CriticalAntiDepBreaker.cpp revision 8a1773694c6d9b1277647440583811ad3d85c6a4
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CriticalAntiDepBreaker.h"
17#include "llvm/CodeGen/MachineBasicBlock.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/Support/Debug.h"
20#include "llvm/Support/ErrorHandling.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE "post-RA-sched"
29
30CriticalAntiDepBreaker::
31CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
32  AntiDepBreaker(), MF(MFi),
33  MRI(MF.getRegInfo()),
34  TII(MF.getTarget().getInstrInfo()),
35  TRI(MF.getTarget().getRegisterInfo()),
36  RegClassInfo(RCI),
37  Classes(TRI->getNumRegs(), nullptr),
38  KillIndices(TRI->getNumRegs(), 0),
39  DefIndices(TRI->getNumRegs(), 0),
40  KeepRegs(TRI->getNumRegs(), false) {}
41
42CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
43}
44
45void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
46  const unsigned BBSize = BB->size();
47  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
48    // Clear out the register class data.
49    Classes[i] = nullptr;
50
51    // Initialize the indices to indicate that no registers are live.
52    KillIndices[i] = ~0u;
53    DefIndices[i] = BBSize;
54  }
55
56  // Clear "do not change" set.
57  KeepRegs.reset();
58
59  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
60
61  // Examine the live-in regs of all successors.
62  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
63         SE = BB->succ_end(); SI != SE; ++SI)
64    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
65           E = (*SI)->livein_end(); I != E; ++I) {
66      for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
67        unsigned Reg = *AI;
68        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
69        KillIndices[Reg] = BBSize;
70        DefIndices[Reg] = ~0u;
71      }
72    }
73
74  // Mark live-out callee-saved registers. In a return block this is
75  // all callee-saved registers. In non-return this is any
76  // callee-saved register that is not saved in the prolog.
77  const MachineFrameInfo *MFI = MF.getFrameInfo();
78  BitVector Pristine = MFI->getPristineRegs(BB);
79  for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
80    if (!IsReturnBlock && !Pristine.test(*I)) continue;
81    for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
82      unsigned Reg = *AI;
83      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
84      KillIndices[Reg] = BBSize;
85      DefIndices[Reg] = ~0u;
86    }
87  }
88}
89
90void CriticalAntiDepBreaker::FinishBlock() {
91  RegRefs.clear();
92  KeepRegs.reset();
93}
94
95void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
96                                     unsigned InsertPosIndex) {
97  // Kill instructions can define registers but are really nops, and there might
98  // be a real definition earlier that needs to be paired with uses dominated by
99  // this kill.
100
101  // FIXME: It may be possible to remove the isKill() restriction once PR18663
102  // has been properly fixed. There can be value in processing kills as seen in
103  // the AggressiveAntiDepBreaker class.
104  if (MI->isDebugValue() || MI->isKill())
105    return;
106  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
107
108  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
109    if (KillIndices[Reg] != ~0u) {
110      // If Reg is currently live, then mark that it can't be renamed as
111      // we don't know the extent of its live-range anymore (now that it
112      // has been scheduled).
113      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
114      KillIndices[Reg] = Count;
115    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
116      // Any register which was defined within the previous scheduling region
117      // may have been rescheduled and its lifetime may overlap with registers
118      // in ways not reflected in our current liveness state. For each such
119      // register, adjust the liveness state to be conservatively correct.
120      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
121
122      // Move the def index to the end of the previous region, to reflect
123      // that the def could theoretically have been scheduled at the end.
124      DefIndices[Reg] = InsertPosIndex;
125    }
126  }
127
128  PrescanInstruction(MI);
129  ScanInstruction(MI, Count);
130}
131
132/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
133/// critical path.
134static const SDep *CriticalPathStep(const SUnit *SU) {
135  const SDep *Next = nullptr;
136  unsigned NextDepth = 0;
137  // Find the predecessor edge with the greatest depth.
138  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
139       P != PE; ++P) {
140    const SUnit *PredSU = P->getSUnit();
141    unsigned PredLatency = P->getLatency();
142    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
143    // In the case of a latency tie, prefer an anti-dependency edge over
144    // other types of edges.
145    if (NextDepth < PredTotalLatency ||
146        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
147      NextDepth = PredTotalLatency;
148      Next = &*P;
149    }
150  }
151  return Next;
152}
153
154void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
155  // It's not safe to change register allocation for source operands of
156  // instructions that have special allocation requirements. Also assume all
157  // registers used in a call must not be changed (ABI).
158  // FIXME: The issue with predicated instruction is more complex. We are being
159  // conservative here because the kill markers cannot be trusted after
160  // if-conversion:
161  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
162  // ...
163  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
164  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
165  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
166  //
167  // The first R6 kill is not really a kill since it's killed by a predicated
168  // instruction which may not be executed. The second R6 def may or may not
169  // re-define R6 so it's not safe to change it since the last R6 use cannot be
170  // changed.
171  bool Special = MI->isCall() ||
172    MI->hasExtraSrcRegAllocReq() ||
173    TII->isPredicated(MI);
174
175  // Scan the register operands for this instruction and update
176  // Classes and RegRefs.
177  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178    MachineOperand &MO = MI->getOperand(i);
179    if (!MO.isReg()) continue;
180    unsigned Reg = MO.getReg();
181    if (Reg == 0) continue;
182    const TargetRegisterClass *NewRC = nullptr;
183
184    if (i < MI->getDesc().getNumOperands())
185      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
186
187    // For now, only allow the register to be changed if its register
188    // class is consistent across all uses.
189    if (!Classes[Reg] && NewRC)
190      Classes[Reg] = NewRC;
191    else if (!NewRC || Classes[Reg] != NewRC)
192      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
193
194    // Now check for aliases.
195    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
196      // If an alias of the reg is used during the live range, give up.
197      // Note that this allows us to skip checking if AntiDepReg
198      // overlaps with any of the aliases, among other things.
199      unsigned AliasReg = *AI;
200      if (Classes[AliasReg]) {
201        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
202        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
203      }
204    }
205
206    // If we're still willing to consider this register, note the reference.
207    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
208      RegRefs.insert(std::make_pair(Reg, &MO));
209
210    // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
211    // it or any of its sub or super regs. We need to use KeepRegs to mark the
212    // reg because not all uses of the same reg within an instruction are
213    // necessarily tagged as tied.
214    // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
215    // def register but not the second (see PR20020 for details).
216    // FIXME: can this check be relaxed to account for undef uses
217    // of a register? In the above 'xor' example, the uses of %eax are undef, so
218    // earlier instructions could still replace %eax even though the 'xor'
219    // itself can't be changed.
220    if (MI->isRegTiedToUseOperand(i) &&
221        Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
222      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
223           SubRegs.isValid(); ++SubRegs) {
224        KeepRegs.set(*SubRegs);
225      }
226      for (MCSuperRegIterator SuperRegs(Reg, TRI);
227           SuperRegs.isValid(); ++SuperRegs) {
228        KeepRegs.set(*SuperRegs);
229      }
230    }
231
232    if (MO.isUse() && Special) {
233      if (!KeepRegs.test(Reg)) {
234        for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
235             SubRegs.isValid(); ++SubRegs)
236          KeepRegs.set(*SubRegs);
237      }
238    }
239  }
240}
241
242void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
243                                             unsigned Count) {
244  // Update liveness.
245  // Proceeding upwards, registers that are defed but not used in this
246  // instruction are now dead.
247  assert(!MI->isKill() && "Attempting to scan a kill instruction");
248
249  if (!TII->isPredicated(MI)) {
250    // Predicated defs are modeled as read + write, i.e. similar to two
251    // address updates.
252    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
253      MachineOperand &MO = MI->getOperand(i);
254
255      if (MO.isRegMask())
256        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
257          if (MO.clobbersPhysReg(i)) {
258            DefIndices[i] = Count;
259            KillIndices[i] = ~0u;
260            KeepRegs.reset(i);
261            Classes[i] = nullptr;
262            RegRefs.erase(i);
263          }
264
265      if (!MO.isReg()) continue;
266      unsigned Reg = MO.getReg();
267      if (Reg == 0) continue;
268      if (!MO.isDef()) continue;
269
270      // If we've already marked this reg as unchangeable, carry on.
271      if (KeepRegs.test(Reg)) continue;
272
273      // Ignore two-addr defs.
274      if (MI->isRegTiedToUseOperand(i)) continue;
275
276      // FIXME: we should use a SubRegIterator that includes self (as above), so
277      // we don't have to repeat all this code for the reg itself.
278      DefIndices[Reg] = Count;
279      KillIndices[Reg] = ~0u;
280      assert(((KillIndices[Reg] == ~0u) !=
281              (DefIndices[Reg] == ~0u)) &&
282             "Kill and Def maps aren't consistent for Reg!");
283      KeepRegs.reset(Reg);
284      Classes[Reg] = nullptr;
285      RegRefs.erase(Reg);
286      // Repeat, for all subregs.
287      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
288        unsigned SubregReg = *SubRegs;
289        DefIndices[SubregReg] = Count;
290        KillIndices[SubregReg] = ~0u;
291        KeepRegs.reset(SubregReg);
292        Classes[SubregReg] = nullptr;
293        RegRefs.erase(SubregReg);
294      }
295      // Conservatively mark super-registers as unusable.
296      for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
297        Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
298    }
299  }
300  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
301    MachineOperand &MO = MI->getOperand(i);
302    if (!MO.isReg()) continue;
303    unsigned Reg = MO.getReg();
304    if (Reg == 0) continue;
305    if (!MO.isUse()) continue;
306
307    const TargetRegisterClass *NewRC = nullptr;
308    if (i < MI->getDesc().getNumOperands())
309      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
310
311    // For now, only allow the register to be changed if its register
312    // class is consistent across all uses.
313    if (!Classes[Reg] && NewRC)
314      Classes[Reg] = NewRC;
315    else if (!NewRC || Classes[Reg] != NewRC)
316      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
317
318    RegRefs.insert(std::make_pair(Reg, &MO));
319
320    // FIXME: we should use an MCRegAliasIterator that includes self so we don't
321    // have to repeat all this code for the reg itself.
322
323    // It wasn't previously live but now it is, this is a kill.
324    if (KillIndices[Reg] == ~0u) {
325      KillIndices[Reg] = Count;
326      DefIndices[Reg] = ~0u;
327          assert(((KillIndices[Reg] == ~0u) !=
328                  (DefIndices[Reg] == ~0u)) &&
329               "Kill and Def maps aren't consistent for Reg!");
330    }
331    // Repeat, for all aliases.
332    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
333      unsigned AliasReg = *AI;
334      if (KillIndices[AliasReg] == ~0u) {
335        KillIndices[AliasReg] = Count;
336        DefIndices[AliasReg] = ~0u;
337      }
338    }
339  }
340}
341
342// Check all machine operands that reference the antidependent register and must
343// be replaced by NewReg. Return true if any of their parent instructions may
344// clobber the new register.
345//
346// Note: AntiDepReg may be referenced by a two-address instruction such that
347// it's use operand is tied to a def operand. We guard against the case in which
348// the two-address instruction also defines NewReg, as may happen with
349// pre/postincrement loads. In this case, both the use and def operands are in
350// RegRefs because the def is inserted by PrescanInstruction and not erased
351// during ScanInstruction. So checking for an instruction with definitions of
352// both NewReg and AntiDepReg covers it.
353bool
354CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
355                                                RegRefIter RegRefEnd,
356                                                unsigned NewReg)
357{
358  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
359    MachineOperand *RefOper = I->second;
360
361    // Don't allow the instruction defining AntiDepReg to earlyclobber its
362    // operands, in case they may be assigned to NewReg. In this case antidep
363    // breaking must fail, but it's too rare to bother optimizing.
364    if (RefOper->isDef() && RefOper->isEarlyClobber())
365      return true;
366
367    // Handle cases in which this instruction defines NewReg.
368    MachineInstr *MI = RefOper->getParent();
369    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
370      const MachineOperand &CheckOper = MI->getOperand(i);
371
372      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
373        return true;
374
375      if (!CheckOper.isReg() || !CheckOper.isDef() ||
376          CheckOper.getReg() != NewReg)
377        continue;
378
379      // Don't allow the instruction to define NewReg and AntiDepReg.
380      // When AntiDepReg is renamed it will be an illegal op.
381      if (RefOper->isDef())
382        return true;
383
384      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
385      // NewReg.
386      if (CheckOper.isEarlyClobber())
387        return true;
388
389      // Don't allow inline asm to define NewReg at all. Who knows what it's
390      // doing with it.
391      if (MI->isInlineAsm())
392        return true;
393    }
394  }
395  return false;
396}
397
398unsigned CriticalAntiDepBreaker::
399findSuitableFreeRegister(RegRefIter RegRefBegin,
400                         RegRefIter RegRefEnd,
401                         unsigned AntiDepReg,
402                         unsigned LastNewReg,
403                         const TargetRegisterClass *RC,
404                         SmallVectorImpl<unsigned> &Forbid)
405{
406  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
407  for (unsigned i = 0; i != Order.size(); ++i) {
408    unsigned NewReg = Order[i];
409    // Don't replace a register with itself.
410    if (NewReg == AntiDepReg) continue;
411    // Don't replace a register with one that was recently used to repair
412    // an anti-dependence with this AntiDepReg, because that would
413    // re-introduce that anti-dependence.
414    if (NewReg == LastNewReg) continue;
415    // If any instructions that define AntiDepReg also define the NewReg, it's
416    // not suitable.  For example, Instruction with multiple definitions can
417    // result in this condition.
418    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
419    // If NewReg is dead and NewReg's most recent def is not before
420    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
421    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
422           && "Kill and Def maps aren't consistent for AntiDepReg!");
423    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
424           && "Kill and Def maps aren't consistent for NewReg!");
425    if (KillIndices[NewReg] != ~0u ||
426        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
427        KillIndices[AntiDepReg] > DefIndices[NewReg])
428      continue;
429    // If NewReg overlaps any of the forbidden registers, we can't use it.
430    bool Forbidden = false;
431    for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
432           ite = Forbid.end(); it != ite; ++it)
433      if (TRI->regsOverlap(NewReg, *it)) {
434        Forbidden = true;
435        break;
436      }
437    if (Forbidden) continue;
438    return NewReg;
439  }
440
441  // No registers are free and available!
442  return 0;
443}
444
445unsigned CriticalAntiDepBreaker::
446BreakAntiDependencies(const std::vector<SUnit>& SUnits,
447                      MachineBasicBlock::iterator Begin,
448                      MachineBasicBlock::iterator End,
449                      unsigned InsertPosIndex,
450                      DbgValueVector &DbgValues) {
451  // The code below assumes that there is at least one instruction,
452  // so just duck out immediately if the block is empty.
453  if (SUnits.empty()) return 0;
454
455  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
456  // This is used for updating debug information.
457  //
458  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
459  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
460
461  // Find the node at the bottom of the critical path.
462  const SUnit *Max = nullptr;
463  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
464    const SUnit *SU = &SUnits[i];
465    MISUnitMap[SU->getInstr()] = SU;
466    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
467      Max = SU;
468  }
469
470#ifndef NDEBUG
471  {
472    DEBUG(dbgs() << "Critical path has total latency "
473          << (Max->getDepth() + Max->Latency) << "\n");
474    DEBUG(dbgs() << "Available regs:");
475    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
476      if (KillIndices[Reg] == ~0u)
477        DEBUG(dbgs() << " " << TRI->getName(Reg));
478    }
479    DEBUG(dbgs() << '\n');
480  }
481#endif
482
483  // Track progress along the critical path through the SUnit graph as we walk
484  // the instructions.
485  const SUnit *CriticalPathSU = Max;
486  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
487
488  // Consider this pattern:
489  //   A = ...
490  //   ... = A
491  //   A = ...
492  //   ... = A
493  //   A = ...
494  //   ... = A
495  //   A = ...
496  //   ... = A
497  // There are three anti-dependencies here, and without special care,
498  // we'd break all of them using the same register:
499  //   A = ...
500  //   ... = A
501  //   B = ...
502  //   ... = B
503  //   B = ...
504  //   ... = B
505  //   B = ...
506  //   ... = B
507  // because at each anti-dependence, B is the first register that
508  // isn't A which is free.  This re-introduces anti-dependencies
509  // at all but one of the original anti-dependencies that we were
510  // trying to break.  To avoid this, keep track of the most recent
511  // register that each register was replaced with, avoid
512  // using it to repair an anti-dependence on the same register.
513  // This lets us produce this:
514  //   A = ...
515  //   ... = A
516  //   B = ...
517  //   ... = B
518  //   C = ...
519  //   ... = C
520  //   B = ...
521  //   ... = B
522  // This still has an anti-dependence on B, but at least it isn't on the
523  // original critical path.
524  //
525  // TODO: If we tracked more than one register here, we could potentially
526  // fix that remaining critical edge too. This is a little more involved,
527  // because unlike the most recent register, less recent registers should
528  // still be considered, though only if no other registers are available.
529  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
530
531  // Attempt to break anti-dependence edges on the critical path. Walk the
532  // instructions from the bottom up, tracking information about liveness
533  // as we go to help determine which registers are available.
534  unsigned Broken = 0;
535  unsigned Count = InsertPosIndex - 1;
536  for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
537    MachineInstr *MI = --I;
538    // Kill instructions can define registers but are really nops, and there
539    // might be a real definition earlier that needs to be paired with uses
540    // dominated by this kill.
541
542    // FIXME: It may be possible to remove the isKill() restriction once PR18663
543    // has been properly fixed. There can be value in processing kills as seen
544    // in the AggressiveAntiDepBreaker class.
545    if (MI->isDebugValue() || MI->isKill())
546      continue;
547
548    // Check if this instruction has a dependence on the critical path that
549    // is an anti-dependence that we may be able to break. If it is, set
550    // AntiDepReg to the non-zero register associated with the anti-dependence.
551    //
552    // We limit our attention to the critical path as a heuristic to avoid
553    // breaking anti-dependence edges that aren't going to significantly
554    // impact the overall schedule. There are a limited number of registers
555    // and we want to save them for the important edges.
556    //
557    // TODO: Instructions with multiple defs could have multiple
558    // anti-dependencies. The current code here only knows how to break one
559    // edge per instruction. Note that we'd have to be able to break all of
560    // the anti-dependencies in an instruction in order to be effective.
561    unsigned AntiDepReg = 0;
562    if (MI == CriticalPathMI) {
563      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
564        const SUnit *NextSU = Edge->getSUnit();
565
566        // Only consider anti-dependence edges.
567        if (Edge->getKind() == SDep::Anti) {
568          AntiDepReg = Edge->getReg();
569          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
570          if (!MRI.isAllocatable(AntiDepReg))
571            // Don't break anti-dependencies on non-allocatable registers.
572            AntiDepReg = 0;
573          else if (KeepRegs.test(AntiDepReg))
574            // Don't break anti-dependencies if a use down below requires
575            // this exact register.
576            AntiDepReg = 0;
577          else {
578            // If the SUnit has other dependencies on the SUnit that it
579            // anti-depends on, don't bother breaking the anti-dependency
580            // since those edges would prevent such units from being
581            // scheduled past each other regardless.
582            //
583            // Also, if there are dependencies on other SUnits with the
584            // same register as the anti-dependency, don't attempt to
585            // break it.
586            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
587                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
588              if (P->getSUnit() == NextSU ?
589                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
590                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
591                AntiDepReg = 0;
592                break;
593              }
594          }
595        }
596        CriticalPathSU = NextSU;
597        CriticalPathMI = CriticalPathSU->getInstr();
598      } else {
599        // We've reached the end of the critical path.
600        CriticalPathSU = nullptr;
601        CriticalPathMI = nullptr;
602      }
603    }
604
605    PrescanInstruction(MI);
606
607    SmallVector<unsigned, 2> ForbidRegs;
608
609    // If MI's defs have a special allocation requirement, don't allow
610    // any def registers to be changed. Also assume all registers
611    // defined in a call must not be changed (ABI).
612    if (MI->isCall() || MI->hasExtraDefRegAllocReq() || TII->isPredicated(MI))
613      // If this instruction's defs have special allocation requirement, don't
614      // break this anti-dependency.
615      AntiDepReg = 0;
616    else if (AntiDepReg) {
617      // If this instruction has a use of AntiDepReg, breaking it
618      // is invalid.  If the instruction defines other registers,
619      // save a list of them so that we don't pick a new register
620      // that overlaps any of them.
621      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
622        MachineOperand &MO = MI->getOperand(i);
623        if (!MO.isReg()) continue;
624        unsigned Reg = MO.getReg();
625        if (Reg == 0) continue;
626        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
627          AntiDepReg = 0;
628          break;
629        }
630        if (MO.isDef() && Reg != AntiDepReg)
631          ForbidRegs.push_back(Reg);
632      }
633    }
634
635    // Determine AntiDepReg's register class, if it is live and is
636    // consistently used within a single class.
637    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
638                                                    : nullptr;
639    assert((AntiDepReg == 0 || RC != nullptr) &&
640           "Register should be live if it's causing an anti-dependence!");
641    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
642      AntiDepReg = 0;
643
644    // Look for a suitable register to use to break the anti-dependence.
645    //
646    // TODO: Instead of picking the first free register, consider which might
647    // be the best.
648    if (AntiDepReg != 0) {
649      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
650                std::multimap<unsigned, MachineOperand *>::iterator>
651        Range = RegRefs.equal_range(AntiDepReg);
652      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
653                                                     AntiDepReg,
654                                                     LastNewReg[AntiDepReg],
655                                                     RC, ForbidRegs)) {
656        DEBUG(dbgs() << "Breaking anti-dependence edge on "
657              << TRI->getName(AntiDepReg)
658              << " with " << RegRefs.count(AntiDepReg) << " references"
659              << " using " << TRI->getName(NewReg) << "!\n");
660
661        // Update the references to the old register to refer to the new
662        // register.
663        for (std::multimap<unsigned, MachineOperand *>::iterator
664             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
665          Q->second->setReg(NewReg);
666          // If the SU for the instruction being updated has debug information
667          // related to the anti-dependency register, make sure to update that
668          // as well.
669          const SUnit *SU = MISUnitMap[Q->second->getParent()];
670          if (!SU) continue;
671          for (DbgValueVector::iterator DVI = DbgValues.begin(),
672                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
673            if (DVI->second == Q->second->getParent())
674              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
675        }
676
677        // We just went back in time and modified history; the
678        // liveness information for the anti-dependence reg is now
679        // inconsistent. Set the state as if it were dead.
680        Classes[NewReg] = Classes[AntiDepReg];
681        DefIndices[NewReg] = DefIndices[AntiDepReg];
682        KillIndices[NewReg] = KillIndices[AntiDepReg];
683        assert(((KillIndices[NewReg] == ~0u) !=
684                (DefIndices[NewReg] == ~0u)) &&
685             "Kill and Def maps aren't consistent for NewReg!");
686
687        Classes[AntiDepReg] = nullptr;
688        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
689        KillIndices[AntiDepReg] = ~0u;
690        assert(((KillIndices[AntiDepReg] == ~0u) !=
691                (DefIndices[AntiDepReg] == ~0u)) &&
692             "Kill and Def maps aren't consistent for AntiDepReg!");
693
694        RegRefs.erase(AntiDepReg);
695        LastNewReg[AntiDepReg] = NewReg;
696        ++Broken;
697      }
698    }
699
700    ScanInstruction(MI, Count);
701  }
702
703  return Broken;
704}
705