LiveInterval.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live range for register v if there is no instruction with number j' >= j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation ranges can have holes,
15// i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16// individual segment is represented as an instance of LiveRange::Segment,
17// and the whole range is represented as an instance of LiveRange.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/CodeGen/LiveInterval.h"
22#include "RegisterCoalescer.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/CodeGen/LiveIntervalAnalysis.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include <algorithm>
32using namespace llvm;
33
34LiveRange::iterator LiveRange::find(SlotIndex Pos) {
35  // This algorithm is basically std::upper_bound.
36  // Unfortunately, std::upper_bound cannot be used with mixed types until we
37  // adopt C++0x. Many libraries can do it, but not all.
38  if (empty() || Pos >= endIndex())
39    return end();
40  iterator I = begin();
41  size_t Len = size();
42  do {
43    size_t Mid = Len >> 1;
44    if (Pos < I[Mid].end)
45      Len = Mid;
46    else
47      I += Mid + 1, Len -= Mid + 1;
48  } while (Len);
49  return I;
50}
51
52VNInfo *LiveRange::createDeadDef(SlotIndex Def,
53                                  VNInfo::Allocator &VNInfoAllocator) {
54  assert(!Def.isDead() && "Cannot define a value at the dead slot");
55  iterator I = find(Def);
56  if (I == end()) {
57    VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
58    segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
59    return VNI;
60  }
61  if (SlotIndex::isSameInstr(Def, I->start)) {
62    assert(I->valno->def == I->start && "Inconsistent existing value def");
63
64    // It is possible to have both normal and early-clobber defs of the same
65    // register on an instruction. It doesn't make a lot of sense, but it is
66    // possible to specify in inline assembly.
67    //
68    // Just convert everything to early-clobber.
69    Def = std::min(Def, I->start);
70    if (Def != I->start)
71      I->start = I->valno->def = Def;
72    return I->valno;
73  }
74  assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
75  VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
76  segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
77  return VNI;
78}
79
80// overlaps - Return true if the intersection of the two live ranges is
81// not empty.
82//
83// An example for overlaps():
84//
85// 0: A = ...
86// 4: B = ...
87// 8: C = A + B ;; last use of A
88//
89// The live ranges should look like:
90//
91// A = [3, 11)
92// B = [7, x)
93// C = [11, y)
94//
95// A->overlaps(C) should return false since we want to be able to join
96// A and C.
97//
98bool LiveRange::overlapsFrom(const LiveRange& other,
99                             const_iterator StartPos) const {
100  assert(!empty() && "empty range");
101  const_iterator i = begin();
102  const_iterator ie = end();
103  const_iterator j = StartPos;
104  const_iterator je = other.end();
105
106  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
107         StartPos != other.end() && "Bogus start position hint!");
108
109  if (i->start < j->start) {
110    i = std::upper_bound(i, ie, j->start);
111    if (i != begin()) --i;
112  } else if (j->start < i->start) {
113    ++StartPos;
114    if (StartPos != other.end() && StartPos->start <= i->start) {
115      assert(StartPos < other.end() && i < end());
116      j = std::upper_bound(j, je, i->start);
117      if (j != other.begin()) --j;
118    }
119  } else {
120    return true;
121  }
122
123  if (j == je) return false;
124
125  while (i != ie) {
126    if (i->start > j->start) {
127      std::swap(i, j);
128      std::swap(ie, je);
129    }
130
131    if (i->end > j->start)
132      return true;
133    ++i;
134  }
135
136  return false;
137}
138
139bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
140                         const SlotIndexes &Indexes) const {
141  assert(!empty() && "empty range");
142  if (Other.empty())
143    return false;
144
145  // Use binary searches to find initial positions.
146  const_iterator I = find(Other.beginIndex());
147  const_iterator IE = end();
148  if (I == IE)
149    return false;
150  const_iterator J = Other.find(I->start);
151  const_iterator JE = Other.end();
152  if (J == JE)
153    return false;
154
155  for (;;) {
156    // J has just been advanced to satisfy:
157    assert(J->end >= I->start);
158    // Check for an overlap.
159    if (J->start < I->end) {
160      // I and J are overlapping. Find the later start.
161      SlotIndex Def = std::max(I->start, J->start);
162      // Allow the overlap if Def is a coalescable copy.
163      if (Def.isBlock() ||
164          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
165        return true;
166    }
167    // Advance the iterator that ends first to check for more overlaps.
168    if (J->end > I->end) {
169      std::swap(I, J);
170      std::swap(IE, JE);
171    }
172    // Advance J until J->end >= I->start.
173    do
174      if (++J == JE)
175        return false;
176    while (J->end < I->start);
177  }
178}
179
180/// overlaps - Return true if the live range overlaps an interval specified
181/// by [Start, End).
182bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
183  assert(Start < End && "Invalid range");
184  const_iterator I = std::lower_bound(begin(), end(), End);
185  return I != begin() && (--I)->end > Start;
186}
187
188
189/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
190/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
191/// it can be nuked later.
192void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
193  if (ValNo->id == getNumValNums()-1) {
194    do {
195      valnos.pop_back();
196    } while (!valnos.empty() && valnos.back()->isUnused());
197  } else {
198    ValNo->markUnused();
199  }
200}
201
202/// RenumberValues - Renumber all values in order of appearance and delete the
203/// remaining unused values.
204void LiveRange::RenumberValues() {
205  SmallPtrSet<VNInfo*, 8> Seen;
206  valnos.clear();
207  for (const_iterator I = begin(), E = end(); I != E; ++I) {
208    VNInfo *VNI = I->valno;
209    if (!Seen.insert(VNI))
210      continue;
211    assert(!VNI->isUnused() && "Unused valno used by live segment");
212    VNI->id = (unsigned)valnos.size();
213    valnos.push_back(VNI);
214  }
215}
216
217/// This method is used when we want to extend the segment specified by I to end
218/// at the specified endpoint.  To do this, we should merge and eliminate all
219/// segments that this will overlap with.  The iterator is not invalidated.
220void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
221  assert(I != end() && "Not a valid segment!");
222  VNInfo *ValNo = I->valno;
223
224  // Search for the first segment that we can't merge with.
225  iterator MergeTo = std::next(I);
226  for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
227    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
228  }
229
230  // If NewEnd was in the middle of a segment, make sure to get its endpoint.
231  I->end = std::max(NewEnd, std::prev(MergeTo)->end);
232
233  // If the newly formed segment now touches the segment after it and if they
234  // have the same value number, merge the two segments into one segment.
235  if (MergeTo != end() && MergeTo->start <= I->end &&
236      MergeTo->valno == ValNo) {
237    I->end = MergeTo->end;
238    ++MergeTo;
239  }
240
241  // Erase any dead segments.
242  segments.erase(std::next(I), MergeTo);
243}
244
245
246/// This method is used when we want to extend the segment specified by I to
247/// start at the specified endpoint.  To do this, we should merge and eliminate
248/// all segments that this will overlap with.
249LiveRange::iterator
250LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
251  assert(I != end() && "Not a valid segment!");
252  VNInfo *ValNo = I->valno;
253
254  // Search for the first segment that we can't merge with.
255  iterator MergeTo = I;
256  do {
257    if (MergeTo == begin()) {
258      I->start = NewStart;
259      segments.erase(MergeTo, I);
260      return I;
261    }
262    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
263    --MergeTo;
264  } while (NewStart <= MergeTo->start);
265
266  // If we start in the middle of another segment, just delete a range and
267  // extend that segment.
268  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
269    MergeTo->end = I->end;
270  } else {
271    // Otherwise, extend the segment right after.
272    ++MergeTo;
273    MergeTo->start = NewStart;
274    MergeTo->end = I->end;
275  }
276
277  segments.erase(std::next(MergeTo), std::next(I));
278  return MergeTo;
279}
280
281LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) {
282  SlotIndex Start = S.start, End = S.end;
283  iterator it = std::upper_bound(From, end(), Start);
284
285  // If the inserted segment starts in the middle or right at the end of
286  // another segment, just extend that segment to contain the segment of S.
287  if (it != begin()) {
288    iterator B = std::prev(it);
289    if (S.valno == B->valno) {
290      if (B->start <= Start && B->end >= Start) {
291        extendSegmentEndTo(B, End);
292        return B;
293      }
294    } else {
295      // Check to make sure that we are not overlapping two live segments with
296      // different valno's.
297      assert(B->end <= Start &&
298             "Cannot overlap two segments with differing ValID's"
299             " (did you def the same reg twice in a MachineInstr?)");
300    }
301  }
302
303  // Otherwise, if this segment ends in the middle of, or right next to, another
304  // segment, merge it into that segment.
305  if (it != end()) {
306    if (S.valno == it->valno) {
307      if (it->start <= End) {
308        it = extendSegmentStartTo(it, Start);
309
310        // If S is a complete superset of a segment, we may need to grow its
311        // endpoint as well.
312        if (End > it->end)
313          extendSegmentEndTo(it, End);
314        return it;
315      }
316    } else {
317      // Check to make sure that we are not overlapping two live segments with
318      // different valno's.
319      assert(it->start >= End &&
320             "Cannot overlap two segments with differing ValID's");
321    }
322  }
323
324  // Otherwise, this is just a new segment that doesn't interact with anything.
325  // Insert it.
326  return segments.insert(it, S);
327}
328
329/// extendInBlock - If this range is live before Kill in the basic
330/// block that starts at StartIdx, extend it to be live up to Kill and return
331/// the value. If there is no live range before Kill, return NULL.
332VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
333  if (empty())
334    return nullptr;
335  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
336  if (I == begin())
337    return nullptr;
338  --I;
339  if (I->end <= StartIdx)
340    return nullptr;
341  if (I->end < Kill)
342    extendSegmentEndTo(I, Kill);
343  return I->valno;
344}
345
346/// Remove the specified segment from this range.  Note that the segment must
347/// be in a single Segment in its entirety.
348void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
349                              bool RemoveDeadValNo) {
350  // Find the Segment containing this span.
351  iterator I = find(Start);
352  assert(I != end() && "Segment is not in range!");
353  assert(I->containsInterval(Start, End)
354         && "Segment is not entirely in range!");
355
356  // If the span we are removing is at the start of the Segment, adjust it.
357  VNInfo *ValNo = I->valno;
358  if (I->start == Start) {
359    if (I->end == End) {
360      if (RemoveDeadValNo) {
361        // Check if val# is dead.
362        bool isDead = true;
363        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
364          if (II != I && II->valno == ValNo) {
365            isDead = false;
366            break;
367          }
368        if (isDead) {
369          // Now that ValNo is dead, remove it.
370          markValNoForDeletion(ValNo);
371        }
372      }
373
374      segments.erase(I);  // Removed the whole Segment.
375    } else
376      I->start = End;
377    return;
378  }
379
380  // Otherwise if the span we are removing is at the end of the Segment,
381  // adjust the other way.
382  if (I->end == End) {
383    I->end = Start;
384    return;
385  }
386
387  // Otherwise, we are splitting the Segment into two pieces.
388  SlotIndex OldEnd = I->end;
389  I->end = Start;   // Trim the old segment.
390
391  // Insert the new one.
392  segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
393}
394
395/// removeValNo - Remove all the segments defined by the specified value#.
396/// Also remove the value# from value# list.
397void LiveRange::removeValNo(VNInfo *ValNo) {
398  if (empty()) return;
399  iterator I = end();
400  iterator E = begin();
401  do {
402    --I;
403    if (I->valno == ValNo)
404      segments.erase(I);
405  } while (I != E);
406  // Now that ValNo is dead, remove it.
407  markValNoForDeletion(ValNo);
408}
409
410void LiveRange::join(LiveRange &Other,
411                     const int *LHSValNoAssignments,
412                     const int *RHSValNoAssignments,
413                     SmallVectorImpl<VNInfo *> &NewVNInfo) {
414  verify();
415
416  // Determine if any of our values are mapped.  This is uncommon, so we want
417  // to avoid the range scan if not.
418  bool MustMapCurValNos = false;
419  unsigned NumVals = getNumValNums();
420  unsigned NumNewVals = NewVNInfo.size();
421  for (unsigned i = 0; i != NumVals; ++i) {
422    unsigned LHSValID = LHSValNoAssignments[i];
423    if (i != LHSValID ||
424        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
425      MustMapCurValNos = true;
426      break;
427    }
428  }
429
430  // If we have to apply a mapping to our base range assignment, rewrite it now.
431  if (MustMapCurValNos && !empty()) {
432    // Map the first live range.
433
434    iterator OutIt = begin();
435    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
436    for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
437      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
438      assert(nextValNo && "Huh?");
439
440      // If this live range has the same value # as its immediate predecessor,
441      // and if they are neighbors, remove one Segment.  This happens when we
442      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
443      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
444        OutIt->end = I->end;
445      } else {
446        // Didn't merge. Move OutIt to the next segment,
447        ++OutIt;
448        OutIt->valno = nextValNo;
449        if (OutIt != I) {
450          OutIt->start = I->start;
451          OutIt->end = I->end;
452        }
453      }
454    }
455    // If we merge some segments, chop off the end.
456    ++OutIt;
457    segments.erase(OutIt, end());
458  }
459
460  // Rewrite Other values before changing the VNInfo ids.
461  // This can leave Other in an invalid state because we're not coalescing
462  // touching segments that now have identical values. That's OK since Other is
463  // not supposed to be valid after calling join();
464  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
465    I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
466
467  // Update val# info. Renumber them and make sure they all belong to this
468  // LiveRange now. Also remove dead val#'s.
469  unsigned NumValNos = 0;
470  for (unsigned i = 0; i < NumNewVals; ++i) {
471    VNInfo *VNI = NewVNInfo[i];
472    if (VNI) {
473      if (NumValNos >= NumVals)
474        valnos.push_back(VNI);
475      else
476        valnos[NumValNos] = VNI;
477      VNI->id = NumValNos++;  // Renumber val#.
478    }
479  }
480  if (NumNewVals < NumVals)
481    valnos.resize(NumNewVals);  // shrinkify
482
483  // Okay, now insert the RHS live segments into the LHS.
484  LiveRangeUpdater Updater(this);
485  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
486    Updater.add(*I);
487}
488
489/// Merge all of the segments in RHS into this live range as the specified
490/// value number.  The segments in RHS are allowed to overlap with segments in
491/// the current range, but only if the overlapping segments have the
492/// specified value number.
493void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
494                                       VNInfo *LHSValNo) {
495  LiveRangeUpdater Updater(this);
496  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
497    Updater.add(I->start, I->end, LHSValNo);
498}
499
500/// MergeValueInAsValue - Merge all of the live segments of a specific val#
501/// in RHS into this live range as the specified value number.
502/// The segments in RHS are allowed to overlap with segments in the
503/// current range, it will replace the value numbers of the overlaped
504/// segments with the specified value number.
505void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
506                                    const VNInfo *RHSValNo,
507                                    VNInfo *LHSValNo) {
508  LiveRangeUpdater Updater(this);
509  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
510    if (I->valno == RHSValNo)
511      Updater.add(I->start, I->end, LHSValNo);
512}
513
514/// MergeValueNumberInto - This method is called when two value nubmers
515/// are found to be equivalent.  This eliminates V1, replacing all
516/// segments with the V1 value number with the V2 value number.  This can
517/// cause merging of V1/V2 values numbers and compaction of the value space.
518VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
519  assert(V1 != V2 && "Identical value#'s are always equivalent!");
520
521  // This code actually merges the (numerically) larger value number into the
522  // smaller value number, which is likely to allow us to compactify the value
523  // space.  The only thing we have to be careful of is to preserve the
524  // instruction that defines the result value.
525
526  // Make sure V2 is smaller than V1.
527  if (V1->id < V2->id) {
528    V1->copyFrom(*V2);
529    std::swap(V1, V2);
530  }
531
532  // Merge V1 segments into V2.
533  for (iterator I = begin(); I != end(); ) {
534    iterator S = I++;
535    if (S->valno != V1) continue;  // Not a V1 Segment.
536
537    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
538    // range, extend it.
539    if (S != begin()) {
540      iterator Prev = S-1;
541      if (Prev->valno == V2 && Prev->end == S->start) {
542        Prev->end = S->end;
543
544        // Erase this live-range.
545        segments.erase(S);
546        I = Prev+1;
547        S = Prev;
548      }
549    }
550
551    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
552    // Ensure that it is a V2 live-range.
553    S->valno = V2;
554
555    // If we can merge it into later V2 segments, do so now.  We ignore any
556    // following V1 segments, as they will be merged in subsequent iterations
557    // of the loop.
558    if (I != end()) {
559      if (I->start == S->end && I->valno == V2) {
560        S->end = I->end;
561        segments.erase(I);
562        I = S+1;
563      }
564    }
565  }
566
567  // Now that V1 is dead, remove it.
568  markValNoForDeletion(V1);
569
570  return V2;
571}
572
573unsigned LiveInterval::getSize() const {
574  unsigned Sum = 0;
575  for (const_iterator I = begin(), E = end(); I != E; ++I)
576    Sum += I->start.distance(I->end);
577  return Sum;
578}
579
580raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
581  return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
582}
583
584#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
585void LiveRange::Segment::dump() const {
586  dbgs() << *this << "\n";
587}
588#endif
589
590void LiveRange::print(raw_ostream &OS) const {
591  if (empty())
592    OS << "EMPTY";
593  else {
594    for (const_iterator I = begin(), E = end(); I != E; ++I) {
595      OS << *I;
596      assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
597    }
598  }
599
600  // Print value number info.
601  if (getNumValNums()) {
602    OS << "  ";
603    unsigned vnum = 0;
604    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
605         ++i, ++vnum) {
606      const VNInfo *vni = *i;
607      if (vnum) OS << " ";
608      OS << vnum << "@";
609      if (vni->isUnused()) {
610        OS << "x";
611      } else {
612        OS << vni->def;
613        if (vni->isPHIDef())
614          OS << "-phi";
615      }
616    }
617  }
618}
619
620void LiveInterval::print(raw_ostream &OS) const {
621  OS << PrintReg(reg) << ' ';
622  super::print(OS);
623}
624
625#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
626void LiveRange::dump() const {
627  dbgs() << *this << "\n";
628}
629
630void LiveInterval::dump() const {
631  dbgs() << *this << "\n";
632}
633#endif
634
635#ifndef NDEBUG
636void LiveRange::verify() const {
637  for (const_iterator I = begin(), E = end(); I != E; ++I) {
638    assert(I->start.isValid());
639    assert(I->end.isValid());
640    assert(I->start < I->end);
641    assert(I->valno != nullptr);
642    assert(I->valno->id < valnos.size());
643    assert(I->valno == valnos[I->valno->id]);
644    if (std::next(I) != E) {
645      assert(I->end <= std::next(I)->start);
646      if (I->end == std::next(I)->start)
647        assert(I->valno != std::next(I)->valno);
648    }
649  }
650}
651#endif
652
653
654//===----------------------------------------------------------------------===//
655//                           LiveRangeUpdater class
656//===----------------------------------------------------------------------===//
657//
658// The LiveRangeUpdater class always maintains these invariants:
659//
660// - When LastStart is invalid, Spills is empty and the iterators are invalid.
661//   This is the initial state, and the state created by flush().
662//   In this state, isDirty() returns false.
663//
664// Otherwise, segments are kept in three separate areas:
665//
666// 1. [begin; WriteI) at the front of LR.
667// 2. [ReadI; end) at the back of LR.
668// 3. Spills.
669//
670// - LR.begin() <= WriteI <= ReadI <= LR.end().
671// - Segments in all three areas are fully ordered and coalesced.
672// - Segments in area 1 precede and can't coalesce with segments in area 2.
673// - Segments in Spills precede and can't coalesce with segments in area 2.
674// - No coalescing is possible between segments in Spills and segments in area
675//   1, and there are no overlapping segments.
676//
677// The segments in Spills are not ordered with respect to the segments in area
678// 1. They need to be merged.
679//
680// When they exist, Spills.back().start <= LastStart,
681//                 and WriteI[-1].start <= LastStart.
682
683void LiveRangeUpdater::print(raw_ostream &OS) const {
684  if (!isDirty()) {
685    if (LR)
686      OS << "Clean updater: " << *LR << '\n';
687    else
688      OS << "Null updater.\n";
689    return;
690  }
691  assert(LR && "Can't have null LR in dirty updater.");
692  OS << " updater with gap = " << (ReadI - WriteI)
693     << ", last start = " << LastStart
694     << ":\n  Area 1:";
695  for (LiveRange::const_iterator I = LR->begin(); I != WriteI; ++I)
696    OS << ' ' << *I;
697  OS << "\n  Spills:";
698  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
699    OS << ' ' << Spills[I];
700  OS << "\n  Area 2:";
701  for (LiveRange::const_iterator I = ReadI, E = LR->end(); I != E; ++I)
702    OS << ' ' << *I;
703  OS << '\n';
704}
705
706void LiveRangeUpdater::dump() const
707{
708  print(errs());
709}
710
711// Determine if A and B should be coalesced.
712static inline bool coalescable(const LiveRange::Segment &A,
713                               const LiveRange::Segment &B) {
714  assert(A.start <= B.start && "Unordered live segments.");
715  if (A.end == B.start)
716    return A.valno == B.valno;
717  if (A.end < B.start)
718    return false;
719  assert(A.valno == B.valno && "Cannot overlap different values");
720  return true;
721}
722
723void LiveRangeUpdater::add(LiveRange::Segment Seg) {
724  assert(LR && "Cannot add to a null destination");
725
726  // Flush the state if Start moves backwards.
727  if (!LastStart.isValid() || LastStart > Seg.start) {
728    if (isDirty())
729      flush();
730    // This brings us to an uninitialized state. Reinitialize.
731    assert(Spills.empty() && "Leftover spilled segments");
732    WriteI = ReadI = LR->begin();
733  }
734
735  // Remember start for next time.
736  LastStart = Seg.start;
737
738  // Advance ReadI until it ends after Seg.start.
739  LiveRange::iterator E = LR->end();
740  if (ReadI != E && ReadI->end <= Seg.start) {
741    // First try to close the gap between WriteI and ReadI with spills.
742    if (ReadI != WriteI)
743      mergeSpills();
744    // Then advance ReadI.
745    if (ReadI == WriteI)
746      ReadI = WriteI = LR->find(Seg.start);
747    else
748      while (ReadI != E && ReadI->end <= Seg.start)
749        *WriteI++ = *ReadI++;
750  }
751
752  assert(ReadI == E || ReadI->end > Seg.start);
753
754  // Check if the ReadI segment begins early.
755  if (ReadI != E && ReadI->start <= Seg.start) {
756    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
757    // Bail if Seg is completely contained in ReadI.
758    if (ReadI->end >= Seg.end)
759      return;
760    // Coalesce into Seg.
761    Seg.start = ReadI->start;
762    ++ReadI;
763  }
764
765  // Coalesce as much as possible from ReadI into Seg.
766  while (ReadI != E && coalescable(Seg, *ReadI)) {
767    Seg.end = std::max(Seg.end, ReadI->end);
768    ++ReadI;
769  }
770
771  // Try coalescing Spills.back() into Seg.
772  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
773    Seg.start = Spills.back().start;
774    Seg.end = std::max(Spills.back().end, Seg.end);
775    Spills.pop_back();
776  }
777
778  // Try coalescing Seg into WriteI[-1].
779  if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
780    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
781    return;
782  }
783
784  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
785  if (WriteI != ReadI) {
786    *WriteI++ = Seg;
787    return;
788  }
789
790  // Finally, append to LR or Spills.
791  if (WriteI == E) {
792    LR->segments.push_back(Seg);
793    WriteI = ReadI = LR->end();
794  } else
795    Spills.push_back(Seg);
796}
797
798// Merge as many spilled segments as possible into the gap between WriteI
799// and ReadI. Advance WriteI to reflect the inserted instructions.
800void LiveRangeUpdater::mergeSpills() {
801  // Perform a backwards merge of Spills and [SpillI;WriteI).
802  size_t GapSize = ReadI - WriteI;
803  size_t NumMoved = std::min(Spills.size(), GapSize);
804  LiveRange::iterator Src = WriteI;
805  LiveRange::iterator Dst = Src + NumMoved;
806  LiveRange::iterator SpillSrc = Spills.end();
807  LiveRange::iterator B = LR->begin();
808
809  // This is the new WriteI position after merging spills.
810  WriteI = Dst;
811
812  // Now merge Src and Spills backwards.
813  while (Src != Dst) {
814    if (Src != B && Src[-1].start > SpillSrc[-1].start)
815      *--Dst = *--Src;
816    else
817      *--Dst = *--SpillSrc;
818  }
819  assert(NumMoved == size_t(Spills.end() - SpillSrc));
820  Spills.erase(SpillSrc, Spills.end());
821}
822
823void LiveRangeUpdater::flush() {
824  if (!isDirty())
825    return;
826  // Clear the dirty state.
827  LastStart = SlotIndex();
828
829  assert(LR && "Cannot add to a null destination");
830
831  // Nothing to merge?
832  if (Spills.empty()) {
833    LR->segments.erase(WriteI, ReadI);
834    LR->verify();
835    return;
836  }
837
838  // Resize the WriteI - ReadI gap to match Spills.
839  size_t GapSize = ReadI - WriteI;
840  if (GapSize < Spills.size()) {
841    // The gap is too small. Make some room.
842    size_t WritePos = WriteI - LR->begin();
843    LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
844    // This also invalidated ReadI, but it is recomputed below.
845    WriteI = LR->begin() + WritePos;
846  } else {
847    // Shrink the gap if necessary.
848    LR->segments.erase(WriteI + Spills.size(), ReadI);
849  }
850  ReadI = WriteI + Spills.size();
851  mergeSpills();
852  LR->verify();
853}
854
855unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
856  // Create initial equivalence classes.
857  EqClass.clear();
858  EqClass.grow(LI->getNumValNums());
859
860  const VNInfo *used = nullptr, *unused = nullptr;
861
862  // Determine connections.
863  for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
864       I != E; ++I) {
865    const VNInfo *VNI = *I;
866    // Group all unused values into one class.
867    if (VNI->isUnused()) {
868      if (unused)
869        EqClass.join(unused->id, VNI->id);
870      unused = VNI;
871      continue;
872    }
873    used = VNI;
874    if (VNI->isPHIDef()) {
875      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
876      assert(MBB && "Phi-def has no defining MBB");
877      // Connect to values live out of predecessors.
878      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
879           PE = MBB->pred_end(); PI != PE; ++PI)
880        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
881          EqClass.join(VNI->id, PVNI->id);
882    } else {
883      // Normal value defined by an instruction. Check for two-addr redef.
884      // FIXME: This could be coincidental. Should we really check for a tied
885      // operand constraint?
886      // Note that VNI->def may be a use slot for an early clobber def.
887      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
888        EqClass.join(VNI->id, UVNI->id);
889    }
890  }
891
892  // Lump all the unused values in with the last used value.
893  if (used && unused)
894    EqClass.join(used->id, unused->id);
895
896  EqClass.compress();
897  return EqClass.getNumClasses();
898}
899
900void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
901                                          MachineRegisterInfo &MRI) {
902  assert(LIV[0] && "LIV[0] must be set");
903  LiveInterval &LI = *LIV[0];
904
905  // Rewrite instructions.
906  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
907       RE = MRI.reg_end(); RI != RE;) {
908    MachineOperand &MO = *RI;
909    MachineInstr *MI = RI->getParent();
910    ++RI;
911    // DBG_VALUE instructions don't have slot indexes, so get the index of the
912    // instruction before them.
913    // Normally, DBG_VALUE instructions are removed before this function is
914    // called, but it is not a requirement.
915    SlotIndex Idx;
916    if (MI->isDebugValue())
917      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
918    else
919      Idx = LIS.getInstructionIndex(MI);
920    LiveQueryResult LRQ = LI.Query(Idx);
921    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
922    // In the case of an <undef> use that isn't tied to any def, VNI will be
923    // NULL. If the use is tied to a def, VNI will be the defined value.
924    if (!VNI)
925      continue;
926    MO.setReg(LIV[getEqClass(VNI)]->reg);
927  }
928
929  // Move runs to new intervals.
930  LiveInterval::iterator J = LI.begin(), E = LI.end();
931  while (J != E && EqClass[J->valno->id] == 0)
932    ++J;
933  for (LiveInterval::iterator I = J; I != E; ++I) {
934    if (unsigned eq = EqClass[I->valno->id]) {
935      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
936             "New intervals should be empty");
937      LIV[eq]->segments.push_back(*I);
938    } else
939      *J++ = *I;
940  }
941  LI.segments.erase(J, E);
942
943  // Transfer VNInfos to their new owners and renumber them.
944  unsigned j = 0, e = LI.getNumValNums();
945  while (j != e && EqClass[j] == 0)
946    ++j;
947  for (unsigned i = j; i != e; ++i) {
948    VNInfo *VNI = LI.getValNumInfo(i);
949    if (unsigned eq = EqClass[i]) {
950      VNI->id = LIV[eq]->getNumValNums();
951      LIV[eq]->valnos.push_back(VNI);
952    } else {
953      VNI->id = j;
954      LI.valnos[j++] = VNI;
955    }
956  }
957  LI.valnos.resize(j);
958}
959