AsmPrinter.cpp revision 3d47402f2e8701c7ed340884720cc99727bd7f85
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "asm-printer"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "DwarfDebug.h"
17#include "DwarfException.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineJumpTableInfo.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/DebugInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Module.h"
32#include "llvm/IR/Operator.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/MC/MCContext.h"
35#include "llvm/MC/MCExpr.h"
36#include "llvm/MC/MCInst.h"
37#include "llvm/MC/MCSection.h"
38#include "llvm/MC/MCStreamer.h"
39#include "llvm/MC/MCSymbol.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/Format.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/Timer.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetFrameLowering.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetLowering.h"
48#include "llvm/Target/TargetLoweringObjectFile.h"
49#include "llvm/Target/TargetOptions.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51#include "llvm/Transforms/Utils/GlobalStatus.h"
52using namespace llvm;
53
54static const char *const DWARFGroupName = "DWARF Emission";
55static const char *const DbgTimerName = "DWARF Debug Writer";
56static const char *const EHTimerName = "DWARF Exception Writer";
57
58STATISTIC(EmittedInsts, "Number of machine instrs printed");
59
60char AsmPrinter::ID = 0;
61
62typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
63static gcp_map_type &getGCMap(void *&P) {
64  if (P == 0)
65    P = new gcp_map_type();
66  return *(gcp_map_type*)P;
67}
68
69
70/// getGVAlignmentLog2 - Return the alignment to use for the specified global
71/// value in log2 form.  This rounds up to the preferred alignment if possible
72/// and legal.
73static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
74                                   unsigned InBits = 0) {
75  unsigned NumBits = 0;
76  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
77    NumBits = TD.getPreferredAlignmentLog(GVar);
78
79  // If InBits is specified, round it to it.
80  if (InBits > NumBits)
81    NumBits = InBits;
82
83  // If the GV has a specified alignment, take it into account.
84  if (GV->getAlignment() == 0)
85    return NumBits;
86
87  unsigned GVAlign = Log2_32(GV->getAlignment());
88
89  // If the GVAlign is larger than NumBits, or if we are required to obey
90  // NumBits because the GV has an assigned section, obey it.
91  if (GVAlign > NumBits || GV->hasSection())
92    NumBits = GVAlign;
93  return NumBits;
94}
95
96AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
97  : MachineFunctionPass(ID),
98    TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
99    OutContext(Streamer.getContext()),
100    OutStreamer(Streamer),
101    LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
102  DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
103  CurrentFnSym = CurrentFnSymForSize = 0;
104  GCMetadataPrinters = 0;
105  VerboseAsm = Streamer.isVerboseAsm();
106}
107
108AsmPrinter::~AsmPrinter() {
109  assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
110
111  if (GCMetadataPrinters != 0) {
112    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
113
114    for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
115      delete I->second;
116    delete &GCMap;
117    GCMetadataPrinters = 0;
118  }
119
120  delete &OutStreamer;
121}
122
123/// getFunctionNumber - Return a unique ID for the current function.
124///
125unsigned AsmPrinter::getFunctionNumber() const {
126  return MF->getFunctionNumber();
127}
128
129const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
130  return TM.getTargetLowering()->getObjFileLowering();
131}
132
133/// getDataLayout - Return information about data layout.
134const DataLayout &AsmPrinter::getDataLayout() const {
135  return *TM.getDataLayout();
136}
137
138StringRef AsmPrinter::getTargetTriple() const {
139  return TM.getTargetTriple();
140}
141
142/// getCurrentSection() - Return the current section we are emitting to.
143const MCSection *AsmPrinter::getCurrentSection() const {
144  return OutStreamer.getCurrentSection().first;
145}
146
147
148
149void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
150  AU.setPreservesAll();
151  MachineFunctionPass::getAnalysisUsage(AU);
152  AU.addRequired<MachineModuleInfo>();
153  AU.addRequired<GCModuleInfo>();
154  if (isVerbose())
155    AU.addRequired<MachineLoopInfo>();
156}
157
158bool AsmPrinter::doInitialization(Module &M) {
159  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
160  MMI->AnalyzeModule(M);
161
162  // Initialize TargetLoweringObjectFile.
163  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
164    .Initialize(OutContext, TM);
165
166  OutStreamer.InitStreamer();
167
168  Mang = new Mangler(&TM);
169
170  // Allow the target to emit any magic that it wants at the start of the file.
171  EmitStartOfAsmFile(M);
172
173  // Very minimal debug info. It is ignored if we emit actual debug info. If we
174  // don't, this at least helps the user find where a global came from.
175  if (MAI->hasSingleParameterDotFile()) {
176    // .file "foo.c"
177    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
178  }
179
180  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
181  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
182  for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
183    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
184      MP->beginAssembly(*this);
185
186  // Emit module-level inline asm if it exists.
187  if (!M.getModuleInlineAsm().empty()) {
188    OutStreamer.AddComment("Start of file scope inline assembly");
189    OutStreamer.AddBlankLine();
190    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
191    OutStreamer.AddComment("End of file scope inline assembly");
192    OutStreamer.AddBlankLine();
193  }
194
195  if (MAI->doesSupportDebugInformation())
196    DD = new DwarfDebug(this, &M);
197
198  switch (MAI->getExceptionHandlingType()) {
199  case ExceptionHandling::None:
200    return false;
201  case ExceptionHandling::SjLj:
202  case ExceptionHandling::DwarfCFI:
203    DE = new DwarfCFIException(this);
204    return false;
205  case ExceptionHandling::ARM:
206    DE = new ARMException(this);
207    return false;
208  case ExceptionHandling::Win64:
209    DE = new Win64Exception(this);
210    return false;
211  }
212
213  llvm_unreachable("Unknown exception type.");
214}
215
216void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
217  GlobalValue::LinkageTypes Linkage = GV->getLinkage();
218  switch (Linkage) {
219  case GlobalValue::CommonLinkage:
220  case GlobalValue::LinkOnceAnyLinkage:
221  case GlobalValue::LinkOnceODRLinkage:
222  case GlobalValue::WeakAnyLinkage:
223  case GlobalValue::WeakODRLinkage:
224  case GlobalValue::LinkerPrivateWeakLinkage:
225    if (MAI->getWeakDefDirective() != 0) {
226      // .globl _foo
227      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
228
229      bool CanBeHidden = false;
230
231      if (Linkage == GlobalValue::LinkOnceODRLinkage) {
232        if (GV->hasUnnamedAddr()) {
233          CanBeHidden = true;
234        } else {
235          GlobalStatus GS;
236          if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
237            CanBeHidden = true;
238        }
239      }
240
241      if (!CanBeHidden)
242        // .weak_definition _foo
243        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
244      else
245        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
246    } else if (MAI->getLinkOnceDirective() != 0) {
247      // .globl _foo
248      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
249      //NOTE: linkonce is handled by the section the symbol was assigned to.
250    } else {
251      // .weak _foo
252      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
253    }
254    return;
255  case GlobalValue::DLLExportLinkage:
256  case GlobalValue::AppendingLinkage:
257    // FIXME: appending linkage variables should go into a section of
258    // their name or something.  For now, just emit them as external.
259  case GlobalValue::ExternalLinkage:
260    // If external or appending, declare as a global symbol.
261    // .globl _foo
262    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
263    return;
264  case GlobalValue::PrivateLinkage:
265  case GlobalValue::InternalLinkage:
266  case GlobalValue::LinkerPrivateLinkage:
267    return;
268  case GlobalValue::AvailableExternallyLinkage:
269    llvm_unreachable("Should never emit this");
270  case GlobalValue::DLLImportLinkage:
271  case GlobalValue::ExternalWeakLinkage:
272    llvm_unreachable("Don't know how to emit these");
273  }
274  llvm_unreachable("Unknown linkage type!");
275}
276
277MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
278  return getObjFileLowering().getSymbol(*Mang, GV);
279}
280
281/// EmitGlobalVariable - Emit the specified global variable to the .s file.
282void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
283  if (GV->hasInitializer()) {
284    // Check to see if this is a special global used by LLVM, if so, emit it.
285    if (EmitSpecialLLVMGlobal(GV))
286      return;
287
288    if (isVerbose()) {
289      WriteAsOperand(OutStreamer.GetCommentOS(), GV,
290                     /*PrintType=*/false, GV->getParent());
291      OutStreamer.GetCommentOS() << '\n';
292    }
293  }
294
295  MCSymbol *GVSym = getSymbol(GV);
296  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
297
298  if (!GV->hasInitializer())   // External globals require no extra code.
299    return;
300
301  if (MAI->hasDotTypeDotSizeDirective())
302    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
303
304  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
305
306  const DataLayout *DL = TM.getDataLayout();
307  uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
308
309  // If the alignment is specified, we *must* obey it.  Overaligning a global
310  // with a specified alignment is a prompt way to break globals emitted to
311  // sections and expected to be contiguous (e.g. ObjC metadata).
312  unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
313
314  if (DD)
315    DD->setSymbolSize(GVSym, Size);
316
317  // Handle common and BSS local symbols (.lcomm).
318  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
319    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
320    unsigned Align = 1 << AlignLog;
321
322    // Handle common symbols.
323    if (GVKind.isCommon()) {
324      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
325        Align = 0;
326
327      // .comm _foo, 42, 4
328      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
329      return;
330    }
331
332    // Handle local BSS symbols.
333    if (MAI->hasMachoZeroFillDirective()) {
334      const MCSection *TheSection =
335        getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
336      // .zerofill __DATA, __bss, _foo, 400, 5
337      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
338      return;
339    }
340
341    // Use .lcomm only if it supports user-specified alignment.
342    // Otherwise, while it would still be correct to use .lcomm in some
343    // cases (e.g. when Align == 1), the external assembler might enfore
344    // some -unknown- default alignment behavior, which could cause
345    // spurious differences between external and integrated assembler.
346    // Prefer to simply fall back to .local / .comm in this case.
347    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
348      // .lcomm _foo, 42
349      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
350      return;
351    }
352
353    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
354      Align = 0;
355
356    // .local _foo
357    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
358    // .comm _foo, 42, 4
359    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
360    return;
361  }
362
363  const MCSection *TheSection =
364    getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
365
366  // Handle the zerofill directive on darwin, which is a special form of BSS
367  // emission.
368  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
369    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
370
371    // .globl _foo
372    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
373    // .zerofill __DATA, __common, _foo, 400, 5
374    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
375    return;
376  }
377
378  // Handle thread local data for mach-o which requires us to output an
379  // additional structure of data and mangle the original symbol so that we
380  // can reference it later.
381  //
382  // TODO: This should become an "emit thread local global" method on TLOF.
383  // All of this macho specific stuff should be sunk down into TLOFMachO and
384  // stuff like "TLSExtraDataSection" should no longer be part of the parent
385  // TLOF class.  This will also make it more obvious that stuff like
386  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
387  // specific code.
388  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
389    // Emit the .tbss symbol
390    MCSymbol *MangSym =
391      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
392
393    if (GVKind.isThreadBSS()) {
394      TheSection = getObjFileLowering().getTLSBSSSection();
395      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
396    } else if (GVKind.isThreadData()) {
397      OutStreamer.SwitchSection(TheSection);
398
399      EmitAlignment(AlignLog, GV);
400      OutStreamer.EmitLabel(MangSym);
401
402      EmitGlobalConstant(GV->getInitializer());
403    }
404
405    OutStreamer.AddBlankLine();
406
407    // Emit the variable struct for the runtime.
408    const MCSection *TLVSect
409      = getObjFileLowering().getTLSExtraDataSection();
410
411    OutStreamer.SwitchSection(TLVSect);
412    // Emit the linkage here.
413    EmitLinkage(GV, GVSym);
414    OutStreamer.EmitLabel(GVSym);
415
416    // Three pointers in size:
417    //   - __tlv_bootstrap - used to make sure support exists
418    //   - spare pointer, used when mapped by the runtime
419    //   - pointer to mangled symbol above with initializer
420    unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
421    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
422                                PtrSize);
423    OutStreamer.EmitIntValue(0, PtrSize);
424    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
425
426    OutStreamer.AddBlankLine();
427    return;
428  }
429
430  OutStreamer.SwitchSection(TheSection);
431
432  EmitLinkage(GV, GVSym);
433  EmitAlignment(AlignLog, GV);
434
435  OutStreamer.EmitLabel(GVSym);
436
437  EmitGlobalConstant(GV->getInitializer());
438
439  if (MAI->hasDotTypeDotSizeDirective())
440    // .size foo, 42
441    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
442
443  OutStreamer.AddBlankLine();
444}
445
446/// EmitFunctionHeader - This method emits the header for the current
447/// function.
448void AsmPrinter::EmitFunctionHeader() {
449  // Print out constants referenced by the function
450  EmitConstantPool();
451
452  // Print the 'header' of function.
453  const Function *F = MF->getFunction();
454
455  OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
456  EmitVisibility(CurrentFnSym, F->getVisibility());
457
458  EmitLinkage(F, CurrentFnSym);
459  EmitAlignment(MF->getAlignment(), F);
460
461  if (MAI->hasDotTypeDotSizeDirective())
462    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
463
464  if (isVerbose()) {
465    WriteAsOperand(OutStreamer.GetCommentOS(), F,
466                   /*PrintType=*/false, F->getParent());
467    OutStreamer.GetCommentOS() << '\n';
468  }
469
470  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
471  // do their wild and crazy things as required.
472  EmitFunctionEntryLabel();
473
474  // If the function had address-taken blocks that got deleted, then we have
475  // references to the dangling symbols.  Emit them at the start of the function
476  // so that we don't get references to undefined symbols.
477  std::vector<MCSymbol*> DeadBlockSyms;
478  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
479  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
480    OutStreamer.AddComment("Address taken block that was later removed");
481    OutStreamer.EmitLabel(DeadBlockSyms[i]);
482  }
483
484  // Emit pre-function debug and/or EH information.
485  if (DE) {
486    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
487    DE->BeginFunction(MF);
488  }
489  if (DD) {
490    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
491    DD->beginFunction(MF);
492  }
493
494  // Emit the prefix data.
495  if (F->hasPrefixData())
496    EmitGlobalConstant(F->getPrefixData());
497}
498
499/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
500/// function.  This can be overridden by targets as required to do custom stuff.
501void AsmPrinter::EmitFunctionEntryLabel() {
502  // The function label could have already been emitted if two symbols end up
503  // conflicting due to asm renaming.  Detect this and emit an error.
504  if (CurrentFnSym->isUndefined())
505    return OutStreamer.EmitLabel(CurrentFnSym);
506
507  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
508                     "' label emitted multiple times to assembly file");
509}
510
511/// emitComments - Pretty-print comments for instructions.
512static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
513  const MachineFunction *MF = MI.getParent()->getParent();
514  const TargetMachine &TM = MF->getTarget();
515
516  // Check for spills and reloads
517  int FI;
518
519  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
520
521  // We assume a single instruction only has a spill or reload, not
522  // both.
523  const MachineMemOperand *MMO;
524  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
525    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
526      MMO = *MI.memoperands_begin();
527      CommentOS << MMO->getSize() << "-byte Reload\n";
528    }
529  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
530    if (FrameInfo->isSpillSlotObjectIndex(FI))
531      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
532  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
533    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
534      MMO = *MI.memoperands_begin();
535      CommentOS << MMO->getSize() << "-byte Spill\n";
536    }
537  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
538    if (FrameInfo->isSpillSlotObjectIndex(FI))
539      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
540  }
541
542  // Check for spill-induced copies
543  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
544    CommentOS << " Reload Reuse\n";
545}
546
547/// emitImplicitDef - This method emits the specified machine instruction
548/// that is an implicit def.
549void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
550  unsigned RegNo = MI->getOperand(0).getReg();
551  OutStreamer.AddComment(Twine("implicit-def: ") +
552                         TM.getRegisterInfo()->getName(RegNo));
553  OutStreamer.AddBlankLine();
554}
555
556static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
557  std::string Str = "kill:";
558  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
559    const MachineOperand &Op = MI->getOperand(i);
560    assert(Op.isReg() && "KILL instruction must have only register operands");
561    Str += ' ';
562    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
563    Str += (Op.isDef() ? "<def>" : "<kill>");
564  }
565  AP.OutStreamer.AddComment(Str);
566  AP.OutStreamer.AddBlankLine();
567}
568
569/// emitDebugValueComment - This method handles the target-independent form
570/// of DBG_VALUE, returning true if it was able to do so.  A false return
571/// means the target will need to handle MI in EmitInstruction.
572static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
573  // This code handles only the 3-operand target-independent form.
574  if (MI->getNumOperands() != 3)
575    return false;
576
577  SmallString<128> Str;
578  raw_svector_ostream OS(Str);
579  OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
580
581  // cast away const; DIetc do not take const operands for some reason.
582  DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
583  if (V.getContext().isSubprogram()) {
584    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
585    if (!Name.empty())
586      OS << Name << ":";
587  }
588  OS << V.getName() << " <- ";
589
590  // The second operand is only an offset if it's an immediate.
591  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
592  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
593
594  // Register or immediate value. Register 0 means undef.
595  if (MI->getOperand(0).isFPImm()) {
596    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
597    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
598      OS << (double)APF.convertToFloat();
599    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
600      OS << APF.convertToDouble();
601    } else {
602      // There is no good way to print long double.  Convert a copy to
603      // double.  Ah well, it's only a comment.
604      bool ignored;
605      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
606                  &ignored);
607      OS << "(long double) " << APF.convertToDouble();
608    }
609  } else if (MI->getOperand(0).isImm()) {
610    OS << MI->getOperand(0).getImm();
611  } else if (MI->getOperand(0).isCImm()) {
612    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
613  } else {
614    unsigned Reg;
615    if (MI->getOperand(0).isReg()) {
616      Reg = MI->getOperand(0).getReg();
617    } else {
618      assert(MI->getOperand(0).isFI() && "Unknown operand type");
619      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
620      Offset += TFI->getFrameIndexReference(*AP.MF,
621                                            MI->getOperand(0).getIndex(), Reg);
622      Deref = true;
623    }
624    if (Reg == 0) {
625      // Suppress offset, it is not meaningful here.
626      OS << "undef";
627      // NOTE: Want this comment at start of line, don't emit with AddComment.
628      AP.OutStreamer.EmitRawText(OS.str());
629      return true;
630    }
631    if (Deref)
632      OS << '[';
633    OS << AP.TM.getRegisterInfo()->getName(Reg);
634  }
635
636  if (Deref)
637    OS << '+' << Offset << ']';
638
639  // NOTE: Want this comment at start of line, don't emit with AddComment.
640  AP.OutStreamer.EmitRawText(OS.str());
641  return true;
642}
643
644AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
645  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
646      MF->getFunction()->needsUnwindTableEntry())
647    return CFI_M_EH;
648
649  if (MMI->hasDebugInfo())
650    return CFI_M_Debug;
651
652  return CFI_M_None;
653}
654
655bool AsmPrinter::needsSEHMoves() {
656  return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
657    MF->getFunction()->needsUnwindTableEntry();
658}
659
660bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
661  return MAI->doesDwarfUseRelocationsAcrossSections();
662}
663
664void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
665  const MCSymbol *Label = MI.getOperand(0).getMCSymbol();
666
667  if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
668    return;
669
670  if (needsCFIMoves() == CFI_M_None)
671    return;
672
673  if (MMI->getCompactUnwindEncoding() != 0)
674    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
675
676  const MachineModuleInfo &MMI = MF->getMMI();
677  const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
678  bool FoundOne = false;
679  (void)FoundOne;
680  for (std::vector<MCCFIInstruction>::const_iterator I = Instrs.begin(),
681         E = Instrs.end(); I != E; ++I) {
682    if (I->getLabel() == Label) {
683      emitCFIInstruction(*I);
684      FoundOne = true;
685    }
686  }
687  assert(FoundOne);
688}
689
690/// EmitFunctionBody - This method emits the body and trailer for a
691/// function.
692void AsmPrinter::EmitFunctionBody() {
693  // Emit target-specific gunk before the function body.
694  EmitFunctionBodyStart();
695
696  bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
697
698  // Print out code for the function.
699  bool HasAnyRealCode = false;
700  const MachineInstr *LastMI = 0;
701  for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
702       I != E; ++I) {
703    // Print a label for the basic block.
704    EmitBasicBlockStart(I);
705    for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
706         II != IE; ++II) {
707      LastMI = II;
708
709      // Print the assembly for the instruction.
710      if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
711          !II->isDebugValue()) {
712        HasAnyRealCode = true;
713        ++EmittedInsts;
714      }
715
716      if (ShouldPrintDebugScopes) {
717        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
718        DD->beginInstruction(II);
719      }
720
721      if (isVerbose())
722        emitComments(*II, OutStreamer.GetCommentOS());
723
724      switch (II->getOpcode()) {
725      case TargetOpcode::PROLOG_LABEL:
726        emitPrologLabel(*II);
727        break;
728
729      case TargetOpcode::EH_LABEL:
730      case TargetOpcode::GC_LABEL:
731        OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
732        break;
733      case TargetOpcode::INLINEASM:
734        EmitInlineAsm(II);
735        break;
736      case TargetOpcode::DBG_VALUE:
737        if (isVerbose()) {
738          if (!emitDebugValueComment(II, *this))
739            EmitInstruction(II);
740        }
741        break;
742      case TargetOpcode::IMPLICIT_DEF:
743        if (isVerbose()) emitImplicitDef(II);
744        break;
745      case TargetOpcode::KILL:
746        if (isVerbose()) emitKill(II, *this);
747        break;
748      default:
749        if (!TM.hasMCUseLoc())
750          MCLineEntry::Make(&OutStreamer, getCurrentSection());
751
752        EmitInstruction(II);
753        break;
754      }
755
756      if (ShouldPrintDebugScopes) {
757        NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
758        DD->endInstruction(II);
759      }
760    }
761  }
762
763  // If the last instruction was a prolog label, then we have a situation where
764  // we emitted a prolog but no function body. This results in the ending prolog
765  // label equaling the end of function label and an invalid "row" in the
766  // FDE. We need to emit a noop in this situation so that the FDE's rows are
767  // valid.
768  bool RequiresNoop = LastMI && LastMI->isPrologLabel();
769
770  // If the function is empty and the object file uses .subsections_via_symbols,
771  // then we need to emit *something* to the function body to prevent the
772  // labels from collapsing together.  Just emit a noop.
773  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
774    MCInst Noop;
775    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
776    if (Noop.getOpcode()) {
777      OutStreamer.AddComment("avoids zero-length function");
778      OutStreamer.EmitInstruction(Noop);
779    } else  // Target not mc-ized yet.
780      OutStreamer.EmitRawText(StringRef("\tnop\n"));
781  }
782
783  const Function *F = MF->getFunction();
784  for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
785    const BasicBlock *BB = i;
786    if (!BB->hasAddressTaken())
787      continue;
788    MCSymbol *Sym = GetBlockAddressSymbol(BB);
789    if (Sym->isDefined())
790      continue;
791    OutStreamer.AddComment("Address of block that was removed by CodeGen");
792    OutStreamer.EmitLabel(Sym);
793  }
794
795  // Emit target-specific gunk after the function body.
796  EmitFunctionBodyEnd();
797
798  // If the target wants a .size directive for the size of the function, emit
799  // it.
800  if (MAI->hasDotTypeDotSizeDirective()) {
801    // Create a symbol for the end of function, so we can get the size as
802    // difference between the function label and the temp label.
803    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
804    OutStreamer.EmitLabel(FnEndLabel);
805
806    const MCExpr *SizeExp =
807      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
808                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
809                                                      OutContext),
810                              OutContext);
811    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
812  }
813
814  // Emit post-function debug information.
815  if (DD) {
816    NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
817    DD->endFunction(MF);
818  }
819  if (DE) {
820    NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
821    DE->EndFunction();
822  }
823  MMI->EndFunction();
824
825  // Print out jump tables referenced by the function.
826  EmitJumpTableInfo();
827
828  OutStreamer.AddBlankLine();
829}
830
831/// EmitDwarfRegOp - Emit dwarf register operation.
832void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
833                                bool Indirect) const {
834  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
835  int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
836
837  for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
838       ++SR) {
839    Reg = TRI->getDwarfRegNum(*SR, false);
840    // FIXME: Get the bit range this register uses of the superregister
841    // so that we can produce a DW_OP_bit_piece
842  }
843
844  // FIXME: Handle cases like a super register being encoded as
845  // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
846
847  // FIXME: We have no reasonable way of handling errors in here. The
848  // caller might be in the middle of an dwarf expression. We should
849  // probably assert that Reg >= 0 once debug info generation is more mature.
850
851  if (MLoc.isIndirect() || Indirect) {
852    if (Reg < 32) {
853      OutStreamer.AddComment(
854        dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
855      EmitInt8(dwarf::DW_OP_breg0 + Reg);
856    } else {
857      OutStreamer.AddComment("DW_OP_bregx");
858      EmitInt8(dwarf::DW_OP_bregx);
859      OutStreamer.AddComment(Twine(Reg));
860      EmitULEB128(Reg);
861    }
862    EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
863    if (MLoc.isIndirect() && Indirect)
864      EmitInt8(dwarf::DW_OP_deref);
865  } else {
866    if (Reg < 32) {
867      OutStreamer.AddComment(
868        dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
869      EmitInt8(dwarf::DW_OP_reg0 + Reg);
870    } else {
871      OutStreamer.AddComment("DW_OP_regx");
872      EmitInt8(dwarf::DW_OP_regx);
873      OutStreamer.AddComment(Twine(Reg));
874      EmitULEB128(Reg);
875    }
876  }
877
878  // FIXME: Produce a DW_OP_bit_piece if we used a superregister
879}
880
881bool AsmPrinter::doFinalization(Module &M) {
882  // Emit global variables.
883  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
884       I != E; ++I)
885    EmitGlobalVariable(I);
886
887  // Emit visibility info for declarations
888  for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
889    const Function &F = *I;
890    if (!F.isDeclaration())
891      continue;
892    GlobalValue::VisibilityTypes V = F.getVisibility();
893    if (V == GlobalValue::DefaultVisibility)
894      continue;
895
896    MCSymbol *Name = getSymbol(&F);
897    EmitVisibility(Name, V, false);
898  }
899
900  // Emit module flags.
901  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
902  M.getModuleFlagsMetadata(ModuleFlags);
903  if (!ModuleFlags.empty())
904    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
905
906  // Make sure we wrote out everything we need.
907  OutStreamer.Flush();
908
909  // Finalize debug and EH information.
910  if (DE) {
911    {
912      NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
913      DE->EndModule();
914    }
915    delete DE; DE = 0;
916  }
917  if (DD) {
918    {
919      NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
920      DD->endModule();
921    }
922    delete DD; DD = 0;
923  }
924
925  // If the target wants to know about weak references, print them all.
926  if (MAI->getWeakRefDirective()) {
927    // FIXME: This is not lazy, it would be nice to only print weak references
928    // to stuff that is actually used.  Note that doing so would require targets
929    // to notice uses in operands (due to constant exprs etc).  This should
930    // happen with the MC stuff eventually.
931
932    // Print out module-level global variables here.
933    for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
934         I != E; ++I) {
935      if (!I->hasExternalWeakLinkage()) continue;
936      OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
937    }
938
939    for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
940      if (!I->hasExternalWeakLinkage()) continue;
941      OutStreamer.EmitSymbolAttribute(getSymbol(I), MCSA_WeakReference);
942    }
943  }
944
945  if (MAI->hasSetDirective()) {
946    OutStreamer.AddBlankLine();
947    for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
948         I != E; ++I) {
949      MCSymbol *Name = getSymbol(I);
950
951      const GlobalValue *GV = I->getAliasedGlobal();
952      if (GV->isDeclaration()) {
953        report_fatal_error(Name->getName() +
954                           ": Target doesn't support aliases to declarations");
955      }
956
957      MCSymbol *Target = getSymbol(GV);
958
959      if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
960        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
961      else if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
962        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
963      else
964        assert(I->hasLocalLinkage() && "Invalid alias linkage");
965
966      EmitVisibility(Name, I->getVisibility());
967
968      // Emit the directives as assignments aka .set:
969      OutStreamer.EmitAssignment(Name,
970                                 MCSymbolRefExpr::Create(Target, OutContext));
971    }
972  }
973
974  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
975  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
976  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
977    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
978      MP->finishAssembly(*this);
979
980  // Emit llvm.ident metadata in an '.ident' directive.
981  EmitModuleIdents(M);
982
983  // If we don't have any trampolines, then we don't require stack memory
984  // to be executable. Some targets have a directive to declare this.
985  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
986  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
987    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
988      OutStreamer.SwitchSection(S);
989
990  // Allow the target to emit any magic that it wants at the end of the file,
991  // after everything else has gone out.
992  EmitEndOfAsmFile(M);
993
994  delete Mang; Mang = 0;
995  MMI = 0;
996
997  OutStreamer.Finish();
998  OutStreamer.reset();
999
1000  return false;
1001}
1002
1003void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1004  this->MF = &MF;
1005  // Get the function symbol.
1006  CurrentFnSym = getSymbol(MF.getFunction());
1007  CurrentFnSymForSize = CurrentFnSym;
1008
1009  if (isVerbose())
1010    LI = &getAnalysis<MachineLoopInfo>();
1011}
1012
1013namespace {
1014  // SectionCPs - Keep track the alignment, constpool entries per Section.
1015  struct SectionCPs {
1016    const MCSection *S;
1017    unsigned Alignment;
1018    SmallVector<unsigned, 4> CPEs;
1019    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1020  };
1021}
1022
1023/// EmitConstantPool - Print to the current output stream assembly
1024/// representations of the constants in the constant pool MCP. This is
1025/// used to print out constants which have been "spilled to memory" by
1026/// the code generator.
1027///
1028void AsmPrinter::EmitConstantPool() {
1029  const MachineConstantPool *MCP = MF->getConstantPool();
1030  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1031  if (CP.empty()) return;
1032
1033  // Calculate sections for constant pool entries. We collect entries to go into
1034  // the same section together to reduce amount of section switch statements.
1035  SmallVector<SectionCPs, 4> CPSections;
1036  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1037    const MachineConstantPoolEntry &CPE = CP[i];
1038    unsigned Align = CPE.getAlignment();
1039
1040    SectionKind Kind;
1041    switch (CPE.getRelocationInfo()) {
1042    default: llvm_unreachable("Unknown section kind");
1043    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1044    case 1:
1045      Kind = SectionKind::getReadOnlyWithRelLocal();
1046      break;
1047    case 0:
1048    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1049    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1050    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1051    case 16: Kind = SectionKind::getMergeableConst16();break;
1052    default: Kind = SectionKind::getMergeableConst(); break;
1053    }
1054    }
1055
1056    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1057
1058    // The number of sections are small, just do a linear search from the
1059    // last section to the first.
1060    bool Found = false;
1061    unsigned SecIdx = CPSections.size();
1062    while (SecIdx != 0) {
1063      if (CPSections[--SecIdx].S == S) {
1064        Found = true;
1065        break;
1066      }
1067    }
1068    if (!Found) {
1069      SecIdx = CPSections.size();
1070      CPSections.push_back(SectionCPs(S, Align));
1071    }
1072
1073    if (Align > CPSections[SecIdx].Alignment)
1074      CPSections[SecIdx].Alignment = Align;
1075    CPSections[SecIdx].CPEs.push_back(i);
1076  }
1077
1078  // Now print stuff into the calculated sections.
1079  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1080    OutStreamer.SwitchSection(CPSections[i].S);
1081    EmitAlignment(Log2_32(CPSections[i].Alignment));
1082
1083    unsigned Offset = 0;
1084    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1085      unsigned CPI = CPSections[i].CPEs[j];
1086      MachineConstantPoolEntry CPE = CP[CPI];
1087
1088      // Emit inter-object padding for alignment.
1089      unsigned AlignMask = CPE.getAlignment() - 1;
1090      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1091      OutStreamer.EmitZeros(NewOffset - Offset);
1092
1093      Type *Ty = CPE.getType();
1094      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1095      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1096
1097      if (CPE.isMachineConstantPoolEntry())
1098        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1099      else
1100        EmitGlobalConstant(CPE.Val.ConstVal);
1101    }
1102  }
1103}
1104
1105/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1106/// by the current function to the current output stream.
1107///
1108void AsmPrinter::EmitJumpTableInfo() {
1109  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1110  if (MJTI == 0) return;
1111  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1112  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1113  if (JT.empty()) return;
1114
1115  // Pick the directive to use to print the jump table entries, and switch to
1116  // the appropriate section.
1117  const Function *F = MF->getFunction();
1118  bool JTInDiffSection = false;
1119  if (// In PIC mode, we need to emit the jump table to the same section as the
1120      // function body itself, otherwise the label differences won't make sense.
1121      // FIXME: Need a better predicate for this: what about custom entries?
1122      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1123      // We should also do if the section name is NULL or function is declared
1124      // in discardable section
1125      // FIXME: this isn't the right predicate, should be based on the MCSection
1126      // for the function.
1127      F->isWeakForLinker()) {
1128    OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1129  } else {
1130    // Otherwise, drop it in the readonly section.
1131    const MCSection *ReadOnlySection =
1132      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1133    OutStreamer.SwitchSection(ReadOnlySection);
1134    JTInDiffSection = true;
1135  }
1136
1137  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1138
1139  // Jump tables in code sections are marked with a data_region directive
1140  // where that's supported.
1141  if (!JTInDiffSection)
1142    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1143
1144  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1145    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1146
1147    // If this jump table was deleted, ignore it.
1148    if (JTBBs.empty()) continue;
1149
1150    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1151    // .set directive for each unique entry.  This reduces the number of
1152    // relocations the assembler will generate for the jump table.
1153    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1154        MAI->hasSetDirective()) {
1155      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1156      const TargetLowering *TLI = TM.getTargetLowering();
1157      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1158      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1159        const MachineBasicBlock *MBB = JTBBs[ii];
1160        if (!EmittedSets.insert(MBB)) continue;
1161
1162        // .set LJTSet, LBB32-base
1163        const MCExpr *LHS =
1164          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1165        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1166                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1167      }
1168    }
1169
1170    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1171    // before each jump table.  The first label is never referenced, but tells
1172    // the assembler and linker the extents of the jump table object.  The
1173    // second label is actually referenced by the code.
1174    if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1175      // FIXME: This doesn't have to have any specific name, just any randomly
1176      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1177      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1178
1179    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1180
1181    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1182      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1183  }
1184  if (!JTInDiffSection)
1185    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1186}
1187
1188/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1189/// current stream.
1190void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1191                                    const MachineBasicBlock *MBB,
1192                                    unsigned UID) const {
1193  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1194  const MCExpr *Value = 0;
1195  switch (MJTI->getEntryKind()) {
1196  case MachineJumpTableInfo::EK_Inline:
1197    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1198  case MachineJumpTableInfo::EK_Custom32:
1199    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1200                                                              OutContext);
1201    break;
1202  case MachineJumpTableInfo::EK_BlockAddress:
1203    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1204    //     .word LBB123
1205    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1206    break;
1207  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1208    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1209    // with a relocation as gp-relative, e.g.:
1210    //     .gprel32 LBB123
1211    MCSymbol *MBBSym = MBB->getSymbol();
1212    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1213    return;
1214  }
1215
1216  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1217    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1218    // with a relocation as gp-relative, e.g.:
1219    //     .gpdword LBB123
1220    MCSymbol *MBBSym = MBB->getSymbol();
1221    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1222    return;
1223  }
1224
1225  case MachineJumpTableInfo::EK_LabelDifference32: {
1226    // EK_LabelDifference32 - Each entry is the address of the block minus
1227    // the address of the jump table.  This is used for PIC jump tables where
1228    // gprel32 is not supported.  e.g.:
1229    //      .word LBB123 - LJTI1_2
1230    // If the .set directive is supported, this is emitted as:
1231    //      .set L4_5_set_123, LBB123 - LJTI1_2
1232    //      .word L4_5_set_123
1233
1234    // If we have emitted set directives for the jump table entries, print
1235    // them rather than the entries themselves.  If we're emitting PIC, then
1236    // emit the table entries as differences between two text section labels.
1237    if (MAI->hasSetDirective()) {
1238      // If we used .set, reference the .set's symbol.
1239      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1240                                      OutContext);
1241      break;
1242    }
1243    // Otherwise, use the difference as the jump table entry.
1244    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1245    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1246    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1247    break;
1248  }
1249  }
1250
1251  assert(Value && "Unknown entry kind!");
1252
1253  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1254  OutStreamer.EmitValue(Value, EntrySize);
1255}
1256
1257
1258/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1259/// special global used by LLVM.  If so, emit it and return true, otherwise
1260/// do nothing and return false.
1261bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1262  if (GV->getName() == "llvm.used") {
1263    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1264      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1265    return true;
1266  }
1267
1268  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1269  if (GV->getSection() == "llvm.metadata" ||
1270      GV->hasAvailableExternallyLinkage())
1271    return true;
1272
1273  if (!GV->hasAppendingLinkage()) return false;
1274
1275  assert(GV->hasInitializer() && "Not a special LLVM global!");
1276
1277  if (GV->getName() == "llvm.global_ctors") {
1278    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1279
1280    if (TM.getRelocationModel() == Reloc::Static &&
1281        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1282      StringRef Sym(".constructors_used");
1283      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1284                                      MCSA_Reference);
1285    }
1286    return true;
1287  }
1288
1289  if (GV->getName() == "llvm.global_dtors") {
1290    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1291
1292    if (TM.getRelocationModel() == Reloc::Static &&
1293        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1294      StringRef Sym(".destructors_used");
1295      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1296                                      MCSA_Reference);
1297    }
1298    return true;
1299  }
1300
1301  return false;
1302}
1303
1304/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1305/// global in the specified llvm.used list for which emitUsedDirectiveFor
1306/// is true, as being used with this directive.
1307void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1308  // Should be an array of 'i8*'.
1309  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1310    const GlobalValue *GV =
1311      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1312    if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1313      OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1314  }
1315}
1316
1317/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1318/// priority.
1319void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1320  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1321  // init priority.
1322  if (!isa<ConstantArray>(List)) return;
1323
1324  // Sanity check the structors list.
1325  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1326  if (!InitList) return; // Not an array!
1327  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1328  if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1329  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1330      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1331
1332  // Gather the structors in a form that's convenient for sorting by priority.
1333  typedef std::pair<unsigned, Constant *> Structor;
1334  SmallVector<Structor, 8> Structors;
1335  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1336    ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1337    if (!CS) continue; // Malformed.
1338    if (CS->getOperand(1)->isNullValue())
1339      break;  // Found a null terminator, skip the rest.
1340    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1341    if (!Priority) continue; // Malformed.
1342    Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1343                                       CS->getOperand(1)));
1344  }
1345
1346  // Emit the function pointers in the target-specific order
1347  const DataLayout *DL = TM.getDataLayout();
1348  unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1349  std::stable_sort(Structors.begin(), Structors.end(), less_first());
1350  for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1351    const MCSection *OutputSection =
1352      (isCtor ?
1353       getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1354       getObjFileLowering().getStaticDtorSection(Structors[i].first));
1355    OutStreamer.SwitchSection(OutputSection);
1356    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1357      EmitAlignment(Align);
1358    EmitXXStructor(Structors[i].second);
1359  }
1360}
1361
1362void AsmPrinter::EmitModuleIdents(Module &M) {
1363  if (!MAI->hasIdentDirective())
1364    return;
1365
1366  if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1367    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1368      const MDNode *N = NMD->getOperand(i);
1369      assert(N->getNumOperands() == 1 &&
1370             "llvm.ident metadata entry can have only one operand");
1371      const MDString *S = cast<MDString>(N->getOperand(0));
1372      OutStreamer.EmitIdent(S->getString());
1373    }
1374  }
1375}
1376
1377//===--------------------------------------------------------------------===//
1378// Emission and print routines
1379//
1380
1381/// EmitInt8 - Emit a byte directive and value.
1382///
1383void AsmPrinter::EmitInt8(int Value) const {
1384  OutStreamer.EmitIntValue(Value, 1);
1385}
1386
1387/// EmitInt16 - Emit a short directive and value.
1388///
1389void AsmPrinter::EmitInt16(int Value) const {
1390  OutStreamer.EmitIntValue(Value, 2);
1391}
1392
1393/// EmitInt32 - Emit a long directive and value.
1394///
1395void AsmPrinter::EmitInt32(int Value) const {
1396  OutStreamer.EmitIntValue(Value, 4);
1397}
1398
1399/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1400/// in bytes of the directive is specified by Size and Hi/Lo specify the
1401/// labels.  This implicitly uses .set if it is available.
1402void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1403                                     unsigned Size) const {
1404  // Get the Hi-Lo expression.
1405  const MCExpr *Diff =
1406    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1407                            MCSymbolRefExpr::Create(Lo, OutContext),
1408                            OutContext);
1409
1410  if (!MAI->hasSetDirective()) {
1411    OutStreamer.EmitValue(Diff, Size);
1412    return;
1413  }
1414
1415  // Otherwise, emit with .set (aka assignment).
1416  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1417  OutStreamer.EmitAssignment(SetLabel, Diff);
1418  OutStreamer.EmitSymbolValue(SetLabel, Size);
1419}
1420
1421/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1422/// where the size in bytes of the directive is specified by Size and Hi/Lo
1423/// specify the labels.  This implicitly uses .set if it is available.
1424void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1425                                           const MCSymbol *Lo, unsigned Size)
1426  const {
1427
1428  // Emit Hi+Offset - Lo
1429  // Get the Hi+Offset expression.
1430  const MCExpr *Plus =
1431    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1432                            MCConstantExpr::Create(Offset, OutContext),
1433                            OutContext);
1434
1435  // Get the Hi+Offset-Lo expression.
1436  const MCExpr *Diff =
1437    MCBinaryExpr::CreateSub(Plus,
1438                            MCSymbolRefExpr::Create(Lo, OutContext),
1439                            OutContext);
1440
1441  if (!MAI->hasSetDirective())
1442    OutStreamer.EmitValue(Diff, Size);
1443  else {
1444    // Otherwise, emit with .set (aka assignment).
1445    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1446    OutStreamer.EmitAssignment(SetLabel, Diff);
1447    OutStreamer.EmitSymbolValue(SetLabel, Size);
1448  }
1449}
1450
1451/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1452/// where the size in bytes of the directive is specified by Size and Label
1453/// specifies the label.  This implicitly uses .set if it is available.
1454void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1455                                      unsigned Size, bool IsSectionRelative)
1456  const {
1457  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1458    OutStreamer.EmitCOFFSecRel32(Label);
1459    return;
1460  }
1461
1462  // Emit Label+Offset (or just Label if Offset is zero)
1463  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1464  if (Offset)
1465    Expr = MCBinaryExpr::CreateAdd(Expr,
1466                                   MCConstantExpr::Create(Offset, OutContext),
1467                                   OutContext);
1468
1469  OutStreamer.EmitValue(Expr, Size);
1470}
1471
1472
1473//===----------------------------------------------------------------------===//
1474
1475// EmitAlignment - Emit an alignment directive to the specified power of
1476// two boundary.  For example, if you pass in 3 here, you will get an 8
1477// byte alignment.  If a global value is specified, and if that global has
1478// an explicit alignment requested, it will override the alignment request
1479// if required for correctness.
1480//
1481void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1482  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1483
1484  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1485
1486  if (getCurrentSection()->getKind().isText())
1487    OutStreamer.EmitCodeAlignment(1 << NumBits);
1488  else
1489    OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1490}
1491
1492//===----------------------------------------------------------------------===//
1493// Constant emission.
1494//===----------------------------------------------------------------------===//
1495
1496/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1497///
1498static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1499  MCContext &Ctx = AP.OutContext;
1500
1501  if (CV->isNullValue() || isa<UndefValue>(CV))
1502    return MCConstantExpr::Create(0, Ctx);
1503
1504  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1505    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1506
1507  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1508    return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
1509
1510  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1511    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1512
1513  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1514  if (CE == 0) {
1515    llvm_unreachable("Unknown constant value to lower!");
1516  }
1517
1518  switch (CE->getOpcode()) {
1519  default:
1520    // If the code isn't optimized, there may be outstanding folding
1521    // opportunities. Attempt to fold the expression using DataLayout as a
1522    // last resort before giving up.
1523    if (Constant *C =
1524          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1525      if (C != CE)
1526        return lowerConstant(C, AP);
1527
1528    // Otherwise report the problem to the user.
1529    {
1530      std::string S;
1531      raw_string_ostream OS(S);
1532      OS << "Unsupported expression in static initializer: ";
1533      WriteAsOperand(OS, CE, /*PrintType=*/false,
1534                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1535      report_fatal_error(OS.str());
1536    }
1537  case Instruction::GetElementPtr: {
1538    const DataLayout &DL = *AP.TM.getDataLayout();
1539    // Generate a symbolic expression for the byte address
1540    APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1541    cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1542
1543    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1544    if (!OffsetAI)
1545      return Base;
1546
1547    int64_t Offset = OffsetAI.getSExtValue();
1548    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1549                                   Ctx);
1550  }
1551
1552  case Instruction::Trunc:
1553    // We emit the value and depend on the assembler to truncate the generated
1554    // expression properly.  This is important for differences between
1555    // blockaddress labels.  Since the two labels are in the same function, it
1556    // is reasonable to treat their delta as a 32-bit value.
1557    // FALL THROUGH.
1558  case Instruction::BitCast:
1559    return lowerConstant(CE->getOperand(0), AP);
1560
1561  case Instruction::IntToPtr: {
1562    const DataLayout &DL = *AP.TM.getDataLayout();
1563    // Handle casts to pointers by changing them into casts to the appropriate
1564    // integer type.  This promotes constant folding and simplifies this code.
1565    Constant *Op = CE->getOperand(0);
1566    Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1567                                      false/*ZExt*/);
1568    return lowerConstant(Op, AP);
1569  }
1570
1571  case Instruction::PtrToInt: {
1572    const DataLayout &DL = *AP.TM.getDataLayout();
1573    // Support only foldable casts to/from pointers that can be eliminated by
1574    // changing the pointer to the appropriately sized integer type.
1575    Constant *Op = CE->getOperand(0);
1576    Type *Ty = CE->getType();
1577
1578    const MCExpr *OpExpr = lowerConstant(Op, AP);
1579
1580    // We can emit the pointer value into this slot if the slot is an
1581    // integer slot equal to the size of the pointer.
1582    if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1583      return OpExpr;
1584
1585    // Otherwise the pointer is smaller than the resultant integer, mask off
1586    // the high bits so we are sure to get a proper truncation if the input is
1587    // a constant expr.
1588    unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1589    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1590    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1591  }
1592
1593  // The MC library also has a right-shift operator, but it isn't consistently
1594  // signed or unsigned between different targets.
1595  case Instruction::Add:
1596  case Instruction::Sub:
1597  case Instruction::Mul:
1598  case Instruction::SDiv:
1599  case Instruction::SRem:
1600  case Instruction::Shl:
1601  case Instruction::And:
1602  case Instruction::Or:
1603  case Instruction::Xor: {
1604    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1605    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1606    switch (CE->getOpcode()) {
1607    default: llvm_unreachable("Unknown binary operator constant cast expr");
1608    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1609    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1610    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1611    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1612    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1613    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1614    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1615    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1616    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1617    }
1618  }
1619  }
1620}
1621
1622static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1623
1624/// isRepeatedByteSequence - Determine whether the given value is
1625/// composed of a repeated sequence of identical bytes and return the
1626/// byte value.  If it is not a repeated sequence, return -1.
1627static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1628  StringRef Data = V->getRawDataValues();
1629  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1630  char C = Data[0];
1631  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1632    if (Data[i] != C) return -1;
1633  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1634}
1635
1636
1637/// isRepeatedByteSequence - Determine whether the given value is
1638/// composed of a repeated sequence of identical bytes and return the
1639/// byte value.  If it is not a repeated sequence, return -1.
1640static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1641
1642  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1643    if (CI->getBitWidth() > 64) return -1;
1644
1645    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1646    uint64_t Value = CI->getZExtValue();
1647
1648    // Make sure the constant is at least 8 bits long and has a power
1649    // of 2 bit width.  This guarantees the constant bit width is
1650    // always a multiple of 8 bits, avoiding issues with padding out
1651    // to Size and other such corner cases.
1652    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1653
1654    uint8_t Byte = static_cast<uint8_t>(Value);
1655
1656    for (unsigned i = 1; i < Size; ++i) {
1657      Value >>= 8;
1658      if (static_cast<uint8_t>(Value) != Byte) return -1;
1659    }
1660    return Byte;
1661  }
1662  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1663    // Make sure all array elements are sequences of the same repeated
1664    // byte.
1665    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1666    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1667    if (Byte == -1) return -1;
1668
1669    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1670      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1671      if (ThisByte == -1) return -1;
1672      if (Byte != ThisByte) return -1;
1673    }
1674    return Byte;
1675  }
1676
1677  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1678    return isRepeatedByteSequence(CDS);
1679
1680  return -1;
1681}
1682
1683static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1684                                             AsmPrinter &AP){
1685
1686  // See if we can aggregate this into a .fill, if so, emit it as such.
1687  int Value = isRepeatedByteSequence(CDS, AP.TM);
1688  if (Value != -1) {
1689    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1690    // Don't emit a 1-byte object as a .fill.
1691    if (Bytes > 1)
1692      return AP.OutStreamer.EmitFill(Bytes, Value);
1693  }
1694
1695  // If this can be emitted with .ascii/.asciz, emit it as such.
1696  if (CDS->isString())
1697    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1698
1699  // Otherwise, emit the values in successive locations.
1700  unsigned ElementByteSize = CDS->getElementByteSize();
1701  if (isa<IntegerType>(CDS->getElementType())) {
1702    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1703      if (AP.isVerbose())
1704        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1705                                                CDS->getElementAsInteger(i));
1706      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1707                                  ElementByteSize);
1708    }
1709  } else if (ElementByteSize == 4) {
1710    // FP Constants are printed as integer constants to avoid losing
1711    // precision.
1712    assert(CDS->getElementType()->isFloatTy());
1713    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1714      union {
1715        float F;
1716        uint32_t I;
1717      };
1718
1719      F = CDS->getElementAsFloat(i);
1720      if (AP.isVerbose())
1721        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1722      AP.OutStreamer.EmitIntValue(I, 4);
1723    }
1724  } else {
1725    assert(CDS->getElementType()->isDoubleTy());
1726    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1727      union {
1728        double F;
1729        uint64_t I;
1730      };
1731
1732      F = CDS->getElementAsDouble(i);
1733      if (AP.isVerbose())
1734        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1735      AP.OutStreamer.EmitIntValue(I, 8);
1736    }
1737  }
1738
1739  const DataLayout &DL = *AP.TM.getDataLayout();
1740  unsigned Size = DL.getTypeAllocSize(CDS->getType());
1741  unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1742                        CDS->getNumElements();
1743  if (unsigned Padding = Size - EmittedSize)
1744    AP.OutStreamer.EmitZeros(Padding);
1745
1746}
1747
1748static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1749  // See if we can aggregate some values.  Make sure it can be
1750  // represented as a series of bytes of the constant value.
1751  int Value = isRepeatedByteSequence(CA, AP.TM);
1752
1753  if (Value != -1) {
1754    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1755    AP.OutStreamer.EmitFill(Bytes, Value);
1756  }
1757  else {
1758    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1759      emitGlobalConstantImpl(CA->getOperand(i), AP);
1760  }
1761}
1762
1763static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1764  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1765    emitGlobalConstantImpl(CV->getOperand(i), AP);
1766
1767  const DataLayout &DL = *AP.TM.getDataLayout();
1768  unsigned Size = DL.getTypeAllocSize(CV->getType());
1769  unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1770                         CV->getType()->getNumElements();
1771  if (unsigned Padding = Size - EmittedSize)
1772    AP.OutStreamer.EmitZeros(Padding);
1773}
1774
1775static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1776  // Print the fields in successive locations. Pad to align if needed!
1777  const DataLayout *DL = AP.TM.getDataLayout();
1778  unsigned Size = DL->getTypeAllocSize(CS->getType());
1779  const StructLayout *Layout = DL->getStructLayout(CS->getType());
1780  uint64_t SizeSoFar = 0;
1781  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1782    const Constant *Field = CS->getOperand(i);
1783
1784    // Check if padding is needed and insert one or more 0s.
1785    uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1786    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1787                        - Layout->getElementOffset(i)) - FieldSize;
1788    SizeSoFar += FieldSize + PadSize;
1789
1790    // Now print the actual field value.
1791    emitGlobalConstantImpl(Field, AP);
1792
1793    // Insert padding - this may include padding to increase the size of the
1794    // current field up to the ABI size (if the struct is not packed) as well
1795    // as padding to ensure that the next field starts at the right offset.
1796    AP.OutStreamer.EmitZeros(PadSize);
1797  }
1798  assert(SizeSoFar == Layout->getSizeInBytes() &&
1799         "Layout of constant struct may be incorrect!");
1800}
1801
1802static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1803  APInt API = CFP->getValueAPF().bitcastToAPInt();
1804
1805  // First print a comment with what we think the original floating-point value
1806  // should have been.
1807  if (AP.isVerbose()) {
1808    SmallString<8> StrVal;
1809    CFP->getValueAPF().toString(StrVal);
1810
1811    CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1812    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1813  }
1814
1815  // Now iterate through the APInt chunks, emitting them in endian-correct
1816  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1817  // floats).
1818  unsigned NumBytes = API.getBitWidth() / 8;
1819  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1820  const uint64_t *p = API.getRawData();
1821
1822  // PPC's long double has odd notions of endianness compared to how LLVM
1823  // handles it: p[0] goes first for *big* endian on PPC.
1824  if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1825    int Chunk = API.getNumWords() - 1;
1826
1827    if (TrailingBytes)
1828      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1829
1830    for (; Chunk >= 0; --Chunk)
1831      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1832  } else {
1833    unsigned Chunk;
1834    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1835      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1836
1837    if (TrailingBytes)
1838      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1839  }
1840
1841  // Emit the tail padding for the long double.
1842  const DataLayout &DL = *AP.TM.getDataLayout();
1843  AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
1844                           DL.getTypeStoreSize(CFP->getType()));
1845}
1846
1847static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1848  const DataLayout *DL = AP.TM.getDataLayout();
1849  unsigned BitWidth = CI->getBitWidth();
1850
1851  // Copy the value as we may massage the layout for constants whose bit width
1852  // is not a multiple of 64-bits.
1853  APInt Realigned(CI->getValue());
1854  uint64_t ExtraBits = 0;
1855  unsigned ExtraBitsSize = BitWidth & 63;
1856
1857  if (ExtraBitsSize) {
1858    // The bit width of the data is not a multiple of 64-bits.
1859    // The extra bits are expected to be at the end of the chunk of the memory.
1860    // Little endian:
1861    // * Nothing to be done, just record the extra bits to emit.
1862    // Big endian:
1863    // * Record the extra bits to emit.
1864    // * Realign the raw data to emit the chunks of 64-bits.
1865    if (DL->isBigEndian()) {
1866      // Basically the structure of the raw data is a chunk of 64-bits cells:
1867      //    0        1         BitWidth / 64
1868      // [chunk1][chunk2] ... [chunkN].
1869      // The most significant chunk is chunkN and it should be emitted first.
1870      // However, due to the alignment issue chunkN contains useless bits.
1871      // Realign the chunks so that they contain only useless information:
1872      // ExtraBits     0       1       (BitWidth / 64) - 1
1873      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1874      ExtraBits = Realigned.getRawData()[0] &
1875        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1876      Realigned = Realigned.lshr(ExtraBitsSize);
1877    } else
1878      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1879  }
1880
1881  // We don't expect assemblers to support integer data directives
1882  // for more than 64 bits, so we emit the data in at most 64-bit
1883  // quantities at a time.
1884  const uint64_t *RawData = Realigned.getRawData();
1885  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1886    uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1887    AP.OutStreamer.EmitIntValue(Val, 8);
1888  }
1889
1890  if (ExtraBitsSize) {
1891    // Emit the extra bits after the 64-bits chunks.
1892
1893    // Emit a directive that fills the expected size.
1894    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1895    Size -= (BitWidth / 64) * 8;
1896    assert(Size && Size * 8 >= ExtraBitsSize &&
1897           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1898           == ExtraBits && "Directive too small for extra bits.");
1899    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1900  }
1901}
1902
1903static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1904  const DataLayout *DL = AP.TM.getDataLayout();
1905  uint64_t Size = DL->getTypeAllocSize(CV->getType());
1906  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1907    return AP.OutStreamer.EmitZeros(Size);
1908
1909  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1910    switch (Size) {
1911    case 1:
1912    case 2:
1913    case 4:
1914    case 8:
1915      if (AP.isVerbose())
1916        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1917                                                CI->getZExtValue());
1918      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1919      return;
1920    default:
1921      emitGlobalConstantLargeInt(CI, AP);
1922      return;
1923    }
1924  }
1925
1926  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1927    return emitGlobalConstantFP(CFP, AP);
1928
1929  if (isa<ConstantPointerNull>(CV)) {
1930    AP.OutStreamer.EmitIntValue(0, Size);
1931    return;
1932  }
1933
1934  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1935    return emitGlobalConstantDataSequential(CDS, AP);
1936
1937  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1938    return emitGlobalConstantArray(CVA, AP);
1939
1940  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1941    return emitGlobalConstantStruct(CVS, AP);
1942
1943  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1944    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1945    // vectors).
1946    if (CE->getOpcode() == Instruction::BitCast)
1947      return emitGlobalConstantImpl(CE->getOperand(0), AP);
1948
1949    if (Size > 8) {
1950      // If the constant expression's size is greater than 64-bits, then we have
1951      // to emit the value in chunks. Try to constant fold the value and emit it
1952      // that way.
1953      Constant *New = ConstantFoldConstantExpression(CE, DL);
1954      if (New && New != CE)
1955        return emitGlobalConstantImpl(New, AP);
1956    }
1957  }
1958
1959  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1960    return emitGlobalConstantVector(V, AP);
1961
1962  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
1963  // thread the streamer with EmitValue.
1964  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1965}
1966
1967/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
1968void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1969  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1970  if (Size)
1971    emitGlobalConstantImpl(CV, *this);
1972  else if (MAI->hasSubsectionsViaSymbols()) {
1973    // If the global has zero size, emit a single byte so that two labels don't
1974    // look like they are at the same location.
1975    OutStreamer.EmitIntValue(0, 1);
1976  }
1977}
1978
1979void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1980  // Target doesn't support this yet!
1981  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1982}
1983
1984void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1985  if (Offset > 0)
1986    OS << '+' << Offset;
1987  else if (Offset < 0)
1988    OS << Offset;
1989}
1990
1991//===----------------------------------------------------------------------===//
1992// Symbol Lowering Routines.
1993//===----------------------------------------------------------------------===//
1994
1995/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1996/// temporary label with the specified stem and unique ID.
1997MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1998  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1999                                      Name + Twine(ID));
2000}
2001
2002/// GetTempSymbol - Return an assembler temporary label with the specified
2003/// stem.
2004MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
2005  return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
2006                                      Name);
2007}
2008
2009
2010MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2011  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2012}
2013
2014MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2015  return MMI->getAddrLabelSymbol(BB);
2016}
2017
2018/// GetCPISymbol - Return the symbol for the specified constant pool entry.
2019MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2020  return OutContext.GetOrCreateSymbol
2021    (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2022     + "_" + Twine(CPID));
2023}
2024
2025/// GetJTISymbol - Return the symbol for the specified jump table entry.
2026MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2027  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2028}
2029
2030/// GetJTSetSymbol - Return the symbol for the specified jump table .set
2031/// FIXME: privatize to AsmPrinter.
2032MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2033  return OutContext.GetOrCreateSymbol
2034  (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2035   Twine(UID) + "_set_" + Twine(MBBID));
2036}
2037
2038/// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2039/// global value name as its base, with the specified suffix, and where the
2040/// symbol is forced to have private linkage if ForcePrivate is true.
2041MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2042                                                   StringRef Suffix,
2043                                                   bool ForcePrivate) const {
2044  SmallString<60> NameStr;
2045  Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2046  NameStr.append(Suffix.begin(), Suffix.end());
2047  return OutContext.GetOrCreateSymbol(NameStr.str());
2048}
2049
2050/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2051/// ExternalSymbol.
2052MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2053  SmallString<60> NameStr;
2054  Mang->getNameWithPrefix(NameStr, Sym);
2055  return OutContext.GetOrCreateSymbol(NameStr.str());
2056}
2057
2058
2059
2060/// PrintParentLoopComment - Print comments about parent loops of this one.
2061static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2062                                   unsigned FunctionNumber) {
2063  if (Loop == 0) return;
2064  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2065  OS.indent(Loop->getLoopDepth()*2)
2066    << "Parent Loop BB" << FunctionNumber << "_"
2067    << Loop->getHeader()->getNumber()
2068    << " Depth=" << Loop->getLoopDepth() << '\n';
2069}
2070
2071
2072/// PrintChildLoopComment - Print comments about child loops within
2073/// the loop for this basic block, with nesting.
2074static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2075                                  unsigned FunctionNumber) {
2076  // Add child loop information
2077  for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2078    OS.indent((*CL)->getLoopDepth()*2)
2079      << "Child Loop BB" << FunctionNumber << "_"
2080      << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2081      << '\n';
2082    PrintChildLoopComment(OS, *CL, FunctionNumber);
2083  }
2084}
2085
2086/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2087static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2088                                       const MachineLoopInfo *LI,
2089                                       const AsmPrinter &AP) {
2090  // Add loop depth information
2091  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2092  if (Loop == 0) return;
2093
2094  MachineBasicBlock *Header = Loop->getHeader();
2095  assert(Header && "No header for loop");
2096
2097  // If this block is not a loop header, just print out what is the loop header
2098  // and return.
2099  if (Header != &MBB) {
2100    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2101                              Twine(AP.getFunctionNumber())+"_" +
2102                              Twine(Loop->getHeader()->getNumber())+
2103                              " Depth="+Twine(Loop->getLoopDepth()));
2104    return;
2105  }
2106
2107  // Otherwise, it is a loop header.  Print out information about child and
2108  // parent loops.
2109  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2110
2111  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2112
2113  OS << "=>";
2114  OS.indent(Loop->getLoopDepth()*2-2);
2115
2116  OS << "This ";
2117  if (Loop->empty())
2118    OS << "Inner ";
2119  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2120
2121  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2122}
2123
2124
2125/// EmitBasicBlockStart - This method prints the label for the specified
2126/// MachineBasicBlock, an alignment (if present) and a comment describing
2127/// it if appropriate.
2128void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2129  // Emit an alignment directive for this block, if needed.
2130  if (unsigned Align = MBB->getAlignment())
2131    EmitAlignment(Align);
2132
2133  // If the block has its address taken, emit any labels that were used to
2134  // reference the block.  It is possible that there is more than one label
2135  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2136  // the references were generated.
2137  if (MBB->hasAddressTaken()) {
2138    const BasicBlock *BB = MBB->getBasicBlock();
2139    if (isVerbose())
2140      OutStreamer.AddComment("Block address taken");
2141
2142    std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2143
2144    for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2145      OutStreamer.EmitLabel(Syms[i]);
2146  }
2147
2148  // Print some verbose block comments.
2149  if (isVerbose()) {
2150    if (const BasicBlock *BB = MBB->getBasicBlock())
2151      if (BB->hasName())
2152        OutStreamer.AddComment("%" + BB->getName());
2153    emitBasicBlockLoopComments(*MBB, LI, *this);
2154  }
2155
2156  // Print the main label for the block.
2157  if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2158    if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2159      // NOTE: Want this comment at start of line, don't emit with AddComment.
2160      OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2161                              Twine(MBB->getNumber()) + ":");
2162    }
2163  } else {
2164    OutStreamer.EmitLabel(MBB->getSymbol());
2165  }
2166}
2167
2168void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2169                                bool IsDefinition) const {
2170  MCSymbolAttr Attr = MCSA_Invalid;
2171
2172  switch (Visibility) {
2173  default: break;
2174  case GlobalValue::HiddenVisibility:
2175    if (IsDefinition)
2176      Attr = MAI->getHiddenVisibilityAttr();
2177    else
2178      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2179    break;
2180  case GlobalValue::ProtectedVisibility:
2181    Attr = MAI->getProtectedVisibilityAttr();
2182    break;
2183  }
2184
2185  if (Attr != MCSA_Invalid)
2186    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2187}
2188
2189/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2190/// exactly one predecessor and the control transfer mechanism between
2191/// the predecessor and this block is a fall-through.
2192bool AsmPrinter::
2193isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2194  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2195  // then nothing falls through to it.
2196  if (MBB->isLandingPad() || MBB->pred_empty())
2197    return false;
2198
2199  // If there isn't exactly one predecessor, it can't be a fall through.
2200  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2201  ++PI2;
2202  if (PI2 != MBB->pred_end())
2203    return false;
2204
2205  // The predecessor has to be immediately before this block.
2206  MachineBasicBlock *Pred = *PI;
2207
2208  if (!Pred->isLayoutSuccessor(MBB))
2209    return false;
2210
2211  // If the block is completely empty, then it definitely does fall through.
2212  if (Pred->empty())
2213    return true;
2214
2215  // Check the terminators in the previous blocks
2216  for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2217         IE = Pred->end(); II != IE; ++II) {
2218    MachineInstr &MI = *II;
2219
2220    // If it is not a simple branch, we are in a table somewhere.
2221    if (!MI.isBranch() || MI.isIndirectBranch())
2222      return false;
2223
2224    // If we are the operands of one of the branches, this is not
2225    // a fall through.
2226    for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2227           OE = MI.operands_end(); OI != OE; ++OI) {
2228      const MachineOperand& OP = *OI;
2229      if (OP.isJTI())
2230        return false;
2231      if (OP.isMBB() && OP.getMBB() == MBB)
2232        return false;
2233    }
2234  }
2235
2236  return true;
2237}
2238
2239
2240
2241GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2242  if (!S->usesMetadata())
2243    return 0;
2244
2245  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2246  gcp_map_type::iterator GCPI = GCMap.find(S);
2247  if (GCPI != GCMap.end())
2248    return GCPI->second;
2249
2250  const char *Name = S->getName().c_str();
2251
2252  for (GCMetadataPrinterRegistry::iterator
2253         I = GCMetadataPrinterRegistry::begin(),
2254         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2255    if (strcmp(Name, I->getName()) == 0) {
2256      GCMetadataPrinter *GMP = I->instantiate();
2257      GMP->S = S;
2258      GCMap.insert(std::make_pair(S, GMP));
2259      return GMP;
2260    }
2261
2262  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2263}
2264