LiveIntervalAnalysis.cpp revision eb3602472026dc029beb45ccbe09bc84162ba949
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "LiveRangeCalc.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Support/BlockFrequency.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Target/TargetRegisterInfo.h"
39#include <algorithm>
40#include <cmath>
41#include <limits>
42using namespace llvm;
43
44char LiveIntervals::ID = 0;
45char &llvm::LiveIntervalsID = LiveIntervals::ID;
46INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
47                "Live Interval Analysis", false, false)
48INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
49INITIALIZE_PASS_DEPENDENCY(LiveVariables)
50INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
51INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
52INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
53                "Live Interval Analysis", false, false)
54
55#ifndef NDEBUG
56static cl::opt<bool> EnablePrecomputePhysRegs(
57  "precompute-phys-liveness", cl::Hidden,
58  cl::desc("Eagerly compute live intervals for all physreg units."));
59#else
60static bool EnablePrecomputePhysRegs = false;
61#endif // NDEBUG
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
64  AU.setPreservesCFG();
65  AU.addRequired<AliasAnalysis>();
66  AU.addPreserved<AliasAnalysis>();
67  // LiveVariables isn't really required by this analysis, it is only required
68  // here to make sure it is live during TwoAddressInstructionPass and
69  // PHIElimination. This is temporary.
70  AU.addRequired<LiveVariables>();
71  AU.addPreserved<LiveVariables>();
72  AU.addPreservedID(MachineLoopInfoID);
73  AU.addRequiredTransitiveID(MachineDominatorsID);
74  AU.addPreservedID(MachineDominatorsID);
75  AU.addPreserved<SlotIndexes>();
76  AU.addRequiredTransitive<SlotIndexes>();
77  MachineFunctionPass::getAnalysisUsage(AU);
78}
79
80LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
81  DomTree(0), LRCalc(0) {
82  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
83}
84
85LiveIntervals::~LiveIntervals() {
86  delete LRCalc;
87}
88
89void LiveIntervals::releaseMemory() {
90  // Free the live intervals themselves.
91  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
92    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
93  VirtRegIntervals.clear();
94  RegMaskSlots.clear();
95  RegMaskBits.clear();
96  RegMaskBlocks.clear();
97
98  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
99    delete RegUnitRanges[i];
100  RegUnitRanges.clear();
101
102  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
103  VNInfoAllocator.Reset();
104}
105
106/// runOnMachineFunction - calculates LiveIntervals
107///
108bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
109  MF = &fn;
110  MRI = &MF->getRegInfo();
111  TM = &fn.getTarget();
112  TRI = TM->getRegisterInfo();
113  TII = TM->getInstrInfo();
114  AA = &getAnalysis<AliasAnalysis>();
115  Indexes = &getAnalysis<SlotIndexes>();
116  DomTree = &getAnalysis<MachineDominatorTree>();
117  if (!LRCalc)
118    LRCalc = new LiveRangeCalc();
119
120  // Allocate space for all virtual registers.
121  VirtRegIntervals.resize(MRI->getNumVirtRegs());
122
123  computeVirtRegs();
124  computeRegMasks();
125  computeLiveInRegUnits();
126
127  if (EnablePrecomputePhysRegs) {
128    // For stress testing, precompute live ranges of all physical register
129    // units, including reserved registers.
130    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
131      getRegUnit(i);
132  }
133  DEBUG(dump());
134  return true;
135}
136
137/// print - Implement the dump method.
138void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
139  OS << "********** INTERVALS **********\n";
140
141  // Dump the regunits.
142  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
143    if (LiveRange *LR = RegUnitRanges[i])
144      OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
145
146  // Dump the virtregs.
147  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
148    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
149    if (hasInterval(Reg))
150      OS << getInterval(Reg) << '\n';
151  }
152
153  OS << "RegMasks:";
154  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
155    OS << ' ' << RegMaskSlots[i];
156  OS << '\n';
157
158  printInstrs(OS);
159}
160
161void LiveIntervals::printInstrs(raw_ostream &OS) const {
162  OS << "********** MACHINEINSTRS **********\n";
163  MF->print(OS, Indexes);
164}
165
166#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
167void LiveIntervals::dumpInstrs() const {
168  printInstrs(dbgs());
169}
170#endif
171
172LiveInterval* LiveIntervals::createInterval(unsigned reg) {
173  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
174                  llvm::huge_valf : 0.0F;
175  return new LiveInterval(reg, Weight);
176}
177
178
179/// computeVirtRegInterval - Compute the live interval of a virtual register,
180/// based on defs and uses.
181void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
182  assert(LRCalc && "LRCalc not initialized.");
183  assert(LI.empty() && "Should only compute empty intervals.");
184  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
185  LRCalc->createDeadDefs(LI);
186  LRCalc->extendToUses(LI);
187}
188
189void LiveIntervals::computeVirtRegs() {
190  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
191    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
192    if (MRI->reg_nodbg_empty(Reg))
193      continue;
194    createAndComputeVirtRegInterval(Reg);
195  }
196}
197
198void LiveIntervals::computeRegMasks() {
199  RegMaskBlocks.resize(MF->getNumBlockIDs());
200
201  // Find all instructions with regmask operands.
202  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
203       MBBI != E; ++MBBI) {
204    MachineBasicBlock *MBB = MBBI;
205    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
206    RMB.first = RegMaskSlots.size();
207    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
208         MI != ME; ++MI)
209      for (MIOperands MO(MI); MO.isValid(); ++MO) {
210        if (!MO->isRegMask())
211          continue;
212          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
213          RegMaskBits.push_back(MO->getRegMask());
214      }
215    // Compute the number of register mask instructions in this block.
216    RMB.second = RegMaskSlots.size() - RMB.first;
217  }
218}
219
220//===----------------------------------------------------------------------===//
221//                           Register Unit Liveness
222//===----------------------------------------------------------------------===//
223//
224// Fixed interference typically comes from ABI boundaries: Function arguments
225// and return values are passed in fixed registers, and so are exception
226// pointers entering landing pads. Certain instructions require values to be
227// present in specific registers. That is also represented through fixed
228// interference.
229//
230
231/// computeRegUnitInterval - Compute the live range of a register unit, based
232/// on the uses and defs of aliasing registers.  The range should be empty,
233/// or contain only dead phi-defs from ABI blocks.
234void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
235  assert(LRCalc && "LRCalc not initialized.");
236  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
237
238  // The physregs aliasing Unit are the roots and their super-registers.
239  // Create all values as dead defs before extending to uses. Note that roots
240  // may share super-registers. That's OK because createDeadDefs() is
241  // idempotent. It is very rare for a register unit to have multiple roots, so
242  // uniquing super-registers is probably not worthwhile.
243  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
244    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
245         Supers.isValid(); ++Supers) {
246      if (!MRI->reg_empty(*Supers))
247        LRCalc->createDeadDefs(LR, *Supers);
248    }
249  }
250
251  // Now extend LR to reach all uses.
252  // Ignore uses of reserved registers. We only track defs of those.
253  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
254    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
255         Supers.isValid(); ++Supers) {
256      unsigned Reg = *Supers;
257      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
258        LRCalc->extendToUses(LR, Reg);
259    }
260  }
261}
262
263
264/// computeLiveInRegUnits - Precompute the live ranges of any register units
265/// that are live-in to an ABI block somewhere. Register values can appear
266/// without a corresponding def when entering the entry block or a landing pad.
267///
268void LiveIntervals::computeLiveInRegUnits() {
269  RegUnitRanges.resize(TRI->getNumRegUnits());
270  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
271
272  // Keep track of the live range sets allocated.
273  SmallVector<unsigned, 8> NewRanges;
274
275  // Check all basic blocks for live-ins.
276  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
277       MFI != MFE; ++MFI) {
278    const MachineBasicBlock *MBB = MFI;
279
280    // We only care about ABI blocks: Entry + landing pads.
281    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
282      continue;
283
284    // Create phi-defs at Begin for all live-in registers.
285    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
286    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
287    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
288         LIE = MBB->livein_end(); LII != LIE; ++LII) {
289      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
290        unsigned Unit = *Units;
291        LiveRange *LR = RegUnitRanges[Unit];
292        if (!LR) {
293          LR = RegUnitRanges[Unit] = new LiveRange();
294          NewRanges.push_back(Unit);
295        }
296        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
297        (void)VNI;
298        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
299      }
300    }
301    DEBUG(dbgs() << '\n');
302  }
303  DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
304
305  // Compute the 'normal' part of the ranges.
306  for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
307    unsigned Unit = NewRanges[i];
308    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
309  }
310}
311
312
313/// shrinkToUses - After removing some uses of a register, shrink its live
314/// range to just the remaining uses. This method does not compute reaching
315/// defs for new uses, and it doesn't remove dead defs.
316bool LiveIntervals::shrinkToUses(LiveInterval *li,
317                                 SmallVectorImpl<MachineInstr*> *dead) {
318  DEBUG(dbgs() << "Shrink: " << *li << '\n');
319  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
320         && "Can only shrink virtual registers");
321  // Find all the values used, including PHI kills.
322  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
323
324  // Blocks that have already been added to WorkList as live-out.
325  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
326
327  // Visit all instructions reading li->reg.
328  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
329       MachineInstr *UseMI = I.skipInstruction();) {
330    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
331      continue;
332    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
333    LiveQueryResult LRQ = li->Query(Idx);
334    VNInfo *VNI = LRQ.valueIn();
335    if (!VNI) {
336      // This shouldn't happen: readsVirtualRegister returns true, but there is
337      // no live value. It is likely caused by a target getting <undef> flags
338      // wrong.
339      DEBUG(dbgs() << Idx << '\t' << *UseMI
340                   << "Warning: Instr claims to read non-existent value in "
341                    << *li << '\n');
342      continue;
343    }
344    // Special case: An early-clobber tied operand reads and writes the
345    // register one slot early.
346    if (VNInfo *DefVNI = LRQ.valueDefined())
347      Idx = DefVNI->def;
348
349    WorkList.push_back(std::make_pair(Idx, VNI));
350  }
351
352  // Create new live ranges with only minimal live segments per def.
353  LiveRange NewLR;
354  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
355       I != E; ++I) {
356    VNInfo *VNI = *I;
357    if (VNI->isUnused())
358      continue;
359    NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
360  }
361
362  // Keep track of the PHIs that are in use.
363  SmallPtrSet<VNInfo*, 8> UsedPHIs;
364
365  // Extend intervals to reach all uses in WorkList.
366  while (!WorkList.empty()) {
367    SlotIndex Idx = WorkList.back().first;
368    VNInfo *VNI = WorkList.back().second;
369    WorkList.pop_back();
370    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
371    SlotIndex BlockStart = getMBBStartIdx(MBB);
372
373    // Extend the live range for VNI to be live at Idx.
374    if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
375      (void)ExtVNI;
376      assert(ExtVNI == VNI && "Unexpected existing value number");
377      // Is this a PHIDef we haven't seen before?
378      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
379        continue;
380      // The PHI is live, make sure the predecessors are live-out.
381      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
382           PE = MBB->pred_end(); PI != PE; ++PI) {
383        if (!LiveOut.insert(*PI))
384          continue;
385        SlotIndex Stop = getMBBEndIdx(*PI);
386        // A predecessor is not required to have a live-out value for a PHI.
387        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
388          WorkList.push_back(std::make_pair(Stop, PVNI));
389      }
390      continue;
391    }
392
393    // VNI is live-in to MBB.
394    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
395    NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
396
397    // Make sure VNI is live-out from the predecessors.
398    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
399         PE = MBB->pred_end(); PI != PE; ++PI) {
400      if (!LiveOut.insert(*PI))
401        continue;
402      SlotIndex Stop = getMBBEndIdx(*PI);
403      assert(li->getVNInfoBefore(Stop) == VNI &&
404             "Wrong value out of predecessor");
405      WorkList.push_back(std::make_pair(Stop, VNI));
406    }
407  }
408
409  // Handle dead values.
410  bool CanSeparate = false;
411  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
412       I != E; ++I) {
413    VNInfo *VNI = *I;
414    if (VNI->isUnused())
415      continue;
416    LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def);
417    assert(LRI != NewLR.end() && "Missing segment for PHI");
418    if (LRI->end != VNI->def.getDeadSlot())
419      continue;
420    if (VNI->isPHIDef()) {
421      // This is a dead PHI. Remove it.
422      VNI->markUnused();
423      NewLR.removeSegment(LRI->start, LRI->end);
424      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
425      CanSeparate = true;
426    } else {
427      // This is a dead def. Make sure the instruction knows.
428      MachineInstr *MI = getInstructionFromIndex(VNI->def);
429      assert(MI && "No instruction defining live value");
430      MI->addRegisterDead(li->reg, TRI);
431      if (dead && MI->allDefsAreDead()) {
432        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
433        dead->push_back(MI);
434      }
435    }
436  }
437
438  // Move the trimmed segments back.
439  li->segments.swap(NewLR.segments);
440  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
441  return CanSeparate;
442}
443
444void LiveIntervals::extendToIndices(LiveRange &LR,
445                                    ArrayRef<SlotIndex> Indices) {
446  assert(LRCalc && "LRCalc not initialized.");
447  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
448  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
449    LRCalc->extend(LR, Indices[i]);
450}
451
452void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
453                               SmallVectorImpl<SlotIndex> *EndPoints) {
454  LiveQueryResult LRQ = LI->Query(Kill);
455  VNInfo *VNI = LRQ.valueOut();
456  if (!VNI)
457    return;
458
459  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
460  SlotIndex MBBStart, MBBEnd;
461  tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
462
463  // If VNI isn't live out from KillMBB, the value is trivially pruned.
464  if (LRQ.endPoint() < MBBEnd) {
465    LI->removeSegment(Kill, LRQ.endPoint());
466    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
467    return;
468  }
469
470  // VNI is live out of KillMBB.
471  LI->removeSegment(Kill, MBBEnd);
472  if (EndPoints) EndPoints->push_back(MBBEnd);
473
474  // Find all blocks that are reachable from KillMBB without leaving VNI's live
475  // range. It is possible that KillMBB itself is reachable, so start a DFS
476  // from each successor.
477  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
478  VisitedTy Visited;
479  for (MachineBasicBlock::succ_iterator
480       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
481       SuccI != SuccE; ++SuccI) {
482    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
483         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
484         I != E;) {
485      MachineBasicBlock *MBB = *I;
486
487      // Check if VNI is live in to MBB.
488      tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
489      LiveQueryResult LRQ = LI->Query(MBBStart);
490      if (LRQ.valueIn() != VNI) {
491        // This block isn't part of the VNI segment. Prune the search.
492        I.skipChildren();
493        continue;
494      }
495
496      // Prune the search if VNI is killed in MBB.
497      if (LRQ.endPoint() < MBBEnd) {
498        LI->removeSegment(MBBStart, LRQ.endPoint());
499        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
500        I.skipChildren();
501        continue;
502      }
503
504      // VNI is live through MBB.
505      LI->removeSegment(MBBStart, MBBEnd);
506      if (EndPoints) EndPoints->push_back(MBBEnd);
507      ++I;
508    }
509  }
510}
511
512//===----------------------------------------------------------------------===//
513// Register allocator hooks.
514//
515
516void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
517  // Keep track of regunit ranges.
518  SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
519
520  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
521    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
522    if (MRI->reg_nodbg_empty(Reg))
523      continue;
524    LiveInterval *LI = &getInterval(Reg);
525    if (LI->empty())
526      continue;
527
528    // Find the regunit intervals for the assigned register. They may overlap
529    // the virtual register live range, cancelling any kills.
530    RU.clear();
531    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
532         ++Units) {
533      LiveRange &RURanges = getRegUnit(*Units);
534      if (RURanges.empty())
535        continue;
536      RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
537    }
538
539    // Every instruction that kills Reg corresponds to a segment range end
540    // point.
541    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
542         ++RI) {
543      // A block index indicates an MBB edge.
544      if (RI->end.isBlock())
545        continue;
546      MachineInstr *MI = getInstructionFromIndex(RI->end);
547      if (!MI)
548        continue;
549
550      // Check if any of the regunits are live beyond the end of RI. That could
551      // happen when a physreg is defined as a copy of a virtreg:
552      //
553      //   %EAX = COPY %vreg5
554      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
555      //   BAR %EAX<kill>
556      //
557      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
558      bool CancelKill = false;
559      for (unsigned u = 0, e = RU.size(); u != e; ++u) {
560        LiveRange &RRanges = *RU[u].first;
561        LiveRange::iterator &I = RU[u].second;
562        if (I == RRanges.end())
563          continue;
564        I = RRanges.advanceTo(I, RI->end);
565        if (I == RRanges.end() || I->start >= RI->end)
566          continue;
567        // I is overlapping RI.
568        CancelKill = true;
569        break;
570      }
571      if (CancelKill)
572        MI->clearRegisterKills(Reg, NULL);
573      else
574        MI->addRegisterKilled(Reg, NULL);
575    }
576  }
577}
578
579MachineBasicBlock*
580LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
581  // A local live range must be fully contained inside the block, meaning it is
582  // defined and killed at instructions, not at block boundaries. It is not
583  // live in or or out of any block.
584  //
585  // It is technically possible to have a PHI-defined live range identical to a
586  // single block, but we are going to return false in that case.
587
588  SlotIndex Start = LI.beginIndex();
589  if (Start.isBlock())
590    return NULL;
591
592  SlotIndex Stop = LI.endIndex();
593  if (Stop.isBlock())
594    return NULL;
595
596  // getMBBFromIndex doesn't need to search the MBB table when both indexes
597  // belong to proper instructions.
598  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
599  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
600  return MBB1 == MBB2 ? MBB1 : NULL;
601}
602
603bool
604LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
605  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
606       I != E; ++I) {
607    const VNInfo *PHI = *I;
608    if (PHI->isUnused() || !PHI->isPHIDef())
609      continue;
610    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
611    // Conservatively return true instead of scanning huge predecessor lists.
612    if (PHIMBB->pred_size() > 100)
613      return true;
614    for (MachineBasicBlock::const_pred_iterator
615         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
616      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
617        return true;
618  }
619  return false;
620}
621
622float
623LiveIntervals::getSpillWeight(bool isDef, bool isUse, BlockFrequency freq) {
624  const float Scale = 1.0f / BlockFrequency::getEntryFrequency();
625  return (isDef + isUse) * (freq.getFrequency() * Scale);
626}
627
628LiveRange::Segment
629LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
630  LiveInterval& Interval = createEmptyInterval(reg);
631  VNInfo* VN = Interval.getNextValue(
632    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
633    getVNInfoAllocator());
634  LiveRange::Segment S(
635     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
636     getMBBEndIdx(startInst->getParent()), VN);
637  Interval.addSegment(S);
638
639  return S;
640}
641
642
643//===----------------------------------------------------------------------===//
644//                          Register mask functions
645//===----------------------------------------------------------------------===//
646
647bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
648                                             BitVector &UsableRegs) {
649  if (LI.empty())
650    return false;
651  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
652
653  // Use a smaller arrays for local live ranges.
654  ArrayRef<SlotIndex> Slots;
655  ArrayRef<const uint32_t*> Bits;
656  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
657    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
658    Bits = getRegMaskBitsInBlock(MBB->getNumber());
659  } else {
660    Slots = getRegMaskSlots();
661    Bits = getRegMaskBits();
662  }
663
664  // We are going to enumerate all the register mask slots contained in LI.
665  // Start with a binary search of RegMaskSlots to find a starting point.
666  ArrayRef<SlotIndex>::iterator SlotI =
667    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
668  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
669
670  // No slots in range, LI begins after the last call.
671  if (SlotI == SlotE)
672    return false;
673
674  bool Found = false;
675  for (;;) {
676    assert(*SlotI >= LiveI->start);
677    // Loop over all slots overlapping this segment.
678    while (*SlotI < LiveI->end) {
679      // *SlotI overlaps LI. Collect mask bits.
680      if (!Found) {
681        // This is the first overlap. Initialize UsableRegs to all ones.
682        UsableRegs.clear();
683        UsableRegs.resize(TRI->getNumRegs(), true);
684        Found = true;
685      }
686      // Remove usable registers clobbered by this mask.
687      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
688      if (++SlotI == SlotE)
689        return Found;
690    }
691    // *SlotI is beyond the current LI segment.
692    LiveI = LI.advanceTo(LiveI, *SlotI);
693    if (LiveI == LiveE)
694      return Found;
695    // Advance SlotI until it overlaps.
696    while (*SlotI < LiveI->start)
697      if (++SlotI == SlotE)
698        return Found;
699  }
700}
701
702//===----------------------------------------------------------------------===//
703//                         IntervalUpdate class.
704//===----------------------------------------------------------------------===//
705
706// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
707class LiveIntervals::HMEditor {
708private:
709  LiveIntervals& LIS;
710  const MachineRegisterInfo& MRI;
711  const TargetRegisterInfo& TRI;
712  SlotIndex OldIdx;
713  SlotIndex NewIdx;
714  SmallPtrSet<LiveRange*, 8> Updated;
715  bool UpdateFlags;
716
717public:
718  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
719           const TargetRegisterInfo& TRI,
720           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
721    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
722      UpdateFlags(UpdateFlags) {}
723
724  // FIXME: UpdateFlags is a workaround that creates live intervals for all
725  // physregs, even those that aren't needed for regalloc, in order to update
726  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
727  // flags, and postRA passes will use a live register utility instead.
728  LiveRange *getRegUnitLI(unsigned Unit) {
729    if (UpdateFlags)
730      return &LIS.getRegUnit(Unit);
731    return LIS.getCachedRegUnit(Unit);
732  }
733
734  /// Update all live ranges touched by MI, assuming a move from OldIdx to
735  /// NewIdx.
736  void updateAllRanges(MachineInstr *MI) {
737    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
738    bool hasRegMask = false;
739    for (MIOperands MO(MI); MO.isValid(); ++MO) {
740      if (MO->isRegMask())
741        hasRegMask = true;
742      if (!MO->isReg())
743        continue;
744      // Aggressively clear all kill flags.
745      // They are reinserted by VirtRegRewriter.
746      if (MO->isUse())
747        MO->setIsKill(false);
748
749      unsigned Reg = MO->getReg();
750      if (!Reg)
751        continue;
752      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
753        LiveInterval &LI = LIS.getInterval(Reg);
754        updateRange(LI, Reg);
755        continue;
756      }
757
758      // For physregs, only update the regunits that actually have a
759      // precomputed live range.
760      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
761        if (LiveRange *LR = getRegUnitLI(*Units))
762          updateRange(*LR, *Units);
763    }
764    if (hasRegMask)
765      updateRegMaskSlots();
766  }
767
768private:
769  /// Update a single live range, assuming an instruction has been moved from
770  /// OldIdx to NewIdx.
771  void updateRange(LiveRange &LR, unsigned Reg) {
772    if (!Updated.insert(&LR))
773      return;
774    DEBUG({
775      dbgs() << "     ";
776      if (TargetRegisterInfo::isVirtualRegister(Reg))
777        dbgs() << PrintReg(Reg);
778      else
779        dbgs() << PrintRegUnit(Reg, &TRI);
780      dbgs() << ":\t" << LR << '\n';
781    });
782    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
783      handleMoveDown(LR);
784    else
785      handleMoveUp(LR, Reg);
786    DEBUG(dbgs() << "        -->\t" << LR << '\n');
787    LR.verify();
788  }
789
790  /// Update LR to reflect an instruction has been moved downwards from OldIdx
791  /// to NewIdx.
792  ///
793  /// 1. Live def at OldIdx:
794  ///    Move def to NewIdx, assert endpoint after NewIdx.
795  ///
796  /// 2. Live def at OldIdx, killed at NewIdx:
797  ///    Change to dead def at NewIdx.
798  ///    (Happens when bundling def+kill together).
799  ///
800  /// 3. Dead def at OldIdx:
801  ///    Move def to NewIdx, possibly across another live value.
802  ///
803  /// 4. Def at OldIdx AND at NewIdx:
804  ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
805  ///    (Happens when bundling multiple defs together).
806  ///
807  /// 5. Value read at OldIdx, killed before NewIdx:
808  ///    Extend kill to NewIdx.
809  ///
810  void handleMoveDown(LiveRange &LR) {
811    // First look for a kill at OldIdx.
812    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
813    LiveRange::iterator E = LR.end();
814    // Is LR even live at OldIdx?
815    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
816      return;
817
818    // Handle a live-in value.
819    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
820      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
821      // If the live-in value already extends to NewIdx, there is nothing to do.
822      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
823        return;
824      // Aggressively remove all kill flags from the old kill point.
825      // Kill flags shouldn't be used while live intervals exist, they will be
826      // reinserted by VirtRegRewriter.
827      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
828        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
829          if (MO->isReg() && MO->isUse())
830            MO->setIsKill(false);
831      // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
832      // overlapping ranges. Case 5 above.
833      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
834      // If this was a kill, there may also be a def. Otherwise we're done.
835      if (!isKill)
836        return;
837      ++I;
838    }
839
840    // Check for a def at OldIdx.
841    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
842      return;
843    // We have a def at OldIdx.
844    VNInfo *DefVNI = I->valno;
845    assert(DefVNI->def == I->start && "Inconsistent def");
846    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
847    // If the defined value extends beyond NewIdx, just move the def down.
848    // This is case 1 above.
849    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
850      I->start = DefVNI->def;
851      return;
852    }
853    // The remaining possibilities are now:
854    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
855    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
856    // In either case, it is possible that there is an existing def at NewIdx.
857    assert((I->end == OldIdx.getDeadSlot() ||
858            SlotIndex::isSameInstr(I->end, NewIdx)) &&
859            "Cannot move def below kill");
860    LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
861    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
862      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
863      // coalesced into that value.
864      assert(NewI->valno != DefVNI && "Multiple defs of value?");
865      LR.removeValNo(DefVNI);
866      return;
867    }
868    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
869    // If the def at OldIdx was dead, we allow it to be moved across other LR
870    // values. The new range should be placed immediately before NewI, move any
871    // intermediate ranges up.
872    assert(NewI != I && "Inconsistent iterators");
873    std::copy(llvm::next(I), NewI, I);
874    *llvm::prior(NewI)
875      = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
876  }
877
878  /// Update LR to reflect an instruction has been moved upwards from OldIdx
879  /// to NewIdx.
880  ///
881  /// 1. Live def at OldIdx:
882  ///    Hoist def to NewIdx.
883  ///
884  /// 2. Dead def at OldIdx:
885  ///    Hoist def+end to NewIdx, possibly move across other values.
886  ///
887  /// 3. Dead def at OldIdx AND existing def at NewIdx:
888  ///    Remove value defined at OldIdx, coalescing it with existing value.
889  ///
890  /// 4. Live def at OldIdx AND existing def at NewIdx:
891  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
892  ///    (Happens when bundling multiple defs together).
893  ///
894  /// 5. Value killed at OldIdx:
895  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
896  ///    OldIdx.
897  ///
898  void handleMoveUp(LiveRange &LR, unsigned Reg) {
899    // First look for a kill at OldIdx.
900    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
901    LiveRange::iterator E = LR.end();
902    // Is LR even live at OldIdx?
903    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
904      return;
905
906    // Handle a live-in value.
907    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
908      // If the live-in value isn't killed here, there is nothing to do.
909      if (!SlotIndex::isSameInstr(OldIdx, I->end))
910        return;
911      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
912      // another use, we need to search for that use. Case 5 above.
913      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
914      ++I;
915      // If OldIdx also defines a value, there couldn't have been another use.
916      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
917        // No def, search for the new kill.
918        // This can never be an early clobber kill since there is no def.
919        llvm::prior(I)->end = findLastUseBefore(Reg).getRegSlot();
920        return;
921      }
922    }
923
924    // Now deal with the def at OldIdx.
925    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
926    VNInfo *DefVNI = I->valno;
927    assert(DefVNI->def == I->start && "Inconsistent def");
928    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
929
930    // Check for an existing def at NewIdx.
931    LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
932    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
933      assert(NewI->valno != DefVNI && "Same value defined more than once?");
934      // There is an existing def at NewIdx.
935      if (I->end.isDead()) {
936        // Case 3: Remove the dead def at OldIdx.
937        LR.removeValNo(DefVNI);
938        return;
939      }
940      // Case 4: Replace def at NewIdx with live def at OldIdx.
941      I->start = DefVNI->def;
942      LR.removeValNo(NewI->valno);
943      return;
944    }
945
946    // There is no existing def at NewIdx. Hoist DefVNI.
947    if (!I->end.isDead()) {
948      // Leave the end point of a live def.
949      I->start = DefVNI->def;
950      return;
951    }
952
953    // DefVNI is a dead def. It may have been moved across other values in LR,
954    // so move I up to NewI. Slide [NewI;I) down one position.
955    std::copy_backward(NewI, I, llvm::next(I));
956    *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
957  }
958
959  void updateRegMaskSlots() {
960    SmallVectorImpl<SlotIndex>::iterator RI =
961      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
962                       OldIdx);
963    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
964           "No RegMask at OldIdx.");
965    *RI = NewIdx.getRegSlot();
966    assert((RI == LIS.RegMaskSlots.begin() ||
967            SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
968            "Cannot move regmask instruction above another call");
969    assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
970            SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
971            "Cannot move regmask instruction below another call");
972  }
973
974  // Return the last use of reg between NewIdx and OldIdx.
975  SlotIndex findLastUseBefore(unsigned Reg) {
976
977    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
978      SlotIndex LastUse = NewIdx;
979      for (MachineRegisterInfo::use_nodbg_iterator
980             UI = MRI.use_nodbg_begin(Reg),
981             UE = MRI.use_nodbg_end();
982           UI != UE; UI.skipInstruction()) {
983        const MachineInstr* MI = &*UI;
984        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
985        if (InstSlot > LastUse && InstSlot < OldIdx)
986          LastUse = InstSlot;
987      }
988      return LastUse;
989    }
990
991    // This is a regunit interval, so scanning the use list could be very
992    // expensive. Scan upwards from OldIdx instead.
993    assert(NewIdx < OldIdx && "Expected upwards move");
994    SlotIndexes *Indexes = LIS.getSlotIndexes();
995    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
996
997    // OldIdx may not correspond to an instruction any longer, so set MII to
998    // point to the next instruction after OldIdx, or MBB->end().
999    MachineBasicBlock::iterator MII = MBB->end();
1000    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1001                           Indexes->getNextNonNullIndex(OldIdx)))
1002      if (MI->getParent() == MBB)
1003        MII = MI;
1004
1005    MachineBasicBlock::iterator Begin = MBB->begin();
1006    while (MII != Begin) {
1007      if ((--MII)->isDebugValue())
1008        continue;
1009      SlotIndex Idx = Indexes->getInstructionIndex(MII);
1010
1011      // Stop searching when NewIdx is reached.
1012      if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1013        return NewIdx;
1014
1015      // Check if MII uses Reg.
1016      for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1017        if (MO->isReg() &&
1018            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1019            TRI.hasRegUnit(MO->getReg(), Reg))
1020          return Idx;
1021    }
1022    // Didn't reach NewIdx. It must be the first instruction in the block.
1023    return NewIdx;
1024  }
1025};
1026
1027void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1028  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1029  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1030  Indexes->removeMachineInstrFromMaps(MI);
1031  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1032  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1033         OldIndex < getMBBEndIdx(MI->getParent()) &&
1034         "Cannot handle moves across basic block boundaries.");
1035
1036  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1037  HME.updateAllRanges(MI);
1038}
1039
1040void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1041                                         MachineInstr* BundleStart,
1042                                         bool UpdateFlags) {
1043  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1044  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1045  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1046  HME.updateAllRanges(MI);
1047}
1048
1049void
1050LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1051                                      MachineBasicBlock::iterator Begin,
1052                                      MachineBasicBlock::iterator End,
1053                                      ArrayRef<unsigned> OrigRegs) {
1054  // Find anchor points, which are at the beginning/end of blocks or at
1055  // instructions that already have indexes.
1056  while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1057    --Begin;
1058  while (End != MBB->end() && !Indexes->hasIndex(End))
1059    ++End;
1060
1061  SlotIndex endIdx;
1062  if (End == MBB->end())
1063    endIdx = getMBBEndIdx(MBB).getPrevSlot();
1064  else
1065    endIdx = getInstructionIndex(End);
1066
1067  Indexes->repairIndexesInRange(MBB, Begin, End);
1068
1069  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1070    --I;
1071    MachineInstr *MI = I;
1072    if (MI->isDebugValue())
1073      continue;
1074    for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1075         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1076      if (MOI->isReg() &&
1077          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1078          !hasInterval(MOI->getReg())) {
1079        createAndComputeVirtRegInterval(MOI->getReg());
1080      }
1081    }
1082  }
1083
1084  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1085    unsigned Reg = OrigRegs[i];
1086    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1087      continue;
1088
1089    LiveInterval &LI = getInterval(Reg);
1090    // FIXME: Should we support undefs that gain defs?
1091    if (!LI.hasAtLeastOneValue())
1092      continue;
1093
1094    LiveInterval::iterator LII = LI.find(endIdx);
1095    SlotIndex lastUseIdx;
1096    if (LII != LI.end() && LII->start < endIdx)
1097      lastUseIdx = LII->end;
1098    else
1099      --LII;
1100
1101    for (MachineBasicBlock::iterator I = End; I != Begin;) {
1102      --I;
1103      MachineInstr *MI = I;
1104      if (MI->isDebugValue())
1105        continue;
1106
1107      SlotIndex instrIdx = getInstructionIndex(MI);
1108      bool isStartValid = getInstructionFromIndex(LII->start);
1109      bool isEndValid = getInstructionFromIndex(LII->end);
1110
1111      // FIXME: This doesn't currently handle early-clobber or multiple removed
1112      // defs inside of the region to repair.
1113      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1114           OE = MI->operands_end(); OI != OE; ++OI) {
1115        const MachineOperand &MO = *OI;
1116        if (!MO.isReg() || MO.getReg() != Reg)
1117          continue;
1118
1119        if (MO.isDef()) {
1120          if (!isStartValid) {
1121            if (LII->end.isDead()) {
1122              SlotIndex prevStart;
1123              if (LII != LI.begin())
1124                prevStart = llvm::prior(LII)->start;
1125
1126              // FIXME: This could be more efficient if there was a
1127              // removeSegment method that returned an iterator.
1128              LI.removeSegment(*LII, true);
1129              if (prevStart.isValid())
1130                LII = LI.find(prevStart);
1131              else
1132                LII = LI.begin();
1133            } else {
1134              LII->start = instrIdx.getRegSlot();
1135              LII->valno->def = instrIdx.getRegSlot();
1136              if (MO.getSubReg() && !MO.isUndef())
1137                lastUseIdx = instrIdx.getRegSlot();
1138              else
1139                lastUseIdx = SlotIndex();
1140              continue;
1141            }
1142          }
1143
1144          if (!lastUseIdx.isValid()) {
1145            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1146                                          VNInfoAllocator);
1147            LiveRange::Segment S(instrIdx.getRegSlot(),
1148                                 instrIdx.getDeadSlot(), VNI);
1149            LII = LI.addSegment(S);
1150          } else if (LII->start != instrIdx.getRegSlot()) {
1151            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1152                                          VNInfoAllocator);
1153            LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1154            LII = LI.addSegment(S);
1155          }
1156
1157          if (MO.getSubReg() && !MO.isUndef())
1158            lastUseIdx = instrIdx.getRegSlot();
1159          else
1160            lastUseIdx = SlotIndex();
1161        } else if (MO.isUse()) {
1162          // FIXME: This should probably be handled outside of this branch,
1163          // either as part of the def case (for defs inside of the region) or
1164          // after the loop over the region.
1165          if (!isEndValid && !LII->end.isBlock())
1166            LII->end = instrIdx.getRegSlot();
1167          if (!lastUseIdx.isValid())
1168            lastUseIdx = instrIdx.getRegSlot();
1169        }
1170      }
1171    }
1172  }
1173}
1174