CodeGenPrepare.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/IR/CallSite.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DerivedTypes.h"
26#include "llvm/IR/Dominators.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GetElementPtrTypeIterator.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/InlineAsm.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/PatternMatch.h"
34#include "llvm/IR/ValueHandle.h"
35#include "llvm/IR/ValueMap.h"
36#include "llvm/Pass.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Target/TargetLibraryInfo.h"
41#include "llvm/Target/TargetLowering.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/BuildLibCalls.h"
44#include "llvm/Transforms/Utils/BypassSlowDivision.h"
45#include "llvm/Transforms/Utils/Local.h"
46using namespace llvm;
47using namespace llvm::PatternMatch;
48
49STATISTIC(NumBlocksElim, "Number of blocks eliminated");
50STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
51STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
52STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
53                      "sunken Cmps");
54STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
55                       "of sunken Casts");
56STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
57                          "computations were sunk");
58STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
59STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
60STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
61STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
62STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
63STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
64
65static cl::opt<bool> DisableBranchOpts(
66  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
67  cl::desc("Disable branch optimizations in CodeGenPrepare"));
68
69static cl::opt<bool> DisableSelectToBranch(
70  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
71  cl::desc("Disable select to branch conversion."));
72
73static cl::opt<bool> EnableAndCmpSinking(
74   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
75   cl::desc("Enable sinkinig and/cmp into branches."));
76
77namespace {
78typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
79typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
80
81  class CodeGenPrepare : public FunctionPass {
82    /// TLI - Keep a pointer of a TargetLowering to consult for determining
83    /// transformation profitability.
84    const TargetMachine *TM;
85    const TargetLowering *TLI;
86    const TargetLibraryInfo *TLInfo;
87    DominatorTree *DT;
88
89    /// CurInstIterator - As we scan instructions optimizing them, this is the
90    /// next instruction to optimize.  Xforms that can invalidate this should
91    /// update it.
92    BasicBlock::iterator CurInstIterator;
93
94    /// Keeps track of non-local addresses that have been sunk into a block.
95    /// This allows us to avoid inserting duplicate code for blocks with
96    /// multiple load/stores of the same address.
97    ValueMap<Value*, Value*> SunkAddrs;
98
99    /// Keeps track of all truncates inserted for the current function.
100    SetOfInstrs InsertedTruncsSet;
101    /// Keeps track of the type of the related instruction before their
102    /// promotion for the current function.
103    InstrToOrigTy PromotedInsts;
104
105    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
106    /// be updated.
107    bool ModifiedDT;
108
109    /// OptSize - True if optimizing for size.
110    bool OptSize;
111
112  public:
113    static char ID; // Pass identification, replacement for typeid
114    explicit CodeGenPrepare(const TargetMachine *TM = 0)
115      : FunctionPass(ID), TM(TM), TLI(0) {
116        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
117      }
118    bool runOnFunction(Function &F) override;
119
120    const char *getPassName() const override { return "CodeGen Prepare"; }
121
122    void getAnalysisUsage(AnalysisUsage &AU) const override {
123      AU.addPreserved<DominatorTreeWrapperPass>();
124      AU.addRequired<TargetLibraryInfo>();
125    }
126
127  private:
128    bool EliminateFallThrough(Function &F);
129    bool EliminateMostlyEmptyBlocks(Function &F);
130    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
131    void EliminateMostlyEmptyBlock(BasicBlock *BB);
132    bool OptimizeBlock(BasicBlock &BB);
133    bool OptimizeInst(Instruction *I);
134    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
135    bool OptimizeInlineAsmInst(CallInst *CS);
136    bool OptimizeCallInst(CallInst *CI);
137    bool MoveExtToFormExtLoad(Instruction *I);
138    bool OptimizeExtUses(Instruction *I);
139    bool OptimizeSelectInst(SelectInst *SI);
140    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
141    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
142    bool PlaceDbgValues(Function &F);
143    bool sinkAndCmp(Function &F);
144  };
145}
146
147char CodeGenPrepare::ID = 0;
148static void *initializeCodeGenPreparePassOnce(PassRegistry &Registry) {
149  initializeTargetLibraryInfoPass(Registry);
150  PassInfo *PI = new PassInfo(
151      "Optimize for code generation", "codegenprepare", &CodeGenPrepare::ID,
152      PassInfo::NormalCtor_t(callDefaultCtor<CodeGenPrepare>), false, false,
153      PassInfo::TargetMachineCtor_t(callTargetMachineCtor<CodeGenPrepare>));
154  Registry.registerPass(*PI, true);
155  return PI;
156}
157
158void llvm::initializeCodeGenPreparePass(PassRegistry &Registry) {
159  CALL_ONCE_INITIALIZATION(initializeCodeGenPreparePassOnce)
160}
161
162FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
163  return new CodeGenPrepare(TM);
164}
165
166bool CodeGenPrepare::runOnFunction(Function &F) {
167  if (skipOptnoneFunction(F))
168    return false;
169
170  bool EverMadeChange = false;
171  // Clear per function information.
172  InsertedTruncsSet.clear();
173  PromotedInsts.clear();
174
175  ModifiedDT = false;
176  if (TM) TLI = TM->getTargetLowering();
177  TLInfo = &getAnalysis<TargetLibraryInfo>();
178  DominatorTreeWrapperPass *DTWP =
179      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
180  DT = DTWP ? &DTWP->getDomTree() : 0;
181  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
182                                           Attribute::OptimizeForSize);
183
184  /// This optimization identifies DIV instructions that can be
185  /// profitably bypassed and carried out with a shorter, faster divide.
186  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
187    const DenseMap<unsigned int, unsigned int> &BypassWidths =
188       TLI->getBypassSlowDivWidths();
189    for (Function::iterator I = F.begin(); I != F.end(); I++)
190      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
191  }
192
193  // Eliminate blocks that contain only PHI nodes and an
194  // unconditional branch.
195  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
196
197  // llvm.dbg.value is far away from the value then iSel may not be able
198  // handle it properly. iSel will drop llvm.dbg.value if it can not
199  // find a node corresponding to the value.
200  EverMadeChange |= PlaceDbgValues(F);
201
202  // If there is a mask, compare against zero, and branch that can be combined
203  // into a single target instruction, push the mask and compare into branch
204  // users. Do this before OptimizeBlock -> OptimizeInst ->
205  // OptimizeCmpExpression, which perturbs the pattern being searched for.
206  if (!DisableBranchOpts)
207    EverMadeChange |= sinkAndCmp(F);
208
209  bool MadeChange = true;
210  while (MadeChange) {
211    MadeChange = false;
212    for (Function::iterator I = F.begin(); I != F.end(); ) {
213      BasicBlock *BB = I++;
214      MadeChange |= OptimizeBlock(*BB);
215    }
216    EverMadeChange |= MadeChange;
217  }
218
219  SunkAddrs.clear();
220
221  if (!DisableBranchOpts) {
222    MadeChange = false;
223    SmallPtrSet<BasicBlock*, 8> WorkList;
224    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
225      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
226      MadeChange |= ConstantFoldTerminator(BB, true);
227      if (!MadeChange) continue;
228
229      for (SmallVectorImpl<BasicBlock*>::iterator
230             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
231        if (pred_begin(*II) == pred_end(*II))
232          WorkList.insert(*II);
233    }
234
235    // Delete the dead blocks and any of their dead successors.
236    MadeChange |= !WorkList.empty();
237    while (!WorkList.empty()) {
238      BasicBlock *BB = *WorkList.begin();
239      WorkList.erase(BB);
240      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
241
242      DeleteDeadBlock(BB);
243
244      for (SmallVectorImpl<BasicBlock*>::iterator
245             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
246        if (pred_begin(*II) == pred_end(*II))
247          WorkList.insert(*II);
248    }
249
250    // Merge pairs of basic blocks with unconditional branches, connected by
251    // a single edge.
252    if (EverMadeChange || MadeChange)
253      MadeChange |= EliminateFallThrough(F);
254
255    if (MadeChange)
256      ModifiedDT = true;
257    EverMadeChange |= MadeChange;
258  }
259
260  if (ModifiedDT && DT)
261    DT->recalculate(F);
262
263  return EverMadeChange;
264}
265
266/// EliminateFallThrough - Merge basic blocks which are connected
267/// by a single edge, where one of the basic blocks has a single successor
268/// pointing to the other basic block, which has a single predecessor.
269bool CodeGenPrepare::EliminateFallThrough(Function &F) {
270  bool Changed = false;
271  // Scan all of the blocks in the function, except for the entry block.
272  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
273    BasicBlock *BB = I++;
274    // If the destination block has a single pred, then this is a trivial
275    // edge, just collapse it.
276    BasicBlock *SinglePred = BB->getSinglePredecessor();
277
278    // Don't merge if BB's address is taken.
279    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
280
281    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
282    if (Term && !Term->isConditional()) {
283      Changed = true;
284      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
285      // Remember if SinglePred was the entry block of the function.
286      // If so, we will need to move BB back to the entry position.
287      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
288      MergeBasicBlockIntoOnlyPred(BB, this);
289
290      if (isEntry && BB != &BB->getParent()->getEntryBlock())
291        BB->moveBefore(&BB->getParent()->getEntryBlock());
292
293      // We have erased a block. Update the iterator.
294      I = BB;
295    }
296  }
297  return Changed;
298}
299
300/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
301/// debug info directives, and an unconditional branch.  Passes before isel
302/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
303/// isel.  Start by eliminating these blocks so we can split them the way we
304/// want them.
305bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
306  bool MadeChange = false;
307  // Note that this intentionally skips the entry block.
308  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
309    BasicBlock *BB = I++;
310
311    // If this block doesn't end with an uncond branch, ignore it.
312    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
313    if (!BI || !BI->isUnconditional())
314      continue;
315
316    // If the instruction before the branch (skipping debug info) isn't a phi
317    // node, then other stuff is happening here.
318    BasicBlock::iterator BBI = BI;
319    if (BBI != BB->begin()) {
320      --BBI;
321      while (isa<DbgInfoIntrinsic>(BBI)) {
322        if (BBI == BB->begin())
323          break;
324        --BBI;
325      }
326      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
327        continue;
328    }
329
330    // Do not break infinite loops.
331    BasicBlock *DestBB = BI->getSuccessor(0);
332    if (DestBB == BB)
333      continue;
334
335    if (!CanMergeBlocks(BB, DestBB))
336      continue;
337
338    EliminateMostlyEmptyBlock(BB);
339    MadeChange = true;
340  }
341  return MadeChange;
342}
343
344/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
345/// single uncond branch between them, and BB contains no other non-phi
346/// instructions.
347bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
348                                    const BasicBlock *DestBB) const {
349  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
350  // the successor.  If there are more complex condition (e.g. preheaders),
351  // don't mess around with them.
352  BasicBlock::const_iterator BBI = BB->begin();
353  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
354    for (const User *U : PN->users()) {
355      const Instruction *UI = cast<Instruction>(U);
356      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
357        return false;
358      // If User is inside DestBB block and it is a PHINode then check
359      // incoming value. If incoming value is not from BB then this is
360      // a complex condition (e.g. preheaders) we want to avoid here.
361      if (UI->getParent() == DestBB) {
362        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
363          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
364            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
365            if (Insn && Insn->getParent() == BB &&
366                Insn->getParent() != UPN->getIncomingBlock(I))
367              return false;
368          }
369      }
370    }
371  }
372
373  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
374  // and DestBB may have conflicting incoming values for the block.  If so, we
375  // can't merge the block.
376  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
377  if (!DestBBPN) return true;  // no conflict.
378
379  // Collect the preds of BB.
380  SmallPtrSet<const BasicBlock*, 16> BBPreds;
381  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
382    // It is faster to get preds from a PHI than with pred_iterator.
383    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
384      BBPreds.insert(BBPN->getIncomingBlock(i));
385  } else {
386    BBPreds.insert(pred_begin(BB), pred_end(BB));
387  }
388
389  // Walk the preds of DestBB.
390  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
391    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
392    if (BBPreds.count(Pred)) {   // Common predecessor?
393      BBI = DestBB->begin();
394      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
395        const Value *V1 = PN->getIncomingValueForBlock(Pred);
396        const Value *V2 = PN->getIncomingValueForBlock(BB);
397
398        // If V2 is a phi node in BB, look up what the mapped value will be.
399        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
400          if (V2PN->getParent() == BB)
401            V2 = V2PN->getIncomingValueForBlock(Pred);
402
403        // If there is a conflict, bail out.
404        if (V1 != V2) return false;
405      }
406    }
407  }
408
409  return true;
410}
411
412
413/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
414/// an unconditional branch in it.
415void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
416  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
417  BasicBlock *DestBB = BI->getSuccessor(0);
418
419  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
420
421  // If the destination block has a single pred, then this is a trivial edge,
422  // just collapse it.
423  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
424    if (SinglePred != DestBB) {
425      // Remember if SinglePred was the entry block of the function.  If so, we
426      // will need to move BB back to the entry position.
427      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
428      MergeBasicBlockIntoOnlyPred(DestBB, this);
429
430      if (isEntry && BB != &BB->getParent()->getEntryBlock())
431        BB->moveBefore(&BB->getParent()->getEntryBlock());
432
433      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
434      return;
435    }
436  }
437
438  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
439  // to handle the new incoming edges it is about to have.
440  PHINode *PN;
441  for (BasicBlock::iterator BBI = DestBB->begin();
442       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
443    // Remove the incoming value for BB, and remember it.
444    Value *InVal = PN->removeIncomingValue(BB, false);
445
446    // Two options: either the InVal is a phi node defined in BB or it is some
447    // value that dominates BB.
448    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
449    if (InValPhi && InValPhi->getParent() == BB) {
450      // Add all of the input values of the input PHI as inputs of this phi.
451      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
452        PN->addIncoming(InValPhi->getIncomingValue(i),
453                        InValPhi->getIncomingBlock(i));
454    } else {
455      // Otherwise, add one instance of the dominating value for each edge that
456      // we will be adding.
457      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
458        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
459          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
460      } else {
461        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
462          PN->addIncoming(InVal, *PI);
463      }
464    }
465  }
466
467  // The PHIs are now updated, change everything that refers to BB to use
468  // DestBB and remove BB.
469  BB->replaceAllUsesWith(DestBB);
470  if (DT && !ModifiedDT) {
471    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
472    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
473    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
474    DT->changeImmediateDominator(DestBB, NewIDom);
475    DT->eraseNode(BB);
476  }
477  BB->eraseFromParent();
478  ++NumBlocksElim;
479
480  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
481}
482
483/// SinkCast - Sink the specified cast instruction into its user blocks
484static bool SinkCast(CastInst *CI) {
485  BasicBlock *DefBB = CI->getParent();
486
487  /// InsertedCasts - Only insert a cast in each block once.
488  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
489
490  bool MadeChange = false;
491  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
492       UI != E; ) {
493    Use &TheUse = UI.getUse();
494    Instruction *User = cast<Instruction>(*UI);
495
496    // Figure out which BB this cast is used in.  For PHI's this is the
497    // appropriate predecessor block.
498    BasicBlock *UserBB = User->getParent();
499    if (PHINode *PN = dyn_cast<PHINode>(User)) {
500      UserBB = PN->getIncomingBlock(TheUse);
501    }
502
503    // Preincrement use iterator so we don't invalidate it.
504    ++UI;
505
506    // If this user is in the same block as the cast, don't change the cast.
507    if (UserBB == DefBB) continue;
508
509    // If we have already inserted a cast into this block, use it.
510    CastInst *&InsertedCast = InsertedCasts[UserBB];
511
512    if (!InsertedCast) {
513      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
514      InsertedCast =
515        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
516                         InsertPt);
517      MadeChange = true;
518    }
519
520    // Replace a use of the cast with a use of the new cast.
521    TheUse = InsertedCast;
522    ++NumCastUses;
523  }
524
525  // If we removed all uses, nuke the cast.
526  if (CI->use_empty()) {
527    CI->eraseFromParent();
528    MadeChange = true;
529  }
530
531  return MadeChange;
532}
533
534/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
535/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
536/// sink it into user blocks to reduce the number of virtual
537/// registers that must be created and coalesced.
538///
539/// Return true if any changes are made.
540///
541static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
542  // If this is a noop copy,
543  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
544  EVT DstVT = TLI.getValueType(CI->getType());
545
546  // This is an fp<->int conversion?
547  if (SrcVT.isInteger() != DstVT.isInteger())
548    return false;
549
550  // If this is an extension, it will be a zero or sign extension, which
551  // isn't a noop.
552  if (SrcVT.bitsLT(DstVT)) return false;
553
554  // If these values will be promoted, find out what they will be promoted
555  // to.  This helps us consider truncates on PPC as noop copies when they
556  // are.
557  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
558      TargetLowering::TypePromoteInteger)
559    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
560  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
561      TargetLowering::TypePromoteInteger)
562    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
563
564  // If, after promotion, these are the same types, this is a noop copy.
565  if (SrcVT != DstVT)
566    return false;
567
568  return SinkCast(CI);
569}
570
571/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
572/// the number of virtual registers that must be created and coalesced.  This is
573/// a clear win except on targets with multiple condition code registers
574///  (PowerPC), where it might lose; some adjustment may be wanted there.
575///
576/// Return true if any changes are made.
577static bool OptimizeCmpExpression(CmpInst *CI) {
578  BasicBlock *DefBB = CI->getParent();
579
580  /// InsertedCmp - Only insert a cmp in each block once.
581  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
582
583  bool MadeChange = false;
584  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
585       UI != E; ) {
586    Use &TheUse = UI.getUse();
587    Instruction *User = cast<Instruction>(*UI);
588
589    // Preincrement use iterator so we don't invalidate it.
590    ++UI;
591
592    // Don't bother for PHI nodes.
593    if (isa<PHINode>(User))
594      continue;
595
596    // Figure out which BB this cmp is used in.
597    BasicBlock *UserBB = User->getParent();
598
599    // If this user is in the same block as the cmp, don't change the cmp.
600    if (UserBB == DefBB) continue;
601
602    // If we have already inserted a cmp into this block, use it.
603    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
604
605    if (!InsertedCmp) {
606      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
607      InsertedCmp =
608        CmpInst::Create(CI->getOpcode(),
609                        CI->getPredicate(),  CI->getOperand(0),
610                        CI->getOperand(1), "", InsertPt);
611      MadeChange = true;
612    }
613
614    // Replace a use of the cmp with a use of the new cmp.
615    TheUse = InsertedCmp;
616    ++NumCmpUses;
617  }
618
619  // If we removed all uses, nuke the cmp.
620  if (CI->use_empty())
621    CI->eraseFromParent();
622
623  return MadeChange;
624}
625
626namespace {
627class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
628protected:
629  void replaceCall(Value *With) override {
630    CI->replaceAllUsesWith(With);
631    CI->eraseFromParent();
632  }
633  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
634      if (ConstantInt *SizeCI =
635                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
636        return SizeCI->isAllOnesValue();
637    return false;
638  }
639};
640} // end anonymous namespace
641
642bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
643  BasicBlock *BB = CI->getParent();
644
645  // Lower inline assembly if we can.
646  // If we found an inline asm expession, and if the target knows how to
647  // lower it to normal LLVM code, do so now.
648  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
649    if (TLI->ExpandInlineAsm(CI)) {
650      // Avoid invalidating the iterator.
651      CurInstIterator = BB->begin();
652      // Avoid processing instructions out of order, which could cause
653      // reuse before a value is defined.
654      SunkAddrs.clear();
655      return true;
656    }
657    // Sink address computing for memory operands into the block.
658    if (OptimizeInlineAsmInst(CI))
659      return true;
660  }
661
662  // Lower all uses of llvm.objectsize.*
663  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
664  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
665    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
666    Type *ReturnTy = CI->getType();
667    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
668
669    // Substituting this can cause recursive simplifications, which can
670    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
671    // happens.
672    WeakVH IterHandle(CurInstIterator);
673
674    replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
675                                  TLInfo, ModifiedDT ? 0 : DT);
676
677    // If the iterator instruction was recursively deleted, start over at the
678    // start of the block.
679    if (IterHandle != CurInstIterator) {
680      CurInstIterator = BB->begin();
681      SunkAddrs.clear();
682    }
683    return true;
684  }
685
686  if (II && TLI) {
687    SmallVector<Value*, 2> PtrOps;
688    Type *AccessTy;
689    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
690      while (!PtrOps.empty())
691        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
692          return true;
693  }
694
695  // From here on out we're working with named functions.
696  if (CI->getCalledFunction() == 0) return false;
697
698  // We'll need DataLayout from here on out.
699  const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
700  if (!TD) return false;
701
702  // Lower all default uses of _chk calls.  This is very similar
703  // to what InstCombineCalls does, but here we are only lowering calls
704  // that have the default "don't know" as the objectsize.  Anything else
705  // should be left alone.
706  CodeGenPrepareFortifiedLibCalls Simplifier;
707  return Simplifier.fold(CI, TD, TLInfo);
708}
709
710/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
711/// instructions to the predecessor to enable tail call optimizations. The
712/// case it is currently looking for is:
713/// @code
714/// bb0:
715///   %tmp0 = tail call i32 @f0()
716///   br label %return
717/// bb1:
718///   %tmp1 = tail call i32 @f1()
719///   br label %return
720/// bb2:
721///   %tmp2 = tail call i32 @f2()
722///   br label %return
723/// return:
724///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
725///   ret i32 %retval
726/// @endcode
727///
728/// =>
729///
730/// @code
731/// bb0:
732///   %tmp0 = tail call i32 @f0()
733///   ret i32 %tmp0
734/// bb1:
735///   %tmp1 = tail call i32 @f1()
736///   ret i32 %tmp1
737/// bb2:
738///   %tmp2 = tail call i32 @f2()
739///   ret i32 %tmp2
740/// @endcode
741bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
742  if (!TLI)
743    return false;
744
745  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
746  if (!RI)
747    return false;
748
749  PHINode *PN = 0;
750  BitCastInst *BCI = 0;
751  Value *V = RI->getReturnValue();
752  if (V) {
753    BCI = dyn_cast<BitCastInst>(V);
754    if (BCI)
755      V = BCI->getOperand(0);
756
757    PN = dyn_cast<PHINode>(V);
758    if (!PN)
759      return false;
760  }
761
762  if (PN && PN->getParent() != BB)
763    return false;
764
765  // It's not safe to eliminate the sign / zero extension of the return value.
766  // See llvm::isInTailCallPosition().
767  const Function *F = BB->getParent();
768  AttributeSet CallerAttrs = F->getAttributes();
769  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
770      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
771    return false;
772
773  // Make sure there are no instructions between the PHI and return, or that the
774  // return is the first instruction in the block.
775  if (PN) {
776    BasicBlock::iterator BI = BB->begin();
777    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
778    if (&*BI == BCI)
779      // Also skip over the bitcast.
780      ++BI;
781    if (&*BI != RI)
782      return false;
783  } else {
784    BasicBlock::iterator BI = BB->begin();
785    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
786    if (&*BI != RI)
787      return false;
788  }
789
790  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
791  /// call.
792  SmallVector<CallInst*, 4> TailCalls;
793  if (PN) {
794    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
795      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
796      // Make sure the phi value is indeed produced by the tail call.
797      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
798          TLI->mayBeEmittedAsTailCall(CI))
799        TailCalls.push_back(CI);
800    }
801  } else {
802    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
803    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
804      if (!VisitedBBs.insert(*PI))
805        continue;
806
807      BasicBlock::InstListType &InstList = (*PI)->getInstList();
808      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
809      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
810      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
811      if (RI == RE)
812        continue;
813
814      CallInst *CI = dyn_cast<CallInst>(&*RI);
815      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
816        TailCalls.push_back(CI);
817    }
818  }
819
820  bool Changed = false;
821  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
822    CallInst *CI = TailCalls[i];
823    CallSite CS(CI);
824
825    // Conservatively require the attributes of the call to match those of the
826    // return. Ignore noalias because it doesn't affect the call sequence.
827    AttributeSet CalleeAttrs = CS.getAttributes();
828    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
829          removeAttribute(Attribute::NoAlias) !=
830        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
831          removeAttribute(Attribute::NoAlias))
832      continue;
833
834    // Make sure the call instruction is followed by an unconditional branch to
835    // the return block.
836    BasicBlock *CallBB = CI->getParent();
837    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
838    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
839      continue;
840
841    // Duplicate the return into CallBB.
842    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
843    ModifiedDT = Changed = true;
844    ++NumRetsDup;
845  }
846
847  // If we eliminated all predecessors of the block, delete the block now.
848  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
849    BB->eraseFromParent();
850
851  return Changed;
852}
853
854//===----------------------------------------------------------------------===//
855// Memory Optimization
856//===----------------------------------------------------------------------===//
857
858namespace {
859
860/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
861/// which holds actual Value*'s for register values.
862struct ExtAddrMode : public TargetLowering::AddrMode {
863  Value *BaseReg;
864  Value *ScaledReg;
865  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
866  void print(raw_ostream &OS) const;
867  void dump() const;
868
869  bool operator==(const ExtAddrMode& O) const {
870    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
871           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
872           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
873  }
874};
875
876#ifndef NDEBUG
877static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
878  AM.print(OS);
879  return OS;
880}
881#endif
882
883void ExtAddrMode::print(raw_ostream &OS) const {
884  bool NeedPlus = false;
885  OS << "[";
886  if (BaseGV) {
887    OS << (NeedPlus ? " + " : "")
888       << "GV:";
889    BaseGV->printAsOperand(OS, /*PrintType=*/false);
890    NeedPlus = true;
891  }
892
893  if (BaseOffs)
894    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
895
896  if (BaseReg) {
897    OS << (NeedPlus ? " + " : "")
898       << "Base:";
899    BaseReg->printAsOperand(OS, /*PrintType=*/false);
900    NeedPlus = true;
901  }
902  if (Scale) {
903    OS << (NeedPlus ? " + " : "")
904       << Scale << "*";
905    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
906  }
907
908  OS << ']';
909}
910
911#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
912void ExtAddrMode::dump() const {
913  print(dbgs());
914  dbgs() << '\n';
915}
916#endif
917
918/// \brief This class provides transaction based operation on the IR.
919/// Every change made through this class is recorded in the internal state and
920/// can be undone (rollback) until commit is called.
921class TypePromotionTransaction {
922
923  /// \brief This represents the common interface of the individual transaction.
924  /// Each class implements the logic for doing one specific modification on
925  /// the IR via the TypePromotionTransaction.
926  class TypePromotionAction {
927  protected:
928    /// The Instruction modified.
929    Instruction *Inst;
930
931  public:
932    /// \brief Constructor of the action.
933    /// The constructor performs the related action on the IR.
934    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
935
936    virtual ~TypePromotionAction() {}
937
938    /// \brief Undo the modification done by this action.
939    /// When this method is called, the IR must be in the same state as it was
940    /// before this action was applied.
941    /// \pre Undoing the action works if and only if the IR is in the exact same
942    /// state as it was directly after this action was applied.
943    virtual void undo() = 0;
944
945    /// \brief Advocate every change made by this action.
946    /// When the results on the IR of the action are to be kept, it is important
947    /// to call this function, otherwise hidden information may be kept forever.
948    virtual void commit() {
949      // Nothing to be done, this action is not doing anything.
950    }
951  };
952
953  /// \brief Utility to remember the position of an instruction.
954  class InsertionHandler {
955    /// Position of an instruction.
956    /// Either an instruction:
957    /// - Is the first in a basic block: BB is used.
958    /// - Has a previous instructon: PrevInst is used.
959    union {
960      Instruction *PrevInst;
961      BasicBlock *BB;
962    } Point;
963    /// Remember whether or not the instruction had a previous instruction.
964    bool HasPrevInstruction;
965
966  public:
967    /// \brief Record the position of \p Inst.
968    InsertionHandler(Instruction *Inst) {
969      BasicBlock::iterator It = Inst;
970      HasPrevInstruction = (It != (Inst->getParent()->begin()));
971      if (HasPrevInstruction)
972        Point.PrevInst = --It;
973      else
974        Point.BB = Inst->getParent();
975    }
976
977    /// \brief Insert \p Inst at the recorded position.
978    void insert(Instruction *Inst) {
979      if (HasPrevInstruction) {
980        if (Inst->getParent())
981          Inst->removeFromParent();
982        Inst->insertAfter(Point.PrevInst);
983      } else {
984        Instruction *Position = Point.BB->getFirstInsertionPt();
985        if (Inst->getParent())
986          Inst->moveBefore(Position);
987        else
988          Inst->insertBefore(Position);
989      }
990    }
991  };
992
993  /// \brief Move an instruction before another.
994  class InstructionMoveBefore : public TypePromotionAction {
995    /// Original position of the instruction.
996    InsertionHandler Position;
997
998  public:
999    /// \brief Move \p Inst before \p Before.
1000    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
1001        : TypePromotionAction(Inst), Position(Inst) {
1002      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
1003      Inst->moveBefore(Before);
1004    }
1005
1006    /// \brief Move the instruction back to its original position.
1007    void undo() override {
1008      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
1009      Position.insert(Inst);
1010    }
1011  };
1012
1013  /// \brief Set the operand of an instruction with a new value.
1014  class OperandSetter : public TypePromotionAction {
1015    /// Original operand of the instruction.
1016    Value *Origin;
1017    /// Index of the modified instruction.
1018    unsigned Idx;
1019
1020  public:
1021    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
1022    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
1023        : TypePromotionAction(Inst), Idx(Idx) {
1024      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
1025                   << "for:" << *Inst << "\n"
1026                   << "with:" << *NewVal << "\n");
1027      Origin = Inst->getOperand(Idx);
1028      Inst->setOperand(Idx, NewVal);
1029    }
1030
1031    /// \brief Restore the original value of the instruction.
1032    void undo() override {
1033      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
1034                   << "for: " << *Inst << "\n"
1035                   << "with: " << *Origin << "\n");
1036      Inst->setOperand(Idx, Origin);
1037    }
1038  };
1039
1040  /// \brief Hide the operands of an instruction.
1041  /// Do as if this instruction was not using any of its operands.
1042  class OperandsHider : public TypePromotionAction {
1043    /// The list of original operands.
1044    SmallVector<Value *, 4> OriginalValues;
1045
1046  public:
1047    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
1048    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
1049      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
1050      unsigned NumOpnds = Inst->getNumOperands();
1051      OriginalValues.reserve(NumOpnds);
1052      for (unsigned It = 0; It < NumOpnds; ++It) {
1053        // Save the current operand.
1054        Value *Val = Inst->getOperand(It);
1055        OriginalValues.push_back(Val);
1056        // Set a dummy one.
1057        // We could use OperandSetter here, but that would implied an overhead
1058        // that we are not willing to pay.
1059        Inst->setOperand(It, UndefValue::get(Val->getType()));
1060      }
1061    }
1062
1063    /// \brief Restore the original list of uses.
1064    void undo() override {
1065      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
1066      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
1067        Inst->setOperand(It, OriginalValues[It]);
1068    }
1069  };
1070
1071  /// \brief Build a truncate instruction.
1072  class TruncBuilder : public TypePromotionAction {
1073  public:
1074    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
1075    /// result.
1076    /// trunc Opnd to Ty.
1077    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
1078      IRBuilder<> Builder(Opnd);
1079      Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
1080      DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
1081    }
1082
1083    /// \brief Get the built instruction.
1084    Instruction *getBuiltInstruction() { return Inst; }
1085
1086    /// \brief Remove the built instruction.
1087    void undo() override {
1088      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
1089      Inst->eraseFromParent();
1090    }
1091  };
1092
1093  /// \brief Build a sign extension instruction.
1094  class SExtBuilder : public TypePromotionAction {
1095  public:
1096    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
1097    /// result.
1098    /// sext Opnd to Ty.
1099    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1100        : TypePromotionAction(Inst) {
1101      IRBuilder<> Builder(InsertPt);
1102      Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
1103      DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
1104    }
1105
1106    /// \brief Get the built instruction.
1107    Instruction *getBuiltInstruction() { return Inst; }
1108
1109    /// \brief Remove the built instruction.
1110    void undo() override {
1111      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
1112      Inst->eraseFromParent();
1113    }
1114  };
1115
1116  /// \brief Mutate an instruction to another type.
1117  class TypeMutator : public TypePromotionAction {
1118    /// Record the original type.
1119    Type *OrigTy;
1120
1121  public:
1122    /// \brief Mutate the type of \p Inst into \p NewTy.
1123    TypeMutator(Instruction *Inst, Type *NewTy)
1124        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
1125      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
1126                   << "\n");
1127      Inst->mutateType(NewTy);
1128    }
1129
1130    /// \brief Mutate the instruction back to its original type.
1131    void undo() override {
1132      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
1133                   << "\n");
1134      Inst->mutateType(OrigTy);
1135    }
1136  };
1137
1138  /// \brief Replace the uses of an instruction by another instruction.
1139  class UsesReplacer : public TypePromotionAction {
1140    /// Helper structure to keep track of the replaced uses.
1141    struct InstructionAndIdx {
1142      /// The instruction using the instruction.
1143      Instruction *Inst;
1144      /// The index where this instruction is used for Inst.
1145      unsigned Idx;
1146      InstructionAndIdx(Instruction *Inst, unsigned Idx)
1147          : Inst(Inst), Idx(Idx) {}
1148    };
1149
1150    /// Keep track of the original uses (pair Instruction, Index).
1151    SmallVector<InstructionAndIdx, 4> OriginalUses;
1152    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
1153
1154  public:
1155    /// \brief Replace all the use of \p Inst by \p New.
1156    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
1157      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
1158                   << "\n");
1159      // Record the original uses.
1160      for (Use &U : Inst->uses()) {
1161        Instruction *UserI = cast<Instruction>(U.getUser());
1162        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
1163      }
1164      // Now, we can replace the uses.
1165      Inst->replaceAllUsesWith(New);
1166    }
1167
1168    /// \brief Reassign the original uses of Inst to Inst.
1169    void undo() override {
1170      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
1171      for (use_iterator UseIt = OriginalUses.begin(),
1172                        EndIt = OriginalUses.end();
1173           UseIt != EndIt; ++UseIt) {
1174        UseIt->Inst->setOperand(UseIt->Idx, Inst);
1175      }
1176    }
1177  };
1178
1179  /// \brief Remove an instruction from the IR.
1180  class InstructionRemover : public TypePromotionAction {
1181    /// Original position of the instruction.
1182    InsertionHandler Inserter;
1183    /// Helper structure to hide all the link to the instruction. In other
1184    /// words, this helps to do as if the instruction was removed.
1185    OperandsHider Hider;
1186    /// Keep track of the uses replaced, if any.
1187    UsesReplacer *Replacer;
1188
1189  public:
1190    /// \brief Remove all reference of \p Inst and optinally replace all its
1191    /// uses with New.
1192    /// \pre If !Inst->use_empty(), then New != NULL
1193    InstructionRemover(Instruction *Inst, Value *New = NULL)
1194        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
1195          Replacer(NULL) {
1196      if (New)
1197        Replacer = new UsesReplacer(Inst, New);
1198      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
1199      Inst->removeFromParent();
1200    }
1201
1202    ~InstructionRemover() { delete Replacer; }
1203
1204    /// \brief Really remove the instruction.
1205    void commit() override { delete Inst; }
1206
1207    /// \brief Resurrect the instruction and reassign it to the proper uses if
1208    /// new value was provided when build this action.
1209    void undo() override {
1210      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
1211      Inserter.insert(Inst);
1212      if (Replacer)
1213        Replacer->undo();
1214      Hider.undo();
1215    }
1216  };
1217
1218public:
1219  /// Restoration point.
1220  /// The restoration point is a pointer to an action instead of an iterator
1221  /// because the iterator may be invalidated but not the pointer.
1222  typedef const TypePromotionAction *ConstRestorationPt;
1223  /// Advocate every changes made in that transaction.
1224  void commit();
1225  /// Undo all the changes made after the given point.
1226  void rollback(ConstRestorationPt Point);
1227  /// Get the current restoration point.
1228  ConstRestorationPt getRestorationPoint() const;
1229
1230  /// \name API for IR modification with state keeping to support rollback.
1231  /// @{
1232  /// Same as Instruction::setOperand.
1233  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
1234  /// Same as Instruction::eraseFromParent.
1235  void eraseInstruction(Instruction *Inst, Value *NewVal = NULL);
1236  /// Same as Value::replaceAllUsesWith.
1237  void replaceAllUsesWith(Instruction *Inst, Value *New);
1238  /// Same as Value::mutateType.
1239  void mutateType(Instruction *Inst, Type *NewTy);
1240  /// Same as IRBuilder::createTrunc.
1241  Instruction *createTrunc(Instruction *Opnd, Type *Ty);
1242  /// Same as IRBuilder::createSExt.
1243  Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
1244  /// Same as Instruction::moveBefore.
1245  void moveBefore(Instruction *Inst, Instruction *Before);
1246  /// @}
1247
1248  ~TypePromotionTransaction();
1249
1250private:
1251  /// The ordered list of actions made so far.
1252  SmallVector<TypePromotionAction *, 16> Actions;
1253  typedef SmallVectorImpl<TypePromotionAction *>::iterator CommitPt;
1254};
1255
1256void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
1257                                          Value *NewVal) {
1258  Actions.push_back(
1259      new TypePromotionTransaction::OperandSetter(Inst, Idx, NewVal));
1260}
1261
1262void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
1263                                                Value *NewVal) {
1264  Actions.push_back(
1265      new TypePromotionTransaction::InstructionRemover(Inst, NewVal));
1266}
1267
1268void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
1269                                                  Value *New) {
1270  Actions.push_back(new TypePromotionTransaction::UsesReplacer(Inst, New));
1271}
1272
1273void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
1274  Actions.push_back(new TypePromotionTransaction::TypeMutator(Inst, NewTy));
1275}
1276
1277Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
1278                                                   Type *Ty) {
1279  TruncBuilder *TB = new TruncBuilder(Opnd, Ty);
1280  Actions.push_back(TB);
1281  return TB->getBuiltInstruction();
1282}
1283
1284Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
1285                                                  Value *Opnd, Type *Ty) {
1286  SExtBuilder *SB = new SExtBuilder(Inst, Opnd, Ty);
1287  Actions.push_back(SB);
1288  return SB->getBuiltInstruction();
1289}
1290
1291void TypePromotionTransaction::moveBefore(Instruction *Inst,
1292                                          Instruction *Before) {
1293  Actions.push_back(
1294      new TypePromotionTransaction::InstructionMoveBefore(Inst, Before));
1295}
1296
1297TypePromotionTransaction::ConstRestorationPt
1298TypePromotionTransaction::getRestorationPoint() const {
1299  return Actions.rbegin() != Actions.rend() ? *Actions.rbegin() : NULL;
1300}
1301
1302void TypePromotionTransaction::commit() {
1303  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
1304       ++It) {
1305    (*It)->commit();
1306    delete *It;
1307  }
1308  Actions.clear();
1309}
1310
1311void TypePromotionTransaction::rollback(
1312    TypePromotionTransaction::ConstRestorationPt Point) {
1313  while (!Actions.empty() && Point != (*Actions.rbegin())) {
1314    TypePromotionAction *Curr = Actions.pop_back_val();
1315    Curr->undo();
1316    delete Curr;
1317  }
1318}
1319
1320TypePromotionTransaction::~TypePromotionTransaction() {
1321  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It)
1322    delete *It;
1323  Actions.clear();
1324}
1325
1326/// \brief A helper class for matching addressing modes.
1327///
1328/// This encapsulates the logic for matching the target-legal addressing modes.
1329class AddressingModeMatcher {
1330  SmallVectorImpl<Instruction*> &AddrModeInsts;
1331  const TargetLowering &TLI;
1332
1333  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
1334  /// the memory instruction that we're computing this address for.
1335  Type *AccessTy;
1336  Instruction *MemoryInst;
1337
1338  /// AddrMode - This is the addressing mode that we're building up.  This is
1339  /// part of the return value of this addressing mode matching stuff.
1340  ExtAddrMode &AddrMode;
1341
1342  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
1343  const SetOfInstrs &InsertedTruncs;
1344  /// A map from the instructions to their type before promotion.
1345  InstrToOrigTy &PromotedInsts;
1346  /// The ongoing transaction where every action should be registered.
1347  TypePromotionTransaction &TPT;
1348
1349  /// IgnoreProfitability - This is set to true when we should not do
1350  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
1351  /// always returns true.
1352  bool IgnoreProfitability;
1353
1354  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
1355                        const TargetLowering &T, Type *AT,
1356                        Instruction *MI, ExtAddrMode &AM,
1357                        const SetOfInstrs &InsertedTruncs,
1358                        InstrToOrigTy &PromotedInsts,
1359                        TypePromotionTransaction &TPT)
1360      : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
1361        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
1362    IgnoreProfitability = false;
1363  }
1364public:
1365
1366  /// Match - Find the maximal addressing mode that a load/store of V can fold,
1367  /// give an access type of AccessTy.  This returns a list of involved
1368  /// instructions in AddrModeInsts.
1369  /// \p InsertedTruncs The truncate instruction inserted by other
1370  /// CodeGenPrepare
1371  /// optimizations.
1372  /// \p PromotedInsts maps the instructions to their type before promotion.
1373  /// \p The ongoing transaction where every action should be registered.
1374  static ExtAddrMode Match(Value *V, Type *AccessTy,
1375                           Instruction *MemoryInst,
1376                           SmallVectorImpl<Instruction*> &AddrModeInsts,
1377                           const TargetLowering &TLI,
1378                           const SetOfInstrs &InsertedTruncs,
1379                           InstrToOrigTy &PromotedInsts,
1380                           TypePromotionTransaction &TPT) {
1381    ExtAddrMode Result;
1382
1383    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
1384                                         MemoryInst, Result, InsertedTruncs,
1385                                         PromotedInsts, TPT).MatchAddr(V, 0);
1386    (void)Success; assert(Success && "Couldn't select *anything*?");
1387    return Result;
1388  }
1389private:
1390  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
1391  bool MatchAddr(Value *V, unsigned Depth);
1392  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
1393                          bool *MovedAway = NULL);
1394  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
1395                                            ExtAddrMode &AMBefore,
1396                                            ExtAddrMode &AMAfter);
1397  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
1398  bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
1399                             Value *PromotedOperand) const;
1400};
1401
1402/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
1403/// Return true and update AddrMode if this addr mode is legal for the target,
1404/// false if not.
1405bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
1406                                             unsigned Depth) {
1407  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
1408  // mode.  Just process that directly.
1409  if (Scale == 1)
1410    return MatchAddr(ScaleReg, Depth);
1411
1412  // If the scale is 0, it takes nothing to add this.
1413  if (Scale == 0)
1414    return true;
1415
1416  // If we already have a scale of this value, we can add to it, otherwise, we
1417  // need an available scale field.
1418  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
1419    return false;
1420
1421  ExtAddrMode TestAddrMode = AddrMode;
1422
1423  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
1424  // [A+B + A*7] -> [B+A*8].
1425  TestAddrMode.Scale += Scale;
1426  TestAddrMode.ScaledReg = ScaleReg;
1427
1428  // If the new address isn't legal, bail out.
1429  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
1430    return false;
1431
1432  // It was legal, so commit it.
1433  AddrMode = TestAddrMode;
1434
1435  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
1436  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
1437  // X*Scale + C*Scale to addr mode.
1438  ConstantInt *CI = 0; Value *AddLHS = 0;
1439  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
1440      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
1441    TestAddrMode.ScaledReg = AddLHS;
1442    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
1443
1444    // If this addressing mode is legal, commit it and remember that we folded
1445    // this instruction.
1446    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
1447      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
1448      AddrMode = TestAddrMode;
1449      return true;
1450    }
1451  }
1452
1453  // Otherwise, not (x+c)*scale, just return what we have.
1454  return true;
1455}
1456
1457/// MightBeFoldableInst - This is a little filter, which returns true if an
1458/// addressing computation involving I might be folded into a load/store
1459/// accessing it.  This doesn't need to be perfect, but needs to accept at least
1460/// the set of instructions that MatchOperationAddr can.
1461static bool MightBeFoldableInst(Instruction *I) {
1462  switch (I->getOpcode()) {
1463  case Instruction::BitCast:
1464    // Don't touch identity bitcasts.
1465    if (I->getType() == I->getOperand(0)->getType())
1466      return false;
1467    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
1468  case Instruction::PtrToInt:
1469    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1470    return true;
1471  case Instruction::IntToPtr:
1472    // We know the input is intptr_t, so this is foldable.
1473    return true;
1474  case Instruction::Add:
1475    return true;
1476  case Instruction::Mul:
1477  case Instruction::Shl:
1478    // Can only handle X*C and X << C.
1479    return isa<ConstantInt>(I->getOperand(1));
1480  case Instruction::GetElementPtr:
1481    return true;
1482  default:
1483    return false;
1484  }
1485}
1486
1487/// \brief Hepler class to perform type promotion.
1488class TypePromotionHelper {
1489  /// \brief Utility function to check whether or not a sign extension of
1490  /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
1491  /// using the operands of \p Inst or promoting \p Inst.
1492  /// In other words, check if:
1493  /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
1494  /// #1 Promotion applies:
1495  /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
1496  /// #2 Operand reuses:
1497  /// sext opnd1 to ConsideredSExtType.
1498  /// \p PromotedInsts maps the instructions to their type before promotion.
1499  static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
1500                            const InstrToOrigTy &PromotedInsts);
1501
1502  /// \brief Utility function to determine if \p OpIdx should be promoted when
1503  /// promoting \p Inst.
1504  static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
1505    if (isa<SelectInst>(Inst) && OpIdx == 0)
1506      return false;
1507    return true;
1508  }
1509
1510  /// \brief Utility function to promote the operand of \p SExt when this
1511  /// operand is a promotable trunc or sext.
1512  /// \p PromotedInsts maps the instructions to their type before promotion.
1513  /// \p CreatedInsts[out] contains how many non-free instructions have been
1514  /// created to promote the operand of SExt.
1515  /// Should never be called directly.
1516  /// \return The promoted value which is used instead of SExt.
1517  static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
1518                                              TypePromotionTransaction &TPT,
1519                                              InstrToOrigTy &PromotedInsts,
1520                                              unsigned &CreatedInsts);
1521
1522  /// \brief Utility function to promote the operand of \p SExt when this
1523  /// operand is promotable and is not a supported trunc or sext.
1524  /// \p PromotedInsts maps the instructions to their type before promotion.
1525  /// \p CreatedInsts[out] contains how many non-free instructions have been
1526  /// created to promote the operand of SExt.
1527  /// Should never be called directly.
1528  /// \return The promoted value which is used instead of SExt.
1529  static Value *promoteOperandForOther(Instruction *SExt,
1530                                       TypePromotionTransaction &TPT,
1531                                       InstrToOrigTy &PromotedInsts,
1532                                       unsigned &CreatedInsts);
1533
1534public:
1535  /// Type for the utility function that promotes the operand of SExt.
1536  typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
1537                           InstrToOrigTy &PromotedInsts,
1538                           unsigned &CreatedInsts);
1539  /// \brief Given a sign extend instruction \p SExt, return the approriate
1540  /// action to promote the operand of \p SExt instead of using SExt.
1541  /// \return NULL if no promotable action is possible with the current
1542  /// sign extension.
1543  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
1544  /// the others CodeGenPrepare optimizations. This information is important
1545  /// because we do not want to promote these instructions as CodeGenPrepare
1546  /// will reinsert them later. Thus creating an infinite loop: create/remove.
1547  /// \p PromotedInsts maps the instructions to their type before promotion.
1548  static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
1549                          const TargetLowering &TLI,
1550                          const InstrToOrigTy &PromotedInsts);
1551};
1552
1553bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
1554                                        Type *ConsideredSExtType,
1555                                        const InstrToOrigTy &PromotedInsts) {
1556  // We can always get through sext.
1557  if (isa<SExtInst>(Inst))
1558    return true;
1559
1560  // We can get through binary operator, if it is legal. In other words, the
1561  // binary operator must have a nuw or nsw flag.
1562  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
1563  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
1564      (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
1565    return true;
1566
1567  // Check if we can do the following simplification.
1568  // sext(trunc(sext)) --> sext
1569  if (!isa<TruncInst>(Inst))
1570    return false;
1571
1572  Value *OpndVal = Inst->getOperand(0);
1573  // Check if we can use this operand in the sext.
1574  // If the type is larger than the result type of the sign extension,
1575  // we cannot.
1576  if (OpndVal->getType()->getIntegerBitWidth() >
1577      ConsideredSExtType->getIntegerBitWidth())
1578    return false;
1579
1580  // If the operand of the truncate is not an instruction, we will not have
1581  // any information on the dropped bits.
1582  // (Actually we could for constant but it is not worth the extra logic).
1583  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
1584  if (!Opnd)
1585    return false;
1586
1587  // Check if the source of the type is narrow enough.
1588  // I.e., check that trunc just drops sign extended bits.
1589  // #1 get the type of the operand.
1590  const Type *OpndType;
1591  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
1592  if (It != PromotedInsts.end())
1593    OpndType = It->second;
1594  else if (isa<SExtInst>(Opnd))
1595    OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
1596  else
1597    return false;
1598
1599  // #2 check that the truncate just drop sign extended bits.
1600  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
1601    return true;
1602
1603  return false;
1604}
1605
1606TypePromotionHelper::Action TypePromotionHelper::getAction(
1607    Instruction *SExt, const SetOfInstrs &InsertedTruncs,
1608    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
1609  Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
1610  Type *SExtTy = SExt->getType();
1611  // If the operand of the sign extension is not an instruction, we cannot
1612  // get through.
1613  // If it, check we can get through.
1614  if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
1615    return NULL;
1616
1617  // Do not promote if the operand has been added by codegenprepare.
1618  // Otherwise, it means we are undoing an optimization that is likely to be
1619  // redone, thus causing potential infinite loop.
1620  if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
1621    return NULL;
1622
1623  // SExt or Trunc instructions.
1624  // Return the related handler.
1625  if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
1626    return promoteOperandForTruncAndSExt;
1627
1628  // Regular instruction.
1629  // Abort early if we will have to insert non-free instructions.
1630  if (!SExtOpnd->hasOneUse() &&
1631      !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
1632    return NULL;
1633  return promoteOperandForOther;
1634}
1635
1636Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
1637    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
1638    InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
1639  // By construction, the operand of SExt is an instruction. Otherwise we cannot
1640  // get through it and this method should not be called.
1641  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
1642  // Replace sext(trunc(opnd)) or sext(sext(opnd))
1643  // => sext(opnd).
1644  TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
1645  CreatedInsts = 0;
1646
1647  // Remove dead code.
1648  if (SExtOpnd->use_empty())
1649    TPT.eraseInstruction(SExtOpnd);
1650
1651  // Check if the sext is still needed.
1652  if (SExt->getType() != SExt->getOperand(0)->getType())
1653    return SExt;
1654
1655  // At this point we have: sext ty opnd to ty.
1656  // Reassign the uses of SExt to the opnd and remove SExt.
1657  Value *NextVal = SExt->getOperand(0);
1658  TPT.eraseInstruction(SExt, NextVal);
1659  return NextVal;
1660}
1661
1662Value *
1663TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
1664                                            TypePromotionTransaction &TPT,
1665                                            InstrToOrigTy &PromotedInsts,
1666                                            unsigned &CreatedInsts) {
1667  // By construction, the operand of SExt is an instruction. Otherwise we cannot
1668  // get through it and this method should not be called.
1669  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
1670  CreatedInsts = 0;
1671  if (!SExtOpnd->hasOneUse()) {
1672    // SExtOpnd will be promoted.
1673    // All its uses, but SExt, will need to use a truncated value of the
1674    // promoted version.
1675    // Create the truncate now.
1676    Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
1677    Trunc->removeFromParent();
1678    // Insert it just after the definition.
1679    Trunc->insertAfter(SExtOpnd);
1680
1681    TPT.replaceAllUsesWith(SExtOpnd, Trunc);
1682    // Restore the operand of SExt (which has been replace by the previous call
1683    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
1684    TPT.setOperand(SExt, 0, SExtOpnd);
1685  }
1686
1687  // Get through the Instruction:
1688  // 1. Update its type.
1689  // 2. Replace the uses of SExt by Inst.
1690  // 3. Sign extend each operand that needs to be sign extended.
1691
1692  // Remember the original type of the instruction before promotion.
1693  // This is useful to know that the high bits are sign extended bits.
1694  PromotedInsts.insert(
1695      std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
1696  // Step #1.
1697  TPT.mutateType(SExtOpnd, SExt->getType());
1698  // Step #2.
1699  TPT.replaceAllUsesWith(SExt, SExtOpnd);
1700  // Step #3.
1701  Instruction *SExtForOpnd = SExt;
1702
1703  DEBUG(dbgs() << "Propagate SExt to operands\n");
1704  for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
1705       ++OpIdx) {
1706    DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
1707    if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
1708        !shouldSExtOperand(SExtOpnd, OpIdx)) {
1709      DEBUG(dbgs() << "No need to propagate\n");
1710      continue;
1711    }
1712    // Check if we can statically sign extend the operand.
1713    Value *Opnd = SExtOpnd->getOperand(OpIdx);
1714    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
1715      DEBUG(dbgs() << "Statically sign extend\n");
1716      TPT.setOperand(
1717          SExtOpnd, OpIdx,
1718          ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
1719      continue;
1720    }
1721    // UndefValue are typed, so we have to statically sign extend them.
1722    if (isa<UndefValue>(Opnd)) {
1723      DEBUG(dbgs() << "Statically sign extend\n");
1724      TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
1725      continue;
1726    }
1727
1728    // Otherwise we have to explicity sign extend the operand.
1729    // Check if SExt was reused to sign extend an operand.
1730    if (!SExtForOpnd) {
1731      // If yes, create a new one.
1732      DEBUG(dbgs() << "More operands to sext\n");
1733      SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
1734      ++CreatedInsts;
1735    }
1736
1737    TPT.setOperand(SExtForOpnd, 0, Opnd);
1738
1739    // Move the sign extension before the insertion point.
1740    TPT.moveBefore(SExtForOpnd, SExtOpnd);
1741    TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
1742    // If more sext are required, new instructions will have to be created.
1743    SExtForOpnd = NULL;
1744  }
1745  if (SExtForOpnd == SExt) {
1746    DEBUG(dbgs() << "Sign extension is useless now\n");
1747    TPT.eraseInstruction(SExt);
1748  }
1749  return SExtOpnd;
1750}
1751
1752/// IsPromotionProfitable - Check whether or not promoting an instruction
1753/// to a wider type was profitable.
1754/// \p MatchedSize gives the number of instructions that have been matched
1755/// in the addressing mode after the promotion was applied.
1756/// \p SizeWithPromotion gives the number of created instructions for
1757/// the promotion plus the number of instructions that have been
1758/// matched in the addressing mode before the promotion.
1759/// \p PromotedOperand is the value that has been promoted.
1760/// \return True if the promotion is profitable, false otherwise.
1761bool
1762AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
1763                                             unsigned SizeWithPromotion,
1764                                             Value *PromotedOperand) const {
1765  // We folded less instructions than what we created to promote the operand.
1766  // This is not profitable.
1767  if (MatchedSize < SizeWithPromotion)
1768    return false;
1769  if (MatchedSize > SizeWithPromotion)
1770    return true;
1771  // The promotion is neutral but it may help folding the sign extension in
1772  // loads for instance.
1773  // Check that we did not create an illegal instruction.
1774  Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
1775  if (!PromotedInst)
1776    return false;
1777  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
1778  // If the ISDOpcode is undefined, it was undefined before the promotion.
1779  if (!ISDOpcode)
1780    return true;
1781  // Otherwise, check if the promoted instruction is legal or not.
1782  return TLI.isOperationLegalOrCustom(ISDOpcode,
1783                                      EVT::getEVT(PromotedInst->getType()));
1784}
1785
1786/// MatchOperationAddr - Given an instruction or constant expr, see if we can
1787/// fold the operation into the addressing mode.  If so, update the addressing
1788/// mode and return true, otherwise return false without modifying AddrMode.
1789/// If \p MovedAway is not NULL, it contains the information of whether or
1790/// not AddrInst has to be folded into the addressing mode on success.
1791/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
1792/// because it has been moved away.
1793/// Thus AddrInst must not be added in the matched instructions.
1794/// This state can happen when AddrInst is a sext, since it may be moved away.
1795/// Therefore, AddrInst may not be valid when MovedAway is true and it must
1796/// not be referenced anymore.
1797bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
1798                                               unsigned Depth,
1799                                               bool *MovedAway) {
1800  // Avoid exponential behavior on extremely deep expression trees.
1801  if (Depth >= 5) return false;
1802
1803  // By default, all matched instructions stay in place.
1804  if (MovedAway)
1805    *MovedAway = false;
1806
1807  switch (Opcode) {
1808  case Instruction::PtrToInt:
1809    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1810    return MatchAddr(AddrInst->getOperand(0), Depth);
1811  case Instruction::IntToPtr:
1812    // This inttoptr is a no-op if the integer type is pointer sized.
1813    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
1814        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
1815      return MatchAddr(AddrInst->getOperand(0), Depth);
1816    return false;
1817  case Instruction::BitCast:
1818    // BitCast is always a noop, and we can handle it as long as it is
1819    // int->int or pointer->pointer (we don't want int<->fp or something).
1820    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
1821         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
1822        // Don't touch identity bitcasts.  These were probably put here by LSR,
1823        // and we don't want to mess around with them.  Assume it knows what it
1824        // is doing.
1825        AddrInst->getOperand(0)->getType() != AddrInst->getType())
1826      return MatchAddr(AddrInst->getOperand(0), Depth);
1827    return false;
1828  case Instruction::Add: {
1829    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
1830    ExtAddrMode BackupAddrMode = AddrMode;
1831    unsigned OldSize = AddrModeInsts.size();
1832    // Start a transaction at this point.
1833    // The LHS may match but not the RHS.
1834    // Therefore, we need a higher level restoration point to undo partially
1835    // matched operation.
1836    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
1837        TPT.getRestorationPoint();
1838
1839    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
1840        MatchAddr(AddrInst->getOperand(0), Depth+1))
1841      return true;
1842
1843    // Restore the old addr mode info.
1844    AddrMode = BackupAddrMode;
1845    AddrModeInsts.resize(OldSize);
1846    TPT.rollback(LastKnownGood);
1847
1848    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
1849    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
1850        MatchAddr(AddrInst->getOperand(1), Depth+1))
1851      return true;
1852
1853    // Otherwise we definitely can't merge the ADD in.
1854    AddrMode = BackupAddrMode;
1855    AddrModeInsts.resize(OldSize);
1856    TPT.rollback(LastKnownGood);
1857    break;
1858  }
1859  //case Instruction::Or:
1860  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
1861  //break;
1862  case Instruction::Mul:
1863  case Instruction::Shl: {
1864    // Can only handle X*C and X << C.
1865    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
1866    if (!RHS) return false;
1867    int64_t Scale = RHS->getSExtValue();
1868    if (Opcode == Instruction::Shl)
1869      Scale = 1LL << Scale;
1870
1871    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
1872  }
1873  case Instruction::GetElementPtr: {
1874    // Scan the GEP.  We check it if it contains constant offsets and at most
1875    // one variable offset.
1876    int VariableOperand = -1;
1877    unsigned VariableScale = 0;
1878
1879    int64_t ConstantOffset = 0;
1880    const DataLayout *TD = TLI.getDataLayout();
1881    gep_type_iterator GTI = gep_type_begin(AddrInst);
1882    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
1883      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1884        const StructLayout *SL = TD->getStructLayout(STy);
1885        unsigned Idx =
1886          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
1887        ConstantOffset += SL->getElementOffset(Idx);
1888      } else {
1889        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
1890        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
1891          ConstantOffset += CI->getSExtValue()*TypeSize;
1892        } else if (TypeSize) {  // Scales of zero don't do anything.
1893          // We only allow one variable index at the moment.
1894          if (VariableOperand != -1)
1895            return false;
1896
1897          // Remember the variable index.
1898          VariableOperand = i;
1899          VariableScale = TypeSize;
1900        }
1901      }
1902    }
1903
1904    // A common case is for the GEP to only do a constant offset.  In this case,
1905    // just add it to the disp field and check validity.
1906    if (VariableOperand == -1) {
1907      AddrMode.BaseOffs += ConstantOffset;
1908      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
1909        // Check to see if we can fold the base pointer in too.
1910        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
1911          return true;
1912      }
1913      AddrMode.BaseOffs -= ConstantOffset;
1914      return false;
1915    }
1916
1917    // Save the valid addressing mode in case we can't match.
1918    ExtAddrMode BackupAddrMode = AddrMode;
1919    unsigned OldSize = AddrModeInsts.size();
1920
1921    // See if the scale and offset amount is valid for this target.
1922    AddrMode.BaseOffs += ConstantOffset;
1923
1924    // Match the base operand of the GEP.
1925    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
1926      // If it couldn't be matched, just stuff the value in a register.
1927      if (AddrMode.HasBaseReg) {
1928        AddrMode = BackupAddrMode;
1929        AddrModeInsts.resize(OldSize);
1930        return false;
1931      }
1932      AddrMode.HasBaseReg = true;
1933      AddrMode.BaseReg = AddrInst->getOperand(0);
1934    }
1935
1936    // Match the remaining variable portion of the GEP.
1937    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
1938                          Depth)) {
1939      // If it couldn't be matched, try stuffing the base into a register
1940      // instead of matching it, and retrying the match of the scale.
1941      AddrMode = BackupAddrMode;
1942      AddrModeInsts.resize(OldSize);
1943      if (AddrMode.HasBaseReg)
1944        return false;
1945      AddrMode.HasBaseReg = true;
1946      AddrMode.BaseReg = AddrInst->getOperand(0);
1947      AddrMode.BaseOffs += ConstantOffset;
1948      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
1949                            VariableScale, Depth)) {
1950        // If even that didn't work, bail.
1951        AddrMode = BackupAddrMode;
1952        AddrModeInsts.resize(OldSize);
1953        return false;
1954      }
1955    }
1956
1957    return true;
1958  }
1959  case Instruction::SExt: {
1960    // Try to move this sext out of the way of the addressing mode.
1961    Instruction *SExt = cast<Instruction>(AddrInst);
1962    // Ask for a method for doing so.
1963    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
1964        SExt, InsertedTruncs, TLI, PromotedInsts);
1965    if (!TPH)
1966      return false;
1967
1968    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
1969        TPT.getRestorationPoint();
1970    unsigned CreatedInsts = 0;
1971    Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
1972    // SExt has been moved away.
1973    // Thus either it will be rematched later in the recursive calls or it is
1974    // gone. Anyway, we must not fold it into the addressing mode at this point.
1975    // E.g.,
1976    // op = add opnd, 1
1977    // idx = sext op
1978    // addr = gep base, idx
1979    // is now:
1980    // promotedOpnd = sext opnd           <- no match here
1981    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
1982    // addr = gep base, op                <- match
1983    if (MovedAway)
1984      *MovedAway = true;
1985
1986    assert(PromotedOperand &&
1987           "TypePromotionHelper should have filtered out those cases");
1988
1989    ExtAddrMode BackupAddrMode = AddrMode;
1990    unsigned OldSize = AddrModeInsts.size();
1991
1992    if (!MatchAddr(PromotedOperand, Depth) ||
1993        !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
1994                               PromotedOperand)) {
1995      AddrMode = BackupAddrMode;
1996      AddrModeInsts.resize(OldSize);
1997      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
1998      TPT.rollback(LastKnownGood);
1999      return false;
2000    }
2001    return true;
2002  }
2003  }
2004  return false;
2005}
2006
2007/// MatchAddr - If we can, try to add the value of 'Addr' into the current
2008/// addressing mode.  If Addr can't be added to AddrMode this returns false and
2009/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
2010/// or intptr_t for the target.
2011///
2012bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
2013  // Start a transaction at this point that we will rollback if the matching
2014  // fails.
2015  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2016      TPT.getRestorationPoint();
2017  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
2018    // Fold in immediates if legal for the target.
2019    AddrMode.BaseOffs += CI->getSExtValue();
2020    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2021      return true;
2022    AddrMode.BaseOffs -= CI->getSExtValue();
2023  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
2024    // If this is a global variable, try to fold it into the addressing mode.
2025    if (AddrMode.BaseGV == 0) {
2026      AddrMode.BaseGV = GV;
2027      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2028        return true;
2029      AddrMode.BaseGV = 0;
2030    }
2031  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
2032    ExtAddrMode BackupAddrMode = AddrMode;
2033    unsigned OldSize = AddrModeInsts.size();
2034
2035    // Check to see if it is possible to fold this operation.
2036    bool MovedAway = false;
2037    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
2038      // This instruction may have been move away. If so, there is nothing
2039      // to check here.
2040      if (MovedAway)
2041        return true;
2042      // Okay, it's possible to fold this.  Check to see if it is actually
2043      // *profitable* to do so.  We use a simple cost model to avoid increasing
2044      // register pressure too much.
2045      if (I->hasOneUse() ||
2046          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
2047        AddrModeInsts.push_back(I);
2048        return true;
2049      }
2050
2051      // It isn't profitable to do this, roll back.
2052      //cerr << "NOT FOLDING: " << *I;
2053      AddrMode = BackupAddrMode;
2054      AddrModeInsts.resize(OldSize);
2055      TPT.rollback(LastKnownGood);
2056    }
2057  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2058    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
2059      return true;
2060    TPT.rollback(LastKnownGood);
2061  } else if (isa<ConstantPointerNull>(Addr)) {
2062    // Null pointer gets folded without affecting the addressing mode.
2063    return true;
2064  }
2065
2066  // Worse case, the target should support [reg] addressing modes. :)
2067  if (!AddrMode.HasBaseReg) {
2068    AddrMode.HasBaseReg = true;
2069    AddrMode.BaseReg = Addr;
2070    // Still check for legality in case the target supports [imm] but not [i+r].
2071    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2072      return true;
2073    AddrMode.HasBaseReg = false;
2074    AddrMode.BaseReg = 0;
2075  }
2076
2077  // If the base register is already taken, see if we can do [r+r].
2078  if (AddrMode.Scale == 0) {
2079    AddrMode.Scale = 1;
2080    AddrMode.ScaledReg = Addr;
2081    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2082      return true;
2083    AddrMode.Scale = 0;
2084    AddrMode.ScaledReg = 0;
2085  }
2086  // Couldn't match.
2087  TPT.rollback(LastKnownGood);
2088  return false;
2089}
2090
2091/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
2092/// inline asm call are due to memory operands.  If so, return true, otherwise
2093/// return false.
2094static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
2095                                    const TargetLowering &TLI) {
2096  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
2097  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2098    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2099
2100    // Compute the constraint code and ConstraintType to use.
2101    TLI.ComputeConstraintToUse(OpInfo, SDValue());
2102
2103    // If this asm operand is our Value*, and if it isn't an indirect memory
2104    // operand, we can't fold it!
2105    if (OpInfo.CallOperandVal == OpVal &&
2106        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
2107         !OpInfo.isIndirect))
2108      return false;
2109  }
2110
2111  return true;
2112}
2113
2114/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
2115/// memory use.  If we find an obviously non-foldable instruction, return true.
2116/// Add the ultimately found memory instructions to MemoryUses.
2117static bool FindAllMemoryUses(Instruction *I,
2118                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
2119                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
2120                              const TargetLowering &TLI) {
2121  // If we already considered this instruction, we're done.
2122  if (!ConsideredInsts.insert(I))
2123    return false;
2124
2125  // If this is an obviously unfoldable instruction, bail out.
2126  if (!MightBeFoldableInst(I))
2127    return true;
2128
2129  // Loop over all the uses, recursively processing them.
2130  for (Use &U : I->uses()) {
2131    Instruction *UserI = cast<Instruction>(U.getUser());
2132
2133    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
2134      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
2135      continue;
2136    }
2137
2138    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
2139      unsigned opNo = U.getOperandNo();
2140      if (opNo == 0) return true; // Storing addr, not into addr.
2141      MemoryUses.push_back(std::make_pair(SI, opNo));
2142      continue;
2143    }
2144
2145    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
2146      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
2147      if (!IA) return true;
2148
2149      // If this is a memory operand, we're cool, otherwise bail out.
2150      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
2151        return true;
2152      continue;
2153    }
2154
2155    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
2156      return true;
2157  }
2158
2159  return false;
2160}
2161
2162/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
2163/// the use site that we're folding it into.  If so, there is no cost to
2164/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
2165/// that we know are live at the instruction already.
2166bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
2167                                                   Value *KnownLive2) {
2168  // If Val is either of the known-live values, we know it is live!
2169  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
2170    return true;
2171
2172  // All values other than instructions and arguments (e.g. constants) are live.
2173  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
2174
2175  // If Val is a constant sized alloca in the entry block, it is live, this is
2176  // true because it is just a reference to the stack/frame pointer, which is
2177  // live for the whole function.
2178  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
2179    if (AI->isStaticAlloca())
2180      return true;
2181
2182  // Check to see if this value is already used in the memory instruction's
2183  // block.  If so, it's already live into the block at the very least, so we
2184  // can reasonably fold it.
2185  return Val->isUsedInBasicBlock(MemoryInst->getParent());
2186}
2187
2188/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
2189/// mode of the machine to fold the specified instruction into a load or store
2190/// that ultimately uses it.  However, the specified instruction has multiple
2191/// uses.  Given this, it may actually increase register pressure to fold it
2192/// into the load.  For example, consider this code:
2193///
2194///     X = ...
2195///     Y = X+1
2196///     use(Y)   -> nonload/store
2197///     Z = Y+1
2198///     load Z
2199///
2200/// In this case, Y has multiple uses, and can be folded into the load of Z
2201/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
2202/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
2203/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
2204/// number of computations either.
2205///
2206/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
2207/// X was live across 'load Z' for other reasons, we actually *would* want to
2208/// fold the addressing mode in the Z case.  This would make Y die earlier.
2209bool AddressingModeMatcher::
2210IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
2211                                     ExtAddrMode &AMAfter) {
2212  if (IgnoreProfitability) return true;
2213
2214  // AMBefore is the addressing mode before this instruction was folded into it,
2215  // and AMAfter is the addressing mode after the instruction was folded.  Get
2216  // the set of registers referenced by AMAfter and subtract out those
2217  // referenced by AMBefore: this is the set of values which folding in this
2218  // address extends the lifetime of.
2219  //
2220  // Note that there are only two potential values being referenced here,
2221  // BaseReg and ScaleReg (global addresses are always available, as are any
2222  // folded immediates).
2223  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
2224
2225  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
2226  // lifetime wasn't extended by adding this instruction.
2227  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
2228    BaseReg = 0;
2229  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
2230    ScaledReg = 0;
2231
2232  // If folding this instruction (and it's subexprs) didn't extend any live
2233  // ranges, we're ok with it.
2234  if (BaseReg == 0 && ScaledReg == 0)
2235    return true;
2236
2237  // If all uses of this instruction are ultimately load/store/inlineasm's,
2238  // check to see if their addressing modes will include this instruction.  If
2239  // so, we can fold it into all uses, so it doesn't matter if it has multiple
2240  // uses.
2241  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
2242  SmallPtrSet<Instruction*, 16> ConsideredInsts;
2243  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
2244    return false;  // Has a non-memory, non-foldable use!
2245
2246  // Now that we know that all uses of this instruction are part of a chain of
2247  // computation involving only operations that could theoretically be folded
2248  // into a memory use, loop over each of these uses and see if they could
2249  // *actually* fold the instruction.
2250  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
2251  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
2252    Instruction *User = MemoryUses[i].first;
2253    unsigned OpNo = MemoryUses[i].second;
2254
2255    // Get the access type of this use.  If the use isn't a pointer, we don't
2256    // know what it accesses.
2257    Value *Address = User->getOperand(OpNo);
2258    if (!Address->getType()->isPointerTy())
2259      return false;
2260    Type *AddressAccessTy = Address->getType()->getPointerElementType();
2261
2262    // Do a match against the root of this address, ignoring profitability. This
2263    // will tell us if the addressing mode for the memory operation will
2264    // *actually* cover the shared instruction.
2265    ExtAddrMode Result;
2266    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2267        TPT.getRestorationPoint();
2268    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
2269                                  MemoryInst, Result, InsertedTruncs,
2270                                  PromotedInsts, TPT);
2271    Matcher.IgnoreProfitability = true;
2272    bool Success = Matcher.MatchAddr(Address, 0);
2273    (void)Success; assert(Success && "Couldn't select *anything*?");
2274
2275    // The match was to check the profitability, the changes made are not
2276    // part of the original matcher. Therefore, they should be dropped
2277    // otherwise the original matcher will not present the right state.
2278    TPT.rollback(LastKnownGood);
2279
2280    // If the match didn't cover I, then it won't be shared by it.
2281    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
2282                  I) == MatchedAddrModeInsts.end())
2283      return false;
2284
2285    MatchedAddrModeInsts.clear();
2286  }
2287
2288  return true;
2289}
2290
2291} // end anonymous namespace
2292
2293/// IsNonLocalValue - Return true if the specified values are defined in a
2294/// different basic block than BB.
2295static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
2296  if (Instruction *I = dyn_cast<Instruction>(V))
2297    return I->getParent() != BB;
2298  return false;
2299}
2300
2301/// OptimizeMemoryInst - Load and Store Instructions often have
2302/// addressing modes that can do significant amounts of computation.  As such,
2303/// instruction selection will try to get the load or store to do as much
2304/// computation as possible for the program.  The problem is that isel can only
2305/// see within a single block.  As such, we sink as much legal addressing mode
2306/// stuff into the block as possible.
2307///
2308/// This method is used to optimize both load/store and inline asms with memory
2309/// operands.
2310bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
2311                                        Type *AccessTy) {
2312  Value *Repl = Addr;
2313
2314  // Try to collapse single-value PHI nodes.  This is necessary to undo
2315  // unprofitable PRE transformations.
2316  SmallVector<Value*, 8> worklist;
2317  SmallPtrSet<Value*, 16> Visited;
2318  worklist.push_back(Addr);
2319
2320  // Use a worklist to iteratively look through PHI nodes, and ensure that
2321  // the addressing mode obtained from the non-PHI roots of the graph
2322  // are equivalent.
2323  Value *Consensus = 0;
2324  unsigned NumUsesConsensus = 0;
2325  bool IsNumUsesConsensusValid = false;
2326  SmallVector<Instruction*, 16> AddrModeInsts;
2327  ExtAddrMode AddrMode;
2328  TypePromotionTransaction TPT;
2329  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2330      TPT.getRestorationPoint();
2331  while (!worklist.empty()) {
2332    Value *V = worklist.back();
2333    worklist.pop_back();
2334
2335    // Break use-def graph loops.
2336    if (!Visited.insert(V)) {
2337      Consensus = 0;
2338      break;
2339    }
2340
2341    // For a PHI node, push all of its incoming values.
2342    if (PHINode *P = dyn_cast<PHINode>(V)) {
2343      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
2344        worklist.push_back(P->getIncomingValue(i));
2345      continue;
2346    }
2347
2348    // For non-PHIs, determine the addressing mode being computed.
2349    SmallVector<Instruction*, 16> NewAddrModeInsts;
2350    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
2351        V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
2352        PromotedInsts, TPT);
2353
2354    // This check is broken into two cases with very similar code to avoid using
2355    // getNumUses() as much as possible. Some values have a lot of uses, so
2356    // calling getNumUses() unconditionally caused a significant compile-time
2357    // regression.
2358    if (!Consensus) {
2359      Consensus = V;
2360      AddrMode = NewAddrMode;
2361      AddrModeInsts = NewAddrModeInsts;
2362      continue;
2363    } else if (NewAddrMode == AddrMode) {
2364      if (!IsNumUsesConsensusValid) {
2365        NumUsesConsensus = Consensus->getNumUses();
2366        IsNumUsesConsensusValid = true;
2367      }
2368
2369      // Ensure that the obtained addressing mode is equivalent to that obtained
2370      // for all other roots of the PHI traversal.  Also, when choosing one
2371      // such root as representative, select the one with the most uses in order
2372      // to keep the cost modeling heuristics in AddressingModeMatcher
2373      // applicable.
2374      unsigned NumUses = V->getNumUses();
2375      if (NumUses > NumUsesConsensus) {
2376        Consensus = V;
2377        NumUsesConsensus = NumUses;
2378        AddrModeInsts = NewAddrModeInsts;
2379      }
2380      continue;
2381    }
2382
2383    Consensus = 0;
2384    break;
2385  }
2386
2387  // If the addressing mode couldn't be determined, or if multiple different
2388  // ones were determined, bail out now.
2389  if (!Consensus) {
2390    TPT.rollback(LastKnownGood);
2391    return false;
2392  }
2393  TPT.commit();
2394
2395  // Check to see if any of the instructions supersumed by this addr mode are
2396  // non-local to I's BB.
2397  bool AnyNonLocal = false;
2398  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
2399    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
2400      AnyNonLocal = true;
2401      break;
2402    }
2403  }
2404
2405  // If all the instructions matched are already in this BB, don't do anything.
2406  if (!AnyNonLocal) {
2407    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
2408    return false;
2409  }
2410
2411  // Insert this computation right after this user.  Since our caller is
2412  // scanning from the top of the BB to the bottom, reuse of the expr are
2413  // guaranteed to happen later.
2414  IRBuilder<> Builder(MemoryInst);
2415
2416  // Now that we determined the addressing expression we want to use and know
2417  // that we have to sink it into this block.  Check to see if we have already
2418  // done this for some other load/store instr in this block.  If so, reuse the
2419  // computation.
2420  Value *&SunkAddr = SunkAddrs[Addr];
2421  if (SunkAddr) {
2422    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
2423                 << *MemoryInst);
2424    if (SunkAddr->getType() != Addr->getType())
2425      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
2426  } else {
2427    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
2428                 << *MemoryInst);
2429    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
2430    Value *Result = 0;
2431
2432    // Start with the base register. Do this first so that subsequent address
2433    // matching finds it last, which will prevent it from trying to match it
2434    // as the scaled value in case it happens to be a mul. That would be
2435    // problematic if we've sunk a different mul for the scale, because then
2436    // we'd end up sinking both muls.
2437    if (AddrMode.BaseReg) {
2438      Value *V = AddrMode.BaseReg;
2439      if (V->getType()->isPointerTy())
2440        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
2441      if (V->getType() != IntPtrTy)
2442        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
2443      Result = V;
2444    }
2445
2446    // Add the scale value.
2447    if (AddrMode.Scale) {
2448      Value *V = AddrMode.ScaledReg;
2449      if (V->getType() == IntPtrTy) {
2450        // done.
2451      } else if (V->getType()->isPointerTy()) {
2452        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
2453      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
2454                 cast<IntegerType>(V->getType())->getBitWidth()) {
2455        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
2456      } else {
2457        // It is only safe to sign extend the BaseReg if we know that the math
2458        // required to create it did not overflow before we extend it. Since
2459        // the original IR value was tossed in favor of a constant back when
2460        // the AddrMode was created we need to bail out gracefully if widths
2461        // do not match instead of extending it.
2462        if (Result != AddrMode.BaseReg)
2463            cast<Instruction>(Result)->eraseFromParent();
2464        return false;
2465      }
2466      if (AddrMode.Scale != 1)
2467        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
2468                              "sunkaddr");
2469      if (Result)
2470        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2471      else
2472        Result = V;
2473    }
2474
2475    // Add in the BaseGV if present.
2476    if (AddrMode.BaseGV) {
2477      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
2478      if (Result)
2479        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2480      else
2481        Result = V;
2482    }
2483
2484    // Add in the Base Offset if present.
2485    if (AddrMode.BaseOffs) {
2486      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
2487      if (Result)
2488        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2489      else
2490        Result = V;
2491    }
2492
2493    if (Result == 0)
2494      SunkAddr = Constant::getNullValue(Addr->getType());
2495    else
2496      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
2497  }
2498
2499  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
2500
2501  // If we have no uses, recursively delete the value and all dead instructions
2502  // using it.
2503  if (Repl->use_empty()) {
2504    // This can cause recursive deletion, which can invalidate our iterator.
2505    // Use a WeakVH to hold onto it in case this happens.
2506    WeakVH IterHandle(CurInstIterator);
2507    BasicBlock *BB = CurInstIterator->getParent();
2508
2509    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
2510
2511    if (IterHandle != CurInstIterator) {
2512      // If the iterator instruction was recursively deleted, start over at the
2513      // start of the block.
2514      CurInstIterator = BB->begin();
2515      SunkAddrs.clear();
2516    }
2517  }
2518  ++NumMemoryInsts;
2519  return true;
2520}
2521
2522/// OptimizeInlineAsmInst - If there are any memory operands, use
2523/// OptimizeMemoryInst to sink their address computing into the block when
2524/// possible / profitable.
2525bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
2526  bool MadeChange = false;
2527
2528  TargetLowering::AsmOperandInfoVector
2529    TargetConstraints = TLI->ParseConstraints(CS);
2530  unsigned ArgNo = 0;
2531  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2532    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2533
2534    // Compute the constraint code and ConstraintType to use.
2535    TLI->ComputeConstraintToUse(OpInfo, SDValue());
2536
2537    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
2538        OpInfo.isIndirect) {
2539      Value *OpVal = CS->getArgOperand(ArgNo++);
2540      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
2541    } else if (OpInfo.Type == InlineAsm::isInput)
2542      ArgNo++;
2543  }
2544
2545  return MadeChange;
2546}
2547
2548/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
2549/// basic block as the load, unless conditions are unfavorable. This allows
2550/// SelectionDAG to fold the extend into the load.
2551///
2552bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
2553  // Look for a load being extended.
2554  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
2555  if (!LI) return false;
2556
2557  // If they're already in the same block, there's nothing to do.
2558  if (LI->getParent() == I->getParent())
2559    return false;
2560
2561  // If the load has other users and the truncate is not free, this probably
2562  // isn't worthwhile.
2563  if (!LI->hasOneUse() &&
2564      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
2565              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
2566      !TLI->isTruncateFree(I->getType(), LI->getType()))
2567    return false;
2568
2569  // Check whether the target supports casts folded into loads.
2570  unsigned LType;
2571  if (isa<ZExtInst>(I))
2572    LType = ISD::ZEXTLOAD;
2573  else {
2574    assert(isa<SExtInst>(I) && "Unexpected ext type!");
2575    LType = ISD::SEXTLOAD;
2576  }
2577  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
2578    return false;
2579
2580  // Move the extend into the same block as the load, so that SelectionDAG
2581  // can fold it.
2582  I->removeFromParent();
2583  I->insertAfter(LI);
2584  ++NumExtsMoved;
2585  return true;
2586}
2587
2588bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
2589  BasicBlock *DefBB = I->getParent();
2590
2591  // If the result of a {s|z}ext and its source are both live out, rewrite all
2592  // other uses of the source with result of extension.
2593  Value *Src = I->getOperand(0);
2594  if (Src->hasOneUse())
2595    return false;
2596
2597  // Only do this xform if truncating is free.
2598  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
2599    return false;
2600
2601  // Only safe to perform the optimization if the source is also defined in
2602  // this block.
2603  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
2604    return false;
2605
2606  bool DefIsLiveOut = false;
2607  for (User *U : I->users()) {
2608    Instruction *UI = cast<Instruction>(U);
2609
2610    // Figure out which BB this ext is used in.
2611    BasicBlock *UserBB = UI->getParent();
2612    if (UserBB == DefBB) continue;
2613    DefIsLiveOut = true;
2614    break;
2615  }
2616  if (!DefIsLiveOut)
2617    return false;
2618
2619  // Make sure none of the uses are PHI nodes.
2620  for (User *U : Src->users()) {
2621    Instruction *UI = cast<Instruction>(U);
2622    BasicBlock *UserBB = UI->getParent();
2623    if (UserBB == DefBB) continue;
2624    // Be conservative. We don't want this xform to end up introducing
2625    // reloads just before load / store instructions.
2626    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
2627      return false;
2628  }
2629
2630  // InsertedTruncs - Only insert one trunc in each block once.
2631  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
2632
2633  bool MadeChange = false;
2634  for (Use &U : Src->uses()) {
2635    Instruction *User = cast<Instruction>(U.getUser());
2636
2637    // Figure out which BB this ext is used in.
2638    BasicBlock *UserBB = User->getParent();
2639    if (UserBB == DefBB) continue;
2640
2641    // Both src and def are live in this block. Rewrite the use.
2642    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
2643
2644    if (!InsertedTrunc) {
2645      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2646      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
2647      InsertedTruncsSet.insert(InsertedTrunc);
2648    }
2649
2650    // Replace a use of the {s|z}ext source with a use of the result.
2651    U = InsertedTrunc;
2652    ++NumExtUses;
2653    MadeChange = true;
2654  }
2655
2656  return MadeChange;
2657}
2658
2659/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
2660/// turned into an explicit branch.
2661static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
2662  // FIXME: This should use the same heuristics as IfConversion to determine
2663  // whether a select is better represented as a branch.  This requires that
2664  // branch probability metadata is preserved for the select, which is not the
2665  // case currently.
2666
2667  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2668
2669  // If the branch is predicted right, an out of order CPU can avoid blocking on
2670  // the compare.  Emit cmovs on compares with a memory operand as branches to
2671  // avoid stalls on the load from memory.  If the compare has more than one use
2672  // there's probably another cmov or setcc around so it's not worth emitting a
2673  // branch.
2674  if (!Cmp)
2675    return false;
2676
2677  Value *CmpOp0 = Cmp->getOperand(0);
2678  Value *CmpOp1 = Cmp->getOperand(1);
2679
2680  // We check that the memory operand has one use to avoid uses of the loaded
2681  // value directly after the compare, making branches unprofitable.
2682  return Cmp->hasOneUse() &&
2683         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
2684          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
2685}
2686
2687
2688/// If we have a SelectInst that will likely profit from branch prediction,
2689/// turn it into a branch.
2690bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
2691  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
2692
2693  // Can we convert the 'select' to CF ?
2694  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
2695    return false;
2696
2697  TargetLowering::SelectSupportKind SelectKind;
2698  if (VectorCond)
2699    SelectKind = TargetLowering::VectorMaskSelect;
2700  else if (SI->getType()->isVectorTy())
2701    SelectKind = TargetLowering::ScalarCondVectorVal;
2702  else
2703    SelectKind = TargetLowering::ScalarValSelect;
2704
2705  // Do we have efficient codegen support for this kind of 'selects' ?
2706  if (TLI->isSelectSupported(SelectKind)) {
2707    // We have efficient codegen support for the select instruction.
2708    // Check if it is profitable to keep this 'select'.
2709    if (!TLI->isPredictableSelectExpensive() ||
2710        !isFormingBranchFromSelectProfitable(SI))
2711      return false;
2712  }
2713
2714  ModifiedDT = true;
2715
2716  // First, we split the block containing the select into 2 blocks.
2717  BasicBlock *StartBlock = SI->getParent();
2718  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
2719  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
2720
2721  // Create a new block serving as the landing pad for the branch.
2722  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
2723                                             NextBlock->getParent(), NextBlock);
2724
2725  // Move the unconditional branch from the block with the select in it into our
2726  // landing pad block.
2727  StartBlock->getTerminator()->eraseFromParent();
2728  BranchInst::Create(NextBlock, SmallBlock);
2729
2730  // Insert the real conditional branch based on the original condition.
2731  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
2732
2733  // The select itself is replaced with a PHI Node.
2734  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
2735  PN->takeName(SI);
2736  PN->addIncoming(SI->getTrueValue(), StartBlock);
2737  PN->addIncoming(SI->getFalseValue(), SmallBlock);
2738  SI->replaceAllUsesWith(PN);
2739  SI->eraseFromParent();
2740
2741  // Instruct OptimizeBlock to skip to the next block.
2742  CurInstIterator = StartBlock->end();
2743  ++NumSelectsExpanded;
2744  return true;
2745}
2746
2747static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
2748  SmallVector<int, 16> Mask(SVI->getShuffleMask());
2749  int SplatElem = -1;
2750  for (unsigned i = 0; i < Mask.size(); ++i) {
2751    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
2752      return false;
2753    SplatElem = Mask[i];
2754  }
2755
2756  return true;
2757}
2758
2759/// Some targets have expensive vector shifts if the lanes aren't all the same
2760/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
2761/// it's often worth sinking a shufflevector splat down to its use so that
2762/// codegen can spot all lanes are identical.
2763bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
2764  BasicBlock *DefBB = SVI->getParent();
2765
2766  // Only do this xform if variable vector shifts are particularly expensive.
2767  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
2768    return false;
2769
2770  // We only expect better codegen by sinking a shuffle if we can recognise a
2771  // constant splat.
2772  if (!isBroadcastShuffle(SVI))
2773    return false;
2774
2775  // InsertedShuffles - Only insert a shuffle in each block once.
2776  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
2777
2778  bool MadeChange = false;
2779  for (User *U : SVI->users()) {
2780    Instruction *UI = cast<Instruction>(U);
2781
2782    // Figure out which BB this ext is used in.
2783    BasicBlock *UserBB = UI->getParent();
2784    if (UserBB == DefBB) continue;
2785
2786    // For now only apply this when the splat is used by a shift instruction.
2787    if (!UI->isShift()) continue;
2788
2789    // Everything checks out, sink the shuffle if the user's block doesn't
2790    // already have a copy.
2791    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
2792
2793    if (!InsertedShuffle) {
2794      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2795      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
2796                                              SVI->getOperand(1),
2797                                              SVI->getOperand(2), "", InsertPt);
2798    }
2799
2800    UI->replaceUsesOfWith(SVI, InsertedShuffle);
2801    MadeChange = true;
2802  }
2803
2804  // If we removed all uses, nuke the shuffle.
2805  if (SVI->use_empty()) {
2806    SVI->eraseFromParent();
2807    MadeChange = true;
2808  }
2809
2810  return MadeChange;
2811}
2812
2813bool CodeGenPrepare::OptimizeInst(Instruction *I) {
2814  if (PHINode *P = dyn_cast<PHINode>(I)) {
2815    // It is possible for very late stage optimizations (such as SimplifyCFG)
2816    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
2817    // trivial PHI, go ahead and zap it here.
2818    if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : 0,
2819                                       TLInfo, DT)) {
2820      P->replaceAllUsesWith(V);
2821      P->eraseFromParent();
2822      ++NumPHIsElim;
2823      return true;
2824    }
2825    return false;
2826  }
2827
2828  if (CastInst *CI = dyn_cast<CastInst>(I)) {
2829    // If the source of the cast is a constant, then this should have
2830    // already been constant folded.  The only reason NOT to constant fold
2831    // it is if something (e.g. LSR) was careful to place the constant
2832    // evaluation in a block other than then one that uses it (e.g. to hoist
2833    // the address of globals out of a loop).  If this is the case, we don't
2834    // want to forward-subst the cast.
2835    if (isa<Constant>(CI->getOperand(0)))
2836      return false;
2837
2838    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
2839      return true;
2840
2841    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
2842      /// Sink a zext or sext into its user blocks if the target type doesn't
2843      /// fit in one register
2844      if (TLI && TLI->getTypeAction(CI->getContext(),
2845                                    TLI->getValueType(CI->getType())) ==
2846                     TargetLowering::TypeExpandInteger) {
2847        return SinkCast(CI);
2848      } else {
2849        bool MadeChange = MoveExtToFormExtLoad(I);
2850        return MadeChange | OptimizeExtUses(I);
2851      }
2852    }
2853    return false;
2854  }
2855
2856  if (CmpInst *CI = dyn_cast<CmpInst>(I))
2857    if (!TLI || !TLI->hasMultipleConditionRegisters())
2858      return OptimizeCmpExpression(CI);
2859
2860  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
2861    if (TLI)
2862      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
2863    return false;
2864  }
2865
2866  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
2867    if (TLI)
2868      return OptimizeMemoryInst(I, SI->getOperand(1),
2869                                SI->getOperand(0)->getType());
2870    return false;
2871  }
2872
2873  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
2874    if (GEPI->hasAllZeroIndices()) {
2875      /// The GEP operand must be a pointer, so must its result -> BitCast
2876      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
2877                                        GEPI->getName(), GEPI);
2878      GEPI->replaceAllUsesWith(NC);
2879      GEPI->eraseFromParent();
2880      ++NumGEPsElim;
2881      OptimizeInst(NC);
2882      return true;
2883    }
2884    return false;
2885  }
2886
2887  if (CallInst *CI = dyn_cast<CallInst>(I))
2888    return OptimizeCallInst(CI);
2889
2890  if (SelectInst *SI = dyn_cast<SelectInst>(I))
2891    return OptimizeSelectInst(SI);
2892
2893  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
2894    return OptimizeShuffleVectorInst(SVI);
2895
2896  return false;
2897}
2898
2899// In this pass we look for GEP and cast instructions that are used
2900// across basic blocks and rewrite them to improve basic-block-at-a-time
2901// selection.
2902bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
2903  SunkAddrs.clear();
2904  bool MadeChange = false;
2905
2906  CurInstIterator = BB.begin();
2907  while (CurInstIterator != BB.end())
2908    MadeChange |= OptimizeInst(CurInstIterator++);
2909
2910  MadeChange |= DupRetToEnableTailCallOpts(&BB);
2911
2912  return MadeChange;
2913}
2914
2915// llvm.dbg.value is far away from the value then iSel may not be able
2916// handle it properly. iSel will drop llvm.dbg.value if it can not
2917// find a node corresponding to the value.
2918bool CodeGenPrepare::PlaceDbgValues(Function &F) {
2919  bool MadeChange = false;
2920  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
2921    Instruction *PrevNonDbgInst = NULL;
2922    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
2923      Instruction *Insn = BI; ++BI;
2924      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
2925      if (!DVI) {
2926        PrevNonDbgInst = Insn;
2927        continue;
2928      }
2929
2930      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
2931      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
2932        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
2933        DVI->removeFromParent();
2934        if (isa<PHINode>(VI))
2935          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
2936        else
2937          DVI->insertAfter(VI);
2938        MadeChange = true;
2939        ++NumDbgValueMoved;
2940      }
2941    }
2942  }
2943  return MadeChange;
2944}
2945
2946// If there is a sequence that branches based on comparing a single bit
2947// against zero that can be combined into a single instruction, and the
2948// target supports folding these into a single instruction, sink the
2949// mask and compare into the branch uses. Do this before OptimizeBlock ->
2950// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
2951// searched for.
2952bool CodeGenPrepare::sinkAndCmp(Function &F) {
2953  if (!EnableAndCmpSinking)
2954    return false;
2955  if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
2956    return false;
2957  bool MadeChange = false;
2958  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
2959    BasicBlock *BB = I++;
2960
2961    // Does this BB end with the following?
2962    //   %andVal = and %val, #single-bit-set
2963    //   %icmpVal = icmp %andResult, 0
2964    //   br i1 %cmpVal label %dest1, label %dest2"
2965    BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
2966    if (!Brcc || !Brcc->isConditional())
2967      continue;
2968    ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
2969    if (!Cmp || Cmp->getParent() != BB)
2970      continue;
2971    ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2972    if (!Zero || !Zero->isZero())
2973      continue;
2974    Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
2975    if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
2976      continue;
2977    ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
2978    if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
2979      continue;
2980    DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
2981
2982    // Push the "and; icmp" for any users that are conditional branches.
2983    // Since there can only be one branch use per BB, we don't need to keep
2984    // track of which BBs we insert into.
2985    for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
2986         UI != E; ) {
2987      Use &TheUse = *UI;
2988      // Find brcc use.
2989      BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
2990      ++UI;
2991      if (!BrccUser || !BrccUser->isConditional())
2992        continue;
2993      BasicBlock *UserBB = BrccUser->getParent();
2994      if (UserBB == BB) continue;
2995      DEBUG(dbgs() << "found Brcc use\n");
2996
2997      // Sink the "and; icmp" to use.
2998      MadeChange = true;
2999      BinaryOperator *NewAnd =
3000        BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
3001                                  BrccUser);
3002      CmpInst *NewCmp =
3003        CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
3004                        "", BrccUser);
3005      TheUse = NewCmp;
3006      ++NumAndCmpsMoved;
3007      DEBUG(BrccUser->getParent()->dump());
3008    }
3009  }
3010  return MadeChange;
3011}
3012