CriticalAntiDepBreaker.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/ErrorHandling.h"
22#include "llvm/Support/raw_ostream.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  RegClassInfo(RCI),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0),
39  KeepRegs(TRI->getNumRegs(), false) {}
40
41CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
42}
43
44void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
45  const unsigned BBSize = BB->size();
46  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47    // Clear out the register class data.
48    Classes[i] = static_cast<const TargetRegisterClass *>(0);
49
50    // Initialize the indices to indicate that no registers are live.
51    KillIndices[i] = ~0u;
52    DefIndices[i] = BBSize;
53  }
54
55  // Clear "do not change" set.
56  KeepRegs.reset();
57
58  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59
60  // Examine the live-in regs of all successors.
61  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
62         SE = BB->succ_end(); SI != SE; ++SI)
63    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
64           E = (*SI)->livein_end(); I != E; ++I) {
65      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
66        unsigned Reg = *AI;
67        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
68        KillIndices[Reg] = BBSize;
69        DefIndices[Reg] = ~0u;
70      }
71    }
72
73  // Mark live-out callee-saved registers. In a return block this is
74  // all callee-saved registers. In non-return this is any
75  // callee-saved register that is not saved in the prolog.
76  const MachineFrameInfo *MFI = MF.getFrameInfo();
77  BitVector Pristine = MFI->getPristineRegs(BB);
78  for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
79    if (!IsReturnBlock && !Pristine.test(*I)) continue;
80    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
81      unsigned Reg = *AI;
82      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
83      KillIndices[Reg] = BBSize;
84      DefIndices[Reg] = ~0u;
85    }
86  }
87}
88
89void CriticalAntiDepBreaker::FinishBlock() {
90  RegRefs.clear();
91  KeepRegs.reset();
92}
93
94void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
95                                     unsigned InsertPosIndex) {
96  if (MI->isDebugValue())
97    return;
98  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
99
100  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
101    if (KillIndices[Reg] != ~0u) {
102      // If Reg is currently live, then mark that it can't be renamed as
103      // we don't know the extent of its live-range anymore (now that it
104      // has been scheduled).
105      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
106      KillIndices[Reg] = Count;
107    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
108      // Any register which was defined within the previous scheduling region
109      // may have been rescheduled and its lifetime may overlap with registers
110      // in ways not reflected in our current liveness state. For each such
111      // register, adjust the liveness state to be conservatively correct.
112      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
113
114      // Move the def index to the end of the previous region, to reflect
115      // that the def could theoretically have been scheduled at the end.
116      DefIndices[Reg] = InsertPosIndex;
117    }
118  }
119
120  PrescanInstruction(MI);
121  ScanInstruction(MI, Count);
122}
123
124/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
125/// critical path.
126static const SDep *CriticalPathStep(const SUnit *SU) {
127  const SDep *Next = 0;
128  unsigned NextDepth = 0;
129  // Find the predecessor edge with the greatest depth.
130  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
131       P != PE; ++P) {
132    const SUnit *PredSU = P->getSUnit();
133    unsigned PredLatency = P->getLatency();
134    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
135    // In the case of a latency tie, prefer an anti-dependency edge over
136    // other types of edges.
137    if (NextDepth < PredTotalLatency ||
138        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
139      NextDepth = PredTotalLatency;
140      Next = &*P;
141    }
142  }
143  return Next;
144}
145
146void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
147  // It's not safe to change register allocation for source operands of
148  // that have special allocation requirements. Also assume all registers
149  // used in a call must not be changed (ABI).
150  // FIXME: The issue with predicated instruction is more complex. We are being
151  // conservative here because the kill markers cannot be trusted after
152  // if-conversion:
153  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
154  // ...
155  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
156  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
157  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
158  //
159  // The first R6 kill is not really a kill since it's killed by a predicated
160  // instruction which may not be executed. The second R6 def may or may not
161  // re-define R6 so it's not safe to change it since the last R6 use cannot be
162  // changed.
163  bool Special = MI->isCall() ||
164    MI->hasExtraSrcRegAllocReq() ||
165    TII->isPredicated(MI);
166
167  // Scan the register operands for this instruction and update
168  // Classes and RegRefs.
169  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170    MachineOperand &MO = MI->getOperand(i);
171    if (!MO.isReg()) continue;
172    unsigned Reg = MO.getReg();
173    if (Reg == 0) continue;
174    const TargetRegisterClass *NewRC = 0;
175
176    if (i < MI->getDesc().getNumOperands())
177      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
178
179    // For now, only allow the register to be changed if its register
180    // class is consistent across all uses.
181    if (!Classes[Reg] && NewRC)
182      Classes[Reg] = NewRC;
183    else if (!NewRC || Classes[Reg] != NewRC)
184      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
185
186    // Now check for aliases.
187    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
188      // If an alias of the reg is used during the live range, give up.
189      // Note that this allows us to skip checking if AntiDepReg
190      // overlaps with any of the aliases, among other things.
191      unsigned AliasReg = *AI;
192      if (Classes[AliasReg]) {
193        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
194        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
195      }
196    }
197
198    // If we're still willing to consider this register, note the reference.
199    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
200      RegRefs.insert(std::make_pair(Reg, &MO));
201
202    if (MO.isUse() && Special) {
203      if (!KeepRegs.test(Reg)) {
204        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
205             SubRegs.isValid(); ++SubRegs)
206          KeepRegs.set(*SubRegs);
207      }
208    }
209  }
210}
211
212void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
213                                             unsigned Count) {
214  // Update liveness.
215  // Proceeding upwards, registers that are defed but not used in this
216  // instruction are now dead.
217
218  if (!TII->isPredicated(MI)) {
219    // Predicated defs are modeled as read + write, i.e. similar to two
220    // address updates.
221    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222      MachineOperand &MO = MI->getOperand(i);
223
224      if (MO.isRegMask())
225        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
226          if (MO.clobbersPhysReg(i)) {
227            DefIndices[i] = Count;
228            KillIndices[i] = ~0u;
229            KeepRegs.reset(i);
230            Classes[i] = 0;
231            RegRefs.erase(i);
232          }
233
234      if (!MO.isReg()) continue;
235      unsigned Reg = MO.getReg();
236      if (Reg == 0) continue;
237      if (!MO.isDef()) continue;
238      // Ignore two-addr defs.
239      if (MI->isRegTiedToUseOperand(i)) continue;
240
241      DefIndices[Reg] = Count;
242      KillIndices[Reg] = ~0u;
243      assert(((KillIndices[Reg] == ~0u) !=
244              (DefIndices[Reg] == ~0u)) &&
245             "Kill and Def maps aren't consistent for Reg!");
246      KeepRegs.reset(Reg);
247      Classes[Reg] = 0;
248      RegRefs.erase(Reg);
249      // Repeat, for all subregs.
250      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
251        unsigned SubregReg = *SubRegs;
252        DefIndices[SubregReg] = Count;
253        KillIndices[SubregReg] = ~0u;
254        KeepRegs.reset(SubregReg);
255        Classes[SubregReg] = 0;
256        RegRefs.erase(SubregReg);
257      }
258      // Conservatively mark super-registers as unusable.
259      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
260        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
261    }
262  }
263  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
264    MachineOperand &MO = MI->getOperand(i);
265    if (!MO.isReg()) continue;
266    unsigned Reg = MO.getReg();
267    if (Reg == 0) continue;
268    if (!MO.isUse()) continue;
269
270    const TargetRegisterClass *NewRC = 0;
271    if (i < MI->getDesc().getNumOperands())
272      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
273
274    // For now, only allow the register to be changed if its register
275    // class is consistent across all uses.
276    if (!Classes[Reg] && NewRC)
277      Classes[Reg] = NewRC;
278    else if (!NewRC || Classes[Reg] != NewRC)
279      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
280
281    RegRefs.insert(std::make_pair(Reg, &MO));
282
283    // It wasn't previously live but now it is, this is a kill.
284    if (KillIndices[Reg] == ~0u) {
285      KillIndices[Reg] = Count;
286      DefIndices[Reg] = ~0u;
287          assert(((KillIndices[Reg] == ~0u) !=
288                  (DefIndices[Reg] == ~0u)) &&
289               "Kill and Def maps aren't consistent for Reg!");
290    }
291    // Repeat, for all aliases.
292    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
293      unsigned AliasReg = *AI;
294      if (KillIndices[AliasReg] == ~0u) {
295        KillIndices[AliasReg] = Count;
296        DefIndices[AliasReg] = ~0u;
297      }
298    }
299  }
300}
301
302// Check all machine operands that reference the antidependent register and must
303// be replaced by NewReg. Return true if any of their parent instructions may
304// clobber the new register.
305//
306// Note: AntiDepReg may be referenced by a two-address instruction such that
307// it's use operand is tied to a def operand. We guard against the case in which
308// the two-address instruction also defines NewReg, as may happen with
309// pre/postincrement loads. In this case, both the use and def operands are in
310// RegRefs because the def is inserted by PrescanInstruction and not erased
311// during ScanInstruction. So checking for an instructions with definitions of
312// both NewReg and AntiDepReg covers it.
313bool
314CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
315                                                RegRefIter RegRefEnd,
316                                                unsigned NewReg)
317{
318  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
319    MachineOperand *RefOper = I->second;
320
321    // Don't allow the instruction defining AntiDepReg to earlyclobber its
322    // operands, in case they may be assigned to NewReg. In this case antidep
323    // breaking must fail, but it's too rare to bother optimizing.
324    if (RefOper->isDef() && RefOper->isEarlyClobber())
325      return true;
326
327    // Handle cases in which this instructions defines NewReg.
328    MachineInstr *MI = RefOper->getParent();
329    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
330      const MachineOperand &CheckOper = MI->getOperand(i);
331
332      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
333        return true;
334
335      if (!CheckOper.isReg() || !CheckOper.isDef() ||
336          CheckOper.getReg() != NewReg)
337        continue;
338
339      // Don't allow the instruction to define NewReg and AntiDepReg.
340      // When AntiDepReg is renamed it will be an illegal op.
341      if (RefOper->isDef())
342        return true;
343
344      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
345      // NewReg
346      if (CheckOper.isEarlyClobber())
347        return true;
348
349      // Don't allow inline asm to define NewReg at all. Who know what it's
350      // doing with it.
351      if (MI->isInlineAsm())
352        return true;
353    }
354  }
355  return false;
356}
357
358unsigned CriticalAntiDepBreaker::
359findSuitableFreeRegister(RegRefIter RegRefBegin,
360                         RegRefIter RegRefEnd,
361                         unsigned AntiDepReg,
362                         unsigned LastNewReg,
363                         const TargetRegisterClass *RC,
364                         SmallVectorImpl<unsigned> &Forbid)
365{
366  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
367  for (unsigned i = 0; i != Order.size(); ++i) {
368    unsigned NewReg = Order[i];
369    // Don't replace a register with itself.
370    if (NewReg == AntiDepReg) continue;
371    // Don't replace a register with one that was recently used to repair
372    // an anti-dependence with this AntiDepReg, because that would
373    // re-introduce that anti-dependence.
374    if (NewReg == LastNewReg) continue;
375    // If any instructions that define AntiDepReg also define the NewReg, it's
376    // not suitable.  For example, Instruction with multiple definitions can
377    // result in this condition.
378    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
379    // If NewReg is dead and NewReg's most recent def is not before
380    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
381    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
382           && "Kill and Def maps aren't consistent for AntiDepReg!");
383    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
384           && "Kill and Def maps aren't consistent for NewReg!");
385    if (KillIndices[NewReg] != ~0u ||
386        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
387        KillIndices[AntiDepReg] > DefIndices[NewReg])
388      continue;
389    // If NewReg overlaps any of the forbidden registers, we can't use it.
390    bool Forbidden = false;
391    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
392           ite = Forbid.end(); it != ite; ++it)
393      if (TRI->regsOverlap(NewReg, *it)) {
394        Forbidden = true;
395        break;
396      }
397    if (Forbidden) continue;
398    return NewReg;
399  }
400
401  // No registers are free and available!
402  return 0;
403}
404
405unsigned CriticalAntiDepBreaker::
406BreakAntiDependencies(const std::vector<SUnit>& SUnits,
407                      MachineBasicBlock::iterator Begin,
408                      MachineBasicBlock::iterator End,
409                      unsigned InsertPosIndex,
410                      DbgValueVector &DbgValues) {
411  // The code below assumes that there is at least one instruction,
412  // so just duck out immediately if the block is empty.
413  if (SUnits.empty()) return 0;
414
415  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
416  // This is used for updating debug information.
417  //
418  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
419  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
420
421  // Find the node at the bottom of the critical path.
422  const SUnit *Max = 0;
423  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
424    const SUnit *SU = &SUnits[i];
425    MISUnitMap[SU->getInstr()] = SU;
426    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
427      Max = SU;
428  }
429
430#ifndef NDEBUG
431  {
432    DEBUG(dbgs() << "Critical path has total latency "
433          << (Max->getDepth() + Max->Latency) << "\n");
434    DEBUG(dbgs() << "Available regs:");
435    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
436      if (KillIndices[Reg] == ~0u)
437        DEBUG(dbgs() << " " << TRI->getName(Reg));
438    }
439    DEBUG(dbgs() << '\n');
440  }
441#endif
442
443  // Track progress along the critical path through the SUnit graph as we walk
444  // the instructions.
445  const SUnit *CriticalPathSU = Max;
446  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
447
448  // Consider this pattern:
449  //   A = ...
450  //   ... = A
451  //   A = ...
452  //   ... = A
453  //   A = ...
454  //   ... = A
455  //   A = ...
456  //   ... = A
457  // There are three anti-dependencies here, and without special care,
458  // we'd break all of them using the same register:
459  //   A = ...
460  //   ... = A
461  //   B = ...
462  //   ... = B
463  //   B = ...
464  //   ... = B
465  //   B = ...
466  //   ... = B
467  // because at each anti-dependence, B is the first register that
468  // isn't A which is free.  This re-introduces anti-dependencies
469  // at all but one of the original anti-dependencies that we were
470  // trying to break.  To avoid this, keep track of the most recent
471  // register that each register was replaced with, avoid
472  // using it to repair an anti-dependence on the same register.
473  // This lets us produce this:
474  //   A = ...
475  //   ... = A
476  //   B = ...
477  //   ... = B
478  //   C = ...
479  //   ... = C
480  //   B = ...
481  //   ... = B
482  // This still has an anti-dependence on B, but at least it isn't on the
483  // original critical path.
484  //
485  // TODO: If we tracked more than one register here, we could potentially
486  // fix that remaining critical edge too. This is a little more involved,
487  // because unlike the most recent register, less recent registers should
488  // still be considered, though only if no other registers are available.
489  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
490
491  // Attempt to break anti-dependence edges on the critical path. Walk the
492  // instructions from the bottom up, tracking information about liveness
493  // as we go to help determine which registers are available.
494  unsigned Broken = 0;
495  unsigned Count = InsertPosIndex - 1;
496  for (MachineBasicBlock::iterator I = End, E = Begin;
497       I != E; --Count) {
498    MachineInstr *MI = --I;
499    if (MI->isDebugValue())
500      continue;
501
502    // Check if this instruction has a dependence on the critical path that
503    // is an anti-dependence that we may be able to break. If it is, set
504    // AntiDepReg to the non-zero register associated with the anti-dependence.
505    //
506    // We limit our attention to the critical path as a heuristic to avoid
507    // breaking anti-dependence edges that aren't going to significantly
508    // impact the overall schedule. There are a limited number of registers
509    // and we want to save them for the important edges.
510    //
511    // TODO: Instructions with multiple defs could have multiple
512    // anti-dependencies. The current code here only knows how to break one
513    // edge per instruction. Note that we'd have to be able to break all of
514    // the anti-dependencies in an instruction in order to be effective.
515    unsigned AntiDepReg = 0;
516    if (MI == CriticalPathMI) {
517      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
518        const SUnit *NextSU = Edge->getSUnit();
519
520        // Only consider anti-dependence edges.
521        if (Edge->getKind() == SDep::Anti) {
522          AntiDepReg = Edge->getReg();
523          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
524          if (!MRI.isAllocatable(AntiDepReg))
525            // Don't break anti-dependencies on non-allocatable registers.
526            AntiDepReg = 0;
527          else if (KeepRegs.test(AntiDepReg))
528            // Don't break anti-dependencies if an use down below requires
529            // this exact register.
530            AntiDepReg = 0;
531          else {
532            // If the SUnit has other dependencies on the SUnit that it
533            // anti-depends on, don't bother breaking the anti-dependency
534            // since those edges would prevent such units from being
535            // scheduled past each other regardless.
536            //
537            // Also, if there are dependencies on other SUnits with the
538            // same register as the anti-dependency, don't attempt to
539            // break it.
540            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
541                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
542              if (P->getSUnit() == NextSU ?
543                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
544                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
545                AntiDepReg = 0;
546                break;
547              }
548          }
549        }
550        CriticalPathSU = NextSU;
551        CriticalPathMI = CriticalPathSU->getInstr();
552      } else {
553        // We've reached the end of the critical path.
554        CriticalPathSU = 0;
555        CriticalPathMI = 0;
556      }
557    }
558
559    PrescanInstruction(MI);
560
561    SmallVector<unsigned, 2> ForbidRegs;
562
563    // If MI's defs have a special allocation requirement, don't allow
564    // any def registers to be changed. Also assume all registers
565    // defined in a call must not be changed (ABI).
566    if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
567        TII->isPredicated(MI))
568      // If this instruction's defs have special allocation requirement, don't
569      // break this anti-dependency.
570      AntiDepReg = 0;
571    else if (AntiDepReg) {
572      // If this instruction has a use of AntiDepReg, breaking it
573      // is invalid.  If the instruction defines other registers,
574      // save a list of them so that we don't pick a new register
575      // that overlaps any of them.
576      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
577        MachineOperand &MO = MI->getOperand(i);
578        if (!MO.isReg()) continue;
579        unsigned Reg = MO.getReg();
580        if (Reg == 0) continue;
581        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
582          AntiDepReg = 0;
583          break;
584        }
585        if (MO.isDef() && Reg != AntiDepReg)
586          ForbidRegs.push_back(Reg);
587      }
588    }
589
590    // Determine AntiDepReg's register class, if it is live and is
591    // consistently used within a single class.
592    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
593    assert((AntiDepReg == 0 || RC != NULL) &&
594           "Register should be live if it's causing an anti-dependence!");
595    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
596      AntiDepReg = 0;
597
598    // Look for a suitable register to use to break the anti-dependence.
599    //
600    // TODO: Instead of picking the first free register, consider which might
601    // be the best.
602    if (AntiDepReg != 0) {
603      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
604                std::multimap<unsigned, MachineOperand *>::iterator>
605        Range = RegRefs.equal_range(AntiDepReg);
606      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
607                                                     AntiDepReg,
608                                                     LastNewReg[AntiDepReg],
609                                                     RC, ForbidRegs)) {
610        DEBUG(dbgs() << "Breaking anti-dependence edge on "
611              << TRI->getName(AntiDepReg)
612              << " with " << RegRefs.count(AntiDepReg) << " references"
613              << " using " << TRI->getName(NewReg) << "!\n");
614
615        // Update the references to the old register to refer to the new
616        // register.
617        for (std::multimap<unsigned, MachineOperand *>::iterator
618             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
619          Q->second->setReg(NewReg);
620          // If the SU for the instruction being updated has debug information
621          // related to the anti-dependency register, make sure to update that
622          // as well.
623          const SUnit *SU = MISUnitMap[Q->second->getParent()];
624          if (!SU) continue;
625          for (DbgValueVector::iterator DVI = DbgValues.begin(),
626                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
627            if (DVI->second == Q->second->getParent())
628              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
629        }
630
631        // We just went back in time and modified history; the
632        // liveness information for the anti-dependence reg is now
633        // inconsistent. Set the state as if it were dead.
634        Classes[NewReg] = Classes[AntiDepReg];
635        DefIndices[NewReg] = DefIndices[AntiDepReg];
636        KillIndices[NewReg] = KillIndices[AntiDepReg];
637        assert(((KillIndices[NewReg] == ~0u) !=
638                (DefIndices[NewReg] == ~0u)) &&
639             "Kill and Def maps aren't consistent for NewReg!");
640
641        Classes[AntiDepReg] = 0;
642        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
643        KillIndices[AntiDepReg] = ~0u;
644        assert(((KillIndices[AntiDepReg] == ~0u) !=
645                (DefIndices[AntiDepReg] == ~0u)) &&
646             "Kill and Def maps aren't consistent for AntiDepReg!");
647
648        RegRefs.erase(AntiDepReg);
649        LastNewReg[AntiDepReg] = NewReg;
650        ++Broken;
651      }
652    }
653
654    ScanInstruction(MI, Count);
655  }
656
657  return Broken;
658}
659