
220///
221/// @param DataBits If this function looks through truncate instructions, this
222/// will record the smallest size attained.
223static const Value *getNoopInput(const Value *V,
224                                 SmallVectorImpl<unsigned> &ValLoc,
225                                 unsigned &DataBits,
226                                 const TargetLoweringBase &TLI) {
227  while (true) {
228    // Try to look through V1; if V1 is not an instruction, it can't be looked
229    // through.
230    const Instruction *I = dyn_cast<Instruction>(V);
231    if (!I || I->getNumOperands() == 0) return V;
232    const Value *NoopInput = nullptr;
233
234    Value *Op = I->getOperand(0);
235    if (isa<BitCastInst>(I)) {
236      // Look through truly no-op bitcasts.
237      if (isNoopBitcast(Op->getType(), I->getType(), TLI))
238        NoopInput = Op;
239    } else if (isa<GetElementPtrInst>(I)) {
240      // Look through getelementptr
241      if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
242        NoopInput = Op;
243    } else if (isa<IntToPtrInst>(I)) {
244      // Look through inttoptr.
245      // Make sure this isn't a truncating or extending cast.  We could
246      // support this eventually, but don't bother for now.
247      if (!isa<VectorType>(I->getType()) &&
248          TLI.getPointerTy().getSizeInBits() ==
249          cast<IntegerType>(Op->getType())->getBitWidth())
250        NoopInput = Op;
251    } else if (isa<PtrToIntInst>(I)) {
252      // Look through ptrtoint.
253      // Make sure this isn't a truncating or extending cast.  We could
254      // support this eventually, but don't bother for now.
255      if (!isa<VectorType>(I->getType()) &&
256          TLI.getPointerTy().getSizeInBits() ==
257          cast<IntegerType>(I->getType())->getBitWidth())
258        NoopInput = Op;
259    } else if (isa<TruncInst>(I) &&
260               TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
261      DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
262      NoopInput = Op;
263    } else if (isa<CallInst>(I)) {
264      // Look through call (skipping callee)
265      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
266           i != e; ++i) {
267        unsigned attrInd = i - I->op_begin() + 1;
268        if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
269            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
270          NoopInput = *i;
271          break;
272        }
273      }
274    } else if (isa<InvokeInst>(I)) {
275      // Look through invoke (skipping BB, BB, Callee)
276      for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
277           i != e; ++i) {
278        unsigned attrInd = i - I->op_begin() + 1;
279        if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
280            isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
281          NoopInput = *i;
282          break;
283        }
284      }
285    } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
286      // Value may come from either the aggregate or the scalar
287      ArrayRef<unsigned> InsertLoc = IVI->getIndices();
288      if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
289                     ValLoc.rbegin())) {
290        // The type being inserted is a nested sub-type of the aggregate; we
291        // have to remove those initial indices to get the location we're
292        // interested in for the operand.
293        ValLoc.resize(ValLoc.size() - InsertLoc.size());
294        NoopInput = IVI->getInsertedValueOperand();
295      } else {
296        // The struct we're inserting into has the value we're interested in, no
297        // change of address.
298        NoopInput = Op;
299      }
300    } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
301      // The part we're interested in will inevitably be some sub-section of the
302      // previous aggregate. Combine the two paths to obtain the true address of
303      // our element.
304      ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
305      std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(),
306                std::back_inserter(ValLoc));
307      NoopInput = Op;
308    }
309    // Terminate if we couldn't find anything to look through.
310    if (!NoopInput)
311      return V;
312
313    V = NoopInput;
314  }
315}
316
317/// Return true if this scalar return value only has bits discarded on its path
318/// from the "tail call" to the "ret". This includes the obvious noop
319/// instructions handled by getNoopInput above as well as free truncations (or
320/// extensions prior to the call).
321static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
322                                 SmallVectorImpl<unsigned> &RetIndices,
323                                 SmallVectorImpl<unsigned> &CallIndices,
324                                 bool AllowDifferingSizes,
325                                 const TargetLoweringBase &TLI) {
326
327  // Trace the sub-value needed by the return value as far back up the graph as
328  // possible, in the hope that it will intersect with the value produced by the
329  // call. In the simple case with no "returned" attribute, the hope is actually
330  // that we end up back at the tail call instruction itself.
331  unsigned BitsRequired = UINT_MAX;
332  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
333
334  // If this slot in the value returned is undef, it doesn't matter what the
335  // call puts there, it'll be fine.
336  if (isa<UndefValue>(RetVal))
337    return true;
338
339  // Now do a similar search up through the graph to find where the value
340  // actually returned by the "tail call" comes from. In the simple case without
341  // a "returned" attribute, the search will be blocked immediately and the loop
342  // a Noop.
343  unsigned BitsProvided = UINT_MAX;
344  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
345
346  // There's no hope if we can't actually trace them to (the same part of!) the
347  // same value.
348  if (CallVal != RetVal || CallIndices != RetIndices)
349    return false;
350
351  // However, intervening truncates may have made the call non-tail. Make sure
352  // all the bits that are needed by the "ret" have been provided by the "tail
353  // call". FIXME: with sufficiently cunning bit-tracking, we could look through
354  // extensions too.
355  if (BitsProvided < BitsRequired ||
356      (!AllowDifferingSizes && BitsProvided != BitsRequired))
357    return false;
358
359  return true;
360}
361
362/// For an aggregate type, determine whether a given index is within bounds or
363/// not.
364static bool indexReallyValid(CompositeType *T, unsigned Idx) {
365  if (ArrayType *AT = dyn_cast<ArrayType>(T))
366    return Idx < AT->getNumElements();
367
368  return Idx < cast<StructType>(T)->getNumElements();
369}
370
371/// Move the given iterators to the next leaf type in depth first traversal.
372///
373/// Performs a depth-first traversal of the type as specified by its arguments,
374/// stopping at the next leaf node (which may be a legitimate scalar type or an
375/// empty struct or array).
376///
377/// @param SubTypes List of the partial components making up the type from
378/// outermost to innermost non-empty aggregate. The element currently
379/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
380///
381/// @param Path Set of extractvalue indices leading from the outermost type
382/// (SubTypes[0]) to the leaf node currently represented.
383///
384/// @returns true if a new type was found, false otherwise. Calling this
385/// function again on a finished iterator will repeatedly return
386/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
387/// aggregate or a non-aggregate
388static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
389                                  SmallVectorImpl<unsigned> &Path) {
390  // First march back up the tree until we can successfully increment one of the
391  // coordinates in Path.
392  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
393    Path.pop_back();
394    SubTypes.pop_back();
395  }
396
397  // If we reached the top, then the iterator is done.
398  if (Path.empty())
399    return false;
400
401  // We know there's *some* valid leaf now, so march back down the tree picking
402  // out the left-most element at each node.
403  ++Path.back();
404  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
405  while (DeeperType->isAggregateType()) {
406    CompositeType *CT = cast<CompositeType>(DeeperType);
407    if (!indexReallyValid(CT, 0))
408      return true;
409
410    SubTypes.push_back(CT);
411    Path.push_back(0);
412
413    DeeperType = CT->getTypeAtIndex(0U);
414  }
415
416  return true;
417}
418
419/// Find the first non-empty, scalar-like type in Next and setup the iterator
420/// components.
421///
422/// Assuming Next is an aggregate of some kind, this function will traverse the
423/// tree from left to right (i.e. depth-first) looking for the first
424/// non-aggregate type which will play a role in function return.
425///
426/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
427/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
428/// i32 in that type.
429static bool firstRealType(Type *Next,
430                          SmallVectorImpl<CompositeType *> &SubTypes,
431                          SmallVectorImpl<unsigned> &Path) {
432  // First initialise the iterator components to the first "leaf" node
433  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
434  // despite nominally being an aggregate).
435  while (Next->isAggregateType() &&
436         indexReallyValid(cast<CompositeType>(Next), 0)) {
437    SubTypes.push_back(cast<CompositeType>(Next));
438    Path.push_back(0);
439    Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
440  }
441
442  // If there's no Path now, Next was originally scalar already (or empty
443  // leaf). We're done.
444  if (Path.empty())
445    return true;
446
447  // Otherwise, use normal iteration to keep looking through the tree until we
448  // find a non-aggregate type.
449  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
450    if (!advanceToNextLeafType(SubTypes, Path))
451      return false;
452  }
453
454  return true;
455}
456
457/// Set the iterator data-structures to the next non-empty, non-aggregate
458/// subtype.
459static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
460                         SmallVectorImpl<unsigned> &Path) {
461  do {
462    if (!advanceToNextLeafType(SubTypes, Path))
463      return false;
464
465    assert(!Path.empty() && "found a leaf but didn't set the path?");
466  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
467
468  return true;
469}
470
471
472/// Test if the given instruction is in a position to be optimized
473/// with a tail-call. This roughly means that it's in a block with
474/// a return and there's nothing that needs to be scheduled
475/// between it and the return.
476///
477/// This function only tests target-independent requirements.
478bool llvm::isInTailCallPosition(ImmutableCallSite CS, const SelectionDAG &DAG) {
479  const Instruction *I = CS.getInstruction();
480  const BasicBlock *ExitBB = I->getParent();
481  const TerminatorInst *Term = ExitBB->getTerminator();
482  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
483
484  // The block must end in a return statement or unreachable.
485  //
486  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
487  // an unreachable, for now. The way tailcall optimization is currently
488  // implemented means it will add an epilogue followed by a jump. That is
489  // not profitable. Also, if the callee is a special function (e.g.
490  // longjmp on x86), it can end up causing miscompilation that has not
491  // been fully understood.
492  if (!Ret &&
493      (!DAG.getTarget().Options.GuaranteedTailCallOpt ||
494       !isa<UnreachableInst>(Term)))
495    return false;
496
497  // If I will have a chain, make sure no other instruction that will have a
498  // chain interposes between I and the return.
499  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
500      !isSafeToSpeculativelyExecute(I))
501    for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
502      if (&*BBI == I)
503        break;
504      // Debug info intrinsics do not get in the way of tail call optimization.
505      if (isa<DbgInfoIntrinsic>(BBI))
506        continue;
507      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
508          !isSafeToSpeculativelyExecute(BBI))
509        return false;
510    }
511
512  return returnTypeIsEligibleForTailCall(ExitBB->getParent(), I, Ret,
513                                         *DAG.getTarget().getTargetLowering());
514}
515
516bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
517                                           const Instruction *I,
518                                           const ReturnInst *Ret,
519                                           const TargetLoweringBase &TLI) {
520  // If the block ends with a void return or unreachable, it doesn't matter
521  // what the call's return type is.
522  if (!Ret || Ret->getNumOperands() == 0) return true;
523
524  // If the return value is undef, it doesn't matter what the call's
525  // return type is.
526  if (isa<UndefValue>(Ret->getOperand(0))) return true;
527
528  // Make sure the attributes attached to each return are compatible.
529  AttrBuilder CallerAttrs(F->getAttributes(),
530                          AttributeSet::ReturnIndex);
531  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
532                          AttributeSet::ReturnIndex);
533
534  // Noalias is completely benign as far as calling convention goes, it
535  // shouldn't affect whether the call is a tail call.
536  CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
537  CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
538
539  bool AllowDifferingSizes = true;
540  if (CallerAttrs.contains(Attribute::ZExt)) {
541    if (!CalleeAttrs.contains(Attribute::ZExt))
542      return false;
543
544    AllowDifferingSizes = false;
545    CallerAttrs.removeAttribute(Attribute::ZExt);
546    CalleeAttrs.removeAttribute(Attribute::ZExt);
547  } else if (CallerAttrs.contains(Attribute::SExt)) {
548    if (!CalleeAttrs.contains(Attribute::SExt))
549      return false;
550
551    AllowDifferingSizes = false;
552    CallerAttrs.removeAttribute(Attribute::SExt);
553    CalleeAttrs.removeAttribute(Attribute::SExt);
554  }
555
556  // If they're still different, there's some facet we don't understand
557  // (currently only "inreg", but in future who knows). It may be OK but the
558  // only safe option is to reject the tail call.
559  if (CallerAttrs != CalleeAttrs)
560    return false;
561
562  const Value *RetVal = Ret->getOperand(0), *CallVal = I;
563  SmallVector<unsigned, 4> RetPath, CallPath;
564  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
565
566  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
567  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
568
569  // Nothing's actually returned, it doesn't matter what the callee put there
570  // it's a valid tail call.
571  if (RetEmpty)
572    return true;
573
574  // Iterate pairwise through each of the value types making up the tail call
575  // and the corresponding return. For each one we want to know whether it's
576  // essentially going directly from the tail call to the ret, via operations
577  // that end up not generating any code.
578  //
579  // We allow a certain amount of covariance here. For example it's permitted
580  // for the tail call to define more bits than the ret actually cares about
581  // (e.g. via a truncate).
582  do {
583    if (CallEmpty) {
584      // We've exhausted the values produced by the tail call instruction, the
585      // rest are essentially undef. The type doesn't really matter, but we need
586      // *something*.
587      Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
588      CallVal = UndefValue::get(SlotType);
589    }
590
591    // The manipulations performed when we're looking through an insertvalue or
592    // an extractvalue would happen at the front of the RetPath list, so since
593    // we have to copy it anyway it's more efficient to create a reversed copy.
594    using std::copy;
595    SmallVector<unsigned, 4> TmpRetPath, TmpCallPath;
596    copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath));
597    copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath));
598
599    // Finally, we can check whether the value produced by the tail call at this
600    // index is compatible with the value we return.
601    if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
602                              AllowDifferingSizes, TLI))
603      return false;
604
605    CallEmpty  = !nextRealType(CallSubTypes, CallPath);
606  } while(nextRealType(RetSubTypes, RetPath));
607
608  return true;
609}
610