InlineSpiller.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The inline spiller modifies the machine function directly instead of
11// inserting spills and restores in VirtRegMap.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "Spiller.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/TinyPtrVector.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveRangeEdit.h"
23#include "llvm/CodeGen/LiveStackAnalysis.h"
24#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineInstrBundle.h"
31#include "llvm/CodeGen/MachineLoopInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/VirtRegMap.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetMachine.h"
39
40using namespace llvm;
41
42STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
43STATISTIC(NumSnippets,        "Number of spilled snippets");
44STATISTIC(NumSpills,          "Number of spills inserted");
45STATISTIC(NumSpillsRemoved,   "Number of spills removed");
46STATISTIC(NumReloads,         "Number of reloads inserted");
47STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
48STATISTIC(NumFolded,          "Number of folded stack accesses");
49STATISTIC(NumFoldedLoads,     "Number of folded loads");
50STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
51STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
52STATISTIC(NumHoists,          "Number of hoisted spills");
53
54static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
55                                     cl::desc("Disable inline spill hoisting"));
56
57namespace {
58class InlineSpiller : public Spiller {
59  MachineFunction &MF;
60  LiveIntervals &LIS;
61  LiveStacks &LSS;
62  AliasAnalysis *AA;
63  MachineDominatorTree &MDT;
64  MachineLoopInfo &Loops;
65  VirtRegMap &VRM;
66  MachineFrameInfo &MFI;
67  MachineRegisterInfo &MRI;
68  const TargetInstrInfo &TII;
69  const TargetRegisterInfo &TRI;
70  const MachineBlockFrequencyInfo &MBFI;
71
72  // Variables that are valid during spill(), but used by multiple methods.
73  LiveRangeEdit *Edit;
74  LiveInterval *StackInt;
75  int StackSlot;
76  unsigned Original;
77
78  // All registers to spill to StackSlot, including the main register.
79  SmallVector<unsigned, 8> RegsToSpill;
80
81  // All COPY instructions to/from snippets.
82  // They are ignored since both operands refer to the same stack slot.
83  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
84
85  // Values that failed to remat at some point.
86  SmallPtrSet<VNInfo*, 8> UsedValues;
87
88public:
89  // Information about a value that was defined by a copy from a sibling
90  // register.
91  struct SibValueInfo {
92    // True when all reaching defs were reloads: No spill is necessary.
93    bool AllDefsAreReloads;
94
95    // True when value is defined by an original PHI not from splitting.
96    bool DefByOrigPHI;
97
98    // True when the COPY defining this value killed its source.
99    bool KillsSource;
100
101    // The preferred register to spill.
102    unsigned SpillReg;
103
104    // The value of SpillReg that should be spilled.
105    VNInfo *SpillVNI;
106
107    // The block where SpillVNI should be spilled. Currently, this must be the
108    // block containing SpillVNI->def.
109    MachineBasicBlock *SpillMBB;
110
111    // A defining instruction that is not a sibling copy or a reload, or NULL.
112    // This can be used as a template for rematerialization.
113    MachineInstr *DefMI;
114
115    // List of values that depend on this one.  These values are actually the
116    // same, but live range splitting has placed them in different registers,
117    // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
118    // copies of the current value and phi-kills.  Usually only phi-kills cause
119    // more than one dependent value.
120    TinyPtrVector<VNInfo*> Deps;
121
122    SibValueInfo(unsigned Reg, VNInfo *VNI)
123      : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
124        SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
125
126    // Returns true when a def has been found.
127    bool hasDef() const { return DefByOrigPHI || DefMI; }
128  };
129
130private:
131  // Values in RegsToSpill defined by sibling copies.
132  typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
133  SibValueMap SibValues;
134
135  // Dead defs generated during spilling.
136  SmallVector<MachineInstr*, 8> DeadDefs;
137
138  ~InlineSpiller() {}
139
140public:
141  InlineSpiller(MachineFunctionPass &pass,
142                MachineFunction &mf,
143                VirtRegMap &vrm)
144    : MF(mf),
145      LIS(pass.getAnalysis<LiveIntervals>()),
146      LSS(pass.getAnalysis<LiveStacks>()),
147      AA(&pass.getAnalysis<AliasAnalysis>()),
148      MDT(pass.getAnalysis<MachineDominatorTree>()),
149      Loops(pass.getAnalysis<MachineLoopInfo>()),
150      VRM(vrm),
151      MFI(*mf.getFrameInfo()),
152      MRI(mf.getRegInfo()),
153      TII(*mf.getTarget().getInstrInfo()),
154      TRI(*mf.getTarget().getRegisterInfo()),
155      MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
156
157  void spill(LiveRangeEdit &) override;
158
159private:
160  bool isSnippet(const LiveInterval &SnipLI);
161  void collectRegsToSpill();
162
163  bool isRegToSpill(unsigned Reg) {
164    return std::find(RegsToSpill.begin(),
165                     RegsToSpill.end(), Reg) != RegsToSpill.end();
166  }
167
168  bool isSibling(unsigned Reg);
169  MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
170  void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
171  void analyzeSiblingValues();
172
173  bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
174  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
175
176  void markValueUsed(LiveInterval*, VNInfo*);
177  bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
178  void reMaterializeAll();
179
180  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
181  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
182                         MachineInstr *LoadMI = 0);
183  void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
184  void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
185
186  void spillAroundUses(unsigned Reg);
187  void spillAll();
188};
189}
190
191namespace llvm {
192Spiller *createInlineSpiller(MachineFunctionPass &pass,
193                             MachineFunction &mf,
194                             VirtRegMap &vrm) {
195  return new InlineSpiller(pass, mf, vrm);
196}
197}
198
199//===----------------------------------------------------------------------===//
200//                                Snippets
201//===----------------------------------------------------------------------===//
202
203// When spilling a virtual register, we also spill any snippets it is connected
204// to. The snippets are small live ranges that only have a single real use,
205// leftovers from live range splitting. Spilling them enables memory operand
206// folding or tightens the live range around the single use.
207//
208// This minimizes register pressure and maximizes the store-to-load distance for
209// spill slots which can be important in tight loops.
210
211/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
212/// otherwise return 0.
213static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
214  if (!MI->isFullCopy())
215    return 0;
216  if (MI->getOperand(0).getReg() == Reg)
217      return MI->getOperand(1).getReg();
218  if (MI->getOperand(1).getReg() == Reg)
219      return MI->getOperand(0).getReg();
220  return 0;
221}
222
223/// isSnippet - Identify if a live interval is a snippet that should be spilled.
224/// It is assumed that SnipLI is a virtual register with the same original as
225/// Edit->getReg().
226bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
227  unsigned Reg = Edit->getReg();
228
229  // A snippet is a tiny live range with only a single instruction using it
230  // besides copies to/from Reg or spills/fills. We accept:
231  //
232  //   %snip = COPY %Reg / FILL fi#
233  //   %snip = USE %snip
234  //   %Reg = COPY %snip / SPILL %snip, fi#
235  //
236  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
237    return false;
238
239  MachineInstr *UseMI = 0;
240
241  // Check that all uses satisfy our criteria.
242  for (MachineRegisterInfo::reg_instr_nodbg_iterator
243       RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
244       E = MRI.reg_instr_nodbg_end(); RI != E; ) {
245    MachineInstr *MI = &*(RI++);
246
247    // Allow copies to/from Reg.
248    if (isFullCopyOf(MI, Reg))
249      continue;
250
251    // Allow stack slot loads.
252    int FI;
253    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
254      continue;
255
256    // Allow stack slot stores.
257    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
258      continue;
259
260    // Allow a single additional instruction.
261    if (UseMI && MI != UseMI)
262      return false;
263    UseMI = MI;
264  }
265  return true;
266}
267
268/// collectRegsToSpill - Collect live range snippets that only have a single
269/// real use.
270void InlineSpiller::collectRegsToSpill() {
271  unsigned Reg = Edit->getReg();
272
273  // Main register always spills.
274  RegsToSpill.assign(1, Reg);
275  SnippetCopies.clear();
276
277  // Snippets all have the same original, so there can't be any for an original
278  // register.
279  if (Original == Reg)
280    return;
281
282  for (MachineRegisterInfo::reg_instr_iterator
283       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
284    MachineInstr *MI = &*(RI++);
285    unsigned SnipReg = isFullCopyOf(MI, Reg);
286    if (!isSibling(SnipReg))
287      continue;
288    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
289    if (!isSnippet(SnipLI))
290      continue;
291    SnippetCopies.insert(MI);
292    if (isRegToSpill(SnipReg))
293      continue;
294    RegsToSpill.push_back(SnipReg);
295    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
296    ++NumSnippets;
297  }
298}
299
300
301//===----------------------------------------------------------------------===//
302//                            Sibling Values
303//===----------------------------------------------------------------------===//
304
305// After live range splitting, some values to be spilled may be defined by
306// copies from sibling registers. We trace the sibling copies back to the
307// original value if it still exists. We need it for rematerialization.
308//
309// Even when the value can't be rematerialized, we still want to determine if
310// the value has already been spilled, or we may want to hoist the spill from a
311// loop.
312
313bool InlineSpiller::isSibling(unsigned Reg) {
314  return TargetRegisterInfo::isVirtualRegister(Reg) &&
315           VRM.getOriginal(Reg) == Original;
316}
317
318#ifndef NDEBUG
319static raw_ostream &operator<<(raw_ostream &OS,
320                               const InlineSpiller::SibValueInfo &SVI) {
321  OS << "spill " << PrintReg(SVI.SpillReg) << ':'
322     << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
323  if (SVI.SpillMBB)
324    OS << " in BB#" << SVI.SpillMBB->getNumber();
325  if (SVI.AllDefsAreReloads)
326    OS << " all-reloads";
327  if (SVI.DefByOrigPHI)
328    OS << " orig-phi";
329  if (SVI.KillsSource)
330    OS << " kill";
331  OS << " deps[";
332  for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
333    OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
334  OS << " ]";
335  if (SVI.DefMI)
336    OS << " def: " << *SVI.DefMI;
337  else
338    OS << '\n';
339  return OS;
340}
341#endif
342
343/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
344/// known.  Otherwise remember the dependency for later.
345///
346/// @param SVIIter SibValues entry to propagate.
347/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
348void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
349                                          VNInfo *VNI) {
350  SibValueMap::value_type *SVI = &*SVIIter;
351
352  // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
353  TinyPtrVector<VNInfo*> FirstDeps;
354  if (VNI) {
355    FirstDeps.push_back(VNI);
356    SVI->second.Deps.push_back(VNI);
357  }
358
359  // Has the value been completely determined yet?  If not, defer propagation.
360  if (!SVI->second.hasDef())
361    return;
362
363  // Work list of values to propagate.
364  SmallSetVector<SibValueMap::value_type *, 8> WorkList;
365  WorkList.insert(SVI);
366
367  do {
368    SVI = WorkList.pop_back_val();
369    TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
370    VNI = 0;
371
372    SibValueInfo &SV = SVI->second;
373    if (!SV.SpillMBB)
374      SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
375
376    DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
377                 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
378
379    assert(SV.hasDef() && "Propagating undefined value");
380
381    // Should this value be propagated as a preferred spill candidate?  We don't
382    // propagate values of registers that are about to spill.
383    bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
384    unsigned SpillDepth = ~0u;
385
386    for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
387         DepE = Deps->end(); DepI != DepE; ++DepI) {
388      SibValueMap::iterator DepSVI = SibValues.find(*DepI);
389      assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
390      SibValueInfo &DepSV = DepSVI->second;
391      if (!DepSV.SpillMBB)
392        DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
393
394      bool Changed = false;
395
396      // Propagate defining instruction.
397      if (!DepSV.hasDef()) {
398        Changed = true;
399        DepSV.DefMI = SV.DefMI;
400        DepSV.DefByOrigPHI = SV.DefByOrigPHI;
401      }
402
403      // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
404      // all predecessors.
405      if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
406        Changed = true;
407        DepSV.AllDefsAreReloads = false;
408      }
409
410      // Propagate best spill value.
411      if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
412        if (SV.SpillMBB == DepSV.SpillMBB) {
413          // DepSV is in the same block.  Hoist when dominated.
414          if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
415            // This is an alternative def earlier in the same MBB.
416            // Hoist the spill as far as possible in SpillMBB. This can ease
417            // register pressure:
418            //
419            //   x = def
420            //   y = use x
421            //   s = copy x
422            //
423            // Hoisting the spill of s to immediately after the def removes the
424            // interference between x and y:
425            //
426            //   x = def
427            //   spill x
428            //   y = use x<kill>
429            //
430            // This hoist only helps when the DepSV copy kills its source.
431            Changed = true;
432            DepSV.SpillReg = SV.SpillReg;
433            DepSV.SpillVNI = SV.SpillVNI;
434            DepSV.SpillMBB = SV.SpillMBB;
435          }
436        } else {
437          // DepSV is in a different block.
438          if (SpillDepth == ~0u)
439            SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
440
441          // Also hoist spills to blocks with smaller loop depth, but make sure
442          // that the new value dominates.  Non-phi dependents are always
443          // dominated, phis need checking.
444
445          const BranchProbability MarginProb(4, 5); // 80%
446          // Hoist a spill to outer loop if there are multiple dependents (it
447          // can be beneficial if more than one dependents are hoisted) or
448          // if DepSV (the hoisting source) is hotter than SV (the hoisting
449          // destination) (we add a 80% margin to bias a little towards
450          // loop depth).
451          bool HoistCondition =
452            (MBFI.getBlockFreq(DepSV.SpillMBB) >=
453             (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) ||
454            Deps->size() > 1;
455
456          if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
457              HoistCondition &&
458              (!DepSVI->first->isPHIDef() ||
459               MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
460            Changed = true;
461            DepSV.SpillReg = SV.SpillReg;
462            DepSV.SpillVNI = SV.SpillVNI;
463            DepSV.SpillMBB = SV.SpillMBB;
464          }
465        }
466      }
467
468      if (!Changed)
469        continue;
470
471      // Something changed in DepSVI. Propagate to dependents.
472      WorkList.insert(&*DepSVI);
473
474      DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
475            << DepSVI->first->def << " to:\t" << DepSV);
476    }
477  } while (!WorkList.empty());
478}
479
480/// traceSiblingValue - Trace a value that is about to be spilled back to the
481/// real defining instructions by looking through sibling copies. Always stay
482/// within the range of OrigVNI so the registers are known to carry the same
483/// value.
484///
485/// Determine if the value is defined by all reloads, so spilling isn't
486/// necessary - the value is already in the stack slot.
487///
488/// Return a defining instruction that may be a candidate for rematerialization.
489///
490MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
491                                               VNInfo *OrigVNI) {
492  // Check if a cached value already exists.
493  SibValueMap::iterator SVI;
494  bool Inserted;
495  std::tie(SVI, Inserted) =
496    SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
497  if (!Inserted) {
498    DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
499                 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
500    return SVI->second.DefMI;
501  }
502
503  DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
504               << UseVNI->id << '@' << UseVNI->def << '\n');
505
506  // List of (Reg, VNI) that have been inserted into SibValues, but need to be
507  // processed.
508  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
509  WorkList.push_back(std::make_pair(UseReg, UseVNI));
510
511  do {
512    unsigned Reg;
513    VNInfo *VNI;
514    std::tie(Reg, VNI) = WorkList.pop_back_val();
515    DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
516                 << ":\t");
517
518    // First check if this value has already been computed.
519    SVI = SibValues.find(VNI);
520    assert(SVI != SibValues.end() && "Missing SibValues entry");
521
522    // Trace through PHI-defs created by live range splitting.
523    if (VNI->isPHIDef()) {
524      // Stop at original PHIs.  We don't know the value at the predecessors.
525      if (VNI->def == OrigVNI->def) {
526        DEBUG(dbgs() << "orig phi value\n");
527        SVI->second.DefByOrigPHI = true;
528        SVI->second.AllDefsAreReloads = false;
529        propagateSiblingValue(SVI);
530        continue;
531      }
532
533      // This is a PHI inserted by live range splitting.  We could trace the
534      // live-out value from predecessor blocks, but that search can be very
535      // expensive if there are many predecessors and many more PHIs as
536      // generated by tail-dup when it sees an indirectbr.  Instead, look at
537      // all the non-PHI defs that have the same value as OrigVNI.  They must
538      // jointly dominate VNI->def.  This is not optimal since VNI may actually
539      // be jointly dominated by a smaller subset of defs, so there is a change
540      // we will miss a AllDefsAreReloads optimization.
541
542      // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
543      SmallVector<VNInfo*, 8> PHIs, NonPHIs;
544      LiveInterval &LI = LIS.getInterval(Reg);
545      LiveInterval &OrigLI = LIS.getInterval(Original);
546
547      for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
548           VI != VE; ++VI) {
549        VNInfo *VNI2 = *VI;
550        if (VNI2->isUnused())
551          continue;
552        if (!OrigLI.containsOneValue() &&
553            OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
554          continue;
555        if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
556          PHIs.push_back(VNI2);
557        else
558          NonPHIs.push_back(VNI2);
559      }
560      DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
561                   << " phi-defs, and " << NonPHIs.size()
562                   << " non-phi/orig defs\n");
563
564      // Create entries for all the PHIs.  Don't add them to the worklist, we
565      // are processing all of them in one go here.
566      for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
567        SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
568
569      // Add every PHI as a dependent of all the non-PHIs.
570      for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
571        VNInfo *NonPHI = NonPHIs[i];
572        // Known value? Try an insertion.
573        std::tie(SVI, Inserted) =
574          SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
575        // Add all the PHIs as dependents of NonPHI.
576        for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
577          SVI->second.Deps.push_back(PHIs[pi]);
578        // This is the first time we see NonPHI, add it to the worklist.
579        if (Inserted)
580          WorkList.push_back(std::make_pair(Reg, NonPHI));
581        else
582          // Propagate to all inserted PHIs, not just VNI.
583          propagateSiblingValue(SVI);
584      }
585
586      // Next work list item.
587      continue;
588    }
589
590    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
591    assert(MI && "Missing def");
592
593    // Trace through sibling copies.
594    if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
595      if (isSibling(SrcReg)) {
596        LiveInterval &SrcLI = LIS.getInterval(SrcReg);
597        LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
598        assert(SrcQ.valueIn() && "Copy from non-existing value");
599        // Check if this COPY kills its source.
600        SVI->second.KillsSource = SrcQ.isKill();
601        VNInfo *SrcVNI = SrcQ.valueIn();
602        DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
603                     << SrcVNI->id << '@' << SrcVNI->def
604                     << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
605        // Known sibling source value? Try an insertion.
606        std::tie(SVI, Inserted) = SibValues.insert(
607            std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI)));
608        // This is the first time we see Src, add it to the worklist.
609        if (Inserted)
610          WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
611        propagateSiblingValue(SVI, VNI);
612        // Next work list item.
613        continue;
614      }
615    }
616
617    // Track reachable reloads.
618    SVI->second.DefMI = MI;
619    SVI->second.SpillMBB = MI->getParent();
620    int FI;
621    if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
622      DEBUG(dbgs() << "reload\n");
623      propagateSiblingValue(SVI);
624      // Next work list item.
625      continue;
626    }
627
628    // Potential remat candidate.
629    DEBUG(dbgs() << "def " << *MI);
630    SVI->second.AllDefsAreReloads = false;
631    propagateSiblingValue(SVI);
632  } while (!WorkList.empty());
633
634  // Look up the value we were looking for.  We already did this lookup at the
635  // top of the function, but SibValues may have been invalidated.
636  SVI = SibValues.find(UseVNI);
637  assert(SVI != SibValues.end() && "Didn't compute requested info");
638  DEBUG(dbgs() << "  traced to:\t" << SVI->second);
639  return SVI->second.DefMI;
640}
641
642/// analyzeSiblingValues - Trace values defined by sibling copies back to
643/// something that isn't a sibling copy.
644///
645/// Keep track of values that may be rematerializable.
646void InlineSpiller::analyzeSiblingValues() {
647  SibValues.clear();
648
649  // No siblings at all?
650  if (Edit->getReg() == Original)
651    return;
652
653  LiveInterval &OrigLI = LIS.getInterval(Original);
654  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
655    unsigned Reg = RegsToSpill[i];
656    LiveInterval &LI = LIS.getInterval(Reg);
657    for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
658         VE = LI.vni_end(); VI != VE; ++VI) {
659      VNInfo *VNI = *VI;
660      if (VNI->isUnused())
661        continue;
662      MachineInstr *DefMI = 0;
663      if (!VNI->isPHIDef()) {
664       DefMI = LIS.getInstructionFromIndex(VNI->def);
665       assert(DefMI && "No defining instruction");
666      }
667      // Check possible sibling copies.
668      if (VNI->isPHIDef() || DefMI->isCopy()) {
669        VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
670        assert(OrigVNI && "Def outside original live range");
671        if (OrigVNI->def != VNI->def)
672          DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
673      }
674      if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
675        DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
676                     << VNI->def << " may remat from " << *DefMI);
677      }
678    }
679  }
680}
681
682/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
683/// a spill at a better location.
684bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
685  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
686  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
687  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
688  SibValueMap::iterator I = SibValues.find(VNI);
689  if (I == SibValues.end())
690    return false;
691
692  const SibValueInfo &SVI = I->second;
693
694  // Let the normal folding code deal with the boring case.
695  if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
696    return false;
697
698  // SpillReg may have been deleted by remat and DCE.
699  if (!LIS.hasInterval(SVI.SpillReg)) {
700    DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
701    SibValues.erase(I);
702    return false;
703  }
704
705  LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
706  if (!SibLI.containsValue(SVI.SpillVNI)) {
707    DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
708    SibValues.erase(I);
709    return false;
710  }
711
712  // Conservatively extend the stack slot range to the range of the original
713  // value. We may be able to do better with stack slot coloring by being more
714  // careful here.
715  assert(StackInt && "No stack slot assigned yet.");
716  LiveInterval &OrigLI = LIS.getInterval(Original);
717  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
718  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
719  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
720               << *StackInt << '\n');
721
722  // Already spilled everywhere.
723  if (SVI.AllDefsAreReloads) {
724    DEBUG(dbgs() << "\tno spill needed: " << SVI);
725    ++NumOmitReloadSpill;
726    return true;
727  }
728  // We are going to spill SVI.SpillVNI immediately after its def, so clear out
729  // any later spills of the same value.
730  eliminateRedundantSpills(SibLI, SVI.SpillVNI);
731
732  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
733  MachineBasicBlock::iterator MII;
734  if (SVI.SpillVNI->isPHIDef())
735    MII = MBB->SkipPHIsAndLabels(MBB->begin());
736  else {
737    MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
738    assert(DefMI && "Defining instruction disappeared");
739    MII = DefMI;
740    ++MII;
741  }
742  // Insert spill without kill flag immediately after def.
743  TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
744                          MRI.getRegClass(SVI.SpillReg), &TRI);
745  --MII; // Point to store instruction.
746  LIS.InsertMachineInstrInMaps(MII);
747  DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
748
749  ++NumSpills;
750  ++NumHoists;
751  return true;
752}
753
754/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
755/// redundant spills of this value in SLI.reg and sibling copies.
756void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
757  assert(VNI && "Missing value");
758  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
759  WorkList.push_back(std::make_pair(&SLI, VNI));
760  assert(StackInt && "No stack slot assigned yet.");
761
762  do {
763    LiveInterval *LI;
764    std::tie(LI, VNI) = WorkList.pop_back_val();
765    unsigned Reg = LI->reg;
766    DEBUG(dbgs() << "Checking redundant spills for "
767                 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
768
769    // Regs to spill are taken care of.
770    if (isRegToSpill(Reg))
771      continue;
772
773    // Add all of VNI's live range to StackInt.
774    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
775    DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
776
777    // Find all spills and copies of VNI.
778    for (MachineRegisterInfo::use_instr_nodbg_iterator
779         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
780         UI != E; ) {
781      MachineInstr *MI = &*(UI++);
782      if (!MI->isCopy() && !MI->mayStore())
783        continue;
784      SlotIndex Idx = LIS.getInstructionIndex(MI);
785      if (LI->getVNInfoAt(Idx) != VNI)
786        continue;
787
788      // Follow sibling copies down the dominator tree.
789      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
790        if (isSibling(DstReg)) {
791           LiveInterval &DstLI = LIS.getInterval(DstReg);
792           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
793           assert(DstVNI && "Missing defined value");
794           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
795           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
796        }
797        continue;
798      }
799
800      // Erase spills.
801      int FI;
802      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
803        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
804        // eliminateDeadDefs won't normally remove stores, so switch opcode.
805        MI->setDesc(TII.get(TargetOpcode::KILL));
806        DeadDefs.push_back(MI);
807        ++NumSpillsRemoved;
808        --NumSpills;
809      }
810    }
811  } while (!WorkList.empty());
812}
813
814
815//===----------------------------------------------------------------------===//
816//                            Rematerialization
817//===----------------------------------------------------------------------===//
818
819/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
820/// instruction cannot be eliminated. See through snippet copies
821void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
822  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
823  WorkList.push_back(std::make_pair(LI, VNI));
824  do {
825    std::tie(LI, VNI) = WorkList.pop_back_val();
826    if (!UsedValues.insert(VNI))
827      continue;
828
829    if (VNI->isPHIDef()) {
830      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
831      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
832             PE = MBB->pred_end(); PI != PE; ++PI) {
833        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI));
834        if (PVNI)
835          WorkList.push_back(std::make_pair(LI, PVNI));
836      }
837      continue;
838    }
839
840    // Follow snippet copies.
841    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
842    if (!SnippetCopies.count(MI))
843      continue;
844    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
845    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
846    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
847    assert(SnipVNI && "Snippet undefined before copy");
848    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
849  } while (!WorkList.empty());
850}
851
852/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
853bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
854                                     MachineBasicBlock::iterator MI) {
855  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
856  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
857
858  if (!ParentVNI) {
859    DEBUG(dbgs() << "\tadding <undef> flags: ");
860    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
861      MachineOperand &MO = MI->getOperand(i);
862      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
863        MO.setIsUndef();
864    }
865    DEBUG(dbgs() << UseIdx << '\t' << *MI);
866    return true;
867  }
868
869  if (SnippetCopies.count(MI))
870    return false;
871
872  // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
873  LiveRangeEdit::Remat RM(ParentVNI);
874  SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
875  if (SibI != SibValues.end())
876    RM.OrigMI = SibI->second.DefMI;
877  if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
878    markValueUsed(&VirtReg, ParentVNI);
879    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
880    return false;
881  }
882
883  // If the instruction also writes VirtReg.reg, it had better not require the
884  // same register for uses and defs.
885  SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
886  MIBundleOperands::VirtRegInfo RI =
887    MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
888  if (RI.Tied) {
889    markValueUsed(&VirtReg, ParentVNI);
890    DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
891    return false;
892  }
893
894  // Before rematerializing into a register for a single instruction, try to
895  // fold a load into the instruction. That avoids allocating a new register.
896  if (RM.OrigMI->canFoldAsLoad() &&
897      foldMemoryOperand(Ops, RM.OrigMI)) {
898    Edit->markRematerialized(RM.ParentVNI);
899    ++NumFoldedLoads;
900    return true;
901  }
902
903  // Alocate a new register for the remat.
904  unsigned NewVReg = Edit->createFrom(Original);
905
906  // Finally we can rematerialize OrigMI before MI.
907  SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM,
908                                           TRI);
909  (void)DefIdx;
910  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
911               << *LIS.getInstructionFromIndex(DefIdx));
912
913  // Replace operands
914  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
915    MachineOperand &MO = MI->getOperand(Ops[i].second);
916    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
917      MO.setReg(NewVReg);
918      MO.setIsKill();
919    }
920  }
921  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI << '\n');
922
923  ++NumRemats;
924  return true;
925}
926
927/// reMaterializeAll - Try to rematerialize as many uses as possible,
928/// and trim the live ranges after.
929void InlineSpiller::reMaterializeAll() {
930  // analyzeSiblingValues has already tested all relevant defining instructions.
931  if (!Edit->anyRematerializable(AA))
932    return;
933
934  UsedValues.clear();
935
936  // Try to remat before all uses of snippets.
937  bool anyRemat = false;
938  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
939    unsigned Reg = RegsToSpill[i];
940    LiveInterval &LI = LIS.getInterval(Reg);
941    for (MachineRegisterInfo::use_bundle_nodbg_iterator
942         RI = MRI.use_bundle_nodbg_begin(Reg), E = MRI.use_bundle_nodbg_end();
943         RI != E; ) {
944      MachineInstr *MI = &*(RI++);
945      anyRemat |= reMaterializeFor(LI, MI);
946    }
947  }
948  if (!anyRemat)
949    return;
950
951  // Remove any values that were completely rematted.
952  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
953    unsigned Reg = RegsToSpill[i];
954    LiveInterval &LI = LIS.getInterval(Reg);
955    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
956         I != E; ++I) {
957      VNInfo *VNI = *I;
958      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
959        continue;
960      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
961      MI->addRegisterDead(Reg, &TRI);
962      if (!MI->allDefsAreDead())
963        continue;
964      DEBUG(dbgs() << "All defs dead: " << *MI);
965      DeadDefs.push_back(MI);
966    }
967  }
968
969  // Eliminate dead code after remat. Note that some snippet copies may be
970  // deleted here.
971  if (DeadDefs.empty())
972    return;
973  DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
974  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
975
976  // Get rid of deleted and empty intervals.
977  unsigned ResultPos = 0;
978  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
979    unsigned Reg = RegsToSpill[i];
980    if (!LIS.hasInterval(Reg))
981      continue;
982
983    LiveInterval &LI = LIS.getInterval(Reg);
984    if (LI.empty()) {
985      Edit->eraseVirtReg(Reg);
986      continue;
987    }
988
989    RegsToSpill[ResultPos++] = Reg;
990  }
991  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
992  DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
993}
994
995
996//===----------------------------------------------------------------------===//
997//                                 Spilling
998//===----------------------------------------------------------------------===//
999
1000/// If MI is a load or store of StackSlot, it can be removed.
1001bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
1002  int FI = 0;
1003  unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
1004  bool IsLoad = InstrReg;
1005  if (!IsLoad)
1006    InstrReg = TII.isStoreToStackSlot(MI, FI);
1007
1008  // We have a stack access. Is it the right register and slot?
1009  if (InstrReg != Reg || FI != StackSlot)
1010    return false;
1011
1012  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
1013  LIS.RemoveMachineInstrFromMaps(MI);
1014  MI->eraseFromParent();
1015
1016  if (IsLoad) {
1017    ++NumReloadsRemoved;
1018    --NumReloads;
1019  } else {
1020    ++NumSpillsRemoved;
1021    --NumSpills;
1022  }
1023
1024  return true;
1025}
1026
1027#if !defined(NDEBUG)
1028// Dump the range of instructions from B to E with their slot indexes.
1029static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
1030                                               MachineBasicBlock::iterator E,
1031                                               LiveIntervals const &LIS,
1032                                               const char *const header,
1033                                               unsigned VReg =0) {
1034  char NextLine = '\n';
1035  char SlotIndent = '\t';
1036
1037  if (std::next(B) == E) {
1038    NextLine = ' ';
1039    SlotIndent = ' ';
1040  }
1041
1042  dbgs() << '\t' << header << ": " << NextLine;
1043
1044  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
1045    SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot();
1046
1047    // If a register was passed in and this instruction has it as a
1048    // destination that is marked as an early clobber, print the
1049    // early-clobber slot index.
1050    if (VReg) {
1051      MachineOperand *MO = I->findRegisterDefOperand(VReg);
1052      if (MO && MO->isEarlyClobber())
1053        Idx = Idx.getRegSlot(true);
1054    }
1055
1056    dbgs() << SlotIndent << Idx << '\t' << *I;
1057  }
1058}
1059#endif
1060
1061/// foldMemoryOperand - Try folding stack slot references in Ops into their
1062/// instructions.
1063///
1064/// @param Ops    Operand indices from analyzeVirtReg().
1065/// @param LoadMI Load instruction to use instead of stack slot when non-null.
1066/// @return       True on success.
1067bool InlineSpiller::
1068foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1069                  MachineInstr *LoadMI) {
1070  if (Ops.empty())
1071    return false;
1072  // Don't attempt folding in bundles.
1073  MachineInstr *MI = Ops.front().first;
1074  if (Ops.back().first != MI || MI->isBundled())
1075    return false;
1076
1077  bool WasCopy = MI->isCopy();
1078  unsigned ImpReg = 0;
1079
1080  bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1081                       MI->getOpcode() == TargetOpcode::STACKMAP);
1082
1083  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1084  // operands.
1085  SmallVector<unsigned, 8> FoldOps;
1086  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1087    unsigned Idx = Ops[i].second;
1088    MachineOperand &MO = MI->getOperand(Idx);
1089    if (MO.isImplicit()) {
1090      ImpReg = MO.getReg();
1091      continue;
1092    }
1093    // FIXME: Teach targets to deal with subregs.
1094    if (!SpillSubRegs && MO.getSubReg())
1095      return false;
1096    // We cannot fold a load instruction into a def.
1097    if (LoadMI && MO.isDef())
1098      return false;
1099    // Tied use operands should not be passed to foldMemoryOperand.
1100    if (!MI->isRegTiedToDefOperand(Idx))
1101      FoldOps.push_back(Idx);
1102  }
1103
1104  MachineInstrSpan MIS(MI);
1105
1106  MachineInstr *FoldMI =
1107                LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1108                       : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1109  if (!FoldMI)
1110    return false;
1111
1112  // Remove LIS for any dead defs in the original MI not in FoldMI.
1113  for (MIBundleOperands MO(MI); MO.isValid(); ++MO) {
1114    if (!MO->isReg())
1115      continue;
1116    unsigned Reg = MO->getReg();
1117    if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
1118        MRI.isReserved(Reg)) {
1119      continue;
1120    }
1121    // Skip non-Defs, including undef uses and internal reads.
1122    if (MO->isUse())
1123      continue;
1124    MIBundleOperands::PhysRegInfo RI =
1125      MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI);
1126    if (RI.Defines)
1127      continue;
1128    // FoldMI does not define this physreg. Remove the LI segment.
1129    assert(MO->isDead() && "Cannot fold physreg def");
1130    for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) {
1131      if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
1132        SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1133        if (VNInfo *VNI = LR->getVNInfoAt(Idx))
1134          LR->removeValNo(VNI);
1135      }
1136    }
1137  }
1138
1139  LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1140  MI->eraseFromParent();
1141
1142  // Insert any new instructions other than FoldMI into the LIS maps.
1143  assert(!MIS.empty() && "Unexpected empty span of instructions!");
1144  for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end();
1145       MII != End; ++MII)
1146    if (&*MII != FoldMI)
1147      LIS.InsertMachineInstrInMaps(&*MII);
1148
1149  // TII.foldMemoryOperand may have left some implicit operands on the
1150  // instruction.  Strip them.
1151  if (ImpReg)
1152    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1153      MachineOperand &MO = FoldMI->getOperand(i - 1);
1154      if (!MO.isReg() || !MO.isImplicit())
1155        break;
1156      if (MO.getReg() == ImpReg)
1157        FoldMI->RemoveOperand(i - 1);
1158    }
1159
1160  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1161                                           "folded"));
1162
1163  if (!WasCopy)
1164    ++NumFolded;
1165  else if (Ops.front().second == 0)
1166    ++NumSpills;
1167  else
1168    ++NumReloads;
1169  return true;
1170}
1171
1172void InlineSpiller::insertReload(unsigned NewVReg,
1173                                 SlotIndex Idx,
1174                                 MachineBasicBlock::iterator MI) {
1175  MachineBasicBlock &MBB = *MI->getParent();
1176
1177  MachineInstrSpan MIS(MI);
1178  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1179                           MRI.getRegClass(NewVReg), &TRI);
1180
1181  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1182
1183  DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1184                                           NewVReg));
1185  ++NumReloads;
1186}
1187
1188/// insertSpill - Insert a spill of NewVReg after MI.
1189void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
1190                                 MachineBasicBlock::iterator MI) {
1191  MachineBasicBlock &MBB = *MI->getParent();
1192
1193  MachineInstrSpan MIS(MI);
1194  TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
1195                          MRI.getRegClass(NewVReg), &TRI);
1196
1197  LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
1198
1199  DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
1200                                           "spill"));
1201  ++NumSpills;
1202}
1203
1204/// spillAroundUses - insert spill code around each use of Reg.
1205void InlineSpiller::spillAroundUses(unsigned Reg) {
1206  DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1207  LiveInterval &OldLI = LIS.getInterval(Reg);
1208
1209  // Iterate over instructions using Reg.
1210  for (MachineRegisterInfo::reg_bundle_iterator
1211       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1212       RegI != E; ) {
1213    MachineInstr *MI = &*(RegI++);
1214
1215    // Debug values are not allowed to affect codegen.
1216    if (MI->isDebugValue()) {
1217      // Modify DBG_VALUE now that the value is in a spill slot.
1218      bool IsIndirect = MI->isIndirectDebugValue();
1219      uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
1220      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1221      DebugLoc DL = MI->getDebugLoc();
1222      DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1223      MachineBasicBlock *MBB = MI->getParent();
1224      BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
1225          .addFrameIndex(StackSlot).addImm(Offset).addMetadata(MDPtr);
1226      continue;
1227    }
1228
1229    // Ignore copies to/from snippets. We'll delete them.
1230    if (SnippetCopies.count(MI))
1231      continue;
1232
1233    // Stack slot accesses may coalesce away.
1234    if (coalesceStackAccess(MI, Reg))
1235      continue;
1236
1237    // Analyze instruction.
1238    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1239    MIBundleOperands::VirtRegInfo RI =
1240      MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops);
1241
1242    // Find the slot index where this instruction reads and writes OldLI.
1243    // This is usually the def slot, except for tied early clobbers.
1244    SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1245    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1246      if (SlotIndex::isSameInstr(Idx, VNI->def))
1247        Idx = VNI->def;
1248
1249    // Check for a sibling copy.
1250    unsigned SibReg = isFullCopyOf(MI, Reg);
1251    if (SibReg && isSibling(SibReg)) {
1252      // This may actually be a copy between snippets.
1253      if (isRegToSpill(SibReg)) {
1254        DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1255        SnippetCopies.insert(MI);
1256        continue;
1257      }
1258      if (RI.Writes) {
1259        // Hoist the spill of a sib-reg copy.
1260        if (hoistSpill(OldLI, MI)) {
1261          // This COPY is now dead, the value is already in the stack slot.
1262          MI->getOperand(0).setIsDead();
1263          DeadDefs.push_back(MI);
1264          continue;
1265        }
1266      } else {
1267        // This is a reload for a sib-reg copy. Drop spills downstream.
1268        LiveInterval &SibLI = LIS.getInterval(SibReg);
1269        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1270        // The COPY will fold to a reload below.
1271      }
1272    }
1273
1274    // Attempt to fold memory ops.
1275    if (foldMemoryOperand(Ops))
1276      continue;
1277
1278    // Create a new virtual register for spill/fill.
1279    // FIXME: Infer regclass from instruction alone.
1280    unsigned NewVReg = Edit->createFrom(Reg);
1281
1282    if (RI.Reads)
1283      insertReload(NewVReg, Idx, MI);
1284
1285    // Rewrite instruction operands.
1286    bool hasLiveDef = false;
1287    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1288      MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second);
1289      MO.setReg(NewVReg);
1290      if (MO.isUse()) {
1291        if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second))
1292          MO.setIsKill();
1293      } else {
1294        if (!MO.isDead())
1295          hasLiveDef = true;
1296      }
1297    }
1298    DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1299
1300    // FIXME: Use a second vreg if instruction has no tied ops.
1301    if (RI.Writes)
1302      if (hasLiveDef)
1303        insertSpill(NewVReg, true, MI);
1304  }
1305}
1306
1307/// spillAll - Spill all registers remaining after rematerialization.
1308void InlineSpiller::spillAll() {
1309  // Update LiveStacks now that we are committed to spilling.
1310  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1311    StackSlot = VRM.assignVirt2StackSlot(Original);
1312    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1313    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1314  } else
1315    StackInt = &LSS.getInterval(StackSlot);
1316
1317  if (Original != Edit->getReg())
1318    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1319
1320  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1321  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1322    StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]),
1323                                     StackInt->getValNumInfo(0));
1324  DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1325
1326  // Spill around uses of all RegsToSpill.
1327  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1328    spillAroundUses(RegsToSpill[i]);
1329
1330  // Hoisted spills may cause dead code.
1331  if (!DeadDefs.empty()) {
1332    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1333    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1334  }
1335
1336  // Finally delete the SnippetCopies.
1337  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1338    for (MachineRegisterInfo::reg_instr_iterator
1339         RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end();
1340         RI != E; ) {
1341      MachineInstr *MI = &*(RI++);
1342      assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1343      // FIXME: Do this with a LiveRangeEdit callback.
1344      LIS.RemoveMachineInstrFromMaps(MI);
1345      MI->eraseFromParent();
1346    }
1347  }
1348
1349  // Delete all spilled registers.
1350  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1351    Edit->eraseVirtReg(RegsToSpill[i]);
1352}
1353
1354void InlineSpiller::spill(LiveRangeEdit &edit) {
1355  ++NumSpilledRanges;
1356  Edit = &edit;
1357  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1358         && "Trying to spill a stack slot.");
1359  // Share a stack slot among all descendants of Original.
1360  Original = VRM.getOriginal(edit.getReg());
1361  StackSlot = VRM.getStackSlot(Original);
1362  StackInt = 0;
1363
1364  DEBUG(dbgs() << "Inline spilling "
1365               << MRI.getRegClass(edit.getReg())->getName()
1366               << ':' << edit.getParent()
1367               << "\nFrom original " << PrintReg(Original) << '\n');
1368  assert(edit.getParent().isSpillable() &&
1369         "Attempting to spill already spilled value.");
1370  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1371
1372  collectRegsToSpill();
1373  analyzeSiblingValues();
1374  reMaterializeAll();
1375
1376  // Remat may handle everything.
1377  if (!RegsToSpill.empty())
1378    spillAll();
1379
1380  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1381}
1382