AsmPrinter.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AsmPrinter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/AsmPrinter.h"
15#include "DwarfDebug.h"
16#include "DwarfException.h"
17#include "WinCodeViewLineTables.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Analysis/JumpInstrTableInfo.h"
22#include "llvm/CodeGen/GCMetadataPrinter.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineInstrBundle.h"
27#include "llvm/CodeGen/MachineJumpTableInfo.h"
28#include "llvm/CodeGen/MachineLoopInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/Mangler.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/Operator.h"
35#include "llvm/MC/MCAsmInfo.h"
36#include "llvm/MC/MCContext.h"
37#include "llvm/MC/MCExpr.h"
38#include "llvm/MC/MCInst.h"
39#include "llvm/MC/MCSection.h"
40#include "llvm/MC/MCStreamer.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/Format.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Timer.h"
46#include "llvm/Target/TargetFrameLowering.h"
47#include "llvm/Target/TargetInstrInfo.h"
48#include "llvm/Target/TargetLowering.h"
49#include "llvm/Target/TargetLoweringObjectFile.h"
50#include "llvm/Target/TargetRegisterInfo.h"
51#include "llvm/Target/TargetSubtargetInfo.h"
52#include "llvm/Transforms/Utils/GlobalStatus.h"
53using namespace llvm;
54
55#define DEBUG_TYPE "asm-printer"
56
57static const char *const DWARFGroupName = "DWARF Emission";
58static const char *const DbgTimerName = "Debug Info Emission";
59static const char *const EHTimerName = "DWARF Exception Writer";
60static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
61
62STATISTIC(EmittedInsts, "Number of machine instrs printed");
63
64char AsmPrinter::ID = 0;
65
66typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
67static gcp_map_type &getGCMap(void *&P) {
68  if (!P)
69    P = new gcp_map_type();
70  return *(gcp_map_type*)P;
71}
72
73
74/// getGVAlignmentLog2 - Return the alignment to use for the specified global
75/// value in log2 form.  This rounds up to the preferred alignment if possible
76/// and legal.
77static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
78                                   unsigned InBits = 0) {
79  unsigned NumBits = 0;
80  if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
81    NumBits = TD.getPreferredAlignmentLog(GVar);
82
83  // If InBits is specified, round it to it.
84  if (InBits > NumBits)
85    NumBits = InBits;
86
87  // If the GV has a specified alignment, take it into account.
88  if (GV->getAlignment() == 0)
89    return NumBits;
90
91  unsigned GVAlign = Log2_32(GV->getAlignment());
92
93  // If the GVAlign is larger than NumBits, or if we are required to obey
94  // NumBits because the GV has an assigned section, obey it.
95  if (GVAlign > NumBits || GV->hasSection())
96    NumBits = GVAlign;
97  return NumBits;
98}
99
100AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
101  : MachineFunctionPass(ID),
102    TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()),
103    OutContext(Streamer.getContext()),
104    OutStreamer(Streamer),
105    LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) {
106  DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr;
107  CurrentFnSym = CurrentFnSymForSize = nullptr;
108  GCMetadataPrinters = nullptr;
109  VerboseAsm = Streamer.isVerboseAsm();
110}
111
112AsmPrinter::~AsmPrinter() {
113  assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
114
115  if (GCMetadataPrinters) {
116    gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
117
118    delete &GCMap;
119    GCMetadataPrinters = nullptr;
120  }
121
122  delete &OutStreamer;
123}
124
125/// getFunctionNumber - Return a unique ID for the current function.
126///
127unsigned AsmPrinter::getFunctionNumber() const {
128  return MF->getFunctionNumber();
129}
130
131const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
132  return TM.getTargetLowering()->getObjFileLowering();
133}
134
135/// getDataLayout - Return information about data layout.
136const DataLayout &AsmPrinter::getDataLayout() const {
137  return *TM.getDataLayout();
138}
139
140const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
141  return TM.getSubtarget<MCSubtargetInfo>();
142}
143
144void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
145  S.EmitInstruction(Inst, getSubtargetInfo());
146}
147
148StringRef AsmPrinter::getTargetTriple() const {
149  return TM.getTargetTriple();
150}
151
152/// getCurrentSection() - Return the current section we are emitting to.
153const MCSection *AsmPrinter::getCurrentSection() const {
154  return OutStreamer.getCurrentSection().first;
155}
156
157
158
159void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
160  AU.setPreservesAll();
161  MachineFunctionPass::getAnalysisUsage(AU);
162  AU.addRequired<MachineModuleInfo>();
163  AU.addRequired<GCModuleInfo>();
164  if (isVerbose())
165    AU.addRequired<MachineLoopInfo>();
166}
167
168bool AsmPrinter::doInitialization(Module &M) {
169  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
170  MMI->AnalyzeModule(M);
171
172  // Initialize TargetLoweringObjectFile.
173  const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
174    .Initialize(OutContext, TM);
175
176  OutStreamer.InitSections();
177
178  Mang = new Mangler(TM.getDataLayout());
179
180  // Emit the version-min deplyment target directive if needed.
181  //
182  // FIXME: If we end up with a collection of these sorts of Darwin-specific
183  // or ELF-specific things, it may make sense to have a platform helper class
184  // that will work with the target helper class. For now keep it here, as the
185  // alternative is duplicated code in each of the target asm printers that
186  // use the directive, where it would need the same conditionalization
187  // anyway.
188  Triple TT(getTargetTriple());
189  if (TT.isOSDarwin()) {
190    unsigned Major, Minor, Update;
191    TT.getOSVersion(Major, Minor, Update);
192    // If there is a version specified, Major will be non-zero.
193    if (Major)
194      OutStreamer.EmitVersionMin((TT.isMacOSX() ?
195                                  MCVM_OSXVersionMin : MCVM_IOSVersionMin),
196                                 Major, Minor, Update);
197  }
198
199  // Allow the target to emit any magic that it wants at the start of the file.
200  EmitStartOfAsmFile(M);
201
202  // Very minimal debug info. It is ignored if we emit actual debug info. If we
203  // don't, this at least helps the user find where a global came from.
204  if (MAI->hasSingleParameterDotFile()) {
205    // .file "foo.c"
206    OutStreamer.EmitFileDirective(M.getModuleIdentifier());
207  }
208
209  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
210  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
211  for (auto &I : *MI)
212    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
213      MP->beginAssembly(*this);
214
215  // Emit module-level inline asm if it exists.
216  if (!M.getModuleInlineAsm().empty()) {
217    OutStreamer.AddComment("Start of file scope inline assembly");
218    OutStreamer.AddBlankLine();
219    EmitInlineAsm(M.getModuleInlineAsm()+"\n");
220    OutStreamer.AddComment("End of file scope inline assembly");
221    OutStreamer.AddBlankLine();
222  }
223
224  if (MAI->doesSupportDebugInformation()) {
225    if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
226      Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
227                                     DbgTimerName,
228                                     CodeViewLineTablesGroupName));
229    } else {
230      DD = new DwarfDebug(this, &M);
231      Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
232    }
233  }
234
235  EHStreamer *ES = nullptr;
236  switch (MAI->getExceptionHandlingType()) {
237  case ExceptionHandling::None:
238    break;
239  case ExceptionHandling::SjLj:
240  case ExceptionHandling::DwarfCFI:
241    ES = new DwarfCFIException(this);
242    break;
243  case ExceptionHandling::ARM:
244    ES = new ARMException(this);
245    break;
246  case ExceptionHandling::WinEH:
247    ES = new Win64Exception(this);
248    break;
249  }
250  if (ES)
251    Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
252  return false;
253}
254
255static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
256  GlobalValue::LinkageTypes Linkage = GV->getLinkage();
257  if (Linkage != GlobalValue::LinkOnceODRLinkage)
258    return false;
259
260  if (!MAI.hasWeakDefCanBeHiddenDirective())
261    return false;
262
263  if (GV->hasUnnamedAddr())
264    return true;
265
266  // This is only used for MachO, so right now it doesn't really matter how
267  // we handle alias. Revisit this once the MachO linker implements aliases.
268  if (isa<GlobalAlias>(GV))
269    return false;
270
271  // If it is a non constant variable, it needs to be uniqued across shared
272  // objects.
273  if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
274    if (!Var->isConstant())
275      return false;
276  }
277
278  GlobalStatus GS;
279  if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared)
280    return true;
281
282  return false;
283}
284
285void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
286  GlobalValue::LinkageTypes Linkage = GV->getLinkage();
287  switch (Linkage) {
288  case GlobalValue::CommonLinkage:
289  case GlobalValue::LinkOnceAnyLinkage:
290  case GlobalValue::LinkOnceODRLinkage:
291  case GlobalValue::WeakAnyLinkage:
292  case GlobalValue::WeakODRLinkage:
293    if (MAI->hasWeakDefDirective()) {
294      // .globl _foo
295      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
296
297      if (!canBeHidden(GV, *MAI))
298        // .weak_definition _foo
299        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
300      else
301        OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
302    } else if (MAI->hasLinkOnceDirective()) {
303      // .globl _foo
304      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
305      //NOTE: linkonce is handled by the section the symbol was assigned to.
306    } else {
307      // .weak _foo
308      OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
309    }
310    return;
311  case GlobalValue::AppendingLinkage:
312    // FIXME: appending linkage variables should go into a section of
313    // their name or something.  For now, just emit them as external.
314  case GlobalValue::ExternalLinkage:
315    // If external or appending, declare as a global symbol.
316    // .globl _foo
317    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
318    return;
319  case GlobalValue::PrivateLinkage:
320  case GlobalValue::InternalLinkage:
321    return;
322  case GlobalValue::AvailableExternallyLinkage:
323    llvm_unreachable("Should never emit this");
324  case GlobalValue::ExternalWeakLinkage:
325    llvm_unreachable("Don't know how to emit these");
326  }
327  llvm_unreachable("Unknown linkage type!");
328}
329
330void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
331                                   const GlobalValue *GV) const {
332  TM.getNameWithPrefix(Name, GV, *Mang);
333}
334
335MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
336  return TM.getSymbol(GV, *Mang);
337}
338
339/// EmitGlobalVariable - Emit the specified global variable to the .s file.
340void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
341  if (GV->hasInitializer()) {
342    // Check to see if this is a special global used by LLVM, if so, emit it.
343    if (EmitSpecialLLVMGlobal(GV))
344      return;
345
346    if (isVerbose()) {
347      GV->printAsOperand(OutStreamer.GetCommentOS(),
348                     /*PrintType=*/false, GV->getParent());
349      OutStreamer.GetCommentOS() << '\n';
350    }
351  }
352
353  MCSymbol *GVSym = getSymbol(GV);
354  EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
355
356  if (!GV->hasInitializer())   // External globals require no extra code.
357    return;
358
359  if (MAI->hasDotTypeDotSizeDirective())
360    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
361
362  SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
363
364  const DataLayout *DL = TM.getDataLayout();
365  uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
366
367  // If the alignment is specified, we *must* obey it.  Overaligning a global
368  // with a specified alignment is a prompt way to break globals emitted to
369  // sections and expected to be contiguous (e.g. ObjC metadata).
370  unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
371
372  for (const HandlerInfo &HI : Handlers) {
373    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
374    HI.Handler->setSymbolSize(GVSym, Size);
375  }
376
377  // Handle common and BSS local symbols (.lcomm).
378  if (GVKind.isCommon() || GVKind.isBSSLocal()) {
379    if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
380    unsigned Align = 1 << AlignLog;
381
382    // Handle common symbols.
383    if (GVKind.isCommon()) {
384      if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
385        Align = 0;
386
387      // .comm _foo, 42, 4
388      OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
389      return;
390    }
391
392    // Handle local BSS symbols.
393    if (MAI->hasMachoZeroFillDirective()) {
394      const MCSection *TheSection =
395        getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
396      // .zerofill __DATA, __bss, _foo, 400, 5
397      OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
398      return;
399    }
400
401    // Use .lcomm only if it supports user-specified alignment.
402    // Otherwise, while it would still be correct to use .lcomm in some
403    // cases (e.g. when Align == 1), the external assembler might enfore
404    // some -unknown- default alignment behavior, which could cause
405    // spurious differences between external and integrated assembler.
406    // Prefer to simply fall back to .local / .comm in this case.
407    if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
408      // .lcomm _foo, 42
409      OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
410      return;
411    }
412
413    if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
414      Align = 0;
415
416    // .local _foo
417    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
418    // .comm _foo, 42, 4
419    OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
420    return;
421  }
422
423  const MCSection *TheSection =
424    getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
425
426  // Handle the zerofill directive on darwin, which is a special form of BSS
427  // emission.
428  if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
429    if (Size == 0) Size = 1;  // zerofill of 0 bytes is undefined.
430
431    // .globl _foo
432    OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
433    // .zerofill __DATA, __common, _foo, 400, 5
434    OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
435    return;
436  }
437
438  // Handle thread local data for mach-o which requires us to output an
439  // additional structure of data and mangle the original symbol so that we
440  // can reference it later.
441  //
442  // TODO: This should become an "emit thread local global" method on TLOF.
443  // All of this macho specific stuff should be sunk down into TLOFMachO and
444  // stuff like "TLSExtraDataSection" should no longer be part of the parent
445  // TLOF class.  This will also make it more obvious that stuff like
446  // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
447  // specific code.
448  if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
449    // Emit the .tbss symbol
450    MCSymbol *MangSym =
451      OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
452
453    if (GVKind.isThreadBSS()) {
454      TheSection = getObjFileLowering().getTLSBSSSection();
455      OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
456    } else if (GVKind.isThreadData()) {
457      OutStreamer.SwitchSection(TheSection);
458
459      EmitAlignment(AlignLog, GV);
460      OutStreamer.EmitLabel(MangSym);
461
462      EmitGlobalConstant(GV->getInitializer());
463    }
464
465    OutStreamer.AddBlankLine();
466
467    // Emit the variable struct for the runtime.
468    const MCSection *TLVSect
469      = getObjFileLowering().getTLSExtraDataSection();
470
471    OutStreamer.SwitchSection(TLVSect);
472    // Emit the linkage here.
473    EmitLinkage(GV, GVSym);
474    OutStreamer.EmitLabel(GVSym);
475
476    // Three pointers in size:
477    //   - __tlv_bootstrap - used to make sure support exists
478    //   - spare pointer, used when mapped by the runtime
479    //   - pointer to mangled symbol above with initializer
480    unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
481    OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
482                                PtrSize);
483    OutStreamer.EmitIntValue(0, PtrSize);
484    OutStreamer.EmitSymbolValue(MangSym, PtrSize);
485
486    OutStreamer.AddBlankLine();
487    return;
488  }
489
490  OutStreamer.SwitchSection(TheSection);
491
492  EmitLinkage(GV, GVSym);
493  EmitAlignment(AlignLog, GV);
494
495  OutStreamer.EmitLabel(GVSym);
496
497  EmitGlobalConstant(GV->getInitializer());
498
499  if (MAI->hasDotTypeDotSizeDirective())
500    // .size foo, 42
501    OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
502
503  OutStreamer.AddBlankLine();
504}
505
506/// EmitFunctionHeader - This method emits the header for the current
507/// function.
508void AsmPrinter::EmitFunctionHeader() {
509  // Print out constants referenced by the function
510  EmitConstantPool();
511
512  // Print the 'header' of function.
513  const Function *F = MF->getFunction();
514
515  OutStreamer.SwitchSection(
516      getObjFileLowering().SectionForGlobal(F, *Mang, TM));
517  EmitVisibility(CurrentFnSym, F->getVisibility());
518
519  EmitLinkage(F, CurrentFnSym);
520  EmitAlignment(MF->getAlignment(), F);
521
522  if (MAI->hasDotTypeDotSizeDirective())
523    OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
524
525  if (isVerbose()) {
526    F->printAsOperand(OutStreamer.GetCommentOS(),
527                   /*PrintType=*/false, F->getParent());
528    OutStreamer.GetCommentOS() << '\n';
529  }
530
531  // Emit the CurrentFnSym.  This is a virtual function to allow targets to
532  // do their wild and crazy things as required.
533  EmitFunctionEntryLabel();
534
535  // If the function had address-taken blocks that got deleted, then we have
536  // references to the dangling symbols.  Emit them at the start of the function
537  // so that we don't get references to undefined symbols.
538  std::vector<MCSymbol*> DeadBlockSyms;
539  MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
540  for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
541    OutStreamer.AddComment("Address taken block that was later removed");
542    OutStreamer.EmitLabel(DeadBlockSyms[i]);
543  }
544
545  // Emit pre-function debug and/or EH information.
546  for (const HandlerInfo &HI : Handlers) {
547    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
548    HI.Handler->beginFunction(MF);
549  }
550
551  // Emit the prefix data.
552  if (F->hasPrefixData())
553    EmitGlobalConstant(F->getPrefixData());
554}
555
556/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
557/// function.  This can be overridden by targets as required to do custom stuff.
558void AsmPrinter::EmitFunctionEntryLabel() {
559  // The function label could have already been emitted if two symbols end up
560  // conflicting due to asm renaming.  Detect this and emit an error.
561  if (CurrentFnSym->isUndefined())
562    return OutStreamer.EmitLabel(CurrentFnSym);
563
564  report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
565                     "' label emitted multiple times to assembly file");
566}
567
568/// emitComments - Pretty-print comments for instructions.
569static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
570  const MachineFunction *MF = MI.getParent()->getParent();
571  const TargetMachine &TM = MF->getTarget();
572
573  // Check for spills and reloads
574  int FI;
575
576  const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
577
578  // We assume a single instruction only has a spill or reload, not
579  // both.
580  const MachineMemOperand *MMO;
581  if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
582    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
583      MMO = *MI.memoperands_begin();
584      CommentOS << MMO->getSize() << "-byte Reload\n";
585    }
586  } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
587    if (FrameInfo->isSpillSlotObjectIndex(FI))
588      CommentOS << MMO->getSize() << "-byte Folded Reload\n";
589  } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
590    if (FrameInfo->isSpillSlotObjectIndex(FI)) {
591      MMO = *MI.memoperands_begin();
592      CommentOS << MMO->getSize() << "-byte Spill\n";
593    }
594  } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
595    if (FrameInfo->isSpillSlotObjectIndex(FI))
596      CommentOS << MMO->getSize() << "-byte Folded Spill\n";
597  }
598
599  // Check for spill-induced copies
600  if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
601    CommentOS << " Reload Reuse\n";
602}
603
604/// emitImplicitDef - This method emits the specified machine instruction
605/// that is an implicit def.
606void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
607  unsigned RegNo = MI->getOperand(0).getReg();
608  OutStreamer.AddComment(Twine("implicit-def: ") +
609                         TM.getRegisterInfo()->getName(RegNo));
610  OutStreamer.AddBlankLine();
611}
612
613static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
614  std::string Str = "kill:";
615  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
616    const MachineOperand &Op = MI->getOperand(i);
617    assert(Op.isReg() && "KILL instruction must have only register operands");
618    Str += ' ';
619    Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
620    Str += (Op.isDef() ? "<def>" : "<kill>");
621  }
622  AP.OutStreamer.AddComment(Str);
623  AP.OutStreamer.AddBlankLine();
624}
625
626/// emitDebugValueComment - This method handles the target-independent form
627/// of DBG_VALUE, returning true if it was able to do so.  A false return
628/// means the target will need to handle MI in EmitInstruction.
629static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
630  // This code handles only the 3-operand target-independent form.
631  if (MI->getNumOperands() != 3)
632    return false;
633
634  SmallString<128> Str;
635  raw_svector_ostream OS(Str);
636  OS << "DEBUG_VALUE: ";
637
638  DIVariable V(MI->getOperand(2).getMetadata());
639  if (V.getContext().isSubprogram()) {
640    StringRef Name = DISubprogram(V.getContext()).getDisplayName();
641    if (!Name.empty())
642      OS << Name << ":";
643  }
644  OS << V.getName() << " <- ";
645
646  // The second operand is only an offset if it's an immediate.
647  bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
648  int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
649
650  // Register or immediate value. Register 0 means undef.
651  if (MI->getOperand(0).isFPImm()) {
652    APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
653    if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
654      OS << (double)APF.convertToFloat();
655    } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
656      OS << APF.convertToDouble();
657    } else {
658      // There is no good way to print long double.  Convert a copy to
659      // double.  Ah well, it's only a comment.
660      bool ignored;
661      APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
662                  &ignored);
663      OS << "(long double) " << APF.convertToDouble();
664    }
665  } else if (MI->getOperand(0).isImm()) {
666    OS << MI->getOperand(0).getImm();
667  } else if (MI->getOperand(0).isCImm()) {
668    MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
669  } else {
670    unsigned Reg;
671    if (MI->getOperand(0).isReg()) {
672      Reg = MI->getOperand(0).getReg();
673    } else {
674      assert(MI->getOperand(0).isFI() && "Unknown operand type");
675      const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
676      Offset += TFI->getFrameIndexReference(*AP.MF,
677                                            MI->getOperand(0).getIndex(), Reg);
678      Deref = true;
679    }
680    if (Reg == 0) {
681      // Suppress offset, it is not meaningful here.
682      OS << "undef";
683      // NOTE: Want this comment at start of line, don't emit with AddComment.
684      AP.OutStreamer.emitRawComment(OS.str());
685      return true;
686    }
687    if (Deref)
688      OS << '[';
689    OS << AP.TM.getRegisterInfo()->getName(Reg);
690  }
691
692  if (Deref)
693    OS << '+' << Offset << ']';
694
695  // NOTE: Want this comment at start of line, don't emit with AddComment.
696  AP.OutStreamer.emitRawComment(OS.str());
697  return true;
698}
699
700AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
701  if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
702      MF->getFunction()->needsUnwindTableEntry())
703    return CFI_M_EH;
704
705  if (MMI->hasDebugInfo())
706    return CFI_M_Debug;
707
708  return CFI_M_None;
709}
710
711bool AsmPrinter::needsSEHMoves() {
712  return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH &&
713    MF->getFunction()->needsUnwindTableEntry();
714}
715
716void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
717  ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
718  if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
719      ExceptionHandlingType != ExceptionHandling::ARM)
720    return;
721
722  if (needsCFIMoves() == CFI_M_None)
723    return;
724
725  if (MMI->getCompactUnwindEncoding() != 0)
726    OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
727
728  const MachineModuleInfo &MMI = MF->getMMI();
729  const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
730  unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
731  const MCCFIInstruction &CFI = Instrs[CFIIndex];
732  emitCFIInstruction(CFI);
733}
734
735/// EmitFunctionBody - This method emits the body and trailer for a
736/// function.
737void AsmPrinter::EmitFunctionBody() {
738  // Emit target-specific gunk before the function body.
739  EmitFunctionBodyStart();
740
741  bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
742
743  // Print out code for the function.
744  bool HasAnyRealCode = false;
745  const MachineInstr *LastMI = nullptr;
746  for (auto &MBB : *MF) {
747    // Print a label for the basic block.
748    EmitBasicBlockStart(MBB);
749    for (auto &MI : MBB) {
750      LastMI = &MI;
751
752      // Print the assembly for the instruction.
753      if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
754          !MI.isDebugValue()) {
755        HasAnyRealCode = true;
756        ++EmittedInsts;
757      }
758
759      if (ShouldPrintDebugScopes) {
760        for (const HandlerInfo &HI : Handlers) {
761          NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
762                             TimePassesIsEnabled);
763          HI.Handler->beginInstruction(&MI);
764        }
765      }
766
767      if (isVerbose())
768        emitComments(MI, OutStreamer.GetCommentOS());
769
770      switch (MI.getOpcode()) {
771      case TargetOpcode::CFI_INSTRUCTION:
772        emitCFIInstruction(MI);
773        break;
774
775      case TargetOpcode::EH_LABEL:
776      case TargetOpcode::GC_LABEL:
777        OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
778        break;
779      case TargetOpcode::INLINEASM:
780        EmitInlineAsm(&MI);
781        break;
782      case TargetOpcode::DBG_VALUE:
783        if (isVerbose()) {
784          if (!emitDebugValueComment(&MI, *this))
785            EmitInstruction(&MI);
786        }
787        break;
788      case TargetOpcode::IMPLICIT_DEF:
789        if (isVerbose()) emitImplicitDef(&MI);
790        break;
791      case TargetOpcode::KILL:
792        if (isVerbose()) emitKill(&MI, *this);
793        break;
794      default:
795        EmitInstruction(&MI);
796        break;
797      }
798
799      if (ShouldPrintDebugScopes) {
800        for (const HandlerInfo &HI : Handlers) {
801          NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
802                             TimePassesIsEnabled);
803          HI.Handler->endInstruction();
804        }
805      }
806    }
807  }
808
809  // If the last instruction was a prolog label, then we have a situation where
810  // we emitted a prolog but no function body. This results in the ending prolog
811  // label equaling the end of function label and an invalid "row" in the
812  // FDE. We need to emit a noop in this situation so that the FDE's rows are
813  // valid.
814  bool RequiresNoop = LastMI && LastMI->isCFIInstruction();
815
816  // If the function is empty and the object file uses .subsections_via_symbols,
817  // then we need to emit *something* to the function body to prevent the
818  // labels from collapsing together.  Just emit a noop.
819  if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
820    MCInst Noop;
821    TM.getInstrInfo()->getNoopForMachoTarget(Noop);
822    if (Noop.getOpcode()) {
823      OutStreamer.AddComment("avoids zero-length function");
824      OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
825    } else  // Target not mc-ized yet.
826      OutStreamer.EmitRawText(StringRef("\tnop\n"));
827  }
828
829  const Function *F = MF->getFunction();
830  for (const auto &BB : *F) {
831    if (!BB.hasAddressTaken())
832      continue;
833    MCSymbol *Sym = GetBlockAddressSymbol(&BB);
834    if (Sym->isDefined())
835      continue;
836    OutStreamer.AddComment("Address of block that was removed by CodeGen");
837    OutStreamer.EmitLabel(Sym);
838  }
839
840  // Emit target-specific gunk after the function body.
841  EmitFunctionBodyEnd();
842
843  // If the target wants a .size directive for the size of the function, emit
844  // it.
845  if (MAI->hasDotTypeDotSizeDirective()) {
846    // Create a symbol for the end of function, so we can get the size as
847    // difference between the function label and the temp label.
848    MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
849    OutStreamer.EmitLabel(FnEndLabel);
850
851    const MCExpr *SizeExp =
852      MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
853                              MCSymbolRefExpr::Create(CurrentFnSymForSize,
854                                                      OutContext),
855                              OutContext);
856    OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
857  }
858
859  // Emit post-function debug and/or EH information.
860  for (const HandlerInfo &HI : Handlers) {
861    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
862    HI.Handler->endFunction(MF);
863  }
864  MMI->EndFunction();
865
866  // Print out jump tables referenced by the function.
867  EmitJumpTableInfo();
868
869  OutStreamer.AddBlankLine();
870}
871
872static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP);
873
874bool AsmPrinter::doFinalization(Module &M) {
875  // Emit global variables.
876  for (const auto &G : M.globals())
877    EmitGlobalVariable(&G);
878
879  // Emit visibility info for declarations
880  for (const Function &F : M) {
881    if (!F.isDeclaration())
882      continue;
883    GlobalValue::VisibilityTypes V = F.getVisibility();
884    if (V == GlobalValue::DefaultVisibility)
885      continue;
886
887    MCSymbol *Name = getSymbol(&F);
888    EmitVisibility(Name, V, false);
889  }
890
891  // Get information about jump-instruction tables to print.
892  JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>();
893
894  if (JITI && !JITI->getTables().empty()) {
895    unsigned Arch = Triple(getTargetTriple()).getArch();
896    bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb);
897    MCInst TrapInst;
898    TM.getInstrInfo()->getTrap(TrapInst);
899    for (const auto &KV : JITI->getTables()) {
900      uint64_t Count = 0;
901      for (const auto &FunPair : KV.second) {
902        // Emit the function labels to make this be a function entry point.
903        MCSymbol *FunSym =
904          OutContext.GetOrCreateSymbol(FunPair.second->getName());
905        OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global);
906        // FIXME: JumpTableInstrInfo should store information about the required
907        // alignment of table entries and the size of the padding instruction.
908        EmitAlignment(3);
909        if (IsThumb)
910          OutStreamer.EmitThumbFunc(FunSym);
911        if (MAI->hasDotTypeDotSizeDirective())
912          OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction);
913        OutStreamer.EmitLabel(FunSym);
914
915        // Emit the jump instruction to transfer control to the original
916        // function.
917        MCInst JumpToFun;
918        MCSymbol *TargetSymbol =
919          OutContext.GetOrCreateSymbol(FunPair.first->getName());
920        const MCSymbolRefExpr *TargetSymRef =
921          MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT,
922                                  OutContext);
923        TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef);
924        OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo());
925        ++Count;
926      }
927
928      // Emit enough padding instructions to fill up to the next power of two.
929      // This assumes that the trap instruction takes 8 bytes or fewer.
930      uint64_t Remaining = NextPowerOf2(Count) - Count;
931      for (uint64_t C = 0; C < Remaining; ++C) {
932        EmitAlignment(3);
933        OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo());
934      }
935
936    }
937  }
938
939  // Emit module flags.
940  SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
941  M.getModuleFlagsMetadata(ModuleFlags);
942  if (!ModuleFlags.empty())
943    getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
944
945  // Make sure we wrote out everything we need.
946  OutStreamer.Flush();
947
948  // Finalize debug and EH information.
949  for (const HandlerInfo &HI : Handlers) {
950    NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
951                       TimePassesIsEnabled);
952    HI.Handler->endModule();
953    delete HI.Handler;
954  }
955  Handlers.clear();
956  DD = nullptr;
957
958  // If the target wants to know about weak references, print them all.
959  if (MAI->getWeakRefDirective()) {
960    // FIXME: This is not lazy, it would be nice to only print weak references
961    // to stuff that is actually used.  Note that doing so would require targets
962    // to notice uses in operands (due to constant exprs etc).  This should
963    // happen with the MC stuff eventually.
964
965    // Print out module-level global variables here.
966    for (const auto &G : M.globals()) {
967      if (!G.hasExternalWeakLinkage())
968        continue;
969      OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
970    }
971
972    for (const auto &F : M) {
973      if (!F.hasExternalWeakLinkage())
974        continue;
975      OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
976    }
977  }
978
979  if (MAI->hasSetDirective()) {
980    OutStreamer.AddBlankLine();
981    for (const auto &Alias : M.aliases()) {
982      MCSymbol *Name = getSymbol(&Alias);
983
984      if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
985        OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
986      else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
987        OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
988      else
989        assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
990
991      EmitVisibility(Name, Alias.getVisibility());
992
993      // Emit the directives as assignments aka .set:
994      OutStreamer.EmitAssignment(Name,
995                                 lowerConstant(Alias.getAliasee(), *this));
996    }
997  }
998
999  GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1000  assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1001  for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1002    if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1003      MP->finishAssembly(*this);
1004
1005  // Emit llvm.ident metadata in an '.ident' directive.
1006  EmitModuleIdents(M);
1007
1008  // If we don't have any trampolines, then we don't require stack memory
1009  // to be executable. Some targets have a directive to declare this.
1010  Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1011  if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1012    if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1013      OutStreamer.SwitchSection(S);
1014
1015  // Allow the target to emit any magic that it wants at the end of the file,
1016  // after everything else has gone out.
1017  EmitEndOfAsmFile(M);
1018
1019  delete Mang; Mang = nullptr;
1020  MMI = nullptr;
1021
1022  OutStreamer.Finish();
1023  OutStreamer.reset();
1024
1025  return false;
1026}
1027
1028void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1029  this->MF = &MF;
1030  // Get the function symbol.
1031  CurrentFnSym = getSymbol(MF.getFunction());
1032  CurrentFnSymForSize = CurrentFnSym;
1033
1034  if (isVerbose())
1035    LI = &getAnalysis<MachineLoopInfo>();
1036}
1037
1038namespace {
1039  // SectionCPs - Keep track the alignment, constpool entries per Section.
1040  struct SectionCPs {
1041    const MCSection *S;
1042    unsigned Alignment;
1043    SmallVector<unsigned, 4> CPEs;
1044    SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1045  };
1046}
1047
1048/// EmitConstantPool - Print to the current output stream assembly
1049/// representations of the constants in the constant pool MCP. This is
1050/// used to print out constants which have been "spilled to memory" by
1051/// the code generator.
1052///
1053void AsmPrinter::EmitConstantPool() {
1054  const MachineConstantPool *MCP = MF->getConstantPool();
1055  const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1056  if (CP.empty()) return;
1057
1058  // Calculate sections for constant pool entries. We collect entries to go into
1059  // the same section together to reduce amount of section switch statements.
1060  SmallVector<SectionCPs, 4> CPSections;
1061  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1062    const MachineConstantPoolEntry &CPE = CP[i];
1063    unsigned Align = CPE.getAlignment();
1064
1065    SectionKind Kind;
1066    switch (CPE.getRelocationInfo()) {
1067    default: llvm_unreachable("Unknown section kind");
1068    case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1069    case 1:
1070      Kind = SectionKind::getReadOnlyWithRelLocal();
1071      break;
1072    case 0:
1073    switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1074    case 4:  Kind = SectionKind::getMergeableConst4(); break;
1075    case 8:  Kind = SectionKind::getMergeableConst8(); break;
1076    case 16: Kind = SectionKind::getMergeableConst16();break;
1077    default: Kind = SectionKind::getMergeableConst(); break;
1078    }
1079    }
1080
1081    const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1082
1083    // The number of sections are small, just do a linear search from the
1084    // last section to the first.
1085    bool Found = false;
1086    unsigned SecIdx = CPSections.size();
1087    while (SecIdx != 0) {
1088      if (CPSections[--SecIdx].S == S) {
1089        Found = true;
1090        break;
1091      }
1092    }
1093    if (!Found) {
1094      SecIdx = CPSections.size();
1095      CPSections.push_back(SectionCPs(S, Align));
1096    }
1097
1098    if (Align > CPSections[SecIdx].Alignment)
1099      CPSections[SecIdx].Alignment = Align;
1100    CPSections[SecIdx].CPEs.push_back(i);
1101  }
1102
1103  // Now print stuff into the calculated sections.
1104  for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1105    OutStreamer.SwitchSection(CPSections[i].S);
1106    EmitAlignment(Log2_32(CPSections[i].Alignment));
1107
1108    unsigned Offset = 0;
1109    for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1110      unsigned CPI = CPSections[i].CPEs[j];
1111      MachineConstantPoolEntry CPE = CP[CPI];
1112
1113      // Emit inter-object padding for alignment.
1114      unsigned AlignMask = CPE.getAlignment() - 1;
1115      unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1116      OutStreamer.EmitZeros(NewOffset - Offset);
1117
1118      Type *Ty = CPE.getType();
1119      Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1120      OutStreamer.EmitLabel(GetCPISymbol(CPI));
1121
1122      if (CPE.isMachineConstantPoolEntry())
1123        EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1124      else
1125        EmitGlobalConstant(CPE.Val.ConstVal);
1126    }
1127  }
1128}
1129
1130/// EmitJumpTableInfo - Print assembly representations of the jump tables used
1131/// by the current function to the current output stream.
1132///
1133void AsmPrinter::EmitJumpTableInfo() {
1134  const DataLayout *DL = MF->getTarget().getDataLayout();
1135  const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1136  if (!MJTI) return;
1137  if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1138  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1139  if (JT.empty()) return;
1140
1141  // Pick the directive to use to print the jump table entries, and switch to
1142  // the appropriate section.
1143  const Function *F = MF->getFunction();
1144  bool JTInDiffSection = false;
1145  if (// In PIC mode, we need to emit the jump table to the same section as the
1146      // function body itself, otherwise the label differences won't make sense.
1147      // FIXME: Need a better predicate for this: what about custom entries?
1148      MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1149      // We should also do if the section name is NULL or function is declared
1150      // in discardable section
1151      // FIXME: this isn't the right predicate, should be based on the MCSection
1152      // for the function.
1153      F->isWeakForLinker()) {
1154    OutStreamer.SwitchSection(
1155        getObjFileLowering().SectionForGlobal(F, *Mang, TM));
1156  } else {
1157    // Otherwise, drop it in the readonly section.
1158    const MCSection *ReadOnlySection =
1159      getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1160    OutStreamer.SwitchSection(ReadOnlySection);
1161    JTInDiffSection = true;
1162  }
1163
1164  EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1165
1166  // Jump tables in code sections are marked with a data_region directive
1167  // where that's supported.
1168  if (!JTInDiffSection)
1169    OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1170
1171  for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1172    const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1173
1174    // If this jump table was deleted, ignore it.
1175    if (JTBBs.empty()) continue;
1176
1177    // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1178    // .set directive for each unique entry.  This reduces the number of
1179    // relocations the assembler will generate for the jump table.
1180    if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1181        MAI->hasSetDirective()) {
1182      SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1183      const TargetLowering *TLI = TM.getTargetLowering();
1184      const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1185      for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1186        const MachineBasicBlock *MBB = JTBBs[ii];
1187        if (!EmittedSets.insert(MBB)) continue;
1188
1189        // .set LJTSet, LBB32-base
1190        const MCExpr *LHS =
1191          MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1192        OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1193                                MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1194      }
1195    }
1196
1197    // On some targets (e.g. Darwin) we want to emit two consecutive labels
1198    // before each jump table.  The first label is never referenced, but tells
1199    // the assembler and linker the extents of the jump table object.  The
1200    // second label is actually referenced by the code.
1201    if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
1202      // FIXME: This doesn't have to have any specific name, just any randomly
1203      // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1204      OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1205
1206    OutStreamer.EmitLabel(GetJTISymbol(JTI));
1207
1208    for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1209      EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1210  }
1211  if (!JTInDiffSection)
1212    OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1213}
1214
1215/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1216/// current stream.
1217void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1218                                    const MachineBasicBlock *MBB,
1219                                    unsigned UID) const {
1220  assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1221  const MCExpr *Value = nullptr;
1222  switch (MJTI->getEntryKind()) {
1223  case MachineJumpTableInfo::EK_Inline:
1224    llvm_unreachable("Cannot emit EK_Inline jump table entry");
1225  case MachineJumpTableInfo::EK_Custom32:
1226    Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1227                                                              OutContext);
1228    break;
1229  case MachineJumpTableInfo::EK_BlockAddress:
1230    // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1231    //     .word LBB123
1232    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1233    break;
1234  case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1235    // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1236    // with a relocation as gp-relative, e.g.:
1237    //     .gprel32 LBB123
1238    MCSymbol *MBBSym = MBB->getSymbol();
1239    OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1240    return;
1241  }
1242
1243  case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1244    // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1245    // with a relocation as gp-relative, e.g.:
1246    //     .gpdword LBB123
1247    MCSymbol *MBBSym = MBB->getSymbol();
1248    OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1249    return;
1250  }
1251
1252  case MachineJumpTableInfo::EK_LabelDifference32: {
1253    // EK_LabelDifference32 - Each entry is the address of the block minus
1254    // the address of the jump table.  This is used for PIC jump tables where
1255    // gprel32 is not supported.  e.g.:
1256    //      .word LBB123 - LJTI1_2
1257    // If the .set directive is supported, this is emitted as:
1258    //      .set L4_5_set_123, LBB123 - LJTI1_2
1259    //      .word L4_5_set_123
1260
1261    // If we have emitted set directives for the jump table entries, print
1262    // them rather than the entries themselves.  If we're emitting PIC, then
1263    // emit the table entries as differences between two text section labels.
1264    if (MAI->hasSetDirective()) {
1265      // If we used .set, reference the .set's symbol.
1266      Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1267                                      OutContext);
1268      break;
1269    }
1270    // Otherwise, use the difference as the jump table entry.
1271    Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1272    const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1273    Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1274    break;
1275  }
1276  }
1277
1278  assert(Value && "Unknown entry kind!");
1279
1280  unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1281  OutStreamer.EmitValue(Value, EntrySize);
1282}
1283
1284
1285/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1286/// special global used by LLVM.  If so, emit it and return true, otherwise
1287/// do nothing and return false.
1288bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1289  if (GV->getName() == "llvm.used") {
1290    if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1291      EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1292    return true;
1293  }
1294
1295  // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1296  if (StringRef(GV->getSection()) == "llvm.metadata" ||
1297      GV->hasAvailableExternallyLinkage())
1298    return true;
1299
1300  if (!GV->hasAppendingLinkage()) return false;
1301
1302  assert(GV->hasInitializer() && "Not a special LLVM global!");
1303
1304  if (GV->getName() == "llvm.global_ctors") {
1305    EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1306
1307    if (TM.getRelocationModel() == Reloc::Static &&
1308        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1309      StringRef Sym(".constructors_used");
1310      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1311                                      MCSA_Reference);
1312    }
1313    return true;
1314  }
1315
1316  if (GV->getName() == "llvm.global_dtors") {
1317    EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1318
1319    if (TM.getRelocationModel() == Reloc::Static &&
1320        MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1321      StringRef Sym(".destructors_used");
1322      OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1323                                      MCSA_Reference);
1324    }
1325    return true;
1326  }
1327
1328  return false;
1329}
1330
1331/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1332/// global in the specified llvm.used list for which emitUsedDirectiveFor
1333/// is true, as being used with this directive.
1334void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1335  // Should be an array of 'i8*'.
1336  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1337    const GlobalValue *GV =
1338      dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1339    if (GV)
1340      OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1341  }
1342}
1343
1344namespace {
1345struct Structor {
1346  Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1347  int Priority;
1348  llvm::Constant *Func;
1349  llvm::GlobalValue *ComdatKey;
1350};
1351} // end namespace
1352
1353/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1354/// priority.
1355void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1356  // Should be an array of '{ int, void ()* }' structs.  The first value is the
1357  // init priority.
1358  if (!isa<ConstantArray>(List)) return;
1359
1360  // Sanity check the structors list.
1361  const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1362  if (!InitList) return; // Not an array!
1363  StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1364  // FIXME: Only allow the 3-field form in LLVM 4.0.
1365  if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1366    return; // Not an array of two or three elements!
1367  if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1368      !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1369  if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1370    return; // Not (int, ptr, ptr).
1371
1372  // Gather the structors in a form that's convenient for sorting by priority.
1373  SmallVector<Structor, 8> Structors;
1374  for (Value *O : InitList->operands()) {
1375    ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1376    if (!CS) continue; // Malformed.
1377    if (CS->getOperand(1)->isNullValue())
1378      break;  // Found a null terminator, skip the rest.
1379    ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1380    if (!Priority) continue; // Malformed.
1381    Structors.push_back(Structor());
1382    Structor &S = Structors.back();
1383    S.Priority = Priority->getLimitedValue(65535);
1384    S.Func = CS->getOperand(1);
1385    if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1386      S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1387  }
1388
1389  // Emit the function pointers in the target-specific order
1390  const DataLayout *DL = TM.getDataLayout();
1391  unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1392  std::stable_sort(Structors.begin(), Structors.end(),
1393                   [](const Structor &L,
1394                      const Structor &R) { return L.Priority < R.Priority; });
1395  for (Structor &S : Structors) {
1396    const TargetLoweringObjectFile &Obj = getObjFileLowering();
1397    const MCSymbol *KeySym = nullptr;
1398    if (GlobalValue *GV = S.ComdatKey) {
1399      if (GV->hasAvailableExternallyLinkage())
1400        // If the associated variable is available_externally, some other TU
1401        // will provide its dynamic initializer.
1402        continue;
1403
1404      KeySym = getSymbol(GV);
1405    }
1406    const MCSection *OutputSection =
1407        (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1408                : Obj.getStaticDtorSection(S.Priority, KeySym));
1409    OutStreamer.SwitchSection(OutputSection);
1410    if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1411      EmitAlignment(Align);
1412    EmitXXStructor(S.Func);
1413  }
1414}
1415
1416void AsmPrinter::EmitModuleIdents(Module &M) {
1417  if (!MAI->hasIdentDirective())
1418    return;
1419
1420  if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1421    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1422      const MDNode *N = NMD->getOperand(i);
1423      assert(N->getNumOperands() == 1 &&
1424             "llvm.ident metadata entry can have only one operand");
1425      const MDString *S = cast<MDString>(N->getOperand(0));
1426      OutStreamer.EmitIdent(S->getString());
1427    }
1428  }
1429}
1430
1431//===--------------------------------------------------------------------===//
1432// Emission and print routines
1433//
1434
1435/// EmitInt8 - Emit a byte directive and value.
1436///
1437void AsmPrinter::EmitInt8(int Value) const {
1438  OutStreamer.EmitIntValue(Value, 1);
1439}
1440
1441/// EmitInt16 - Emit a short directive and value.
1442///
1443void AsmPrinter::EmitInt16(int Value) const {
1444  OutStreamer.EmitIntValue(Value, 2);
1445}
1446
1447/// EmitInt32 - Emit a long directive and value.
1448///
1449void AsmPrinter::EmitInt32(int Value) const {
1450  OutStreamer.EmitIntValue(Value, 4);
1451}
1452
1453/// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1454/// in bytes of the directive is specified by Size and Hi/Lo specify the
1455/// labels.  This implicitly uses .set if it is available.
1456void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1457                                     unsigned Size) const {
1458  // Get the Hi-Lo expression.
1459  const MCExpr *Diff =
1460    MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1461                            MCSymbolRefExpr::Create(Lo, OutContext),
1462                            OutContext);
1463
1464  if (!MAI->hasSetDirective()) {
1465    OutStreamer.EmitValue(Diff, Size);
1466    return;
1467  }
1468
1469  // Otherwise, emit with .set (aka assignment).
1470  MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1471  OutStreamer.EmitAssignment(SetLabel, Diff);
1472  OutStreamer.EmitSymbolValue(SetLabel, Size);
1473}
1474
1475/// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1476/// where the size in bytes of the directive is specified by Size and Hi/Lo
1477/// specify the labels.  This implicitly uses .set if it is available.
1478void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1479                                           const MCSymbol *Lo,
1480                                           unsigned Size) const {
1481
1482  // Emit Hi+Offset - Lo
1483  // Get the Hi+Offset expression.
1484  const MCExpr *Plus =
1485    MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1486                            MCConstantExpr::Create(Offset, OutContext),
1487                            OutContext);
1488
1489  // Get the Hi+Offset-Lo expression.
1490  const MCExpr *Diff =
1491    MCBinaryExpr::CreateSub(Plus,
1492                            MCSymbolRefExpr::Create(Lo, OutContext),
1493                            OutContext);
1494
1495  if (!MAI->hasSetDirective())
1496    OutStreamer.EmitValue(Diff, Size);
1497  else {
1498    // Otherwise, emit with .set (aka assignment).
1499    MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1500    OutStreamer.EmitAssignment(SetLabel, Diff);
1501    OutStreamer.EmitSymbolValue(SetLabel, Size);
1502  }
1503}
1504
1505/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1506/// where the size in bytes of the directive is specified by Size and Label
1507/// specifies the label.  This implicitly uses .set if it is available.
1508void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1509                                     unsigned Size,
1510                                     bool IsSectionRelative) const {
1511  if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1512    OutStreamer.EmitCOFFSecRel32(Label);
1513    return;
1514  }
1515
1516  // Emit Label+Offset (or just Label if Offset is zero)
1517  const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1518  if (Offset)
1519    Expr = MCBinaryExpr::CreateAdd(
1520        Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
1521
1522  OutStreamer.EmitValue(Expr, Size);
1523}
1524
1525//===----------------------------------------------------------------------===//
1526
1527// EmitAlignment - Emit an alignment directive to the specified power of
1528// two boundary.  For example, if you pass in 3 here, you will get an 8
1529// byte alignment.  If a global value is specified, and if that global has
1530// an explicit alignment requested, it will override the alignment request
1531// if required for correctness.
1532//
1533void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1534  if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1535
1536  if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1537
1538  if (getCurrentSection()->getKind().isText())
1539    OutStreamer.EmitCodeAlignment(1 << NumBits);
1540  else
1541    OutStreamer.EmitValueToAlignment(1 << NumBits);
1542}
1543
1544//===----------------------------------------------------------------------===//
1545// Constant emission.
1546//===----------------------------------------------------------------------===//
1547
1548/// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1549///
1550static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1551  MCContext &Ctx = AP.OutContext;
1552
1553  if (CV->isNullValue() || isa<UndefValue>(CV))
1554    return MCConstantExpr::Create(0, Ctx);
1555
1556  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1557    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1558
1559  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1560    return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx);
1561
1562  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1563    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1564
1565  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1566  if (!CE) {
1567    llvm_unreachable("Unknown constant value to lower!");
1568  }
1569
1570  if (const MCExpr *RelocExpr =
1571          AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang,
1572                                                              AP.TM))
1573    return RelocExpr;
1574
1575  switch (CE->getOpcode()) {
1576  default:
1577    // If the code isn't optimized, there may be outstanding folding
1578    // opportunities. Attempt to fold the expression using DataLayout as a
1579    // last resort before giving up.
1580    if (Constant *C =
1581          ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1582      if (C != CE)
1583        return lowerConstant(C, AP);
1584
1585    // Otherwise report the problem to the user.
1586    {
1587      std::string S;
1588      raw_string_ostream OS(S);
1589      OS << "Unsupported expression in static initializer: ";
1590      CE->printAsOperand(OS, /*PrintType=*/false,
1591                     !AP.MF ? nullptr : AP.MF->getFunction()->getParent());
1592      report_fatal_error(OS.str());
1593    }
1594  case Instruction::GetElementPtr: {
1595    const DataLayout &DL = *AP.TM.getDataLayout();
1596    // Generate a symbolic expression for the byte address
1597    APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1598    cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1599
1600    const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1601    if (!OffsetAI)
1602      return Base;
1603
1604    int64_t Offset = OffsetAI.getSExtValue();
1605    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1606                                   Ctx);
1607  }
1608
1609  case Instruction::Trunc:
1610    // We emit the value and depend on the assembler to truncate the generated
1611    // expression properly.  This is important for differences between
1612    // blockaddress labels.  Since the two labels are in the same function, it
1613    // is reasonable to treat their delta as a 32-bit value.
1614    // FALL THROUGH.
1615  case Instruction::BitCast:
1616    return lowerConstant(CE->getOperand(0), AP);
1617
1618  case Instruction::IntToPtr: {
1619    const DataLayout &DL = *AP.TM.getDataLayout();
1620    // Handle casts to pointers by changing them into casts to the appropriate
1621    // integer type.  This promotes constant folding and simplifies this code.
1622    Constant *Op = CE->getOperand(0);
1623    Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1624                                      false/*ZExt*/);
1625    return lowerConstant(Op, AP);
1626  }
1627
1628  case Instruction::PtrToInt: {
1629    const DataLayout &DL = *AP.TM.getDataLayout();
1630    // Support only foldable casts to/from pointers that can be eliminated by
1631    // changing the pointer to the appropriately sized integer type.
1632    Constant *Op = CE->getOperand(0);
1633    Type *Ty = CE->getType();
1634
1635    const MCExpr *OpExpr = lowerConstant(Op, AP);
1636
1637    // We can emit the pointer value into this slot if the slot is an
1638    // integer slot equal to the size of the pointer.
1639    if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1640      return OpExpr;
1641
1642    // Otherwise the pointer is smaller than the resultant integer, mask off
1643    // the high bits so we are sure to get a proper truncation if the input is
1644    // a constant expr.
1645    unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1646    const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1647    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1648  }
1649
1650  // The MC library also has a right-shift operator, but it isn't consistently
1651  // signed or unsigned between different targets.
1652  case Instruction::Add:
1653  case Instruction::Sub:
1654  case Instruction::Mul:
1655  case Instruction::SDiv:
1656  case Instruction::SRem:
1657  case Instruction::Shl:
1658  case Instruction::And:
1659  case Instruction::Or:
1660  case Instruction::Xor: {
1661    const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1662    const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1663    switch (CE->getOpcode()) {
1664    default: llvm_unreachable("Unknown binary operator constant cast expr");
1665    case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1666    case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1667    case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1668    case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1669    case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1670    case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1671    case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1672    case Instruction::Or:  return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1673    case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1674    }
1675  }
1676  }
1677}
1678
1679static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1680
1681/// isRepeatedByteSequence - Determine whether the given value is
1682/// composed of a repeated sequence of identical bytes and return the
1683/// byte value.  If it is not a repeated sequence, return -1.
1684static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1685  StringRef Data = V->getRawDataValues();
1686  assert(!Data.empty() && "Empty aggregates should be CAZ node");
1687  char C = Data[0];
1688  for (unsigned i = 1, e = Data.size(); i != e; ++i)
1689    if (Data[i] != C) return -1;
1690  return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1691}
1692
1693
1694/// isRepeatedByteSequence - Determine whether the given value is
1695/// composed of a repeated sequence of identical bytes and return the
1696/// byte value.  If it is not a repeated sequence, return -1.
1697static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1698
1699  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1700    if (CI->getBitWidth() > 64) return -1;
1701
1702    uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1703    uint64_t Value = CI->getZExtValue();
1704
1705    // Make sure the constant is at least 8 bits long and has a power
1706    // of 2 bit width.  This guarantees the constant bit width is
1707    // always a multiple of 8 bits, avoiding issues with padding out
1708    // to Size and other such corner cases.
1709    if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1710
1711    uint8_t Byte = static_cast<uint8_t>(Value);
1712
1713    for (unsigned i = 1; i < Size; ++i) {
1714      Value >>= 8;
1715      if (static_cast<uint8_t>(Value) != Byte) return -1;
1716    }
1717    return Byte;
1718  }
1719  if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1720    // Make sure all array elements are sequences of the same repeated
1721    // byte.
1722    assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1723    int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1724    if (Byte == -1) return -1;
1725
1726    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1727      int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1728      if (ThisByte == -1) return -1;
1729      if (Byte != ThisByte) return -1;
1730    }
1731    return Byte;
1732  }
1733
1734  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1735    return isRepeatedByteSequence(CDS);
1736
1737  return -1;
1738}
1739
1740static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1741                                             AsmPrinter &AP){
1742
1743  // See if we can aggregate this into a .fill, if so, emit it as such.
1744  int Value = isRepeatedByteSequence(CDS, AP.TM);
1745  if (Value != -1) {
1746    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1747    // Don't emit a 1-byte object as a .fill.
1748    if (Bytes > 1)
1749      return AP.OutStreamer.EmitFill(Bytes, Value);
1750  }
1751
1752  // If this can be emitted with .ascii/.asciz, emit it as such.
1753  if (CDS->isString())
1754    return AP.OutStreamer.EmitBytes(CDS->getAsString());
1755
1756  // Otherwise, emit the values in successive locations.
1757  unsigned ElementByteSize = CDS->getElementByteSize();
1758  if (isa<IntegerType>(CDS->getElementType())) {
1759    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1760      if (AP.isVerbose())
1761        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1762                                                CDS->getElementAsInteger(i));
1763      AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1764                                  ElementByteSize);
1765    }
1766  } else if (ElementByteSize == 4) {
1767    // FP Constants are printed as integer constants to avoid losing
1768    // precision.
1769    assert(CDS->getElementType()->isFloatTy());
1770    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1771      union {
1772        float F;
1773        uint32_t I;
1774      };
1775
1776      F = CDS->getElementAsFloat(i);
1777      if (AP.isVerbose())
1778        AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1779      AP.OutStreamer.EmitIntValue(I, 4);
1780    }
1781  } else {
1782    assert(CDS->getElementType()->isDoubleTy());
1783    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1784      union {
1785        double F;
1786        uint64_t I;
1787      };
1788
1789      F = CDS->getElementAsDouble(i);
1790      if (AP.isVerbose())
1791        AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1792      AP.OutStreamer.EmitIntValue(I, 8);
1793    }
1794  }
1795
1796  const DataLayout &DL = *AP.TM.getDataLayout();
1797  unsigned Size = DL.getTypeAllocSize(CDS->getType());
1798  unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1799                        CDS->getNumElements();
1800  if (unsigned Padding = Size - EmittedSize)
1801    AP.OutStreamer.EmitZeros(Padding);
1802
1803}
1804
1805static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1806  // See if we can aggregate some values.  Make sure it can be
1807  // represented as a series of bytes of the constant value.
1808  int Value = isRepeatedByteSequence(CA, AP.TM);
1809
1810  if (Value != -1) {
1811    uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1812    AP.OutStreamer.EmitFill(Bytes, Value);
1813  }
1814  else {
1815    for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1816      emitGlobalConstantImpl(CA->getOperand(i), AP);
1817  }
1818}
1819
1820static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1821  for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1822    emitGlobalConstantImpl(CV->getOperand(i), AP);
1823
1824  const DataLayout &DL = *AP.TM.getDataLayout();
1825  unsigned Size = DL.getTypeAllocSize(CV->getType());
1826  unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1827                         CV->getType()->getNumElements();
1828  if (unsigned Padding = Size - EmittedSize)
1829    AP.OutStreamer.EmitZeros(Padding);
1830}
1831
1832static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1833  // Print the fields in successive locations. Pad to align if needed!
1834  const DataLayout *DL = AP.TM.getDataLayout();
1835  unsigned Size = DL->getTypeAllocSize(CS->getType());
1836  const StructLayout *Layout = DL->getStructLayout(CS->getType());
1837  uint64_t SizeSoFar = 0;
1838  for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1839    const Constant *Field = CS->getOperand(i);
1840
1841    // Check if padding is needed and insert one or more 0s.
1842    uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1843    uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1844                        - Layout->getElementOffset(i)) - FieldSize;
1845    SizeSoFar += FieldSize + PadSize;
1846
1847    // Now print the actual field value.
1848    emitGlobalConstantImpl(Field, AP);
1849
1850    // Insert padding - this may include padding to increase the size of the
1851    // current field up to the ABI size (if the struct is not packed) as well
1852    // as padding to ensure that the next field starts at the right offset.
1853    AP.OutStreamer.EmitZeros(PadSize);
1854  }
1855  assert(SizeSoFar == Layout->getSizeInBytes() &&
1856         "Layout of constant struct may be incorrect!");
1857}
1858
1859static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1860  APInt API = CFP->getValueAPF().bitcastToAPInt();
1861
1862  // First print a comment with what we think the original floating-point value
1863  // should have been.
1864  if (AP.isVerbose()) {
1865    SmallString<8> StrVal;
1866    CFP->getValueAPF().toString(StrVal);
1867
1868    if (CFP->getType())
1869      CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1870    else
1871      AP.OutStreamer.GetCommentOS() << "Printing <null> Type";
1872    AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1873  }
1874
1875  // Now iterate through the APInt chunks, emitting them in endian-correct
1876  // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1877  // floats).
1878  unsigned NumBytes = API.getBitWidth() / 8;
1879  unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1880  const uint64_t *p = API.getRawData();
1881
1882  // PPC's long double has odd notions of endianness compared to how LLVM
1883  // handles it: p[0] goes first for *big* endian on PPC.
1884  if (AP.TM.getDataLayout()->isBigEndian() &&
1885      !CFP->getType()->isPPC_FP128Ty()) {
1886    int Chunk = API.getNumWords() - 1;
1887
1888    if (TrailingBytes)
1889      AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1890
1891    for (; Chunk >= 0; --Chunk)
1892      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1893  } else {
1894    unsigned Chunk;
1895    for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1896      AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1897
1898    if (TrailingBytes)
1899      AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1900  }
1901
1902  // Emit the tail padding for the long double.
1903  const DataLayout &DL = *AP.TM.getDataLayout();
1904  AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
1905                           DL.getTypeStoreSize(CFP->getType()));
1906}
1907
1908static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1909  const DataLayout *DL = AP.TM.getDataLayout();
1910  unsigned BitWidth = CI->getBitWidth();
1911
1912  // Copy the value as we may massage the layout for constants whose bit width
1913  // is not a multiple of 64-bits.
1914  APInt Realigned(CI->getValue());
1915  uint64_t ExtraBits = 0;
1916  unsigned ExtraBitsSize = BitWidth & 63;
1917
1918  if (ExtraBitsSize) {
1919    // The bit width of the data is not a multiple of 64-bits.
1920    // The extra bits are expected to be at the end of the chunk of the memory.
1921    // Little endian:
1922    // * Nothing to be done, just record the extra bits to emit.
1923    // Big endian:
1924    // * Record the extra bits to emit.
1925    // * Realign the raw data to emit the chunks of 64-bits.
1926    if (DL->isBigEndian()) {
1927      // Basically the structure of the raw data is a chunk of 64-bits cells:
1928      //    0        1         BitWidth / 64
1929      // [chunk1][chunk2] ... [chunkN].
1930      // The most significant chunk is chunkN and it should be emitted first.
1931      // However, due to the alignment issue chunkN contains useless bits.
1932      // Realign the chunks so that they contain only useless information:
1933      // ExtraBits     0       1       (BitWidth / 64) - 1
1934      //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1935      ExtraBits = Realigned.getRawData()[0] &
1936        (((uint64_t)-1) >> (64 - ExtraBitsSize));
1937      Realigned = Realigned.lshr(ExtraBitsSize);
1938    } else
1939      ExtraBits = Realigned.getRawData()[BitWidth / 64];
1940  }
1941
1942  // We don't expect assemblers to support integer data directives
1943  // for more than 64 bits, so we emit the data in at most 64-bit
1944  // quantities at a time.
1945  const uint64_t *RawData = Realigned.getRawData();
1946  for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1947    uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1948    AP.OutStreamer.EmitIntValue(Val, 8);
1949  }
1950
1951  if (ExtraBitsSize) {
1952    // Emit the extra bits after the 64-bits chunks.
1953
1954    // Emit a directive that fills the expected size.
1955    uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1956    Size -= (BitWidth / 64) * 8;
1957    assert(Size && Size * 8 >= ExtraBitsSize &&
1958           (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1959           == ExtraBits && "Directive too small for extra bits.");
1960    AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1961  }
1962}
1963
1964static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1965  const DataLayout *DL = AP.TM.getDataLayout();
1966  uint64_t Size = DL->getTypeAllocSize(CV->getType());
1967  if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1968    return AP.OutStreamer.EmitZeros(Size);
1969
1970  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1971    switch (Size) {
1972    case 1:
1973    case 2:
1974    case 4:
1975    case 8:
1976      if (AP.isVerbose())
1977        AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1978                                                CI->getZExtValue());
1979      AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1980      return;
1981    default:
1982      emitGlobalConstantLargeInt(CI, AP);
1983      return;
1984    }
1985  }
1986
1987  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1988    return emitGlobalConstantFP(CFP, AP);
1989
1990  if (isa<ConstantPointerNull>(CV)) {
1991    AP.OutStreamer.EmitIntValue(0, Size);
1992    return;
1993  }
1994
1995  if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1996    return emitGlobalConstantDataSequential(CDS, AP);
1997
1998  if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1999    return emitGlobalConstantArray(CVA, AP);
2000
2001  if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2002    return emitGlobalConstantStruct(CVS, AP);
2003
2004  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2005    // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2006    // vectors).
2007    if (CE->getOpcode() == Instruction::BitCast)
2008      return emitGlobalConstantImpl(CE->getOperand(0), AP);
2009
2010    if (Size > 8) {
2011      // If the constant expression's size is greater than 64-bits, then we have
2012      // to emit the value in chunks. Try to constant fold the value and emit it
2013      // that way.
2014      Constant *New = ConstantFoldConstantExpression(CE, DL);
2015      if (New && New != CE)
2016        return emitGlobalConstantImpl(New, AP);
2017    }
2018  }
2019
2020  if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2021    return emitGlobalConstantVector(V, AP);
2022
2023  // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2024  // thread the streamer with EmitValue.
2025  AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
2026}
2027
2028/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2029void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
2030  uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
2031  if (Size)
2032    emitGlobalConstantImpl(CV, *this);
2033  else if (MAI->hasSubsectionsViaSymbols()) {
2034    // If the global has zero size, emit a single byte so that two labels don't
2035    // look like they are at the same location.
2036    OutStreamer.EmitIntValue(0, 1);
2037  }
2038}
2039
2040void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2041  // Target doesn't support this yet!
2042  llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2043}
2044
2045void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2046  if (Offset > 0)
2047    OS << '+' << Offset;
2048  else if (Offset < 0)
2049    OS << Offset;
2050}
2051
2052//===----------------------------------------------------------------------===//
2053// Symbol Lowering Routines.
2054//===----------------------------------------------------------------------===//
2055
2056/// GetTempSymbol - Return the MCSymbol corresponding to the assembler
2057/// temporary label with the specified stem and unique ID.
2058MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const {
2059  const DataLayout *DL = TM.getDataLayout();
2060  return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) +
2061                                      Name + Twine(ID));
2062}
2063
2064/// GetTempSymbol - Return an assembler temporary label with the specified
2065/// stem.
2066MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const {
2067  const DataLayout *DL = TM.getDataLayout();
2068  return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+
2069                                      Name);
2070}
2071
2072
2073MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2074  return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2075}
2076
2077MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2078  return MMI->getAddrLabelSymbol(BB);
2079}
2080
2081/// GetCPISymbol - Return the symbol for the specified constant pool entry.
2082MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2083  const DataLayout *DL = TM.getDataLayout();
2084  return OutContext.GetOrCreateSymbol
2085    (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2086     + "_" + Twine(CPID));
2087}
2088
2089/// GetJTISymbol - Return the symbol for the specified jump table entry.
2090MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2091  return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2092}
2093
2094/// GetJTSetSymbol - Return the symbol for the specified jump table .set
2095/// FIXME: privatize to AsmPrinter.
2096MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2097  const DataLayout *DL = TM.getDataLayout();
2098  return OutContext.GetOrCreateSymbol
2099  (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2100   Twine(UID) + "_set_" + Twine(MBBID));
2101}
2102
2103MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2104                                                   StringRef Suffix) const {
2105  return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2106                                                           TM);
2107}
2108
2109/// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2110/// ExternalSymbol.
2111MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2112  SmallString<60> NameStr;
2113  Mang->getNameWithPrefix(NameStr, Sym);
2114  return OutContext.GetOrCreateSymbol(NameStr.str());
2115}
2116
2117
2118
2119/// PrintParentLoopComment - Print comments about parent loops of this one.
2120static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2121                                   unsigned FunctionNumber) {
2122  if (!Loop) return;
2123  PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2124  OS.indent(Loop->getLoopDepth()*2)
2125    << "Parent Loop BB" << FunctionNumber << "_"
2126    << Loop->getHeader()->getNumber()
2127    << " Depth=" << Loop->getLoopDepth() << '\n';
2128}
2129
2130
2131/// PrintChildLoopComment - Print comments about child loops within
2132/// the loop for this basic block, with nesting.
2133static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2134                                  unsigned FunctionNumber) {
2135  // Add child loop information
2136  for (const MachineLoop *CL : *Loop) {
2137    OS.indent(CL->getLoopDepth()*2)
2138      << "Child Loop BB" << FunctionNumber << "_"
2139      << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2140      << '\n';
2141    PrintChildLoopComment(OS, CL, FunctionNumber);
2142  }
2143}
2144
2145/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2146static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2147                                       const MachineLoopInfo *LI,
2148                                       const AsmPrinter &AP) {
2149  // Add loop depth information
2150  const MachineLoop *Loop = LI->getLoopFor(&MBB);
2151  if (!Loop) return;
2152
2153  MachineBasicBlock *Header = Loop->getHeader();
2154  assert(Header && "No header for loop");
2155
2156  // If this block is not a loop header, just print out what is the loop header
2157  // and return.
2158  if (Header != &MBB) {
2159    AP.OutStreamer.AddComment("  in Loop: Header=BB" +
2160                              Twine(AP.getFunctionNumber())+"_" +
2161                              Twine(Loop->getHeader()->getNumber())+
2162                              " Depth="+Twine(Loop->getLoopDepth()));
2163    return;
2164  }
2165
2166  // Otherwise, it is a loop header.  Print out information about child and
2167  // parent loops.
2168  raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2169
2170  PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2171
2172  OS << "=>";
2173  OS.indent(Loop->getLoopDepth()*2-2);
2174
2175  OS << "This ";
2176  if (Loop->empty())
2177    OS << "Inner ";
2178  OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2179
2180  PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2181}
2182
2183
2184/// EmitBasicBlockStart - This method prints the label for the specified
2185/// MachineBasicBlock, an alignment (if present) and a comment describing
2186/// it if appropriate.
2187void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2188  // Emit an alignment directive for this block, if needed.
2189  if (unsigned Align = MBB.getAlignment())
2190    EmitAlignment(Align);
2191
2192  // If the block has its address taken, emit any labels that were used to
2193  // reference the block.  It is possible that there is more than one label
2194  // here, because multiple LLVM BB's may have been RAUW'd to this block after
2195  // the references were generated.
2196  if (MBB.hasAddressTaken()) {
2197    const BasicBlock *BB = MBB.getBasicBlock();
2198    if (isVerbose())
2199      OutStreamer.AddComment("Block address taken");
2200
2201    std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB);
2202    for (auto *Sym : Symbols)
2203      OutStreamer.EmitLabel(Sym);
2204  }
2205
2206  // Print some verbose block comments.
2207  if (isVerbose()) {
2208    if (const BasicBlock *BB = MBB.getBasicBlock())
2209      if (BB->hasName())
2210        OutStreamer.AddComment("%" + BB->getName());
2211    emitBasicBlockLoopComments(MBB, LI, *this);
2212  }
2213
2214  // Print the main label for the block.
2215  if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) {
2216    if (isVerbose()) {
2217      // NOTE: Want this comment at start of line, don't emit with AddComment.
2218      OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2219    }
2220  } else {
2221    OutStreamer.EmitLabel(MBB.getSymbol());
2222  }
2223}
2224
2225void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2226                                bool IsDefinition) const {
2227  MCSymbolAttr Attr = MCSA_Invalid;
2228
2229  switch (Visibility) {
2230  default: break;
2231  case GlobalValue::HiddenVisibility:
2232    if (IsDefinition)
2233      Attr = MAI->getHiddenVisibilityAttr();
2234    else
2235      Attr = MAI->getHiddenDeclarationVisibilityAttr();
2236    break;
2237  case GlobalValue::ProtectedVisibility:
2238    Attr = MAI->getProtectedVisibilityAttr();
2239    break;
2240  }
2241
2242  if (Attr != MCSA_Invalid)
2243    OutStreamer.EmitSymbolAttribute(Sym, Attr);
2244}
2245
2246/// isBlockOnlyReachableByFallthough - Return true if the basic block has
2247/// exactly one predecessor and the control transfer mechanism between
2248/// the predecessor and this block is a fall-through.
2249bool AsmPrinter::
2250isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2251  // If this is a landing pad, it isn't a fall through.  If it has no preds,
2252  // then nothing falls through to it.
2253  if (MBB->isLandingPad() || MBB->pred_empty())
2254    return false;
2255
2256  // If there isn't exactly one predecessor, it can't be a fall through.
2257  if (MBB->pred_size() > 1)
2258    return false;
2259
2260  // The predecessor has to be immediately before this block.
2261  MachineBasicBlock *Pred = *MBB->pred_begin();
2262  if (!Pred->isLayoutSuccessor(MBB))
2263    return false;
2264
2265  // If the block is completely empty, then it definitely does fall through.
2266  if (Pred->empty())
2267    return true;
2268
2269  // Check the terminators in the previous blocks
2270  for (const auto &MI : Pred->terminators()) {
2271    // If it is not a simple branch, we are in a table somewhere.
2272    if (!MI.isBranch() || MI.isIndirectBranch())
2273      return false;
2274
2275    // If we are the operands of one of the branches, this is not a fall
2276    // through. Note that targets with delay slots will usually bundle
2277    // terminators with the delay slot instruction.
2278    for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2279      if (OP->isJTI())
2280        return false;
2281      if (OP->isMBB() && OP->getMBB() == MBB)
2282        return false;
2283    }
2284  }
2285
2286  return true;
2287}
2288
2289
2290
2291GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2292  if (!S.usesMetadata())
2293    return nullptr;
2294
2295  gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2296  gcp_map_type::iterator GCPI = GCMap.find(&S);
2297  if (GCPI != GCMap.end())
2298    return GCPI->second.get();
2299
2300  const char *Name = S.getName().c_str();
2301
2302  for (GCMetadataPrinterRegistry::iterator
2303         I = GCMetadataPrinterRegistry::begin(),
2304         E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2305    if (strcmp(Name, I->getName()) == 0) {
2306      std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2307      GMP->S = &S;
2308      auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2309      return IterBool.first->second.get();
2310    }
2311
2312  report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2313}
2314
2315/// Pin vtable to this file.
2316AsmPrinterHandler::~AsmPrinterHandler() {}
2317