CodeGenPrepare.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Dominators.h"
26#include "llvm/IR/Function.h"
27#include "llvm/IR/GetElementPtrTypeIterator.h"
28#include "llvm/IR/IRBuilder.h"
29#include "llvm/IR/InlineAsm.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/PatternMatch.h"
33#include "llvm/IR/ValueHandle.h"
34#include "llvm/IR/ValueMap.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/Target/TargetLibraryInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetSubtargetInfo.h"
42#include "llvm/Transforms/Utils/BasicBlockUtils.h"
43#include "llvm/Transforms/Utils/BuildLibCalls.h"
44#include "llvm/Transforms/Utils/BypassSlowDivision.h"
45#include "llvm/Transforms/Utils/Local.h"
46using namespace llvm;
47using namespace llvm::PatternMatch;
48
49#define DEBUG_TYPE "codegenprepare"
50
51STATISTIC(NumBlocksElim, "Number of blocks eliminated");
52STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
53STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
54STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
55                      "sunken Cmps");
56STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
57                       "of sunken Casts");
58STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
59                          "computations were sunk");
60STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
61STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
62STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
63STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
64STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
65STATISTIC(NumAndCmpsMoved, "Number of and/cmp's pushed into branches");
66
67static cl::opt<bool> DisableBranchOpts(
68  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
69  cl::desc("Disable branch optimizations in CodeGenPrepare"));
70
71static cl::opt<bool> DisableSelectToBranch(
72  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
73  cl::desc("Disable select to branch conversion."));
74
75static cl::opt<bool> AddrSinkUsingGEPs(
76  "addr-sink-using-gep", cl::Hidden, cl::init(false),
77  cl::desc("Address sinking in CGP using GEPs."));
78
79static cl::opt<bool> EnableAndCmpSinking(
80   "enable-andcmp-sinking", cl::Hidden, cl::init(true),
81   cl::desc("Enable sinkinig and/cmp into branches."));
82
83namespace {
84typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
85typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
86
87  class CodeGenPrepare : public FunctionPass {
88    /// TLI - Keep a pointer of a TargetLowering to consult for determining
89    /// transformation profitability.
90    const TargetMachine *TM;
91    const TargetLowering *TLI;
92    const TargetLibraryInfo *TLInfo;
93    DominatorTree *DT;
94
95    /// CurInstIterator - As we scan instructions optimizing them, this is the
96    /// next instruction to optimize.  Xforms that can invalidate this should
97    /// update it.
98    BasicBlock::iterator CurInstIterator;
99
100    /// Keeps track of non-local addresses that have been sunk into a block.
101    /// This allows us to avoid inserting duplicate code for blocks with
102    /// multiple load/stores of the same address.
103    ValueMap<Value*, Value*> SunkAddrs;
104
105    /// Keeps track of all truncates inserted for the current function.
106    SetOfInstrs InsertedTruncsSet;
107    /// Keeps track of the type of the related instruction before their
108    /// promotion for the current function.
109    InstrToOrigTy PromotedInsts;
110
111    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
112    /// be updated.
113    bool ModifiedDT;
114
115    /// OptSize - True if optimizing for size.
116    bool OptSize;
117
118  public:
119    static char ID; // Pass identification, replacement for typeid
120    explicit CodeGenPrepare(const TargetMachine *TM = nullptr)
121      : FunctionPass(ID), TM(TM), TLI(nullptr) {
122        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
123      }
124    bool runOnFunction(Function &F) override;
125
126    const char *getPassName() const override { return "CodeGen Prepare"; }
127
128    void getAnalysisUsage(AnalysisUsage &AU) const override {
129      AU.addPreserved<DominatorTreeWrapperPass>();
130      AU.addRequired<TargetLibraryInfo>();
131    }
132
133  private:
134    bool EliminateFallThrough(Function &F);
135    bool EliminateMostlyEmptyBlocks(Function &F);
136    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
137    void EliminateMostlyEmptyBlock(BasicBlock *BB);
138    bool OptimizeBlock(BasicBlock &BB);
139    bool OptimizeInst(Instruction *I);
140    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
141    bool OptimizeInlineAsmInst(CallInst *CS);
142    bool OptimizeCallInst(CallInst *CI);
143    bool MoveExtToFormExtLoad(Instruction *I);
144    bool OptimizeExtUses(Instruction *I);
145    bool OptimizeSelectInst(SelectInst *SI);
146    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
147    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
148    bool PlaceDbgValues(Function &F);
149    bool sinkAndCmp(Function &F);
150  };
151}
152
153char CodeGenPrepare::ID = 0;
154static void *initializeCodeGenPreparePassOnce(PassRegistry &Registry) {
155  initializeTargetLibraryInfoPass(Registry);
156  PassInfo *PI = new PassInfo(
157      "Optimize for code generation", "codegenprepare", &CodeGenPrepare::ID,
158      PassInfo::NormalCtor_t(callDefaultCtor<CodeGenPrepare>), false, false,
159      PassInfo::TargetMachineCtor_t(callTargetMachineCtor<CodeGenPrepare>));
160  Registry.registerPass(*PI, true);
161  return PI;
162}
163
164void llvm::initializeCodeGenPreparePass(PassRegistry &Registry) {
165  CALL_ONCE_INITIALIZATION(initializeCodeGenPreparePassOnce)
166}
167
168FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
169  return new CodeGenPrepare(TM);
170}
171
172bool CodeGenPrepare::runOnFunction(Function &F) {
173  if (skipOptnoneFunction(F))
174    return false;
175
176  bool EverMadeChange = false;
177  // Clear per function information.
178  InsertedTruncsSet.clear();
179  PromotedInsts.clear();
180
181  ModifiedDT = false;
182  if (TM) TLI = TM->getTargetLowering();
183  TLInfo = &getAnalysis<TargetLibraryInfo>();
184  DominatorTreeWrapperPass *DTWP =
185      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
186  DT = DTWP ? &DTWP->getDomTree() : nullptr;
187  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
188                                           Attribute::OptimizeForSize);
189
190  /// This optimization identifies DIV instructions that can be
191  /// profitably bypassed and carried out with a shorter, faster divide.
192  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
193    const DenseMap<unsigned int, unsigned int> &BypassWidths =
194       TLI->getBypassSlowDivWidths();
195    for (Function::iterator I = F.begin(); I != F.end(); I++)
196      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
197  }
198
199  // Eliminate blocks that contain only PHI nodes and an
200  // unconditional branch.
201  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
202
203  // llvm.dbg.value is far away from the value then iSel may not be able
204  // handle it properly. iSel will drop llvm.dbg.value if it can not
205  // find a node corresponding to the value.
206  EverMadeChange |= PlaceDbgValues(F);
207
208  // If there is a mask, compare against zero, and branch that can be combined
209  // into a single target instruction, push the mask and compare into branch
210  // users. Do this before OptimizeBlock -> OptimizeInst ->
211  // OptimizeCmpExpression, which perturbs the pattern being searched for.
212  if (!DisableBranchOpts)
213    EverMadeChange |= sinkAndCmp(F);
214
215  bool MadeChange = true;
216  while (MadeChange) {
217    MadeChange = false;
218    for (Function::iterator I = F.begin(); I != F.end(); ) {
219      BasicBlock *BB = I++;
220      MadeChange |= OptimizeBlock(*BB);
221    }
222    EverMadeChange |= MadeChange;
223  }
224
225  SunkAddrs.clear();
226
227  if (!DisableBranchOpts) {
228    MadeChange = false;
229    SmallPtrSet<BasicBlock*, 8> WorkList;
230    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
231      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
232      MadeChange |= ConstantFoldTerminator(BB, true);
233      if (!MadeChange) continue;
234
235      for (SmallVectorImpl<BasicBlock*>::iterator
236             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
237        if (pred_begin(*II) == pred_end(*II))
238          WorkList.insert(*II);
239    }
240
241    // Delete the dead blocks and any of their dead successors.
242    MadeChange |= !WorkList.empty();
243    while (!WorkList.empty()) {
244      BasicBlock *BB = *WorkList.begin();
245      WorkList.erase(BB);
246      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
247
248      DeleteDeadBlock(BB);
249
250      for (SmallVectorImpl<BasicBlock*>::iterator
251             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
252        if (pred_begin(*II) == pred_end(*II))
253          WorkList.insert(*II);
254    }
255
256    // Merge pairs of basic blocks with unconditional branches, connected by
257    // a single edge.
258    if (EverMadeChange || MadeChange)
259      MadeChange |= EliminateFallThrough(F);
260
261    if (MadeChange)
262      ModifiedDT = true;
263    EverMadeChange |= MadeChange;
264  }
265
266  if (ModifiedDT && DT)
267    DT->recalculate(F);
268
269  return EverMadeChange;
270}
271
272/// EliminateFallThrough - Merge basic blocks which are connected
273/// by a single edge, where one of the basic blocks has a single successor
274/// pointing to the other basic block, which has a single predecessor.
275bool CodeGenPrepare::EliminateFallThrough(Function &F) {
276  bool Changed = false;
277  // Scan all of the blocks in the function, except for the entry block.
278  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
279    BasicBlock *BB = I++;
280    // If the destination block has a single pred, then this is a trivial
281    // edge, just collapse it.
282    BasicBlock *SinglePred = BB->getSinglePredecessor();
283
284    // Don't merge if BB's address is taken.
285    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
286
287    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
288    if (Term && !Term->isConditional()) {
289      Changed = true;
290      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
291      // Remember if SinglePred was the entry block of the function.
292      // If so, we will need to move BB back to the entry position.
293      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
294      MergeBasicBlockIntoOnlyPred(BB, this);
295
296      if (isEntry && BB != &BB->getParent()->getEntryBlock())
297        BB->moveBefore(&BB->getParent()->getEntryBlock());
298
299      // We have erased a block. Update the iterator.
300      I = BB;
301    }
302  }
303  return Changed;
304}
305
306/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
307/// debug info directives, and an unconditional branch.  Passes before isel
308/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
309/// isel.  Start by eliminating these blocks so we can split them the way we
310/// want them.
311bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
312  bool MadeChange = false;
313  // Note that this intentionally skips the entry block.
314  for (Function::iterator I = std::next(F.begin()), E = F.end(); I != E;) {
315    BasicBlock *BB = I++;
316
317    // If this block doesn't end with an uncond branch, ignore it.
318    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
319    if (!BI || !BI->isUnconditional())
320      continue;
321
322    // If the instruction before the branch (skipping debug info) isn't a phi
323    // node, then other stuff is happening here.
324    BasicBlock::iterator BBI = BI;
325    if (BBI != BB->begin()) {
326      --BBI;
327      while (isa<DbgInfoIntrinsic>(BBI)) {
328        if (BBI == BB->begin())
329          break;
330        --BBI;
331      }
332      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
333        continue;
334    }
335
336    // Do not break infinite loops.
337    BasicBlock *DestBB = BI->getSuccessor(0);
338    if (DestBB == BB)
339      continue;
340
341    if (!CanMergeBlocks(BB, DestBB))
342      continue;
343
344    EliminateMostlyEmptyBlock(BB);
345    MadeChange = true;
346  }
347  return MadeChange;
348}
349
350/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
351/// single uncond branch between them, and BB contains no other non-phi
352/// instructions.
353bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
354                                    const BasicBlock *DestBB) const {
355  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
356  // the successor.  If there are more complex condition (e.g. preheaders),
357  // don't mess around with them.
358  BasicBlock::const_iterator BBI = BB->begin();
359  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
360    for (const User *U : PN->users()) {
361      const Instruction *UI = cast<Instruction>(U);
362      if (UI->getParent() != DestBB || !isa<PHINode>(UI))
363        return false;
364      // If User is inside DestBB block and it is a PHINode then check
365      // incoming value. If incoming value is not from BB then this is
366      // a complex condition (e.g. preheaders) we want to avoid here.
367      if (UI->getParent() == DestBB) {
368        if (const PHINode *UPN = dyn_cast<PHINode>(UI))
369          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
370            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
371            if (Insn && Insn->getParent() == BB &&
372                Insn->getParent() != UPN->getIncomingBlock(I))
373              return false;
374          }
375      }
376    }
377  }
378
379  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
380  // and DestBB may have conflicting incoming values for the block.  If so, we
381  // can't merge the block.
382  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
383  if (!DestBBPN) return true;  // no conflict.
384
385  // Collect the preds of BB.
386  SmallPtrSet<const BasicBlock*, 16> BBPreds;
387  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
388    // It is faster to get preds from a PHI than with pred_iterator.
389    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
390      BBPreds.insert(BBPN->getIncomingBlock(i));
391  } else {
392    BBPreds.insert(pred_begin(BB), pred_end(BB));
393  }
394
395  // Walk the preds of DestBB.
396  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
397    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
398    if (BBPreds.count(Pred)) {   // Common predecessor?
399      BBI = DestBB->begin();
400      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
401        const Value *V1 = PN->getIncomingValueForBlock(Pred);
402        const Value *V2 = PN->getIncomingValueForBlock(BB);
403
404        // If V2 is a phi node in BB, look up what the mapped value will be.
405        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
406          if (V2PN->getParent() == BB)
407            V2 = V2PN->getIncomingValueForBlock(Pred);
408
409        // If there is a conflict, bail out.
410        if (V1 != V2) return false;
411      }
412    }
413  }
414
415  return true;
416}
417
418
419/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
420/// an unconditional branch in it.
421void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
422  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
423  BasicBlock *DestBB = BI->getSuccessor(0);
424
425  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
426
427  // If the destination block has a single pred, then this is a trivial edge,
428  // just collapse it.
429  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
430    if (SinglePred != DestBB) {
431      // Remember if SinglePred was the entry block of the function.  If so, we
432      // will need to move BB back to the entry position.
433      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
434      MergeBasicBlockIntoOnlyPred(DestBB, this);
435
436      if (isEntry && BB != &BB->getParent()->getEntryBlock())
437        BB->moveBefore(&BB->getParent()->getEntryBlock());
438
439      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
440      return;
441    }
442  }
443
444  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
445  // to handle the new incoming edges it is about to have.
446  PHINode *PN;
447  for (BasicBlock::iterator BBI = DestBB->begin();
448       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
449    // Remove the incoming value for BB, and remember it.
450    Value *InVal = PN->removeIncomingValue(BB, false);
451
452    // Two options: either the InVal is a phi node defined in BB or it is some
453    // value that dominates BB.
454    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
455    if (InValPhi && InValPhi->getParent() == BB) {
456      // Add all of the input values of the input PHI as inputs of this phi.
457      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
458        PN->addIncoming(InValPhi->getIncomingValue(i),
459                        InValPhi->getIncomingBlock(i));
460    } else {
461      // Otherwise, add one instance of the dominating value for each edge that
462      // we will be adding.
463      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
464        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
465          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
466      } else {
467        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
468          PN->addIncoming(InVal, *PI);
469      }
470    }
471  }
472
473  // The PHIs are now updated, change everything that refers to BB to use
474  // DestBB and remove BB.
475  BB->replaceAllUsesWith(DestBB);
476  if (DT && !ModifiedDT) {
477    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
478    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
479    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
480    DT->changeImmediateDominator(DestBB, NewIDom);
481    DT->eraseNode(BB);
482  }
483  BB->eraseFromParent();
484  ++NumBlocksElim;
485
486  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
487}
488
489/// SinkCast - Sink the specified cast instruction into its user blocks
490static bool SinkCast(CastInst *CI) {
491  BasicBlock *DefBB = CI->getParent();
492
493  /// InsertedCasts - Only insert a cast in each block once.
494  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
495
496  bool MadeChange = false;
497  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
498       UI != E; ) {
499    Use &TheUse = UI.getUse();
500    Instruction *User = cast<Instruction>(*UI);
501
502    // Figure out which BB this cast is used in.  For PHI's this is the
503    // appropriate predecessor block.
504    BasicBlock *UserBB = User->getParent();
505    if (PHINode *PN = dyn_cast<PHINode>(User)) {
506      UserBB = PN->getIncomingBlock(TheUse);
507    }
508
509    // Preincrement use iterator so we don't invalidate it.
510    ++UI;
511
512    // If this user is in the same block as the cast, don't change the cast.
513    if (UserBB == DefBB) continue;
514
515    // If we have already inserted a cast into this block, use it.
516    CastInst *&InsertedCast = InsertedCasts[UserBB];
517
518    if (!InsertedCast) {
519      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
520      InsertedCast =
521        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
522                         InsertPt);
523      MadeChange = true;
524    }
525
526    // Replace a use of the cast with a use of the new cast.
527    TheUse = InsertedCast;
528    ++NumCastUses;
529  }
530
531  // If we removed all uses, nuke the cast.
532  if (CI->use_empty()) {
533    CI->eraseFromParent();
534    MadeChange = true;
535  }
536
537  return MadeChange;
538}
539
540/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
541/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
542/// sink it into user blocks to reduce the number of virtual
543/// registers that must be created and coalesced.
544///
545/// Return true if any changes are made.
546///
547static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
548  // If this is a noop copy,
549  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
550  EVT DstVT = TLI.getValueType(CI->getType());
551
552  // This is an fp<->int conversion?
553  if (SrcVT.isInteger() != DstVT.isInteger())
554    return false;
555
556  // If this is an extension, it will be a zero or sign extension, which
557  // isn't a noop.
558  if (SrcVT.bitsLT(DstVT)) return false;
559
560  // If these values will be promoted, find out what they will be promoted
561  // to.  This helps us consider truncates on PPC as noop copies when they
562  // are.
563  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
564      TargetLowering::TypePromoteInteger)
565    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
566  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
567      TargetLowering::TypePromoteInteger)
568    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
569
570  // If, after promotion, these are the same types, this is a noop copy.
571  if (SrcVT != DstVT)
572    return false;
573
574  return SinkCast(CI);
575}
576
577/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
578/// the number of virtual registers that must be created and coalesced.  This is
579/// a clear win except on targets with multiple condition code registers
580///  (PowerPC), where it might lose; some adjustment may be wanted there.
581///
582/// Return true if any changes are made.
583static bool OptimizeCmpExpression(CmpInst *CI) {
584  BasicBlock *DefBB = CI->getParent();
585
586  /// InsertedCmp - Only insert a cmp in each block once.
587  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
588
589  bool MadeChange = false;
590  for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
591       UI != E; ) {
592    Use &TheUse = UI.getUse();
593    Instruction *User = cast<Instruction>(*UI);
594
595    // Preincrement use iterator so we don't invalidate it.
596    ++UI;
597
598    // Don't bother for PHI nodes.
599    if (isa<PHINode>(User))
600      continue;
601
602    // Figure out which BB this cmp is used in.
603    BasicBlock *UserBB = User->getParent();
604
605    // If this user is in the same block as the cmp, don't change the cmp.
606    if (UserBB == DefBB) continue;
607
608    // If we have already inserted a cmp into this block, use it.
609    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
610
611    if (!InsertedCmp) {
612      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
613      InsertedCmp =
614        CmpInst::Create(CI->getOpcode(),
615                        CI->getPredicate(),  CI->getOperand(0),
616                        CI->getOperand(1), "", InsertPt);
617      MadeChange = true;
618    }
619
620    // Replace a use of the cmp with a use of the new cmp.
621    TheUse = InsertedCmp;
622    ++NumCmpUses;
623  }
624
625  // If we removed all uses, nuke the cmp.
626  if (CI->use_empty())
627    CI->eraseFromParent();
628
629  return MadeChange;
630}
631
632/// isExtractBitsCandidateUse - Check if the candidates could
633/// be combined with shift instruction, which includes:
634/// 1. Truncate instruction
635/// 2. And instruction and the imm is a mask of the low bits:
636/// imm & (imm+1) == 0
637static bool isExtractBitsCandidateUse(Instruction *User) {
638  if (!isa<TruncInst>(User)) {
639    if (User->getOpcode() != Instruction::And ||
640        !isa<ConstantInt>(User->getOperand(1)))
641      return false;
642
643    const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
644
645    if ((Cimm & (Cimm + 1)).getBoolValue())
646      return false;
647  }
648  return true;
649}
650
651/// SinkShiftAndTruncate - sink both shift and truncate instruction
652/// to the use of truncate's BB.
653static bool
654SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
655                     DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
656                     const TargetLowering &TLI) {
657  BasicBlock *UserBB = User->getParent();
658  DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
659  TruncInst *TruncI = dyn_cast<TruncInst>(User);
660  bool MadeChange = false;
661
662  for (Value::user_iterator TruncUI = TruncI->user_begin(),
663                            TruncE = TruncI->user_end();
664       TruncUI != TruncE;) {
665
666    Use &TruncTheUse = TruncUI.getUse();
667    Instruction *TruncUser = cast<Instruction>(*TruncUI);
668    // Preincrement use iterator so we don't invalidate it.
669
670    ++TruncUI;
671
672    int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
673    if (!ISDOpcode)
674      continue;
675
676    // If the use is actually a legal node, there will not be an implicit
677    // truncate.
678    if (TLI.isOperationLegalOrCustom(ISDOpcode,
679                                     EVT::getEVT(TruncUser->getType())))
680      continue;
681
682    // Don't bother for PHI nodes.
683    if (isa<PHINode>(TruncUser))
684      continue;
685
686    BasicBlock *TruncUserBB = TruncUser->getParent();
687
688    if (UserBB == TruncUserBB)
689      continue;
690
691    BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
692    CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
693
694    if (!InsertedShift && !InsertedTrunc) {
695      BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
696      // Sink the shift
697      if (ShiftI->getOpcode() == Instruction::AShr)
698        InsertedShift =
699            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
700      else
701        InsertedShift =
702            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
703
704      // Sink the trunc
705      BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
706      TruncInsertPt++;
707
708      InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
709                                       TruncI->getType(), "", TruncInsertPt);
710
711      MadeChange = true;
712
713      TruncTheUse = InsertedTrunc;
714    }
715  }
716  return MadeChange;
717}
718
719/// OptimizeExtractBits - sink the shift *right* instruction into user blocks if
720/// the uses could potentially be combined with this shift instruction and
721/// generate BitExtract instruction. It will only be applied if the architecture
722/// supports BitExtract instruction. Here is an example:
723/// BB1:
724///   %x.extract.shift = lshr i64 %arg1, 32
725/// BB2:
726///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
727/// ==>
728///
729/// BB2:
730///   %x.extract.shift.1 = lshr i64 %arg1, 32
731///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
732///
733/// CodeGen will recoginze the pattern in BB2 and generate BitExtract
734/// instruction.
735/// Return true if any changes are made.
736static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
737                                const TargetLowering &TLI) {
738  BasicBlock *DefBB = ShiftI->getParent();
739
740  /// Only insert instructions in each block once.
741  DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
742
743  bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(ShiftI->getType()));
744
745  bool MadeChange = false;
746  for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
747       UI != E;) {
748    Use &TheUse = UI.getUse();
749    Instruction *User = cast<Instruction>(*UI);
750    // Preincrement use iterator so we don't invalidate it.
751    ++UI;
752
753    // Don't bother for PHI nodes.
754    if (isa<PHINode>(User))
755      continue;
756
757    if (!isExtractBitsCandidateUse(User))
758      continue;
759
760    BasicBlock *UserBB = User->getParent();
761
762    if (UserBB == DefBB) {
763      // If the shift and truncate instruction are in the same BB. The use of
764      // the truncate(TruncUse) may still introduce another truncate if not
765      // legal. In this case, we would like to sink both shift and truncate
766      // instruction to the BB of TruncUse.
767      // for example:
768      // BB1:
769      // i64 shift.result = lshr i64 opnd, imm
770      // trunc.result = trunc shift.result to i16
771      //
772      // BB2:
773      //   ----> We will have an implicit truncate here if the architecture does
774      //   not have i16 compare.
775      // cmp i16 trunc.result, opnd2
776      //
777      if (isa<TruncInst>(User) && shiftIsLegal
778          // If the type of the truncate is legal, no trucate will be
779          // introduced in other basic blocks.
780          && (!TLI.isTypeLegal(TLI.getValueType(User->getType()))))
781        MadeChange =
782            SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI);
783
784      continue;
785    }
786    // If we have already inserted a shift into this block, use it.
787    BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
788
789    if (!InsertedShift) {
790      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
791
792      if (ShiftI->getOpcode() == Instruction::AShr)
793        InsertedShift =
794            BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, "", InsertPt);
795      else
796        InsertedShift =
797            BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, "", InsertPt);
798
799      MadeChange = true;
800    }
801
802    // Replace a use of the shift with a use of the new shift.
803    TheUse = InsertedShift;
804  }
805
806  // If we removed all uses, nuke the shift.
807  if (ShiftI->use_empty())
808    ShiftI->eraseFromParent();
809
810  return MadeChange;
811}
812
813namespace {
814class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
815protected:
816  void replaceCall(Value *With) override {
817    CI->replaceAllUsesWith(With);
818    CI->eraseFromParent();
819  }
820  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const override {
821      if (ConstantInt *SizeCI =
822                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
823        return SizeCI->isAllOnesValue();
824    return false;
825  }
826};
827} // end anonymous namespace
828
829bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
830  BasicBlock *BB = CI->getParent();
831
832  // Lower inline assembly if we can.
833  // If we found an inline asm expession, and if the target knows how to
834  // lower it to normal LLVM code, do so now.
835  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
836    if (TLI->ExpandInlineAsm(CI)) {
837      // Avoid invalidating the iterator.
838      CurInstIterator = BB->begin();
839      // Avoid processing instructions out of order, which could cause
840      // reuse before a value is defined.
841      SunkAddrs.clear();
842      return true;
843    }
844    // Sink address computing for memory operands into the block.
845    if (OptimizeInlineAsmInst(CI))
846      return true;
847  }
848
849  // Lower all uses of llvm.objectsize.*
850  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
851  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
852    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
853    Type *ReturnTy = CI->getType();
854    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
855
856    // Substituting this can cause recursive simplifications, which can
857    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
858    // happens.
859    WeakVH IterHandle(CurInstIterator);
860
861    replaceAndRecursivelySimplify(CI, RetVal,
862                                  TLI ? TLI->getDataLayout() : nullptr,
863                                  TLInfo, ModifiedDT ? nullptr : DT);
864
865    // If the iterator instruction was recursively deleted, start over at the
866    // start of the block.
867    if (IterHandle != CurInstIterator) {
868      CurInstIterator = BB->begin();
869      SunkAddrs.clear();
870    }
871    return true;
872  }
873
874  if (II && TLI) {
875    SmallVector<Value*, 2> PtrOps;
876    Type *AccessTy;
877    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
878      while (!PtrOps.empty())
879        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
880          return true;
881  }
882
883  // From here on out we're working with named functions.
884  if (!CI->getCalledFunction()) return false;
885
886  // We'll need DataLayout from here on out.
887  const DataLayout *TD = TLI ? TLI->getDataLayout() : nullptr;
888  if (!TD) return false;
889
890  // Lower all default uses of _chk calls.  This is very similar
891  // to what InstCombineCalls does, but here we are only lowering calls
892  // that have the default "don't know" as the objectsize.  Anything else
893  // should be left alone.
894  CodeGenPrepareFortifiedLibCalls Simplifier;
895  return Simplifier.fold(CI, TD, TLInfo);
896}
897
898/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
899/// instructions to the predecessor to enable tail call optimizations. The
900/// case it is currently looking for is:
901/// @code
902/// bb0:
903///   %tmp0 = tail call i32 @f0()
904///   br label %return
905/// bb1:
906///   %tmp1 = tail call i32 @f1()
907///   br label %return
908/// bb2:
909///   %tmp2 = tail call i32 @f2()
910///   br label %return
911/// return:
912///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
913///   ret i32 %retval
914/// @endcode
915///
916/// =>
917///
918/// @code
919/// bb0:
920///   %tmp0 = tail call i32 @f0()
921///   ret i32 %tmp0
922/// bb1:
923///   %tmp1 = tail call i32 @f1()
924///   ret i32 %tmp1
925/// bb2:
926///   %tmp2 = tail call i32 @f2()
927///   ret i32 %tmp2
928/// @endcode
929bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
930  if (!TLI)
931    return false;
932
933  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
934  if (!RI)
935    return false;
936
937  PHINode *PN = nullptr;
938  BitCastInst *BCI = nullptr;
939  Value *V = RI->getReturnValue();
940  if (V) {
941    BCI = dyn_cast<BitCastInst>(V);
942    if (BCI)
943      V = BCI->getOperand(0);
944
945    PN = dyn_cast<PHINode>(V);
946    if (!PN)
947      return false;
948  }
949
950  if (PN && PN->getParent() != BB)
951    return false;
952
953  // It's not safe to eliminate the sign / zero extension of the return value.
954  // See llvm::isInTailCallPosition().
955  const Function *F = BB->getParent();
956  AttributeSet CallerAttrs = F->getAttributes();
957  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
958      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
959    return false;
960
961  // Make sure there are no instructions between the PHI and return, or that the
962  // return is the first instruction in the block.
963  if (PN) {
964    BasicBlock::iterator BI = BB->begin();
965    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
966    if (&*BI == BCI)
967      // Also skip over the bitcast.
968      ++BI;
969    if (&*BI != RI)
970      return false;
971  } else {
972    BasicBlock::iterator BI = BB->begin();
973    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
974    if (&*BI != RI)
975      return false;
976  }
977
978  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
979  /// call.
980  SmallVector<CallInst*, 4> TailCalls;
981  if (PN) {
982    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
983      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
984      // Make sure the phi value is indeed produced by the tail call.
985      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
986          TLI->mayBeEmittedAsTailCall(CI))
987        TailCalls.push_back(CI);
988    }
989  } else {
990    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
991    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
992      if (!VisitedBBs.insert(*PI))
993        continue;
994
995      BasicBlock::InstListType &InstList = (*PI)->getInstList();
996      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
997      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
998      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
999      if (RI == RE)
1000        continue;
1001
1002      CallInst *CI = dyn_cast<CallInst>(&*RI);
1003      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
1004        TailCalls.push_back(CI);
1005    }
1006  }
1007
1008  bool Changed = false;
1009  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
1010    CallInst *CI = TailCalls[i];
1011    CallSite CS(CI);
1012
1013    // Conservatively require the attributes of the call to match those of the
1014    // return. Ignore noalias because it doesn't affect the call sequence.
1015    AttributeSet CalleeAttrs = CS.getAttributes();
1016    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1017          removeAttribute(Attribute::NoAlias) !=
1018        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
1019          removeAttribute(Attribute::NoAlias))
1020      continue;
1021
1022    // Make sure the call instruction is followed by an unconditional branch to
1023    // the return block.
1024    BasicBlock *CallBB = CI->getParent();
1025    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
1026    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
1027      continue;
1028
1029    // Duplicate the return into CallBB.
1030    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
1031    ModifiedDT = Changed = true;
1032    ++NumRetsDup;
1033  }
1034
1035  // If we eliminated all predecessors of the block, delete the block now.
1036  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
1037    BB->eraseFromParent();
1038
1039  return Changed;
1040}
1041
1042//===----------------------------------------------------------------------===//
1043// Memory Optimization
1044//===----------------------------------------------------------------------===//
1045
1046namespace {
1047
1048/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
1049/// which holds actual Value*'s for register values.
1050struct ExtAddrMode : public TargetLowering::AddrMode {
1051  Value *BaseReg;
1052  Value *ScaledReg;
1053  ExtAddrMode() : BaseReg(nullptr), ScaledReg(nullptr) {}
1054  void print(raw_ostream &OS) const;
1055  void dump() const;
1056
1057  bool operator==(const ExtAddrMode& O) const {
1058    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
1059           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
1060           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
1061  }
1062};
1063
1064#ifndef NDEBUG
1065static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
1066  AM.print(OS);
1067  return OS;
1068}
1069#endif
1070
1071void ExtAddrMode::print(raw_ostream &OS) const {
1072  bool NeedPlus = false;
1073  OS << "[";
1074  if (BaseGV) {
1075    OS << (NeedPlus ? " + " : "")
1076       << "GV:";
1077    BaseGV->printAsOperand(OS, /*PrintType=*/false);
1078    NeedPlus = true;
1079  }
1080
1081  if (BaseOffs)
1082    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
1083
1084  if (BaseReg) {
1085    OS << (NeedPlus ? " + " : "")
1086       << "Base:";
1087    BaseReg->printAsOperand(OS, /*PrintType=*/false);
1088    NeedPlus = true;
1089  }
1090  if (Scale) {
1091    OS << (NeedPlus ? " + " : "")
1092       << Scale << "*";
1093    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
1094  }
1095
1096  OS << ']';
1097}
1098
1099#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1100void ExtAddrMode::dump() const {
1101  print(dbgs());
1102  dbgs() << '\n';
1103}
1104#endif
1105
1106/// \brief This class provides transaction based operation on the IR.
1107/// Every change made through this class is recorded in the internal state and
1108/// can be undone (rollback) until commit is called.
1109class TypePromotionTransaction {
1110
1111  /// \brief This represents the common interface of the individual transaction.
1112  /// Each class implements the logic for doing one specific modification on
1113  /// the IR via the TypePromotionTransaction.
1114  class TypePromotionAction {
1115  protected:
1116    /// The Instruction modified.
1117    Instruction *Inst;
1118
1119  public:
1120    /// \brief Constructor of the action.
1121    /// The constructor performs the related action on the IR.
1122    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
1123
1124    virtual ~TypePromotionAction() {}
1125
1126    /// \brief Undo the modification done by this action.
1127    /// When this method is called, the IR must be in the same state as it was
1128    /// before this action was applied.
1129    /// \pre Undoing the action works if and only if the IR is in the exact same
1130    /// state as it was directly after this action was applied.
1131    virtual void undo() = 0;
1132
1133    /// \brief Advocate every change made by this action.
1134    /// When the results on the IR of the action are to be kept, it is important
1135    /// to call this function, otherwise hidden information may be kept forever.
1136    virtual void commit() {
1137      // Nothing to be done, this action is not doing anything.
1138    }
1139  };
1140
1141  /// \brief Utility to remember the position of an instruction.
1142  class InsertionHandler {
1143    /// Position of an instruction.
1144    /// Either an instruction:
1145    /// - Is the first in a basic block: BB is used.
1146    /// - Has a previous instructon: PrevInst is used.
1147    union {
1148      Instruction *PrevInst;
1149      BasicBlock *BB;
1150    } Point;
1151    /// Remember whether or not the instruction had a previous instruction.
1152    bool HasPrevInstruction;
1153
1154  public:
1155    /// \brief Record the position of \p Inst.
1156    InsertionHandler(Instruction *Inst) {
1157      BasicBlock::iterator It = Inst;
1158      HasPrevInstruction = (It != (Inst->getParent()->begin()));
1159      if (HasPrevInstruction)
1160        Point.PrevInst = --It;
1161      else
1162        Point.BB = Inst->getParent();
1163    }
1164
1165    /// \brief Insert \p Inst at the recorded position.
1166    void insert(Instruction *Inst) {
1167      if (HasPrevInstruction) {
1168        if (Inst->getParent())
1169          Inst->removeFromParent();
1170        Inst->insertAfter(Point.PrevInst);
1171      } else {
1172        Instruction *Position = Point.BB->getFirstInsertionPt();
1173        if (Inst->getParent())
1174          Inst->moveBefore(Position);
1175        else
1176          Inst->insertBefore(Position);
1177      }
1178    }
1179  };
1180
1181  /// \brief Move an instruction before another.
1182  class InstructionMoveBefore : public TypePromotionAction {
1183    /// Original position of the instruction.
1184    InsertionHandler Position;
1185
1186  public:
1187    /// \brief Move \p Inst before \p Before.
1188    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
1189        : TypePromotionAction(Inst), Position(Inst) {
1190      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
1191      Inst->moveBefore(Before);
1192    }
1193
1194    /// \brief Move the instruction back to its original position.
1195    void undo() override {
1196      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
1197      Position.insert(Inst);
1198    }
1199  };
1200
1201  /// \brief Set the operand of an instruction with a new value.
1202  class OperandSetter : public TypePromotionAction {
1203    /// Original operand of the instruction.
1204    Value *Origin;
1205    /// Index of the modified instruction.
1206    unsigned Idx;
1207
1208  public:
1209    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
1210    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
1211        : TypePromotionAction(Inst), Idx(Idx) {
1212      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
1213                   << "for:" << *Inst << "\n"
1214                   << "with:" << *NewVal << "\n");
1215      Origin = Inst->getOperand(Idx);
1216      Inst->setOperand(Idx, NewVal);
1217    }
1218
1219    /// \brief Restore the original value of the instruction.
1220    void undo() override {
1221      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
1222                   << "for: " << *Inst << "\n"
1223                   << "with: " << *Origin << "\n");
1224      Inst->setOperand(Idx, Origin);
1225    }
1226  };
1227
1228  /// \brief Hide the operands of an instruction.
1229  /// Do as if this instruction was not using any of its operands.
1230  class OperandsHider : public TypePromotionAction {
1231    /// The list of original operands.
1232    SmallVector<Value *, 4> OriginalValues;
1233
1234  public:
1235    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
1236    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
1237      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
1238      unsigned NumOpnds = Inst->getNumOperands();
1239      OriginalValues.reserve(NumOpnds);
1240      for (unsigned It = 0; It < NumOpnds; ++It) {
1241        // Save the current operand.
1242        Value *Val = Inst->getOperand(It);
1243        OriginalValues.push_back(Val);
1244        // Set a dummy one.
1245        // We could use OperandSetter here, but that would implied an overhead
1246        // that we are not willing to pay.
1247        Inst->setOperand(It, UndefValue::get(Val->getType()));
1248      }
1249    }
1250
1251    /// \brief Restore the original list of uses.
1252    void undo() override {
1253      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
1254      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
1255        Inst->setOperand(It, OriginalValues[It]);
1256    }
1257  };
1258
1259  /// \brief Build a truncate instruction.
1260  class TruncBuilder : public TypePromotionAction {
1261  public:
1262    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
1263    /// result.
1264    /// trunc Opnd to Ty.
1265    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
1266      IRBuilder<> Builder(Opnd);
1267      Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
1268      DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
1269    }
1270
1271    /// \brief Get the built instruction.
1272    Instruction *getBuiltInstruction() { return Inst; }
1273
1274    /// \brief Remove the built instruction.
1275    void undo() override {
1276      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
1277      Inst->eraseFromParent();
1278    }
1279  };
1280
1281  /// \brief Build a sign extension instruction.
1282  class SExtBuilder : public TypePromotionAction {
1283  public:
1284    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
1285    /// result.
1286    /// sext Opnd to Ty.
1287    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
1288        : TypePromotionAction(Inst) {
1289      IRBuilder<> Builder(InsertPt);
1290      Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
1291      DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
1292    }
1293
1294    /// \brief Get the built instruction.
1295    Instruction *getBuiltInstruction() { return Inst; }
1296
1297    /// \brief Remove the built instruction.
1298    void undo() override {
1299      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
1300      Inst->eraseFromParent();
1301    }
1302  };
1303
1304  /// \brief Mutate an instruction to another type.
1305  class TypeMutator : public TypePromotionAction {
1306    /// Record the original type.
1307    Type *OrigTy;
1308
1309  public:
1310    /// \brief Mutate the type of \p Inst into \p NewTy.
1311    TypeMutator(Instruction *Inst, Type *NewTy)
1312        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
1313      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
1314                   << "\n");
1315      Inst->mutateType(NewTy);
1316    }
1317
1318    /// \brief Mutate the instruction back to its original type.
1319    void undo() override {
1320      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
1321                   << "\n");
1322      Inst->mutateType(OrigTy);
1323    }
1324  };
1325
1326  /// \brief Replace the uses of an instruction by another instruction.
1327  class UsesReplacer : public TypePromotionAction {
1328    /// Helper structure to keep track of the replaced uses.
1329    struct InstructionAndIdx {
1330      /// The instruction using the instruction.
1331      Instruction *Inst;
1332      /// The index where this instruction is used for Inst.
1333      unsigned Idx;
1334      InstructionAndIdx(Instruction *Inst, unsigned Idx)
1335          : Inst(Inst), Idx(Idx) {}
1336    };
1337
1338    /// Keep track of the original uses (pair Instruction, Index).
1339    SmallVector<InstructionAndIdx, 4> OriginalUses;
1340    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
1341
1342  public:
1343    /// \brief Replace all the use of \p Inst by \p New.
1344    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
1345      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
1346                   << "\n");
1347      // Record the original uses.
1348      for (Use &U : Inst->uses()) {
1349        Instruction *UserI = cast<Instruction>(U.getUser());
1350        OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
1351      }
1352      // Now, we can replace the uses.
1353      Inst->replaceAllUsesWith(New);
1354    }
1355
1356    /// \brief Reassign the original uses of Inst to Inst.
1357    void undo() override {
1358      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
1359      for (use_iterator UseIt = OriginalUses.begin(),
1360                        EndIt = OriginalUses.end();
1361           UseIt != EndIt; ++UseIt) {
1362        UseIt->Inst->setOperand(UseIt->Idx, Inst);
1363      }
1364    }
1365  };
1366
1367  /// \brief Remove an instruction from the IR.
1368  class InstructionRemover : public TypePromotionAction {
1369    /// Original position of the instruction.
1370    InsertionHandler Inserter;
1371    /// Helper structure to hide all the link to the instruction. In other
1372    /// words, this helps to do as if the instruction was removed.
1373    OperandsHider Hider;
1374    /// Keep track of the uses replaced, if any.
1375    UsesReplacer *Replacer;
1376
1377  public:
1378    /// \brief Remove all reference of \p Inst and optinally replace all its
1379    /// uses with New.
1380    /// \pre If !Inst->use_empty(), then New != nullptr
1381    InstructionRemover(Instruction *Inst, Value *New = nullptr)
1382        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
1383          Replacer(nullptr) {
1384      if (New)
1385        Replacer = new UsesReplacer(Inst, New);
1386      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
1387      Inst->removeFromParent();
1388    }
1389
1390    ~InstructionRemover() { delete Replacer; }
1391
1392    /// \brief Really remove the instruction.
1393    void commit() override { delete Inst; }
1394
1395    /// \brief Resurrect the instruction and reassign it to the proper uses if
1396    /// new value was provided when build this action.
1397    void undo() override {
1398      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
1399      Inserter.insert(Inst);
1400      if (Replacer)
1401        Replacer->undo();
1402      Hider.undo();
1403    }
1404  };
1405
1406public:
1407  /// Restoration point.
1408  /// The restoration point is a pointer to an action instead of an iterator
1409  /// because the iterator may be invalidated but not the pointer.
1410  typedef const TypePromotionAction *ConstRestorationPt;
1411  /// Advocate every changes made in that transaction.
1412  void commit();
1413  /// Undo all the changes made after the given point.
1414  void rollback(ConstRestorationPt Point);
1415  /// Get the current restoration point.
1416  ConstRestorationPt getRestorationPoint() const;
1417
1418  /// \name API for IR modification with state keeping to support rollback.
1419  /// @{
1420  /// Same as Instruction::setOperand.
1421  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
1422  /// Same as Instruction::eraseFromParent.
1423  void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
1424  /// Same as Value::replaceAllUsesWith.
1425  void replaceAllUsesWith(Instruction *Inst, Value *New);
1426  /// Same as Value::mutateType.
1427  void mutateType(Instruction *Inst, Type *NewTy);
1428  /// Same as IRBuilder::createTrunc.
1429  Instruction *createTrunc(Instruction *Opnd, Type *Ty);
1430  /// Same as IRBuilder::createSExt.
1431  Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
1432  /// Same as Instruction::moveBefore.
1433  void moveBefore(Instruction *Inst, Instruction *Before);
1434  /// @}
1435
1436private:
1437  /// The ordered list of actions made so far.
1438  SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
1439  typedef SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator CommitPt;
1440};
1441
1442void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
1443                                          Value *NewVal) {
1444  Actions.push_back(
1445      make_unique<TypePromotionTransaction::OperandSetter>(Inst, Idx, NewVal));
1446}
1447
1448void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
1449                                                Value *NewVal) {
1450  Actions.push_back(
1451      make_unique<TypePromotionTransaction::InstructionRemover>(Inst, NewVal));
1452}
1453
1454void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
1455                                                  Value *New) {
1456  Actions.push_back(make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
1457}
1458
1459void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
1460  Actions.push_back(make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
1461}
1462
1463Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
1464                                                   Type *Ty) {
1465  std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
1466  Instruction *I = Ptr->getBuiltInstruction();
1467  Actions.push_back(std::move(Ptr));
1468  return I;
1469}
1470
1471Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
1472                                                  Value *Opnd, Type *Ty) {
1473  std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
1474  Instruction *I = Ptr->getBuiltInstruction();
1475  Actions.push_back(std::move(Ptr));
1476  return I;
1477}
1478
1479void TypePromotionTransaction::moveBefore(Instruction *Inst,
1480                                          Instruction *Before) {
1481  Actions.push_back(
1482      make_unique<TypePromotionTransaction::InstructionMoveBefore>(Inst, Before));
1483}
1484
1485TypePromotionTransaction::ConstRestorationPt
1486TypePromotionTransaction::getRestorationPoint() const {
1487  return !Actions.empty() ? Actions.back().get() : nullptr;
1488}
1489
1490void TypePromotionTransaction::commit() {
1491  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
1492       ++It)
1493    (*It)->commit();
1494  Actions.clear();
1495}
1496
1497void TypePromotionTransaction::rollback(
1498    TypePromotionTransaction::ConstRestorationPt Point) {
1499  while (!Actions.empty() && Point != Actions.back().get()) {
1500    std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
1501    Curr->undo();
1502  }
1503}
1504
1505/// \brief A helper class for matching addressing modes.
1506///
1507/// This encapsulates the logic for matching the target-legal addressing modes.
1508class AddressingModeMatcher {
1509  SmallVectorImpl<Instruction*> &AddrModeInsts;
1510  const TargetLowering &TLI;
1511
1512  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
1513  /// the memory instruction that we're computing this address for.
1514  Type *AccessTy;
1515  Instruction *MemoryInst;
1516
1517  /// AddrMode - This is the addressing mode that we're building up.  This is
1518  /// part of the return value of this addressing mode matching stuff.
1519  ExtAddrMode &AddrMode;
1520
1521  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
1522  const SetOfInstrs &InsertedTruncs;
1523  /// A map from the instructions to their type before promotion.
1524  InstrToOrigTy &PromotedInsts;
1525  /// The ongoing transaction where every action should be registered.
1526  TypePromotionTransaction &TPT;
1527
1528  /// IgnoreProfitability - This is set to true when we should not do
1529  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
1530  /// always returns true.
1531  bool IgnoreProfitability;
1532
1533  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
1534                        const TargetLowering &T, Type *AT,
1535                        Instruction *MI, ExtAddrMode &AM,
1536                        const SetOfInstrs &InsertedTruncs,
1537                        InstrToOrigTy &PromotedInsts,
1538                        TypePromotionTransaction &TPT)
1539      : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
1540        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
1541    IgnoreProfitability = false;
1542  }
1543public:
1544
1545  /// Match - Find the maximal addressing mode that a load/store of V can fold,
1546  /// give an access type of AccessTy.  This returns a list of involved
1547  /// instructions in AddrModeInsts.
1548  /// \p InsertedTruncs The truncate instruction inserted by other
1549  /// CodeGenPrepare
1550  /// optimizations.
1551  /// \p PromotedInsts maps the instructions to their type before promotion.
1552  /// \p The ongoing transaction where every action should be registered.
1553  static ExtAddrMode Match(Value *V, Type *AccessTy,
1554                           Instruction *MemoryInst,
1555                           SmallVectorImpl<Instruction*> &AddrModeInsts,
1556                           const TargetLowering &TLI,
1557                           const SetOfInstrs &InsertedTruncs,
1558                           InstrToOrigTy &PromotedInsts,
1559                           TypePromotionTransaction &TPT) {
1560    ExtAddrMode Result;
1561
1562    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
1563                                         MemoryInst, Result, InsertedTruncs,
1564                                         PromotedInsts, TPT).MatchAddr(V, 0);
1565    (void)Success; assert(Success && "Couldn't select *anything*?");
1566    return Result;
1567  }
1568private:
1569  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
1570  bool MatchAddr(Value *V, unsigned Depth);
1571  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
1572                          bool *MovedAway = nullptr);
1573  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
1574                                            ExtAddrMode &AMBefore,
1575                                            ExtAddrMode &AMAfter);
1576  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
1577  bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
1578                             Value *PromotedOperand) const;
1579};
1580
1581/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
1582/// Return true and update AddrMode if this addr mode is legal for the target,
1583/// false if not.
1584bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
1585                                             unsigned Depth) {
1586  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
1587  // mode.  Just process that directly.
1588  if (Scale == 1)
1589    return MatchAddr(ScaleReg, Depth);
1590
1591  // If the scale is 0, it takes nothing to add this.
1592  if (Scale == 0)
1593    return true;
1594
1595  // If we already have a scale of this value, we can add to it, otherwise, we
1596  // need an available scale field.
1597  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
1598    return false;
1599
1600  ExtAddrMode TestAddrMode = AddrMode;
1601
1602  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
1603  // [A+B + A*7] -> [B+A*8].
1604  TestAddrMode.Scale += Scale;
1605  TestAddrMode.ScaledReg = ScaleReg;
1606
1607  // If the new address isn't legal, bail out.
1608  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
1609    return false;
1610
1611  // It was legal, so commit it.
1612  AddrMode = TestAddrMode;
1613
1614  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
1615  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
1616  // X*Scale + C*Scale to addr mode.
1617  ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
1618  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
1619      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
1620    TestAddrMode.ScaledReg = AddLHS;
1621    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
1622
1623    // If this addressing mode is legal, commit it and remember that we folded
1624    // this instruction.
1625    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
1626      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
1627      AddrMode = TestAddrMode;
1628      return true;
1629    }
1630  }
1631
1632  // Otherwise, not (x+c)*scale, just return what we have.
1633  return true;
1634}
1635
1636/// MightBeFoldableInst - This is a little filter, which returns true if an
1637/// addressing computation involving I might be folded into a load/store
1638/// accessing it.  This doesn't need to be perfect, but needs to accept at least
1639/// the set of instructions that MatchOperationAddr can.
1640static bool MightBeFoldableInst(Instruction *I) {
1641  switch (I->getOpcode()) {
1642  case Instruction::BitCast:
1643  case Instruction::AddrSpaceCast:
1644    // Don't touch identity bitcasts.
1645    if (I->getType() == I->getOperand(0)->getType())
1646      return false;
1647    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
1648  case Instruction::PtrToInt:
1649    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1650    return true;
1651  case Instruction::IntToPtr:
1652    // We know the input is intptr_t, so this is foldable.
1653    return true;
1654  case Instruction::Add:
1655    return true;
1656  case Instruction::Mul:
1657  case Instruction::Shl:
1658    // Can only handle X*C and X << C.
1659    return isa<ConstantInt>(I->getOperand(1));
1660  case Instruction::GetElementPtr:
1661    return true;
1662  default:
1663    return false;
1664  }
1665}
1666
1667/// \brief Hepler class to perform type promotion.
1668class TypePromotionHelper {
1669  /// \brief Utility function to check whether or not a sign extension of
1670  /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
1671  /// using the operands of \p Inst or promoting \p Inst.
1672  /// In other words, check if:
1673  /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
1674  /// #1 Promotion applies:
1675  /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
1676  /// #2 Operand reuses:
1677  /// sext opnd1 to ConsideredSExtType.
1678  /// \p PromotedInsts maps the instructions to their type before promotion.
1679  static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
1680                            const InstrToOrigTy &PromotedInsts);
1681
1682  /// \brief Utility function to determine if \p OpIdx should be promoted when
1683  /// promoting \p Inst.
1684  static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
1685    if (isa<SelectInst>(Inst) && OpIdx == 0)
1686      return false;
1687    return true;
1688  }
1689
1690  /// \brief Utility function to promote the operand of \p SExt when this
1691  /// operand is a promotable trunc or sext.
1692  /// \p PromotedInsts maps the instructions to their type before promotion.
1693  /// \p CreatedInsts[out] contains how many non-free instructions have been
1694  /// created to promote the operand of SExt.
1695  /// Should never be called directly.
1696  /// \return The promoted value which is used instead of SExt.
1697  static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
1698                                              TypePromotionTransaction &TPT,
1699                                              InstrToOrigTy &PromotedInsts,
1700                                              unsigned &CreatedInsts);
1701
1702  /// \brief Utility function to promote the operand of \p SExt when this
1703  /// operand is promotable and is not a supported trunc or sext.
1704  /// \p PromotedInsts maps the instructions to their type before promotion.
1705  /// \p CreatedInsts[out] contains how many non-free instructions have been
1706  /// created to promote the operand of SExt.
1707  /// Should never be called directly.
1708  /// \return The promoted value which is used instead of SExt.
1709  static Value *promoteOperandForOther(Instruction *SExt,
1710                                       TypePromotionTransaction &TPT,
1711                                       InstrToOrigTy &PromotedInsts,
1712                                       unsigned &CreatedInsts);
1713
1714public:
1715  /// Type for the utility function that promotes the operand of SExt.
1716  typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
1717                           InstrToOrigTy &PromotedInsts,
1718                           unsigned &CreatedInsts);
1719  /// \brief Given a sign extend instruction \p SExt, return the approriate
1720  /// action to promote the operand of \p SExt instead of using SExt.
1721  /// \return NULL if no promotable action is possible with the current
1722  /// sign extension.
1723  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
1724  /// the others CodeGenPrepare optimizations. This information is important
1725  /// because we do not want to promote these instructions as CodeGenPrepare
1726  /// will reinsert them later. Thus creating an infinite loop: create/remove.
1727  /// \p PromotedInsts maps the instructions to their type before promotion.
1728  static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
1729                          const TargetLowering &TLI,
1730                          const InstrToOrigTy &PromotedInsts);
1731};
1732
1733bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
1734                                        Type *ConsideredSExtType,
1735                                        const InstrToOrigTy &PromotedInsts) {
1736  // We can always get through sext.
1737  if (isa<SExtInst>(Inst))
1738    return true;
1739
1740  // We can get through binary operator, if it is legal. In other words, the
1741  // binary operator must have a nuw or nsw flag.
1742  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
1743  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
1744      (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
1745    return true;
1746
1747  // Check if we can do the following simplification.
1748  // sext(trunc(sext)) --> sext
1749  if (!isa<TruncInst>(Inst))
1750    return false;
1751
1752  Value *OpndVal = Inst->getOperand(0);
1753  // Check if we can use this operand in the sext.
1754  // If the type is larger than the result type of the sign extension,
1755  // we cannot.
1756  if (OpndVal->getType()->getIntegerBitWidth() >
1757      ConsideredSExtType->getIntegerBitWidth())
1758    return false;
1759
1760  // If the operand of the truncate is not an instruction, we will not have
1761  // any information on the dropped bits.
1762  // (Actually we could for constant but it is not worth the extra logic).
1763  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
1764  if (!Opnd)
1765    return false;
1766
1767  // Check if the source of the type is narrow enough.
1768  // I.e., check that trunc just drops sign extended bits.
1769  // #1 get the type of the operand.
1770  const Type *OpndType;
1771  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
1772  if (It != PromotedInsts.end())
1773    OpndType = It->second;
1774  else if (isa<SExtInst>(Opnd))
1775    OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
1776  else
1777    return false;
1778
1779  // #2 check that the truncate just drop sign extended bits.
1780  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
1781    return true;
1782
1783  return false;
1784}
1785
1786TypePromotionHelper::Action TypePromotionHelper::getAction(
1787    Instruction *SExt, const SetOfInstrs &InsertedTruncs,
1788    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
1789  Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
1790  Type *SExtTy = SExt->getType();
1791  // If the operand of the sign extension is not an instruction, we cannot
1792  // get through.
1793  // If it, check we can get through.
1794  if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
1795    return nullptr;
1796
1797  // Do not promote if the operand has been added by codegenprepare.
1798  // Otherwise, it means we are undoing an optimization that is likely to be
1799  // redone, thus causing potential infinite loop.
1800  if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
1801    return nullptr;
1802
1803  // SExt or Trunc instructions.
1804  // Return the related handler.
1805  if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
1806    return promoteOperandForTruncAndSExt;
1807
1808  // Regular instruction.
1809  // Abort early if we will have to insert non-free instructions.
1810  if (!SExtOpnd->hasOneUse() &&
1811      !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
1812    return nullptr;
1813  return promoteOperandForOther;
1814}
1815
1816Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
1817    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
1818    InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
1819  // By construction, the operand of SExt is an instruction. Otherwise we cannot
1820  // get through it and this method should not be called.
1821  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
1822  // Replace sext(trunc(opnd)) or sext(sext(opnd))
1823  // => sext(opnd).
1824  TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
1825  CreatedInsts = 0;
1826
1827  // Remove dead code.
1828  if (SExtOpnd->use_empty())
1829    TPT.eraseInstruction(SExtOpnd);
1830
1831  // Check if the sext is still needed.
1832  if (SExt->getType() != SExt->getOperand(0)->getType())
1833    return SExt;
1834
1835  // At this point we have: sext ty opnd to ty.
1836  // Reassign the uses of SExt to the opnd and remove SExt.
1837  Value *NextVal = SExt->getOperand(0);
1838  TPT.eraseInstruction(SExt, NextVal);
1839  return NextVal;
1840}
1841
1842Value *
1843TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
1844                                            TypePromotionTransaction &TPT,
1845                                            InstrToOrigTy &PromotedInsts,
1846                                            unsigned &CreatedInsts) {
1847  // By construction, the operand of SExt is an instruction. Otherwise we cannot
1848  // get through it and this method should not be called.
1849  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
1850  CreatedInsts = 0;
1851  if (!SExtOpnd->hasOneUse()) {
1852    // SExtOpnd will be promoted.
1853    // All its uses, but SExt, will need to use a truncated value of the
1854    // promoted version.
1855    // Create the truncate now.
1856    Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
1857    Trunc->removeFromParent();
1858    // Insert it just after the definition.
1859    Trunc->insertAfter(SExtOpnd);
1860
1861    TPT.replaceAllUsesWith(SExtOpnd, Trunc);
1862    // Restore the operand of SExt (which has been replace by the previous call
1863    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
1864    TPT.setOperand(SExt, 0, SExtOpnd);
1865  }
1866
1867  // Get through the Instruction:
1868  // 1. Update its type.
1869  // 2. Replace the uses of SExt by Inst.
1870  // 3. Sign extend each operand that needs to be sign extended.
1871
1872  // Remember the original type of the instruction before promotion.
1873  // This is useful to know that the high bits are sign extended bits.
1874  PromotedInsts.insert(
1875      std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
1876  // Step #1.
1877  TPT.mutateType(SExtOpnd, SExt->getType());
1878  // Step #2.
1879  TPT.replaceAllUsesWith(SExt, SExtOpnd);
1880  // Step #3.
1881  Instruction *SExtForOpnd = SExt;
1882
1883  DEBUG(dbgs() << "Propagate SExt to operands\n");
1884  for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
1885       ++OpIdx) {
1886    DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
1887    if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
1888        !shouldSExtOperand(SExtOpnd, OpIdx)) {
1889      DEBUG(dbgs() << "No need to propagate\n");
1890      continue;
1891    }
1892    // Check if we can statically sign extend the operand.
1893    Value *Opnd = SExtOpnd->getOperand(OpIdx);
1894    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
1895      DEBUG(dbgs() << "Statically sign extend\n");
1896      TPT.setOperand(
1897          SExtOpnd, OpIdx,
1898          ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
1899      continue;
1900    }
1901    // UndefValue are typed, so we have to statically sign extend them.
1902    if (isa<UndefValue>(Opnd)) {
1903      DEBUG(dbgs() << "Statically sign extend\n");
1904      TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
1905      continue;
1906    }
1907
1908    // Otherwise we have to explicity sign extend the operand.
1909    // Check if SExt was reused to sign extend an operand.
1910    if (!SExtForOpnd) {
1911      // If yes, create a new one.
1912      DEBUG(dbgs() << "More operands to sext\n");
1913      SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
1914      ++CreatedInsts;
1915    }
1916
1917    TPT.setOperand(SExtForOpnd, 0, Opnd);
1918
1919    // Move the sign extension before the insertion point.
1920    TPT.moveBefore(SExtForOpnd, SExtOpnd);
1921    TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
1922    // If more sext are required, new instructions will have to be created.
1923    SExtForOpnd = nullptr;
1924  }
1925  if (SExtForOpnd == SExt) {
1926    DEBUG(dbgs() << "Sign extension is useless now\n");
1927    TPT.eraseInstruction(SExt);
1928  }
1929  return SExtOpnd;
1930}
1931
1932/// IsPromotionProfitable - Check whether or not promoting an instruction
1933/// to a wider type was profitable.
1934/// \p MatchedSize gives the number of instructions that have been matched
1935/// in the addressing mode after the promotion was applied.
1936/// \p SizeWithPromotion gives the number of created instructions for
1937/// the promotion plus the number of instructions that have been
1938/// matched in the addressing mode before the promotion.
1939/// \p PromotedOperand is the value that has been promoted.
1940/// \return True if the promotion is profitable, false otherwise.
1941bool
1942AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
1943                                             unsigned SizeWithPromotion,
1944                                             Value *PromotedOperand) const {
1945  // We folded less instructions than what we created to promote the operand.
1946  // This is not profitable.
1947  if (MatchedSize < SizeWithPromotion)
1948    return false;
1949  if (MatchedSize > SizeWithPromotion)
1950    return true;
1951  // The promotion is neutral but it may help folding the sign extension in
1952  // loads for instance.
1953  // Check that we did not create an illegal instruction.
1954  Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
1955  if (!PromotedInst)
1956    return false;
1957  int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
1958  // If the ISDOpcode is undefined, it was undefined before the promotion.
1959  if (!ISDOpcode)
1960    return true;
1961  // Otherwise, check if the promoted instruction is legal or not.
1962  return TLI.isOperationLegalOrCustom(ISDOpcode,
1963                                      EVT::getEVT(PromotedInst->getType()));
1964}
1965
1966/// MatchOperationAddr - Given an instruction or constant expr, see if we can
1967/// fold the operation into the addressing mode.  If so, update the addressing
1968/// mode and return true, otherwise return false without modifying AddrMode.
1969/// If \p MovedAway is not NULL, it contains the information of whether or
1970/// not AddrInst has to be folded into the addressing mode on success.
1971/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
1972/// because it has been moved away.
1973/// Thus AddrInst must not be added in the matched instructions.
1974/// This state can happen when AddrInst is a sext, since it may be moved away.
1975/// Therefore, AddrInst may not be valid when MovedAway is true and it must
1976/// not be referenced anymore.
1977bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
1978                                               unsigned Depth,
1979                                               bool *MovedAway) {
1980  // Avoid exponential behavior on extremely deep expression trees.
1981  if (Depth >= 5) return false;
1982
1983  // By default, all matched instructions stay in place.
1984  if (MovedAway)
1985    *MovedAway = false;
1986
1987  switch (Opcode) {
1988  case Instruction::PtrToInt:
1989    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1990    return MatchAddr(AddrInst->getOperand(0), Depth);
1991  case Instruction::IntToPtr:
1992    // This inttoptr is a no-op if the integer type is pointer sized.
1993    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
1994        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
1995      return MatchAddr(AddrInst->getOperand(0), Depth);
1996    return false;
1997  case Instruction::BitCast:
1998  case Instruction::AddrSpaceCast:
1999    // BitCast is always a noop, and we can handle it as long as it is
2000    // int->int or pointer->pointer (we don't want int<->fp or something).
2001    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
2002         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
2003        // Don't touch identity bitcasts.  These were probably put here by LSR,
2004        // and we don't want to mess around with them.  Assume it knows what it
2005        // is doing.
2006        AddrInst->getOperand(0)->getType() != AddrInst->getType())
2007      return MatchAddr(AddrInst->getOperand(0), Depth);
2008    return false;
2009  case Instruction::Add: {
2010    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
2011    ExtAddrMode BackupAddrMode = AddrMode;
2012    unsigned OldSize = AddrModeInsts.size();
2013    // Start a transaction at this point.
2014    // The LHS may match but not the RHS.
2015    // Therefore, we need a higher level restoration point to undo partially
2016    // matched operation.
2017    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2018        TPT.getRestorationPoint();
2019
2020    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
2021        MatchAddr(AddrInst->getOperand(0), Depth+1))
2022      return true;
2023
2024    // Restore the old addr mode info.
2025    AddrMode = BackupAddrMode;
2026    AddrModeInsts.resize(OldSize);
2027    TPT.rollback(LastKnownGood);
2028
2029    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
2030    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
2031        MatchAddr(AddrInst->getOperand(1), Depth+1))
2032      return true;
2033
2034    // Otherwise we definitely can't merge the ADD in.
2035    AddrMode = BackupAddrMode;
2036    AddrModeInsts.resize(OldSize);
2037    TPT.rollback(LastKnownGood);
2038    break;
2039  }
2040  //case Instruction::Or:
2041  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
2042  //break;
2043  case Instruction::Mul:
2044  case Instruction::Shl: {
2045    // Can only handle X*C and X << C.
2046    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
2047    if (!RHS) return false;
2048    int64_t Scale = RHS->getSExtValue();
2049    if (Opcode == Instruction::Shl)
2050      Scale = 1LL << Scale;
2051
2052    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
2053  }
2054  case Instruction::GetElementPtr: {
2055    // Scan the GEP.  We check it if it contains constant offsets and at most
2056    // one variable offset.
2057    int VariableOperand = -1;
2058    unsigned VariableScale = 0;
2059
2060    int64_t ConstantOffset = 0;
2061    const DataLayout *TD = TLI.getDataLayout();
2062    gep_type_iterator GTI = gep_type_begin(AddrInst);
2063    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
2064      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
2065        const StructLayout *SL = TD->getStructLayout(STy);
2066        unsigned Idx =
2067          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
2068        ConstantOffset += SL->getElementOffset(Idx);
2069      } else {
2070        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
2071        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
2072          ConstantOffset += CI->getSExtValue()*TypeSize;
2073        } else if (TypeSize) {  // Scales of zero don't do anything.
2074          // We only allow one variable index at the moment.
2075          if (VariableOperand != -1)
2076            return false;
2077
2078          // Remember the variable index.
2079          VariableOperand = i;
2080          VariableScale = TypeSize;
2081        }
2082      }
2083    }
2084
2085    // A common case is for the GEP to only do a constant offset.  In this case,
2086    // just add it to the disp field and check validity.
2087    if (VariableOperand == -1) {
2088      AddrMode.BaseOffs += ConstantOffset;
2089      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
2090        // Check to see if we can fold the base pointer in too.
2091        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
2092          return true;
2093      }
2094      AddrMode.BaseOffs -= ConstantOffset;
2095      return false;
2096    }
2097
2098    // Save the valid addressing mode in case we can't match.
2099    ExtAddrMode BackupAddrMode = AddrMode;
2100    unsigned OldSize = AddrModeInsts.size();
2101
2102    // See if the scale and offset amount is valid for this target.
2103    AddrMode.BaseOffs += ConstantOffset;
2104
2105    // Match the base operand of the GEP.
2106    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
2107      // If it couldn't be matched, just stuff the value in a register.
2108      if (AddrMode.HasBaseReg) {
2109        AddrMode = BackupAddrMode;
2110        AddrModeInsts.resize(OldSize);
2111        return false;
2112      }
2113      AddrMode.HasBaseReg = true;
2114      AddrMode.BaseReg = AddrInst->getOperand(0);
2115    }
2116
2117    // Match the remaining variable portion of the GEP.
2118    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
2119                          Depth)) {
2120      // If it couldn't be matched, try stuffing the base into a register
2121      // instead of matching it, and retrying the match of the scale.
2122      AddrMode = BackupAddrMode;
2123      AddrModeInsts.resize(OldSize);
2124      if (AddrMode.HasBaseReg)
2125        return false;
2126      AddrMode.HasBaseReg = true;
2127      AddrMode.BaseReg = AddrInst->getOperand(0);
2128      AddrMode.BaseOffs += ConstantOffset;
2129      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
2130                            VariableScale, Depth)) {
2131        // If even that didn't work, bail.
2132        AddrMode = BackupAddrMode;
2133        AddrModeInsts.resize(OldSize);
2134        return false;
2135      }
2136    }
2137
2138    return true;
2139  }
2140  case Instruction::SExt: {
2141    // Try to move this sext out of the way of the addressing mode.
2142    Instruction *SExt = cast<Instruction>(AddrInst);
2143    // Ask for a method for doing so.
2144    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
2145        SExt, InsertedTruncs, TLI, PromotedInsts);
2146    if (!TPH)
2147      return false;
2148
2149    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2150        TPT.getRestorationPoint();
2151    unsigned CreatedInsts = 0;
2152    Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
2153    // SExt has been moved away.
2154    // Thus either it will be rematched later in the recursive calls or it is
2155    // gone. Anyway, we must not fold it into the addressing mode at this point.
2156    // E.g.,
2157    // op = add opnd, 1
2158    // idx = sext op
2159    // addr = gep base, idx
2160    // is now:
2161    // promotedOpnd = sext opnd           <- no match here
2162    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
2163    // addr = gep base, op                <- match
2164    if (MovedAway)
2165      *MovedAway = true;
2166
2167    assert(PromotedOperand &&
2168           "TypePromotionHelper should have filtered out those cases");
2169
2170    ExtAddrMode BackupAddrMode = AddrMode;
2171    unsigned OldSize = AddrModeInsts.size();
2172
2173    if (!MatchAddr(PromotedOperand, Depth) ||
2174        !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
2175                               PromotedOperand)) {
2176      AddrMode = BackupAddrMode;
2177      AddrModeInsts.resize(OldSize);
2178      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
2179      TPT.rollback(LastKnownGood);
2180      return false;
2181    }
2182    return true;
2183  }
2184  }
2185  return false;
2186}
2187
2188/// MatchAddr - If we can, try to add the value of 'Addr' into the current
2189/// addressing mode.  If Addr can't be added to AddrMode this returns false and
2190/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
2191/// or intptr_t for the target.
2192///
2193bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
2194  // Start a transaction at this point that we will rollback if the matching
2195  // fails.
2196  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2197      TPT.getRestorationPoint();
2198  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
2199    // Fold in immediates if legal for the target.
2200    AddrMode.BaseOffs += CI->getSExtValue();
2201    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2202      return true;
2203    AddrMode.BaseOffs -= CI->getSExtValue();
2204  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
2205    // If this is a global variable, try to fold it into the addressing mode.
2206    if (!AddrMode.BaseGV) {
2207      AddrMode.BaseGV = GV;
2208      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2209        return true;
2210      AddrMode.BaseGV = nullptr;
2211    }
2212  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
2213    ExtAddrMode BackupAddrMode = AddrMode;
2214    unsigned OldSize = AddrModeInsts.size();
2215
2216    // Check to see if it is possible to fold this operation.
2217    bool MovedAway = false;
2218    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
2219      // This instruction may have been move away. If so, there is nothing
2220      // to check here.
2221      if (MovedAway)
2222        return true;
2223      // Okay, it's possible to fold this.  Check to see if it is actually
2224      // *profitable* to do so.  We use a simple cost model to avoid increasing
2225      // register pressure too much.
2226      if (I->hasOneUse() ||
2227          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
2228        AddrModeInsts.push_back(I);
2229        return true;
2230      }
2231
2232      // It isn't profitable to do this, roll back.
2233      //cerr << "NOT FOLDING: " << *I;
2234      AddrMode = BackupAddrMode;
2235      AddrModeInsts.resize(OldSize);
2236      TPT.rollback(LastKnownGood);
2237    }
2238  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2239    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
2240      return true;
2241    TPT.rollback(LastKnownGood);
2242  } else if (isa<ConstantPointerNull>(Addr)) {
2243    // Null pointer gets folded without affecting the addressing mode.
2244    return true;
2245  }
2246
2247  // Worse case, the target should support [reg] addressing modes. :)
2248  if (!AddrMode.HasBaseReg) {
2249    AddrMode.HasBaseReg = true;
2250    AddrMode.BaseReg = Addr;
2251    // Still check for legality in case the target supports [imm] but not [i+r].
2252    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2253      return true;
2254    AddrMode.HasBaseReg = false;
2255    AddrMode.BaseReg = nullptr;
2256  }
2257
2258  // If the base register is already taken, see if we can do [r+r].
2259  if (AddrMode.Scale == 0) {
2260    AddrMode.Scale = 1;
2261    AddrMode.ScaledReg = Addr;
2262    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
2263      return true;
2264    AddrMode.Scale = 0;
2265    AddrMode.ScaledReg = nullptr;
2266  }
2267  // Couldn't match.
2268  TPT.rollback(LastKnownGood);
2269  return false;
2270}
2271
2272/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
2273/// inline asm call are due to memory operands.  If so, return true, otherwise
2274/// return false.
2275static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
2276                                    const TargetLowering &TLI) {
2277  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
2278  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2279    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2280
2281    // Compute the constraint code and ConstraintType to use.
2282    TLI.ComputeConstraintToUse(OpInfo, SDValue());
2283
2284    // If this asm operand is our Value*, and if it isn't an indirect memory
2285    // operand, we can't fold it!
2286    if (OpInfo.CallOperandVal == OpVal &&
2287        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
2288         !OpInfo.isIndirect))
2289      return false;
2290  }
2291
2292  return true;
2293}
2294
2295/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
2296/// memory use.  If we find an obviously non-foldable instruction, return true.
2297/// Add the ultimately found memory instructions to MemoryUses.
2298static bool FindAllMemoryUses(Instruction *I,
2299                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
2300                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
2301                              const TargetLowering &TLI) {
2302  // If we already considered this instruction, we're done.
2303  if (!ConsideredInsts.insert(I))
2304    return false;
2305
2306  // If this is an obviously unfoldable instruction, bail out.
2307  if (!MightBeFoldableInst(I))
2308    return true;
2309
2310  // Loop over all the uses, recursively processing them.
2311  for (Use &U : I->uses()) {
2312    Instruction *UserI = cast<Instruction>(U.getUser());
2313
2314    if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
2315      MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
2316      continue;
2317    }
2318
2319    if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
2320      unsigned opNo = U.getOperandNo();
2321      if (opNo == 0) return true; // Storing addr, not into addr.
2322      MemoryUses.push_back(std::make_pair(SI, opNo));
2323      continue;
2324    }
2325
2326    if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
2327      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
2328      if (!IA) return true;
2329
2330      // If this is a memory operand, we're cool, otherwise bail out.
2331      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
2332        return true;
2333      continue;
2334    }
2335
2336    if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI))
2337      return true;
2338  }
2339
2340  return false;
2341}
2342
2343/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
2344/// the use site that we're folding it into.  If so, there is no cost to
2345/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
2346/// that we know are live at the instruction already.
2347bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
2348                                                   Value *KnownLive2) {
2349  // If Val is either of the known-live values, we know it is live!
2350  if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
2351    return true;
2352
2353  // All values other than instructions and arguments (e.g. constants) are live.
2354  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
2355
2356  // If Val is a constant sized alloca in the entry block, it is live, this is
2357  // true because it is just a reference to the stack/frame pointer, which is
2358  // live for the whole function.
2359  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
2360    if (AI->isStaticAlloca())
2361      return true;
2362
2363  // Check to see if this value is already used in the memory instruction's
2364  // block.  If so, it's already live into the block at the very least, so we
2365  // can reasonably fold it.
2366  return Val->isUsedInBasicBlock(MemoryInst->getParent());
2367}
2368
2369/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
2370/// mode of the machine to fold the specified instruction into a load or store
2371/// that ultimately uses it.  However, the specified instruction has multiple
2372/// uses.  Given this, it may actually increase register pressure to fold it
2373/// into the load.  For example, consider this code:
2374///
2375///     X = ...
2376///     Y = X+1
2377///     use(Y)   -> nonload/store
2378///     Z = Y+1
2379///     load Z
2380///
2381/// In this case, Y has multiple uses, and can be folded into the load of Z
2382/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
2383/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
2384/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
2385/// number of computations either.
2386///
2387/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
2388/// X was live across 'load Z' for other reasons, we actually *would* want to
2389/// fold the addressing mode in the Z case.  This would make Y die earlier.
2390bool AddressingModeMatcher::
2391IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
2392                                     ExtAddrMode &AMAfter) {
2393  if (IgnoreProfitability) return true;
2394
2395  // AMBefore is the addressing mode before this instruction was folded into it,
2396  // and AMAfter is the addressing mode after the instruction was folded.  Get
2397  // the set of registers referenced by AMAfter and subtract out those
2398  // referenced by AMBefore: this is the set of values which folding in this
2399  // address extends the lifetime of.
2400  //
2401  // Note that there are only two potential values being referenced here,
2402  // BaseReg and ScaleReg (global addresses are always available, as are any
2403  // folded immediates).
2404  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
2405
2406  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
2407  // lifetime wasn't extended by adding this instruction.
2408  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
2409    BaseReg = nullptr;
2410  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
2411    ScaledReg = nullptr;
2412
2413  // If folding this instruction (and it's subexprs) didn't extend any live
2414  // ranges, we're ok with it.
2415  if (!BaseReg && !ScaledReg)
2416    return true;
2417
2418  // If all uses of this instruction are ultimately load/store/inlineasm's,
2419  // check to see if their addressing modes will include this instruction.  If
2420  // so, we can fold it into all uses, so it doesn't matter if it has multiple
2421  // uses.
2422  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
2423  SmallPtrSet<Instruction*, 16> ConsideredInsts;
2424  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
2425    return false;  // Has a non-memory, non-foldable use!
2426
2427  // Now that we know that all uses of this instruction are part of a chain of
2428  // computation involving only operations that could theoretically be folded
2429  // into a memory use, loop over each of these uses and see if they could
2430  // *actually* fold the instruction.
2431  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
2432  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
2433    Instruction *User = MemoryUses[i].first;
2434    unsigned OpNo = MemoryUses[i].second;
2435
2436    // Get the access type of this use.  If the use isn't a pointer, we don't
2437    // know what it accesses.
2438    Value *Address = User->getOperand(OpNo);
2439    if (!Address->getType()->isPointerTy())
2440      return false;
2441    Type *AddressAccessTy = Address->getType()->getPointerElementType();
2442
2443    // Do a match against the root of this address, ignoring profitability. This
2444    // will tell us if the addressing mode for the memory operation will
2445    // *actually* cover the shared instruction.
2446    ExtAddrMode Result;
2447    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2448        TPT.getRestorationPoint();
2449    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
2450                                  MemoryInst, Result, InsertedTruncs,
2451                                  PromotedInsts, TPT);
2452    Matcher.IgnoreProfitability = true;
2453    bool Success = Matcher.MatchAddr(Address, 0);
2454    (void)Success; assert(Success && "Couldn't select *anything*?");
2455
2456    // The match was to check the profitability, the changes made are not
2457    // part of the original matcher. Therefore, they should be dropped
2458    // otherwise the original matcher will not present the right state.
2459    TPT.rollback(LastKnownGood);
2460
2461    // If the match didn't cover I, then it won't be shared by it.
2462    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
2463                  I) == MatchedAddrModeInsts.end())
2464      return false;
2465
2466    MatchedAddrModeInsts.clear();
2467  }
2468
2469  return true;
2470}
2471
2472} // end anonymous namespace
2473
2474/// IsNonLocalValue - Return true if the specified values are defined in a
2475/// different basic block than BB.
2476static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
2477  if (Instruction *I = dyn_cast<Instruction>(V))
2478    return I->getParent() != BB;
2479  return false;
2480}
2481
2482/// OptimizeMemoryInst - Load and Store Instructions often have
2483/// addressing modes that can do significant amounts of computation.  As such,
2484/// instruction selection will try to get the load or store to do as much
2485/// computation as possible for the program.  The problem is that isel can only
2486/// see within a single block.  As such, we sink as much legal addressing mode
2487/// stuff into the block as possible.
2488///
2489/// This method is used to optimize both load/store and inline asms with memory
2490/// operands.
2491bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
2492                                        Type *AccessTy) {
2493  Value *Repl = Addr;
2494
2495  // Try to collapse single-value PHI nodes.  This is necessary to undo
2496  // unprofitable PRE transformations.
2497  SmallVector<Value*, 8> worklist;
2498  SmallPtrSet<Value*, 16> Visited;
2499  worklist.push_back(Addr);
2500
2501  // Use a worklist to iteratively look through PHI nodes, and ensure that
2502  // the addressing mode obtained from the non-PHI roots of the graph
2503  // are equivalent.
2504  Value *Consensus = nullptr;
2505  unsigned NumUsesConsensus = 0;
2506  bool IsNumUsesConsensusValid = false;
2507  SmallVector<Instruction*, 16> AddrModeInsts;
2508  ExtAddrMode AddrMode;
2509  TypePromotionTransaction TPT;
2510  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
2511      TPT.getRestorationPoint();
2512  while (!worklist.empty()) {
2513    Value *V = worklist.back();
2514    worklist.pop_back();
2515
2516    // Break use-def graph loops.
2517    if (!Visited.insert(V)) {
2518      Consensus = nullptr;
2519      break;
2520    }
2521
2522    // For a PHI node, push all of its incoming values.
2523    if (PHINode *P = dyn_cast<PHINode>(V)) {
2524      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
2525        worklist.push_back(P->getIncomingValue(i));
2526      continue;
2527    }
2528
2529    // For non-PHIs, determine the addressing mode being computed.
2530    SmallVector<Instruction*, 16> NewAddrModeInsts;
2531    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
2532        V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
2533        PromotedInsts, TPT);
2534
2535    // This check is broken into two cases with very similar code to avoid using
2536    // getNumUses() as much as possible. Some values have a lot of uses, so
2537    // calling getNumUses() unconditionally caused a significant compile-time
2538    // regression.
2539    if (!Consensus) {
2540      Consensus = V;
2541      AddrMode = NewAddrMode;
2542      AddrModeInsts = NewAddrModeInsts;
2543      continue;
2544    } else if (NewAddrMode == AddrMode) {
2545      if (!IsNumUsesConsensusValid) {
2546        NumUsesConsensus = Consensus->getNumUses();
2547        IsNumUsesConsensusValid = true;
2548      }
2549
2550      // Ensure that the obtained addressing mode is equivalent to that obtained
2551      // for all other roots of the PHI traversal.  Also, when choosing one
2552      // such root as representative, select the one with the most uses in order
2553      // to keep the cost modeling heuristics in AddressingModeMatcher
2554      // applicable.
2555      unsigned NumUses = V->getNumUses();
2556      if (NumUses > NumUsesConsensus) {
2557        Consensus = V;
2558        NumUsesConsensus = NumUses;
2559        AddrModeInsts = NewAddrModeInsts;
2560      }
2561      continue;
2562    }
2563
2564    Consensus = nullptr;
2565    break;
2566  }
2567
2568  // If the addressing mode couldn't be determined, or if multiple different
2569  // ones were determined, bail out now.
2570  if (!Consensus) {
2571    TPT.rollback(LastKnownGood);
2572    return false;
2573  }
2574  TPT.commit();
2575
2576  // Check to see if any of the instructions supersumed by this addr mode are
2577  // non-local to I's BB.
2578  bool AnyNonLocal = false;
2579  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
2580    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
2581      AnyNonLocal = true;
2582      break;
2583    }
2584  }
2585
2586  // If all the instructions matched are already in this BB, don't do anything.
2587  if (!AnyNonLocal) {
2588    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
2589    return false;
2590  }
2591
2592  // Insert this computation right after this user.  Since our caller is
2593  // scanning from the top of the BB to the bottom, reuse of the expr are
2594  // guaranteed to happen later.
2595  IRBuilder<> Builder(MemoryInst);
2596
2597  // Now that we determined the addressing expression we want to use and know
2598  // that we have to sink it into this block.  Check to see if we have already
2599  // done this for some other load/store instr in this block.  If so, reuse the
2600  // computation.
2601  Value *&SunkAddr = SunkAddrs[Addr];
2602  if (SunkAddr) {
2603    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
2604                 << *MemoryInst << "\n");
2605    if (SunkAddr->getType() != Addr->getType())
2606      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
2607  } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
2608               TM && TM->getSubtarget<TargetSubtargetInfo>().useAA())) {
2609    // By default, we use the GEP-based method when AA is used later. This
2610    // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
2611    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
2612                 << *MemoryInst << "\n");
2613    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
2614    Value *ResultPtr = nullptr, *ResultIndex = nullptr;
2615
2616    // First, find the pointer.
2617    if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
2618      ResultPtr = AddrMode.BaseReg;
2619      AddrMode.BaseReg = nullptr;
2620    }
2621
2622    if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
2623      // We can't add more than one pointer together, nor can we scale a
2624      // pointer (both of which seem meaningless).
2625      if (ResultPtr || AddrMode.Scale != 1)
2626        return false;
2627
2628      ResultPtr = AddrMode.ScaledReg;
2629      AddrMode.Scale = 0;
2630    }
2631
2632    if (AddrMode.BaseGV) {
2633      if (ResultPtr)
2634        return false;
2635
2636      ResultPtr = AddrMode.BaseGV;
2637    }
2638
2639    // If the real base value actually came from an inttoptr, then the matcher
2640    // will look through it and provide only the integer value. In that case,
2641    // use it here.
2642    if (!ResultPtr && AddrMode.BaseReg) {
2643      ResultPtr =
2644        Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), "sunkaddr");
2645      AddrMode.BaseReg = nullptr;
2646    } else if (!ResultPtr && AddrMode.Scale == 1) {
2647      ResultPtr =
2648        Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), "sunkaddr");
2649      AddrMode.Scale = 0;
2650    }
2651
2652    if (!ResultPtr &&
2653        !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
2654      SunkAddr = Constant::getNullValue(Addr->getType());
2655    } else if (!ResultPtr) {
2656      return false;
2657    } else {
2658      Type *I8PtrTy =
2659        Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
2660
2661      // Start with the base register. Do this first so that subsequent address
2662      // matching finds it last, which will prevent it from trying to match it
2663      // as the scaled value in case it happens to be a mul. That would be
2664      // problematic if we've sunk a different mul for the scale, because then
2665      // we'd end up sinking both muls.
2666      if (AddrMode.BaseReg) {
2667        Value *V = AddrMode.BaseReg;
2668        if (V->getType() != IntPtrTy)
2669          V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
2670
2671        ResultIndex = V;
2672      }
2673
2674      // Add the scale value.
2675      if (AddrMode.Scale) {
2676        Value *V = AddrMode.ScaledReg;
2677        if (V->getType() == IntPtrTy) {
2678          // done.
2679        } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
2680                   cast<IntegerType>(V->getType())->getBitWidth()) {
2681          V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
2682        } else {
2683          // It is only safe to sign extend the BaseReg if we know that the math
2684          // required to create it did not overflow before we extend it. Since
2685          // the original IR value was tossed in favor of a constant back when
2686          // the AddrMode was created we need to bail out gracefully if widths
2687          // do not match instead of extending it.
2688          Instruction *I = dyn_cast_or_null<Instruction>(ResultIndex);
2689          if (I && (ResultIndex != AddrMode.BaseReg))
2690            I->eraseFromParent();
2691          return false;
2692        }
2693
2694        if (AddrMode.Scale != 1)
2695          V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
2696                                "sunkaddr");
2697        if (ResultIndex)
2698          ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
2699        else
2700          ResultIndex = V;
2701      }
2702
2703      // Add in the Base Offset if present.
2704      if (AddrMode.BaseOffs) {
2705        Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
2706        if (ResultIndex) {
2707	  // We need to add this separately from the scale above to help with
2708	  // SDAG consecutive load/store merging.
2709          if (ResultPtr->getType() != I8PtrTy)
2710            ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
2711          ResultPtr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
2712        }
2713
2714        ResultIndex = V;
2715      }
2716
2717      if (!ResultIndex) {
2718        SunkAddr = ResultPtr;
2719      } else {
2720        if (ResultPtr->getType() != I8PtrTy)
2721          ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
2722        SunkAddr = Builder.CreateGEP(ResultPtr, ResultIndex, "sunkaddr");
2723      }
2724
2725      if (SunkAddr->getType() != Addr->getType())
2726        SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
2727    }
2728  } else {
2729    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
2730                 << *MemoryInst << "\n");
2731    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
2732    Value *Result = nullptr;
2733
2734    // Start with the base register. Do this first so that subsequent address
2735    // matching finds it last, which will prevent it from trying to match it
2736    // as the scaled value in case it happens to be a mul. That would be
2737    // problematic if we've sunk a different mul for the scale, because then
2738    // we'd end up sinking both muls.
2739    if (AddrMode.BaseReg) {
2740      Value *V = AddrMode.BaseReg;
2741      if (V->getType()->isPointerTy())
2742        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
2743      if (V->getType() != IntPtrTy)
2744        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
2745      Result = V;
2746    }
2747
2748    // Add the scale value.
2749    if (AddrMode.Scale) {
2750      Value *V = AddrMode.ScaledReg;
2751      if (V->getType() == IntPtrTy) {
2752        // done.
2753      } else if (V->getType()->isPointerTy()) {
2754        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
2755      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
2756                 cast<IntegerType>(V->getType())->getBitWidth()) {
2757        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
2758      } else {
2759        // It is only safe to sign extend the BaseReg if we know that the math
2760        // required to create it did not overflow before we extend it. Since
2761        // the original IR value was tossed in favor of a constant back when
2762        // the AddrMode was created we need to bail out gracefully if widths
2763        // do not match instead of extending it.
2764        Instruction *I = dyn_cast_or_null<Instruction>(Result);
2765        if (I && (Result != AddrMode.BaseReg))
2766          I->eraseFromParent();
2767        return false;
2768      }
2769      if (AddrMode.Scale != 1)
2770        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
2771                              "sunkaddr");
2772      if (Result)
2773        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2774      else
2775        Result = V;
2776    }
2777
2778    // Add in the BaseGV if present.
2779    if (AddrMode.BaseGV) {
2780      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
2781      if (Result)
2782        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2783      else
2784        Result = V;
2785    }
2786
2787    // Add in the Base Offset if present.
2788    if (AddrMode.BaseOffs) {
2789      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
2790      if (Result)
2791        Result = Builder.CreateAdd(Result, V, "sunkaddr");
2792      else
2793        Result = V;
2794    }
2795
2796    if (!Result)
2797      SunkAddr = Constant::getNullValue(Addr->getType());
2798    else
2799      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
2800  }
2801
2802  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
2803
2804  // If we have no uses, recursively delete the value and all dead instructions
2805  // using it.
2806  if (Repl->use_empty()) {
2807    // This can cause recursive deletion, which can invalidate our iterator.
2808    // Use a WeakVH to hold onto it in case this happens.
2809    WeakVH IterHandle(CurInstIterator);
2810    BasicBlock *BB = CurInstIterator->getParent();
2811
2812    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
2813
2814    if (IterHandle != CurInstIterator) {
2815      // If the iterator instruction was recursively deleted, start over at the
2816      // start of the block.
2817      CurInstIterator = BB->begin();
2818      SunkAddrs.clear();
2819    }
2820  }
2821  ++NumMemoryInsts;
2822  return true;
2823}
2824
2825/// OptimizeInlineAsmInst - If there are any memory operands, use
2826/// OptimizeMemoryInst to sink their address computing into the block when
2827/// possible / profitable.
2828bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
2829  bool MadeChange = false;
2830
2831  TargetLowering::AsmOperandInfoVector
2832    TargetConstraints = TLI->ParseConstraints(CS);
2833  unsigned ArgNo = 0;
2834  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
2835    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
2836
2837    // Compute the constraint code and ConstraintType to use.
2838    TLI->ComputeConstraintToUse(OpInfo, SDValue());
2839
2840    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
2841        OpInfo.isIndirect) {
2842      Value *OpVal = CS->getArgOperand(ArgNo++);
2843      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
2844    } else if (OpInfo.Type == InlineAsm::isInput)
2845      ArgNo++;
2846  }
2847
2848  return MadeChange;
2849}
2850
2851/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
2852/// basic block as the load, unless conditions are unfavorable. This allows
2853/// SelectionDAG to fold the extend into the load.
2854///
2855bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
2856  // Look for a load being extended.
2857  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
2858  if (!LI) return false;
2859
2860  // If they're already in the same block, there's nothing to do.
2861  if (LI->getParent() == I->getParent())
2862    return false;
2863
2864  // If the load has other users and the truncate is not free, this probably
2865  // isn't worthwhile.
2866  if (!LI->hasOneUse() &&
2867      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
2868              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
2869      !TLI->isTruncateFree(I->getType(), LI->getType()))
2870    return false;
2871
2872  // Check whether the target supports casts folded into loads.
2873  unsigned LType;
2874  if (isa<ZExtInst>(I))
2875    LType = ISD::ZEXTLOAD;
2876  else {
2877    assert(isa<SExtInst>(I) && "Unexpected ext type!");
2878    LType = ISD::SEXTLOAD;
2879  }
2880  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
2881    return false;
2882
2883  // Move the extend into the same block as the load, so that SelectionDAG
2884  // can fold it.
2885  I->removeFromParent();
2886  I->insertAfter(LI);
2887  ++NumExtsMoved;
2888  return true;
2889}
2890
2891bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
2892  BasicBlock *DefBB = I->getParent();
2893
2894  // If the result of a {s|z}ext and its source are both live out, rewrite all
2895  // other uses of the source with result of extension.
2896  Value *Src = I->getOperand(0);
2897  if (Src->hasOneUse())
2898    return false;
2899
2900  // Only do this xform if truncating is free.
2901  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
2902    return false;
2903
2904  // Only safe to perform the optimization if the source is also defined in
2905  // this block.
2906  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
2907    return false;
2908
2909  bool DefIsLiveOut = false;
2910  for (User *U : I->users()) {
2911    Instruction *UI = cast<Instruction>(U);
2912
2913    // Figure out which BB this ext is used in.
2914    BasicBlock *UserBB = UI->getParent();
2915    if (UserBB == DefBB) continue;
2916    DefIsLiveOut = true;
2917    break;
2918  }
2919  if (!DefIsLiveOut)
2920    return false;
2921
2922  // Make sure none of the uses are PHI nodes.
2923  for (User *U : Src->users()) {
2924    Instruction *UI = cast<Instruction>(U);
2925    BasicBlock *UserBB = UI->getParent();
2926    if (UserBB == DefBB) continue;
2927    // Be conservative. We don't want this xform to end up introducing
2928    // reloads just before load / store instructions.
2929    if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
2930      return false;
2931  }
2932
2933  // InsertedTruncs - Only insert one trunc in each block once.
2934  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
2935
2936  bool MadeChange = false;
2937  for (Use &U : Src->uses()) {
2938    Instruction *User = cast<Instruction>(U.getUser());
2939
2940    // Figure out which BB this ext is used in.
2941    BasicBlock *UserBB = User->getParent();
2942    if (UserBB == DefBB) continue;
2943
2944    // Both src and def are live in this block. Rewrite the use.
2945    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
2946
2947    if (!InsertedTrunc) {
2948      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
2949      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
2950      InsertedTruncsSet.insert(InsertedTrunc);
2951    }
2952
2953    // Replace a use of the {s|z}ext source with a use of the result.
2954    U = InsertedTrunc;
2955    ++NumExtUses;
2956    MadeChange = true;
2957  }
2958
2959  return MadeChange;
2960}
2961
2962/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
2963/// turned into an explicit branch.
2964static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
2965  // FIXME: This should use the same heuristics as IfConversion to determine
2966  // whether a select is better represented as a branch.  This requires that
2967  // branch probability metadata is preserved for the select, which is not the
2968  // case currently.
2969
2970  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2971
2972  // If the branch is predicted right, an out of order CPU can avoid blocking on
2973  // the compare.  Emit cmovs on compares with a memory operand as branches to
2974  // avoid stalls on the load from memory.  If the compare has more than one use
2975  // there's probably another cmov or setcc around so it's not worth emitting a
2976  // branch.
2977  if (!Cmp)
2978    return false;
2979
2980  Value *CmpOp0 = Cmp->getOperand(0);
2981  Value *CmpOp1 = Cmp->getOperand(1);
2982
2983  // We check that the memory operand has one use to avoid uses of the loaded
2984  // value directly after the compare, making branches unprofitable.
2985  return Cmp->hasOneUse() &&
2986         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
2987          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
2988}
2989
2990
2991/// If we have a SelectInst that will likely profit from branch prediction,
2992/// turn it into a branch.
2993bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
2994  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
2995
2996  // Can we convert the 'select' to CF ?
2997  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
2998    return false;
2999
3000  TargetLowering::SelectSupportKind SelectKind;
3001  if (VectorCond)
3002    SelectKind = TargetLowering::VectorMaskSelect;
3003  else if (SI->getType()->isVectorTy())
3004    SelectKind = TargetLowering::ScalarCondVectorVal;
3005  else
3006    SelectKind = TargetLowering::ScalarValSelect;
3007
3008  // Do we have efficient codegen support for this kind of 'selects' ?
3009  if (TLI->isSelectSupported(SelectKind)) {
3010    // We have efficient codegen support for the select instruction.
3011    // Check if it is profitable to keep this 'select'.
3012    if (!TLI->isPredictableSelectExpensive() ||
3013        !isFormingBranchFromSelectProfitable(SI))
3014      return false;
3015  }
3016
3017  ModifiedDT = true;
3018
3019  // First, we split the block containing the select into 2 blocks.
3020  BasicBlock *StartBlock = SI->getParent();
3021  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
3022  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
3023
3024  // Create a new block serving as the landing pad for the branch.
3025  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
3026                                             NextBlock->getParent(), NextBlock);
3027
3028  // Move the unconditional branch from the block with the select in it into our
3029  // landing pad block.
3030  StartBlock->getTerminator()->eraseFromParent();
3031  BranchInst::Create(NextBlock, SmallBlock);
3032
3033  // Insert the real conditional branch based on the original condition.
3034  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
3035
3036  // The select itself is replaced with a PHI Node.
3037  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
3038  PN->takeName(SI);
3039  PN->addIncoming(SI->getTrueValue(), StartBlock);
3040  PN->addIncoming(SI->getFalseValue(), SmallBlock);
3041  SI->replaceAllUsesWith(PN);
3042  SI->eraseFromParent();
3043
3044  // Instruct OptimizeBlock to skip to the next block.
3045  CurInstIterator = StartBlock->end();
3046  ++NumSelectsExpanded;
3047  return true;
3048}
3049
3050static bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
3051  SmallVector<int, 16> Mask(SVI->getShuffleMask());
3052  int SplatElem = -1;
3053  for (unsigned i = 0; i < Mask.size(); ++i) {
3054    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
3055      return false;
3056    SplatElem = Mask[i];
3057  }
3058
3059  return true;
3060}
3061
3062/// Some targets have expensive vector shifts if the lanes aren't all the same
3063/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
3064/// it's often worth sinking a shufflevector splat down to its use so that
3065/// codegen can spot all lanes are identical.
3066bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
3067  BasicBlock *DefBB = SVI->getParent();
3068
3069  // Only do this xform if variable vector shifts are particularly expensive.
3070  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
3071    return false;
3072
3073  // We only expect better codegen by sinking a shuffle if we can recognise a
3074  // constant splat.
3075  if (!isBroadcastShuffle(SVI))
3076    return false;
3077
3078  // InsertedShuffles - Only insert a shuffle in each block once.
3079  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
3080
3081  bool MadeChange = false;
3082  for (User *U : SVI->users()) {
3083    Instruction *UI = cast<Instruction>(U);
3084
3085    // Figure out which BB this ext is used in.
3086    BasicBlock *UserBB = UI->getParent();
3087    if (UserBB == DefBB) continue;
3088
3089    // For now only apply this when the splat is used by a shift instruction.
3090    if (!UI->isShift()) continue;
3091
3092    // Everything checks out, sink the shuffle if the user's block doesn't
3093    // already have a copy.
3094    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
3095
3096    if (!InsertedShuffle) {
3097      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
3098      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
3099                                              SVI->getOperand(1),
3100                                              SVI->getOperand(2), "", InsertPt);
3101    }
3102
3103    UI->replaceUsesOfWith(SVI, InsertedShuffle);
3104    MadeChange = true;
3105  }
3106
3107  // If we removed all uses, nuke the shuffle.
3108  if (SVI->use_empty()) {
3109    SVI->eraseFromParent();
3110    MadeChange = true;
3111  }
3112
3113  return MadeChange;
3114}
3115
3116bool CodeGenPrepare::OptimizeInst(Instruction *I) {
3117  if (PHINode *P = dyn_cast<PHINode>(I)) {
3118    // It is possible for very late stage optimizations (such as SimplifyCFG)
3119    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
3120    // trivial PHI, go ahead and zap it here.
3121    if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : nullptr,
3122                                       TLInfo, DT)) {
3123      P->replaceAllUsesWith(V);
3124      P->eraseFromParent();
3125      ++NumPHIsElim;
3126      return true;
3127    }
3128    return false;
3129  }
3130
3131  if (CastInst *CI = dyn_cast<CastInst>(I)) {
3132    // If the source of the cast is a constant, then this should have
3133    // already been constant folded.  The only reason NOT to constant fold
3134    // it is if something (e.g. LSR) was careful to place the constant
3135    // evaluation in a block other than then one that uses it (e.g. to hoist
3136    // the address of globals out of a loop).  If this is the case, we don't
3137    // want to forward-subst the cast.
3138    if (isa<Constant>(CI->getOperand(0)))
3139      return false;
3140
3141    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
3142      return true;
3143
3144    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
3145      /// Sink a zext or sext into its user blocks if the target type doesn't
3146      /// fit in one register
3147      if (TLI && TLI->getTypeAction(CI->getContext(),
3148                                    TLI->getValueType(CI->getType())) ==
3149                     TargetLowering::TypeExpandInteger) {
3150        return SinkCast(CI);
3151      } else {
3152        bool MadeChange = MoveExtToFormExtLoad(I);
3153        return MadeChange | OptimizeExtUses(I);
3154      }
3155    }
3156    return false;
3157  }
3158
3159  if (CmpInst *CI = dyn_cast<CmpInst>(I))
3160    if (!TLI || !TLI->hasMultipleConditionRegisters())
3161      return OptimizeCmpExpression(CI);
3162
3163  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3164    if (TLI)
3165      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
3166    return false;
3167  }
3168
3169  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3170    if (TLI)
3171      return OptimizeMemoryInst(I, SI->getOperand(1),
3172                                SI->getOperand(0)->getType());
3173    return false;
3174  }
3175
3176  BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
3177
3178  if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
3179                BinOp->getOpcode() == Instruction::LShr)) {
3180    ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
3181    if (TLI && CI && TLI->hasExtractBitsInsn())
3182      return OptimizeExtractBits(BinOp, CI, *TLI);
3183
3184    return false;
3185  }
3186
3187  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
3188    if (GEPI->hasAllZeroIndices()) {
3189      /// The GEP operand must be a pointer, so must its result -> BitCast
3190      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3191                                        GEPI->getName(), GEPI);
3192      GEPI->replaceAllUsesWith(NC);
3193      GEPI->eraseFromParent();
3194      ++NumGEPsElim;
3195      OptimizeInst(NC);
3196      return true;
3197    }
3198    return false;
3199  }
3200
3201  if (CallInst *CI = dyn_cast<CallInst>(I))
3202    return OptimizeCallInst(CI);
3203
3204  if (SelectInst *SI = dyn_cast<SelectInst>(I))
3205    return OptimizeSelectInst(SI);
3206
3207  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
3208    return OptimizeShuffleVectorInst(SVI);
3209
3210  return false;
3211}
3212
3213// In this pass we look for GEP and cast instructions that are used
3214// across basic blocks and rewrite them to improve basic-block-at-a-time
3215// selection.
3216bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
3217  SunkAddrs.clear();
3218  bool MadeChange = false;
3219
3220  CurInstIterator = BB.begin();
3221  while (CurInstIterator != BB.end())
3222    MadeChange |= OptimizeInst(CurInstIterator++);
3223
3224  MadeChange |= DupRetToEnableTailCallOpts(&BB);
3225
3226  return MadeChange;
3227}
3228
3229// llvm.dbg.value is far away from the value then iSel may not be able
3230// handle it properly. iSel will drop llvm.dbg.value if it can not
3231// find a node corresponding to the value.
3232bool CodeGenPrepare::PlaceDbgValues(Function &F) {
3233  bool MadeChange = false;
3234  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
3235    Instruction *PrevNonDbgInst = nullptr;
3236    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
3237      Instruction *Insn = BI; ++BI;
3238      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
3239      // Leave dbg.values that refer to an alloca alone. These
3240      // instrinsics describe the address of a variable (= the alloca)
3241      // being taken.  They should not be moved next to the alloca
3242      // (and to the beginning of the scope), but rather stay close to
3243      // where said address is used.
3244      if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) {
3245        PrevNonDbgInst = Insn;
3246        continue;
3247      }
3248
3249      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
3250      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
3251        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
3252        DVI->removeFromParent();
3253        if (isa<PHINode>(VI))
3254          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
3255        else
3256          DVI->insertAfter(VI);
3257        MadeChange = true;
3258        ++NumDbgValueMoved;
3259      }
3260    }
3261  }
3262  return MadeChange;
3263}
3264
3265// If there is a sequence that branches based on comparing a single bit
3266// against zero that can be combined into a single instruction, and the
3267// target supports folding these into a single instruction, sink the
3268// mask and compare into the branch uses. Do this before OptimizeBlock ->
3269// OptimizeInst -> OptimizeCmpExpression, which perturbs the pattern being
3270// searched for.
3271bool CodeGenPrepare::sinkAndCmp(Function &F) {
3272  if (!EnableAndCmpSinking)
3273    return false;
3274  if (!TLI || !TLI->isMaskAndBranchFoldingLegal())
3275    return false;
3276  bool MadeChange = false;
3277  for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
3278    BasicBlock *BB = I++;
3279
3280    // Does this BB end with the following?
3281    //   %andVal = and %val, #single-bit-set
3282    //   %icmpVal = icmp %andResult, 0
3283    //   br i1 %cmpVal label %dest1, label %dest2"
3284    BranchInst *Brcc = dyn_cast<BranchInst>(BB->getTerminator());
3285    if (!Brcc || !Brcc->isConditional())
3286      continue;
3287    ICmpInst *Cmp = dyn_cast<ICmpInst>(Brcc->getOperand(0));
3288    if (!Cmp || Cmp->getParent() != BB)
3289      continue;
3290    ConstantInt *Zero = dyn_cast<ConstantInt>(Cmp->getOperand(1));
3291    if (!Zero || !Zero->isZero())
3292      continue;
3293    Instruction *And = dyn_cast<Instruction>(Cmp->getOperand(0));
3294    if (!And || And->getOpcode() != Instruction::And || And->getParent() != BB)
3295      continue;
3296    ConstantInt* Mask = dyn_cast<ConstantInt>(And->getOperand(1));
3297    if (!Mask || !Mask->getUniqueInteger().isPowerOf2())
3298      continue;
3299    DEBUG(dbgs() << "found and; icmp ?,0; brcc\n"); DEBUG(BB->dump());
3300
3301    // Push the "and; icmp" for any users that are conditional branches.
3302    // Since there can only be one branch use per BB, we don't need to keep
3303    // track of which BBs we insert into.
3304    for (Value::use_iterator UI = Cmp->use_begin(), E = Cmp->use_end();
3305         UI != E; ) {
3306      Use &TheUse = *UI;
3307      // Find brcc use.
3308      BranchInst *BrccUser = dyn_cast<BranchInst>(*UI);
3309      ++UI;
3310      if (!BrccUser || !BrccUser->isConditional())
3311        continue;
3312      BasicBlock *UserBB = BrccUser->getParent();
3313      if (UserBB == BB) continue;
3314      DEBUG(dbgs() << "found Brcc use\n");
3315
3316      // Sink the "and; icmp" to use.
3317      MadeChange = true;
3318      BinaryOperator *NewAnd =
3319        BinaryOperator::CreateAnd(And->getOperand(0), And->getOperand(1), "",
3320                                  BrccUser);
3321      CmpInst *NewCmp =
3322        CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), NewAnd, Zero,
3323                        "", BrccUser);
3324      TheUse = NewCmp;
3325      ++NumAndCmpsMoved;
3326      DEBUG(BrccUser->getParent()->dump());
3327    }
3328  }
3329  return MadeChange;
3330}
3331