MachineCSE.cpp revision c8db087b3b6d8767db4fa54057ac8fa448d812ca
1//===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs global common subexpression elimination on machine
11// instructions using a scoped hash table based value numbering scheme. It
12// must be run while the machine function is still in SSA form.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/ScopedHashTable.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/RecyclingAllocator.h"
27#include "llvm/Target/TargetInstrInfo.h"
28using namespace llvm;
29
30#define DEBUG_TYPE "machine-cse"
31
32STATISTIC(NumCoalesces, "Number of copies coalesced");
33STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
34STATISTIC(NumPhysCSEs,
35          "Number of physreg referencing common subexpr eliminated");
36STATISTIC(NumCrossBBCSEs,
37          "Number of cross-MBB physreg referencing CS eliminated");
38STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
39
40namespace {
41  class MachineCSE : public MachineFunctionPass {
42    const TargetInstrInfo *TII;
43    const TargetRegisterInfo *TRI;
44    AliasAnalysis *AA;
45    MachineDominatorTree *DT;
46    MachineRegisterInfo *MRI;
47  public:
48    static char ID; // Pass identification
49    MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(5), CurrVN(0) {
50      initializeMachineCSEPass(*PassRegistry::getPassRegistry());
51    }
52
53    bool runOnMachineFunction(MachineFunction &MF) override;
54
55    void getAnalysisUsage(AnalysisUsage &AU) const override {
56      AU.setPreservesCFG();
57      MachineFunctionPass::getAnalysisUsage(AU);
58      AU.addRequired<AliasAnalysis>();
59      AU.addPreservedID(MachineLoopInfoID);
60      AU.addRequired<MachineDominatorTree>();
61      AU.addPreserved<MachineDominatorTree>();
62    }
63
64    void releaseMemory() override {
65      ScopeMap.clear();
66      Exps.clear();
67    }
68
69  private:
70    const unsigned LookAheadLimit;
71    typedef RecyclingAllocator<BumpPtrAllocator,
72        ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
73    typedef ScopedHashTable<MachineInstr*, unsigned,
74        MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
75    typedef ScopedHTType::ScopeTy ScopeType;
76    DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
77    ScopedHTType VNT;
78    SmallVector<MachineInstr*, 64> Exps;
79    unsigned CurrVN;
80
81    bool PerformTrivialCoalescing(MachineInstr *MI, MachineBasicBlock *MBB);
82    bool isPhysDefTriviallyDead(unsigned Reg,
83                                MachineBasicBlock::const_iterator I,
84                                MachineBasicBlock::const_iterator E) const;
85    bool hasLivePhysRegDefUses(const MachineInstr *MI,
86                               const MachineBasicBlock *MBB,
87                               SmallSet<unsigned,8> &PhysRefs,
88                               SmallVectorImpl<unsigned> &PhysDefs,
89                               bool &PhysUseDef) const;
90    bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
91                          SmallSet<unsigned,8> &PhysRefs,
92                          SmallVectorImpl<unsigned> &PhysDefs,
93                          bool &NonLocal) const;
94    bool isCSECandidate(MachineInstr *MI);
95    bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
96                           MachineInstr *CSMI, MachineInstr *MI);
97    void EnterScope(MachineBasicBlock *MBB);
98    void ExitScope(MachineBasicBlock *MBB);
99    bool ProcessBlock(MachineBasicBlock *MBB);
100    void ExitScopeIfDone(MachineDomTreeNode *Node,
101                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
102    bool PerformCSE(MachineDomTreeNode *Node);
103  };
104} // end anonymous namespace
105
106char MachineCSE::ID = 0;
107char &llvm::MachineCSEID = MachineCSE::ID;
108INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
109                "Machine Common Subexpression Elimination", false, false)
110INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
111INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
112INITIALIZE_PASS_END(MachineCSE, "machine-cse",
113                "Machine Common Subexpression Elimination", false, false)
114
115bool MachineCSE::PerformTrivialCoalescing(MachineInstr *MI,
116                                          MachineBasicBlock *MBB) {
117  bool Changed = false;
118  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
119    MachineOperand &MO = MI->getOperand(i);
120    if (!MO.isReg() || !MO.isUse())
121      continue;
122    unsigned Reg = MO.getReg();
123    if (!TargetRegisterInfo::isVirtualRegister(Reg))
124      continue;
125    if (!MRI->hasOneNonDBGUse(Reg))
126      // Only coalesce single use copies. This ensure the copy will be
127      // deleted.
128      continue;
129    MachineInstr *DefMI = MRI->getVRegDef(Reg);
130    if (!DefMI->isCopy())
131      continue;
132    unsigned SrcReg = DefMI->getOperand(1).getReg();
133    if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
134      continue;
135    if (DefMI->getOperand(0).getSubReg())
136      continue;
137    // FIXME: We should trivially coalesce subregister copies to expose CSE
138    // opportunities on instructions with truncated operands (see
139    // cse-add-with-overflow.ll). This can be done here as follows:
140    // if (SrcSubReg)
141    //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
142    //                                     SrcSubReg);
143    // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
144    //
145    // The 2-addr pass has been updated to handle coalesced subregs. However,
146    // some machine-specific code still can't handle it.
147    // To handle it properly we also need a way find a constrained subregister
148    // class given a super-reg class and subreg index.
149    if (DefMI->getOperand(1).getSubReg())
150      continue;
151    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
152    if (!MRI->constrainRegClass(SrcReg, RC))
153      continue;
154    DEBUG(dbgs() << "Coalescing: " << *DefMI);
155    DEBUG(dbgs() << "***     to: " << *MI);
156    MO.setReg(SrcReg);
157    MRI->clearKillFlags(SrcReg);
158    DefMI->eraseFromParent();
159    ++NumCoalesces;
160    Changed = true;
161  }
162
163  return Changed;
164}
165
166bool
167MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
168                                   MachineBasicBlock::const_iterator I,
169                                   MachineBasicBlock::const_iterator E) const {
170  unsigned LookAheadLeft = LookAheadLimit;
171  while (LookAheadLeft) {
172    // Skip over dbg_value's.
173    while (I != E && I->isDebugValue())
174      ++I;
175
176    if (I == E)
177      // Reached end of block, register is obviously dead.
178      return true;
179
180    bool SeenDef = false;
181    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
182      const MachineOperand &MO = I->getOperand(i);
183      if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
184        SeenDef = true;
185      if (!MO.isReg() || !MO.getReg())
186        continue;
187      if (!TRI->regsOverlap(MO.getReg(), Reg))
188        continue;
189      if (MO.isUse())
190        // Found a use!
191        return false;
192      SeenDef = true;
193    }
194    if (SeenDef)
195      // See a def of Reg (or an alias) before encountering any use, it's
196      // trivially dead.
197      return true;
198
199    --LookAheadLeft;
200    ++I;
201  }
202  return false;
203}
204
205/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
206/// physical registers (except for dead defs of physical registers). It also
207/// returns the physical register def by reference if it's the only one and the
208/// instruction does not uses a physical register.
209bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
210                                       const MachineBasicBlock *MBB,
211                                       SmallSet<unsigned,8> &PhysRefs,
212                                       SmallVectorImpl<unsigned> &PhysDefs,
213                                       bool &PhysUseDef) const{
214  // First, add all uses to PhysRefs.
215  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
216    const MachineOperand &MO = MI->getOperand(i);
217    if (!MO.isReg() || MO.isDef())
218      continue;
219    unsigned Reg = MO.getReg();
220    if (!Reg)
221      continue;
222    if (TargetRegisterInfo::isVirtualRegister(Reg))
223      continue;
224    // Reading constant physregs is ok.
225    if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
226      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
227        PhysRefs.insert(*AI);
228  }
229
230  // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
231  // (which currently contains only uses), set the PhysUseDef flag.
232  PhysUseDef = false;
233  MachineBasicBlock::const_iterator I = MI; I = std::next(I);
234  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
235    const MachineOperand &MO = MI->getOperand(i);
236    if (!MO.isReg() || !MO.isDef())
237      continue;
238    unsigned Reg = MO.getReg();
239    if (!Reg)
240      continue;
241    if (TargetRegisterInfo::isVirtualRegister(Reg))
242      continue;
243    // Check against PhysRefs even if the def is "dead".
244    if (PhysRefs.count(Reg))
245      PhysUseDef = true;
246    // If the def is dead, it's ok. But the def may not marked "dead". That's
247    // common since this pass is run before livevariables. We can scan
248    // forward a few instructions and check if it is obviously dead.
249    if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
250      PhysDefs.push_back(Reg);
251  }
252
253  // Finally, add all defs to PhysRefs as well.
254  for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
255    for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
256      PhysRefs.insert(*AI);
257
258  return !PhysRefs.empty();
259}
260
261bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
262                                  SmallSet<unsigned,8> &PhysRefs,
263                                  SmallVectorImpl<unsigned> &PhysDefs,
264                                  bool &NonLocal) const {
265  // For now conservatively returns false if the common subexpression is
266  // not in the same basic block as the given instruction. The only exception
267  // is if the common subexpression is in the sole predecessor block.
268  const MachineBasicBlock *MBB = MI->getParent();
269  const MachineBasicBlock *CSMBB = CSMI->getParent();
270
271  bool CrossMBB = false;
272  if (CSMBB != MBB) {
273    if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
274      return false;
275
276    for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
277      if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
278        // Avoid extending live range of physical registers if they are
279        //allocatable or reserved.
280        return false;
281    }
282    CrossMBB = true;
283  }
284  MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
285  MachineBasicBlock::const_iterator E = MI;
286  MachineBasicBlock::const_iterator EE = CSMBB->end();
287  unsigned LookAheadLeft = LookAheadLimit;
288  while (LookAheadLeft) {
289    // Skip over dbg_value's.
290    while (I != E && I != EE && I->isDebugValue())
291      ++I;
292
293    if (I == EE) {
294      assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
295      (void)CrossMBB;
296      CrossMBB = false;
297      NonLocal = true;
298      I = MBB->begin();
299      EE = MBB->end();
300      continue;
301    }
302
303    if (I == E)
304      return true;
305
306    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
307      const MachineOperand &MO = I->getOperand(i);
308      // RegMasks go on instructions like calls that clobber lots of physregs.
309      // Don't attempt to CSE across such an instruction.
310      if (MO.isRegMask())
311        return false;
312      if (!MO.isReg() || !MO.isDef())
313        continue;
314      unsigned MOReg = MO.getReg();
315      if (TargetRegisterInfo::isVirtualRegister(MOReg))
316        continue;
317      if (PhysRefs.count(MOReg))
318        return false;
319    }
320
321    --LookAheadLeft;
322    ++I;
323  }
324
325  return false;
326}
327
328bool MachineCSE::isCSECandidate(MachineInstr *MI) {
329  if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
330      MI->isInlineAsm() || MI->isDebugValue())
331    return false;
332
333  // Ignore copies.
334  if (MI->isCopyLike())
335    return false;
336
337  // Ignore stuff that we obviously can't move.
338  if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
339      MI->hasUnmodeledSideEffects())
340    return false;
341
342  if (MI->mayLoad()) {
343    // Okay, this instruction does a load. As a refinement, we allow the target
344    // to decide whether the loaded value is actually a constant. If so, we can
345    // actually use it as a load.
346    if (!MI->isInvariantLoad(AA))
347      // FIXME: we should be able to hoist loads with no other side effects if
348      // there are no other instructions which can change memory in this loop.
349      // This is a trivial form of alias analysis.
350      return false;
351  }
352  return true;
353}
354
355/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
356/// common expression that defines Reg.
357bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
358                                   MachineInstr *CSMI, MachineInstr *MI) {
359  // FIXME: Heuristics that works around the lack the live range splitting.
360
361  // If CSReg is used at all uses of Reg, CSE should not increase register
362  // pressure of CSReg.
363  bool MayIncreasePressure = true;
364  if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
365      TargetRegisterInfo::isVirtualRegister(Reg)) {
366    MayIncreasePressure = false;
367    SmallPtrSet<MachineInstr*, 8> CSUses;
368    for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
369      CSUses.insert(&MI);
370    }
371    for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
372      if (!CSUses.count(&MI)) {
373        MayIncreasePressure = true;
374        break;
375      }
376    }
377  }
378  if (!MayIncreasePressure) return true;
379
380  // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
381  // an immediate predecessor. We don't want to increase register pressure and
382  // end up causing other computation to be spilled.
383  if (MI->isAsCheapAsAMove()) {
384    MachineBasicBlock *CSBB = CSMI->getParent();
385    MachineBasicBlock *BB = MI->getParent();
386    if (CSBB != BB && !CSBB->isSuccessor(BB))
387      return false;
388  }
389
390  // Heuristics #2: If the expression doesn't not use a vr and the only use
391  // of the redundant computation are copies, do not cse.
392  bool HasVRegUse = false;
393  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
394    const MachineOperand &MO = MI->getOperand(i);
395    if (MO.isReg() && MO.isUse() &&
396        TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
397      HasVRegUse = true;
398      break;
399    }
400  }
401  if (!HasVRegUse) {
402    bool HasNonCopyUse = false;
403    for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
404      // Ignore copies.
405      if (!MI.isCopyLike()) {
406        HasNonCopyUse = true;
407        break;
408      }
409    }
410    if (!HasNonCopyUse)
411      return false;
412  }
413
414  // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
415  // it unless the defined value is already used in the BB of the new use.
416  bool HasPHI = false;
417  SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
418  for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
419    HasPHI |= MI.isPHI();
420    CSBBs.insert(MI.getParent());
421  }
422
423  if (!HasPHI)
424    return true;
425  return CSBBs.count(MI->getParent());
426}
427
428void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
429  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
430  ScopeType *Scope = new ScopeType(VNT);
431  ScopeMap[MBB] = Scope;
432}
433
434void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
435  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
436  DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
437  assert(SI != ScopeMap.end());
438  delete SI->second;
439  ScopeMap.erase(SI);
440}
441
442bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
443  bool Changed = false;
444
445  SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
446  SmallVector<unsigned, 2> ImplicitDefsToUpdate;
447  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
448    MachineInstr *MI = &*I;
449    ++I;
450
451    if (!isCSECandidate(MI))
452      continue;
453
454    bool FoundCSE = VNT.count(MI);
455    if (!FoundCSE) {
456      // Look for trivial copy coalescing opportunities.
457      if (PerformTrivialCoalescing(MI, MBB)) {
458        Changed = true;
459
460        // After coalescing MI itself may become a copy.
461        if (MI->isCopyLike())
462          continue;
463        FoundCSE = VNT.count(MI);
464      }
465    }
466
467    // Commute commutable instructions.
468    bool Commuted = false;
469    if (!FoundCSE && MI->isCommutable()) {
470      MachineInstr *NewMI = TII->commuteInstruction(MI);
471      if (NewMI) {
472        Commuted = true;
473        FoundCSE = VNT.count(NewMI);
474        if (NewMI != MI) {
475          // New instruction. It doesn't need to be kept.
476          NewMI->eraseFromParent();
477          Changed = true;
478        } else if (!FoundCSE)
479          // MI was changed but it didn't help, commute it back!
480          (void)TII->commuteInstruction(MI);
481      }
482    }
483
484    // If the instruction defines physical registers and the values *may* be
485    // used, then it's not safe to replace it with a common subexpression.
486    // It's also not safe if the instruction uses physical registers.
487    bool CrossMBBPhysDef = false;
488    SmallSet<unsigned, 8> PhysRefs;
489    SmallVector<unsigned, 2> PhysDefs;
490    bool PhysUseDef = false;
491    if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
492                                          PhysDefs, PhysUseDef)) {
493      FoundCSE = false;
494
495      // ... Unless the CS is local or is in the sole predecessor block
496      // and it also defines the physical register which is not clobbered
497      // in between and the physical register uses were not clobbered.
498      // This can never be the case if the instruction both uses and
499      // defines the same physical register, which was detected above.
500      if (!PhysUseDef) {
501        unsigned CSVN = VNT.lookup(MI);
502        MachineInstr *CSMI = Exps[CSVN];
503        if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
504          FoundCSE = true;
505      }
506    }
507
508    if (!FoundCSE) {
509      VNT.insert(MI, CurrVN++);
510      Exps.push_back(MI);
511      continue;
512    }
513
514    // Found a common subexpression, eliminate it.
515    unsigned CSVN = VNT.lookup(MI);
516    MachineInstr *CSMI = Exps[CSVN];
517    DEBUG(dbgs() << "Examining: " << *MI);
518    DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
519
520    // Check if it's profitable to perform this CSE.
521    bool DoCSE = true;
522    unsigned NumDefs = MI->getDesc().getNumDefs() +
523                       MI->getDesc().getNumImplicitDefs();
524
525    for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
526      MachineOperand &MO = MI->getOperand(i);
527      if (!MO.isReg() || !MO.isDef())
528        continue;
529      unsigned OldReg = MO.getReg();
530      unsigned NewReg = CSMI->getOperand(i).getReg();
531
532      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
533      // we should make sure it is not dead at CSMI.
534      if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
535        ImplicitDefsToUpdate.push_back(i);
536      if (OldReg == NewReg) {
537        --NumDefs;
538        continue;
539      }
540
541      assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
542             TargetRegisterInfo::isVirtualRegister(NewReg) &&
543             "Do not CSE physical register defs!");
544
545      if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
546        DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
547        DoCSE = false;
548        break;
549      }
550
551      // Don't perform CSE if the result of the old instruction cannot exist
552      // within the register class of the new instruction.
553      const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
554      if (!MRI->constrainRegClass(NewReg, OldRC)) {
555        DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
556        DoCSE = false;
557        break;
558      }
559
560      CSEPairs.push_back(std::make_pair(OldReg, NewReg));
561      --NumDefs;
562    }
563
564    // Actually perform the elimination.
565    if (DoCSE) {
566      for (unsigned i = 0, e = CSEPairs.size(); i != e; ++i) {
567        MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].second);
568        MRI->clearKillFlags(CSEPairs[i].second);
569      }
570
571      // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
572      // we should make sure it is not dead at CSMI.
573      for (unsigned i = 0, e = ImplicitDefsToUpdate.size(); i != e; ++i)
574        CSMI->getOperand(ImplicitDefsToUpdate[i]).setIsDead(false);
575
576      if (CrossMBBPhysDef) {
577        // Add physical register defs now coming in from a predecessor to MBB
578        // livein list.
579        while (!PhysDefs.empty()) {
580          unsigned LiveIn = PhysDefs.pop_back_val();
581          if (!MBB->isLiveIn(LiveIn))
582            MBB->addLiveIn(LiveIn);
583        }
584        ++NumCrossBBCSEs;
585      }
586
587      MI->eraseFromParent();
588      ++NumCSEs;
589      if (!PhysRefs.empty())
590        ++NumPhysCSEs;
591      if (Commuted)
592        ++NumCommutes;
593      Changed = true;
594    } else {
595      VNT.insert(MI, CurrVN++);
596      Exps.push_back(MI);
597    }
598    CSEPairs.clear();
599    ImplicitDefsToUpdate.clear();
600  }
601
602  return Changed;
603}
604
605/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
606/// dominator tree node if its a leaf or all of its children are done. Walk
607/// up the dominator tree to destroy ancestors which are now done.
608void
609MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
610                        DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
611  if (OpenChildren[Node])
612    return;
613
614  // Pop scope.
615  ExitScope(Node->getBlock());
616
617  // Now traverse upwards to pop ancestors whose offsprings are all done.
618  while (MachineDomTreeNode *Parent = Node->getIDom()) {
619    unsigned Left = --OpenChildren[Parent];
620    if (Left != 0)
621      break;
622    ExitScope(Parent->getBlock());
623    Node = Parent;
624  }
625}
626
627bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
628  SmallVector<MachineDomTreeNode*, 32> Scopes;
629  SmallVector<MachineDomTreeNode*, 8> WorkList;
630  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
631
632  CurrVN = 0;
633
634  // Perform a DFS walk to determine the order of visit.
635  WorkList.push_back(Node);
636  do {
637    Node = WorkList.pop_back_val();
638    Scopes.push_back(Node);
639    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
640    unsigned NumChildren = Children.size();
641    OpenChildren[Node] = NumChildren;
642    for (unsigned i = 0; i != NumChildren; ++i) {
643      MachineDomTreeNode *Child = Children[i];
644      WorkList.push_back(Child);
645    }
646  } while (!WorkList.empty());
647
648  // Now perform CSE.
649  bool Changed = false;
650  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
651    MachineDomTreeNode *Node = Scopes[i];
652    MachineBasicBlock *MBB = Node->getBlock();
653    EnterScope(MBB);
654    Changed |= ProcessBlock(MBB);
655    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
656    ExitScopeIfDone(Node, OpenChildren);
657  }
658
659  return Changed;
660}
661
662bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
663  if (skipOptnoneFunction(*MF.getFunction()))
664    return false;
665
666  TII = MF.getTarget().getInstrInfo();
667  TRI = MF.getTarget().getRegisterInfo();
668  MRI = &MF.getRegInfo();
669  AA = &getAnalysis<AliasAnalysis>();
670  DT = &getAnalysis<MachineDominatorTree>();
671  return PerformCSE(DT->getRootNode());
672}
673