MachineLICM.cpp revision 22c310d78ce9630af15b0de94c18a409705b7496
1//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion on machine instructions. We
11// attempt to remove as much code from the body of a loop as possible.
12//
13// This pass does not attempt to throttle itself to limit register pressure.
14// The register allocation phases are expected to perform rematerialization
15// to recover when register pressure is high.
16//
17// This pass is not intended to be a replacement or a complete alternative
18// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
19// constructs that are not exposed before lowering and instruction selection.
20//
21//===----------------------------------------------------------------------===//
22
23#include "llvm/CodeGen/Passes.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/Analysis/AliasAnalysis.h"
28#include "llvm/CodeGen/MachineDominators.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineLoopInfo.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/PseudoSourceValue.h"
34#include "llvm/MC/MCInstrItineraries.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetLowering.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetRegisterInfo.h"
42using namespace llvm;
43
44#define DEBUG_TYPE "machine-licm"
45
46static cl::opt<bool>
47AvoidSpeculation("avoid-speculation",
48                 cl::desc("MachineLICM should avoid speculation"),
49                 cl::init(true), cl::Hidden);
50
51STATISTIC(NumHoisted,
52          "Number of machine instructions hoisted out of loops");
53STATISTIC(NumLowRP,
54          "Number of instructions hoisted in low reg pressure situation");
55STATISTIC(NumHighLatency,
56          "Number of high latency instructions hoisted");
57STATISTIC(NumCSEed,
58          "Number of hoisted machine instructions CSEed");
59STATISTIC(NumPostRAHoisted,
60          "Number of machine instructions hoisted out of loops post regalloc");
61
62namespace {
63  class MachineLICM : public MachineFunctionPass {
64    const TargetMachine   *TM;
65    const TargetInstrInfo *TII;
66    const TargetLoweringBase *TLI;
67    const TargetRegisterInfo *TRI;
68    const MachineFrameInfo *MFI;
69    MachineRegisterInfo *MRI;
70    const InstrItineraryData *InstrItins;
71    bool PreRegAlloc;
72
73    // Various analyses that we use...
74    AliasAnalysis        *AA;      // Alias analysis info.
75    MachineLoopInfo      *MLI;     // Current MachineLoopInfo
76    MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
77
78    // State that is updated as we process loops
79    bool         Changed;          // True if a loop is changed.
80    bool         FirstInLoop;      // True if it's the first LICM in the loop.
81    MachineLoop *CurLoop;          // The current loop we are working on.
82    MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
83
84    // Exit blocks for CurLoop.
85    SmallVector<MachineBasicBlock*, 8> ExitBlocks;
86
87    bool isExitBlock(const MachineBasicBlock *MBB) const {
88      return std::find(ExitBlocks.begin(), ExitBlocks.end(), MBB) !=
89        ExitBlocks.end();
90    }
91
92    // Track 'estimated' register pressure.
93    SmallSet<unsigned, 32> RegSeen;
94    SmallVector<unsigned, 8> RegPressure;
95
96    // Register pressure "limit" per register class. If the pressure
97    // is higher than the limit, then it's considered high.
98    SmallVector<unsigned, 8> RegLimit;
99
100    // Register pressure on path leading from loop preheader to current BB.
101    SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
102
103    // For each opcode, keep a list of potential CSE instructions.
104    DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
105
106    enum {
107      SpeculateFalse   = 0,
108      SpeculateTrue    = 1,
109      SpeculateUnknown = 2
110    };
111
112    // If a MBB does not dominate loop exiting blocks then it may not safe
113    // to hoist loads from this block.
114    // Tri-state: 0 - false, 1 - true, 2 - unknown
115    unsigned SpeculationState;
116
117  public:
118    static char ID; // Pass identification, replacement for typeid
119    MachineLICM() :
120      MachineFunctionPass(ID), PreRegAlloc(true) {
121        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
122      }
123
124    explicit MachineLICM(bool PreRA) :
125      MachineFunctionPass(ID), PreRegAlloc(PreRA) {
126        initializeMachineLICMPass(*PassRegistry::getPassRegistry());
127      }
128
129    bool runOnMachineFunction(MachineFunction &MF) override;
130
131    void getAnalysisUsage(AnalysisUsage &AU) const override {
132      AU.addRequired<MachineLoopInfo>();
133      AU.addRequired<MachineDominatorTree>();
134      AU.addRequired<AliasAnalysis>();
135      AU.addPreserved<MachineLoopInfo>();
136      AU.addPreserved<MachineDominatorTree>();
137      MachineFunctionPass::getAnalysisUsage(AU);
138    }
139
140    void releaseMemory() override {
141      RegSeen.clear();
142      RegPressure.clear();
143      RegLimit.clear();
144      BackTrace.clear();
145      for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
146             CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
147        CI->second.clear();
148      CSEMap.clear();
149    }
150
151  private:
152    /// CandidateInfo - Keep track of information about hoisting candidates.
153    struct CandidateInfo {
154      MachineInstr *MI;
155      unsigned      Def;
156      int           FI;
157      CandidateInfo(MachineInstr *mi, unsigned def, int fi)
158        : MI(mi), Def(def), FI(fi) {}
159    };
160
161    /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
162    /// invariants out to the preheader.
163    void HoistRegionPostRA();
164
165    /// HoistPostRA - When an instruction is found to only use loop invariant
166    /// operands that is safe to hoist, this instruction is called to do the
167    /// dirty work.
168    void HoistPostRA(MachineInstr *MI, unsigned Def);
169
170    /// ProcessMI - Examine the instruction for potentai LICM candidate. Also
171    /// gather register def and frame object update information.
172    void ProcessMI(MachineInstr *MI,
173                   BitVector &PhysRegDefs,
174                   BitVector &PhysRegClobbers,
175                   SmallSet<int, 32> &StoredFIs,
176                   SmallVectorImpl<CandidateInfo> &Candidates);
177
178    /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
179    /// current loop.
180    void AddToLiveIns(unsigned Reg);
181
182    /// IsLICMCandidate - Returns true if the instruction may be a suitable
183    /// candidate for LICM. e.g. If the instruction is a call, then it's
184    /// obviously not safe to hoist it.
185    bool IsLICMCandidate(MachineInstr &I);
186
187    /// IsLoopInvariantInst - Returns true if the instruction is loop
188    /// invariant. I.e., all virtual register operands are defined outside of
189    /// the loop, physical registers aren't accessed (explicitly or implicitly),
190    /// and the instruction is hoistable.
191    ///
192    bool IsLoopInvariantInst(MachineInstr &I);
193
194    /// HasLoopPHIUse - Return true if the specified instruction is used by any
195    /// phi node in the current loop.
196    bool HasLoopPHIUse(const MachineInstr *MI) const;
197
198    /// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
199    /// and an use in the current loop, return true if the target considered
200    /// it 'high'.
201    bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
202                               unsigned Reg) const;
203
204    bool IsCheapInstruction(MachineInstr &MI) const;
205
206    /// CanCauseHighRegPressure - Visit BBs from header to current BB,
207    /// check if hoisting an instruction of the given cost matrix can cause high
208    /// register pressure.
209    bool CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost, bool Cheap);
210
211    /// UpdateBackTraceRegPressure - Traverse the back trace from header to
212    /// the current block and update their register pressures to reflect the
213    /// effect of hoisting MI from the current block to the preheader.
214    void UpdateBackTraceRegPressure(const MachineInstr *MI);
215
216    /// IsProfitableToHoist - Return true if it is potentially profitable to
217    /// hoist the given loop invariant.
218    bool IsProfitableToHoist(MachineInstr &MI);
219
220    /// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
221    /// If not then a load from this mbb may not be safe to hoist.
222    bool IsGuaranteedToExecute(MachineBasicBlock *BB);
223
224    void EnterScope(MachineBasicBlock *MBB);
225
226    void ExitScope(MachineBasicBlock *MBB);
227
228    /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to given
229    /// dominator tree node if its a leaf or all of its children are done. Walk
230    /// up the dominator tree to destroy ancestors which are now done.
231    void ExitScopeIfDone(MachineDomTreeNode *Node,
232                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
233                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap);
234
235    /// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
236    /// blocks dominated by the specified header block, and that are in the
237    /// current loop) in depth first order w.r.t the DominatorTree. This allows
238    /// us to visit definitions before uses, allowing us to hoist a loop body in
239    /// one pass without iteration.
240    ///
241    void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode);
242    void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
243
244    /// getRegisterClassIDAndCost - For a given MI, register, and the operand
245    /// index, return the ID and cost of its representative register class by
246    /// reference.
247    void getRegisterClassIDAndCost(const MachineInstr *MI,
248                                   unsigned Reg, unsigned OpIdx,
249                                   unsigned &RCId, unsigned &RCCost) const;
250
251    /// InitRegPressure - Find all virtual register references that are liveout
252    /// of the preheader to initialize the starting "register pressure". Note
253    /// this does not count live through (livein but not used) registers.
254    void InitRegPressure(MachineBasicBlock *BB);
255
256    /// UpdateRegPressure - Update estimate of register pressure after the
257    /// specified instruction.
258    void UpdateRegPressure(const MachineInstr *MI);
259
260    /// ExtractHoistableLoad - Unfold a load from the given machineinstr if
261    /// the load itself could be hoisted. Return the unfolded and hoistable
262    /// load, or null if the load couldn't be unfolded or if it wouldn't
263    /// be hoistable.
264    MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
265
266    /// LookForDuplicate - Find an instruction amount PrevMIs that is a
267    /// duplicate of MI. Return this instruction if it's found.
268    const MachineInstr *LookForDuplicate(const MachineInstr *MI,
269                                     std::vector<const MachineInstr*> &PrevMIs);
270
271    /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
272    /// the preheader that compute the same value. If it's found, do a RAU on
273    /// with the definition of the existing instruction rather than hoisting
274    /// the instruction to the preheader.
275    bool EliminateCSE(MachineInstr *MI,
276           DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
277
278    /// MayCSE - Return true if the given instruction will be CSE'd if it's
279    /// hoisted out of the loop.
280    bool MayCSE(MachineInstr *MI);
281
282    /// Hoist - When an instruction is found to only use loop invariant operands
283    /// that is safe to hoist, this instruction is called to do the dirty work.
284    /// It returns true if the instruction is hoisted.
285    bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
286
287    /// InitCSEMap - Initialize the CSE map with instructions that are in the
288    /// current loop preheader that may become duplicates of instructions that
289    /// are hoisted out of the loop.
290    void InitCSEMap(MachineBasicBlock *BB);
291
292    /// getCurPreheader - Get the preheader for the current loop, splitting
293    /// a critical edge if needed.
294    MachineBasicBlock *getCurPreheader();
295  };
296} // end anonymous namespace
297
298char MachineLICM::ID = 0;
299char &llvm::MachineLICMID = MachineLICM::ID;
300INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
301                "Machine Loop Invariant Code Motion", false, false)
302INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
303INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
304INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
305INITIALIZE_PASS_END(MachineLICM, "machinelicm",
306                "Machine Loop Invariant Code Motion", false, false)
307
308/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
309/// loop that has a unique predecessor.
310static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
311  // Check whether this loop even has a unique predecessor.
312  if (!CurLoop->getLoopPredecessor())
313    return false;
314  // Ok, now check to see if any of its outer loops do.
315  for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
316    if (L->getLoopPredecessor())
317      return false;
318  // None of them did, so this is the outermost with a unique predecessor.
319  return true;
320}
321
322bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
323  if (skipOptnoneFunction(*MF.getFunction()))
324    return false;
325
326  Changed = FirstInLoop = false;
327  TM = &MF.getTarget();
328  TII = TM->getInstrInfo();
329  TLI = TM->getTargetLowering();
330  TRI = TM->getRegisterInfo();
331  MFI = MF.getFrameInfo();
332  MRI = &MF.getRegInfo();
333  InstrItins = TM->getInstrItineraryData();
334
335  PreRegAlloc = MRI->isSSA();
336
337  if (PreRegAlloc)
338    DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
339  else
340    DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
341  DEBUG(dbgs() << MF.getName() << " ********\n");
342
343  if (PreRegAlloc) {
344    // Estimate register pressure during pre-regalloc pass.
345    unsigned NumRC = TRI->getNumRegClasses();
346    RegPressure.resize(NumRC);
347    std::fill(RegPressure.begin(), RegPressure.end(), 0);
348    RegLimit.resize(NumRC);
349    for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
350           E = TRI->regclass_end(); I != E; ++I)
351      RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, MF);
352  }
353
354  // Get our Loop information...
355  MLI = &getAnalysis<MachineLoopInfo>();
356  DT  = &getAnalysis<MachineDominatorTree>();
357  AA  = &getAnalysis<AliasAnalysis>();
358
359  SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
360  while (!Worklist.empty()) {
361    CurLoop = Worklist.pop_back_val();
362    CurPreheader = nullptr;
363    ExitBlocks.clear();
364
365    // If this is done before regalloc, only visit outer-most preheader-sporting
366    // loops.
367    if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
368      Worklist.append(CurLoop->begin(), CurLoop->end());
369      continue;
370    }
371
372    CurLoop->getExitBlocks(ExitBlocks);
373
374    if (!PreRegAlloc)
375      HoistRegionPostRA();
376    else {
377      // CSEMap is initialized for loop header when the first instruction is
378      // being hoisted.
379      MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
380      FirstInLoop = true;
381      HoistOutOfLoop(N);
382      CSEMap.clear();
383    }
384  }
385
386  return Changed;
387}
388
389/// InstructionStoresToFI - Return true if instruction stores to the
390/// specified frame.
391static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
392  for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
393         oe = MI->memoperands_end(); o != oe; ++o) {
394    if (!(*o)->isStore() || !(*o)->getPseudoValue())
395      continue;
396    if (const FixedStackPseudoSourceValue *Value =
397        dyn_cast<FixedStackPseudoSourceValue>((*o)->getPseudoValue())) {
398      if (Value->getFrameIndex() == FI)
399        return true;
400    }
401  }
402  return false;
403}
404
405/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
406/// gather register def and frame object update information.
407void MachineLICM::ProcessMI(MachineInstr *MI,
408                            BitVector &PhysRegDefs,
409                            BitVector &PhysRegClobbers,
410                            SmallSet<int, 32> &StoredFIs,
411                            SmallVectorImpl<CandidateInfo> &Candidates) {
412  bool RuledOut = false;
413  bool HasNonInvariantUse = false;
414  unsigned Def = 0;
415  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
416    const MachineOperand &MO = MI->getOperand(i);
417    if (MO.isFI()) {
418      // Remember if the instruction stores to the frame index.
419      int FI = MO.getIndex();
420      if (!StoredFIs.count(FI) &&
421          MFI->isSpillSlotObjectIndex(FI) &&
422          InstructionStoresToFI(MI, FI))
423        StoredFIs.insert(FI);
424      HasNonInvariantUse = true;
425      continue;
426    }
427
428    // We can't hoist an instruction defining a physreg that is clobbered in
429    // the loop.
430    if (MO.isRegMask()) {
431      PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
432      continue;
433    }
434
435    if (!MO.isReg())
436      continue;
437    unsigned Reg = MO.getReg();
438    if (!Reg)
439      continue;
440    assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
441           "Not expecting virtual register!");
442
443    if (!MO.isDef()) {
444      if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
445        // If it's using a non-loop-invariant register, then it's obviously not
446        // safe to hoist.
447        HasNonInvariantUse = true;
448      continue;
449    }
450
451    if (MO.isImplicit()) {
452      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
453        PhysRegClobbers.set(*AI);
454      if (!MO.isDead())
455        // Non-dead implicit def? This cannot be hoisted.
456        RuledOut = true;
457      // No need to check if a dead implicit def is also defined by
458      // another instruction.
459      continue;
460    }
461
462    // FIXME: For now, avoid instructions with multiple defs, unless
463    // it's a dead implicit def.
464    if (Def)
465      RuledOut = true;
466    else
467      Def = Reg;
468
469    // If we have already seen another instruction that defines the same
470    // register, then this is not safe.  Two defs is indicated by setting a
471    // PhysRegClobbers bit.
472    for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
473      if (PhysRegDefs.test(*AS))
474        PhysRegClobbers.set(*AS);
475      PhysRegDefs.set(*AS);
476    }
477    if (PhysRegClobbers.test(Reg))
478      // MI defined register is seen defined by another instruction in
479      // the loop, it cannot be a LICM candidate.
480      RuledOut = true;
481  }
482
483  // Only consider reloads for now and remats which do not have register
484  // operands. FIXME: Consider unfold load folding instructions.
485  if (Def && !RuledOut) {
486    int FI = INT_MIN;
487    if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
488        (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
489      Candidates.push_back(CandidateInfo(MI, Def, FI));
490  }
491}
492
493/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
494/// invariants out to the preheader.
495void MachineLICM::HoistRegionPostRA() {
496  MachineBasicBlock *Preheader = getCurPreheader();
497  if (!Preheader)
498    return;
499
500  unsigned NumRegs = TRI->getNumRegs();
501  BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
502  BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
503
504  SmallVector<CandidateInfo, 32> Candidates;
505  SmallSet<int, 32> StoredFIs;
506
507  // Walk the entire region, count number of defs for each register, and
508  // collect potential LICM candidates.
509  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
510  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
511    MachineBasicBlock *BB = Blocks[i];
512
513    // If the header of the loop containing this basic block is a landing pad,
514    // then don't try to hoist instructions out of this loop.
515    const MachineLoop *ML = MLI->getLoopFor(BB);
516    if (ML && ML->getHeader()->isLandingPad()) continue;
517
518    // Conservatively treat live-in's as an external def.
519    // FIXME: That means a reload that're reused in successor block(s) will not
520    // be LICM'ed.
521    for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
522           E = BB->livein_end(); I != E; ++I) {
523      unsigned Reg = *I;
524      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
525        PhysRegDefs.set(*AI);
526    }
527
528    SpeculationState = SpeculateUnknown;
529    for (MachineBasicBlock::iterator
530           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
531      MachineInstr *MI = &*MII;
532      ProcessMI(MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
533    }
534  }
535
536  // Gather the registers read / clobbered by the terminator.
537  BitVector TermRegs(NumRegs);
538  MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
539  if (TI != Preheader->end()) {
540    for (unsigned i = 0, e = TI->getNumOperands(); i != e; ++i) {
541      const MachineOperand &MO = TI->getOperand(i);
542      if (!MO.isReg())
543        continue;
544      unsigned Reg = MO.getReg();
545      if (!Reg)
546        continue;
547      for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
548        TermRegs.set(*AI);
549    }
550  }
551
552  // Now evaluate whether the potential candidates qualify.
553  // 1. Check if the candidate defined register is defined by another
554  //    instruction in the loop.
555  // 2. If the candidate is a load from stack slot (always true for now),
556  //    check if the slot is stored anywhere in the loop.
557  // 3. Make sure candidate def should not clobber
558  //    registers read by the terminator. Similarly its def should not be
559  //    clobbered by the terminator.
560  for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
561    if (Candidates[i].FI != INT_MIN &&
562        StoredFIs.count(Candidates[i].FI))
563      continue;
564
565    unsigned Def = Candidates[i].Def;
566    if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
567      bool Safe = true;
568      MachineInstr *MI = Candidates[i].MI;
569      for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
570        const MachineOperand &MO = MI->getOperand(j);
571        if (!MO.isReg() || MO.isDef() || !MO.getReg())
572          continue;
573        unsigned Reg = MO.getReg();
574        if (PhysRegDefs.test(Reg) ||
575            PhysRegClobbers.test(Reg)) {
576          // If it's using a non-loop-invariant register, then it's obviously
577          // not safe to hoist.
578          Safe = false;
579          break;
580        }
581      }
582      if (Safe)
583        HoistPostRA(MI, Candidates[i].Def);
584    }
585  }
586}
587
588/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
589/// loop, and make sure it is not killed by any instructions in the loop.
590void MachineLICM::AddToLiveIns(unsigned Reg) {
591  const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks();
592  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
593    MachineBasicBlock *BB = Blocks[i];
594    if (!BB->isLiveIn(Reg))
595      BB->addLiveIn(Reg);
596    for (MachineBasicBlock::iterator
597           MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
598      MachineInstr *MI = &*MII;
599      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
600        MachineOperand &MO = MI->getOperand(i);
601        if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
602        if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
603          MO.setIsKill(false);
604      }
605    }
606  }
607}
608
609/// HoistPostRA - When an instruction is found to only use loop invariant
610/// operands that is safe to hoist, this instruction is called to do the
611/// dirty work.
612void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
613  MachineBasicBlock *Preheader = getCurPreheader();
614
615  // Now move the instructions to the predecessor, inserting it before any
616  // terminator instructions.
617  DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#"
618               << MI->getParent()->getNumber() << ": " << *MI);
619
620  // Splice the instruction to the preheader.
621  MachineBasicBlock *MBB = MI->getParent();
622  Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
623
624  // Add register to livein list to all the BBs in the current loop since a
625  // loop invariant must be kept live throughout the whole loop. This is
626  // important to ensure later passes do not scavenge the def register.
627  AddToLiveIns(Def);
628
629  ++NumPostRAHoisted;
630  Changed = true;
631}
632
633// IsGuaranteedToExecute - Check if this mbb is guaranteed to execute.
634// If not then a load from this mbb may not be safe to hoist.
635bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) {
636  if (SpeculationState != SpeculateUnknown)
637    return SpeculationState == SpeculateFalse;
638
639  if (BB != CurLoop->getHeader()) {
640    // Check loop exiting blocks.
641    SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
642    CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
643    for (unsigned i = 0, e = CurrentLoopExitingBlocks.size(); i != e; ++i)
644      if (!DT->dominates(BB, CurrentLoopExitingBlocks[i])) {
645        SpeculationState = SpeculateTrue;
646        return false;
647      }
648  }
649
650  SpeculationState = SpeculateFalse;
651  return true;
652}
653
654void MachineLICM::EnterScope(MachineBasicBlock *MBB) {
655  DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
656
657  // Remember livein register pressure.
658  BackTrace.push_back(RegPressure);
659}
660
661void MachineLICM::ExitScope(MachineBasicBlock *MBB) {
662  DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
663  BackTrace.pop_back();
664}
665
666/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
667/// dominator tree node if its a leaf or all of its children are done. Walk
668/// up the dominator tree to destroy ancestors which are now done.
669void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node,
670                DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
671                DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
672  if (OpenChildren[Node])
673    return;
674
675  // Pop scope.
676  ExitScope(Node->getBlock());
677
678  // Now traverse upwards to pop ancestors whose offsprings are all done.
679  while (MachineDomTreeNode *Parent = ParentMap[Node]) {
680    unsigned Left = --OpenChildren[Parent];
681    if (Left != 0)
682      break;
683    ExitScope(Parent->getBlock());
684    Node = Parent;
685  }
686}
687
688/// HoistOutOfLoop - Walk the specified loop in the CFG (defined by all
689/// blocks dominated by the specified header block, and that are in the
690/// current loop) in depth first order w.r.t the DominatorTree. This allows
691/// us to visit definitions before uses, allowing us to hoist a loop body in
692/// one pass without iteration.
693///
694void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
695  SmallVector<MachineDomTreeNode*, 32> Scopes;
696  SmallVector<MachineDomTreeNode*, 8> WorkList;
697  DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
698  DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
699
700  // Perform a DFS walk to determine the order of visit.
701  WorkList.push_back(HeaderN);
702  do {
703    MachineDomTreeNode *Node = WorkList.pop_back_val();
704    assert(Node && "Null dominator tree node?");
705    MachineBasicBlock *BB = Node->getBlock();
706
707    // If the header of the loop containing this basic block is a landing pad,
708    // then don't try to hoist instructions out of this loop.
709    const MachineLoop *ML = MLI->getLoopFor(BB);
710    if (ML && ML->getHeader()->isLandingPad())
711      continue;
712
713    // If this subregion is not in the top level loop at all, exit.
714    if (!CurLoop->contains(BB))
715      continue;
716
717    Scopes.push_back(Node);
718    const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
719    unsigned NumChildren = Children.size();
720
721    // Don't hoist things out of a large switch statement.  This often causes
722    // code to be hoisted that wasn't going to be executed, and increases
723    // register pressure in a situation where it's likely to matter.
724    if (BB->succ_size() >= 25)
725      NumChildren = 0;
726
727    OpenChildren[Node] = NumChildren;
728    // Add children in reverse order as then the next popped worklist node is
729    // the first child of this node.  This means we ultimately traverse the
730    // DOM tree in exactly the same order as if we'd recursed.
731    for (int i = (int)NumChildren-1; i >= 0; --i) {
732      MachineDomTreeNode *Child = Children[i];
733      ParentMap[Child] = Node;
734      WorkList.push_back(Child);
735    }
736  } while (!WorkList.empty());
737
738  if (Scopes.size() != 0) {
739    MachineBasicBlock *Preheader = getCurPreheader();
740    if (!Preheader)
741      return;
742
743    // Compute registers which are livein into the loop headers.
744    RegSeen.clear();
745    BackTrace.clear();
746    InitRegPressure(Preheader);
747  }
748
749  // Now perform LICM.
750  for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
751    MachineDomTreeNode *Node = Scopes[i];
752    MachineBasicBlock *MBB = Node->getBlock();
753
754    MachineBasicBlock *Preheader = getCurPreheader();
755    if (!Preheader)
756      continue;
757
758    EnterScope(MBB);
759
760    // Process the block
761    SpeculationState = SpeculateUnknown;
762    for (MachineBasicBlock::iterator
763         MII = MBB->begin(), E = MBB->end(); MII != E; ) {
764      MachineBasicBlock::iterator NextMII = MII; ++NextMII;
765      MachineInstr *MI = &*MII;
766      if (!Hoist(MI, Preheader))
767        UpdateRegPressure(MI);
768      MII = NextMII;
769    }
770
771    // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
772    ExitScopeIfDone(Node, OpenChildren, ParentMap);
773  }
774}
775
776static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
777  return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
778}
779
780/// getRegisterClassIDAndCost - For a given MI, register, and the operand
781/// index, return the ID and cost of its representative register class.
782void
783MachineLICM::getRegisterClassIDAndCost(const MachineInstr *MI,
784                                       unsigned Reg, unsigned OpIdx,
785                                       unsigned &RCId, unsigned &RCCost) const {
786  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
787  MVT VT = *RC->vt_begin();
788  if (VT == MVT::Untyped) {
789    RCId = RC->getID();
790    RCCost = 1;
791  } else {
792    RCId = TLI->getRepRegClassFor(VT)->getID();
793    RCCost = TLI->getRepRegClassCostFor(VT);
794  }
795}
796
797/// InitRegPressure - Find all virtual register references that are liveout of
798/// the preheader to initialize the starting "register pressure". Note this
799/// does not count live through (livein but not used) registers.
800void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
801  std::fill(RegPressure.begin(), RegPressure.end(), 0);
802
803  // If the preheader has only a single predecessor and it ends with a
804  // fallthrough or an unconditional branch, then scan its predecessor for live
805  // defs as well. This happens whenever the preheader is created by splitting
806  // the critical edge from the loop predecessor to the loop header.
807  if (BB->pred_size() == 1) {
808    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
809    SmallVector<MachineOperand, 4> Cond;
810    if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
811      InitRegPressure(*BB->pred_begin());
812  }
813
814  for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
815       MII != E; ++MII) {
816    MachineInstr *MI = &*MII;
817    for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
818      const MachineOperand &MO = MI->getOperand(i);
819      if (!MO.isReg() || MO.isImplicit())
820        continue;
821      unsigned Reg = MO.getReg();
822      if (!TargetRegisterInfo::isVirtualRegister(Reg))
823        continue;
824
825      bool isNew = RegSeen.insert(Reg);
826      unsigned RCId, RCCost;
827      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
828      if (MO.isDef())
829        RegPressure[RCId] += RCCost;
830      else {
831        bool isKill = isOperandKill(MO, MRI);
832        if (isNew && !isKill)
833          // Haven't seen this, it must be a livein.
834          RegPressure[RCId] += RCCost;
835        else if (!isNew && isKill)
836          RegPressure[RCId] -= RCCost;
837      }
838    }
839  }
840}
841
842/// UpdateRegPressure - Update estimate of register pressure after the
843/// specified instruction.
844void MachineLICM::UpdateRegPressure(const MachineInstr *MI) {
845  if (MI->isImplicitDef())
846    return;
847
848  SmallVector<unsigned, 4> Defs;
849  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
850    const MachineOperand &MO = MI->getOperand(i);
851    if (!MO.isReg() || MO.isImplicit())
852      continue;
853    unsigned Reg = MO.getReg();
854    if (!TargetRegisterInfo::isVirtualRegister(Reg))
855      continue;
856
857    bool isNew = RegSeen.insert(Reg);
858    if (MO.isDef())
859      Defs.push_back(Reg);
860    else if (!isNew && isOperandKill(MO, MRI)) {
861      unsigned RCId, RCCost;
862      getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
863      if (RCCost > RegPressure[RCId])
864        RegPressure[RCId] = 0;
865      else
866        RegPressure[RCId] -= RCCost;
867    }
868  }
869
870  unsigned Idx = 0;
871  while (!Defs.empty()) {
872    unsigned Reg = Defs.pop_back_val();
873    unsigned RCId, RCCost;
874    getRegisterClassIDAndCost(MI, Reg, Idx, RCId, RCCost);
875    RegPressure[RCId] += RCCost;
876    ++Idx;
877  }
878}
879
880/// isLoadFromGOTOrConstantPool - Return true if this machine instruction
881/// loads from global offset table or constant pool.
882static bool isLoadFromGOTOrConstantPool(MachineInstr &MI) {
883  assert (MI.mayLoad() && "Expected MI that loads!");
884  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
885         E = MI.memoperands_end(); I != E; ++I) {
886    if (const PseudoSourceValue *PSV = (*I)->getPseudoValue()) {
887      if (PSV == PSV->getGOT() || PSV == PSV->getConstantPool())
888        return true;
889    }
890  }
891  return false;
892}
893
894/// IsLICMCandidate - Returns true if the instruction may be a suitable
895/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
896/// not safe to hoist it.
897bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
898  // Check if it's safe to move the instruction.
899  bool DontMoveAcrossStore = true;
900  if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
901    return false;
902
903  // If it is load then check if it is guaranteed to execute by making sure that
904  // it dominates all exiting blocks. If it doesn't, then there is a path out of
905  // the loop which does not execute this load, so we can't hoist it. Loads
906  // from constant memory are not safe to speculate all the time, for example
907  // indexed load from a jump table.
908  // Stores and side effects are already checked by isSafeToMove.
909  if (I.mayLoad() && !isLoadFromGOTOrConstantPool(I) &&
910      !IsGuaranteedToExecute(I.getParent()))
911    return false;
912
913  return true;
914}
915
916/// IsLoopInvariantInst - Returns true if the instruction is loop
917/// invariant. I.e., all virtual register operands are defined outside of the
918/// loop, physical registers aren't accessed explicitly, and there are no side
919/// effects that aren't captured by the operands or other flags.
920///
921bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
922  if (!IsLICMCandidate(I))
923    return false;
924
925  // The instruction is loop invariant if all of its operands are.
926  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
927    const MachineOperand &MO = I.getOperand(i);
928
929    if (!MO.isReg())
930      continue;
931
932    unsigned Reg = MO.getReg();
933    if (Reg == 0) continue;
934
935    // Don't hoist an instruction that uses or defines a physical register.
936    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
937      if (MO.isUse()) {
938        // If the physreg has no defs anywhere, it's just an ambient register
939        // and we can freely move its uses. Alternatively, if it's allocatable,
940        // it could get allocated to something with a def during allocation.
941        if (!MRI->isConstantPhysReg(Reg, *I.getParent()->getParent()))
942          return false;
943        // Otherwise it's safe to move.
944        continue;
945      } else if (!MO.isDead()) {
946        // A def that isn't dead. We can't move it.
947        return false;
948      } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
949        // If the reg is live into the loop, we can't hoist an instruction
950        // which would clobber it.
951        return false;
952      }
953    }
954
955    if (!MO.isUse())
956      continue;
957
958    assert(MRI->getVRegDef(Reg) &&
959           "Machine instr not mapped for this vreg?!");
960
961    // If the loop contains the definition of an operand, then the instruction
962    // isn't loop invariant.
963    if (CurLoop->contains(MRI->getVRegDef(Reg)))
964      return false;
965  }
966
967  // If we got this far, the instruction is loop invariant!
968  return true;
969}
970
971
972/// HasLoopPHIUse - Return true if the specified instruction is used by a
973/// phi node and hoisting it could cause a copy to be inserted.
974bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const {
975  SmallVector<const MachineInstr*, 8> Work(1, MI);
976  do {
977    MI = Work.pop_back_val();
978    for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
979      if (!MO->isReg() || !MO->isDef())
980        continue;
981      unsigned Reg = MO->getReg();
982      if (!TargetRegisterInfo::isVirtualRegister(Reg))
983        continue;
984      for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
985        // A PHI may cause a copy to be inserted.
986        if (UseMI.isPHI()) {
987          // A PHI inside the loop causes a copy because the live range of Reg is
988          // extended across the PHI.
989          if (CurLoop->contains(&UseMI))
990            return true;
991          // A PHI in an exit block can cause a copy to be inserted if the PHI
992          // has multiple predecessors in the loop with different values.
993          // For now, approximate by rejecting all exit blocks.
994          if (isExitBlock(UseMI.getParent()))
995            return true;
996          continue;
997        }
998        // Look past copies as well.
999        if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1000          Work.push_back(&UseMI);
1001      }
1002    }
1003  } while (!Work.empty());
1004  return false;
1005}
1006
1007/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
1008/// and an use in the current loop, return true if the target considered
1009/// it 'high'.
1010bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
1011                                        unsigned DefIdx, unsigned Reg) const {
1012  if (!InstrItins || InstrItins->isEmpty() || MRI->use_nodbg_empty(Reg))
1013    return false;
1014
1015  for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1016    if (UseMI.isCopyLike())
1017      continue;
1018    if (!CurLoop->contains(UseMI.getParent()))
1019      continue;
1020    for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1021      const MachineOperand &MO = UseMI.getOperand(i);
1022      if (!MO.isReg() || !MO.isUse())
1023        continue;
1024      unsigned MOReg = MO.getReg();
1025      if (MOReg != Reg)
1026        continue;
1027
1028      if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, &UseMI, i))
1029        return true;
1030    }
1031
1032    // Only look at the first in loop use.
1033    break;
1034  }
1035
1036  return false;
1037}
1038
1039/// IsCheapInstruction - Return true if the instruction is marked "cheap" or
1040/// the operand latency between its def and a use is one or less.
1041bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const {
1042  if (TII->isAsCheapAsAMove(&MI) || MI.isCopyLike())
1043    return true;
1044  if (!InstrItins || InstrItins->isEmpty())
1045    return false;
1046
1047  bool isCheap = false;
1048  unsigned NumDefs = MI.getDesc().getNumDefs();
1049  for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1050    MachineOperand &DefMO = MI.getOperand(i);
1051    if (!DefMO.isReg() || !DefMO.isDef())
1052      continue;
1053    --NumDefs;
1054    unsigned Reg = DefMO.getReg();
1055    if (TargetRegisterInfo::isPhysicalRegister(Reg))
1056      continue;
1057
1058    if (!TII->hasLowDefLatency(InstrItins, &MI, i))
1059      return false;
1060    isCheap = true;
1061  }
1062
1063  return isCheap;
1064}
1065
1066/// CanCauseHighRegPressure - Visit BBs from header to current BB, check
1067/// if hoisting an instruction of the given cost matrix can cause high
1068/// register pressure.
1069bool MachineLICM::CanCauseHighRegPressure(DenseMap<unsigned, int> &Cost,
1070                                          bool CheapInstr) {
1071  for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1072       CI != CE; ++CI) {
1073    if (CI->second <= 0)
1074      continue;
1075
1076    unsigned RCId = CI->first;
1077    unsigned Limit = RegLimit[RCId];
1078    int Cost = CI->second;
1079
1080    // Don't hoist cheap instructions if they would increase register pressure,
1081    // even if we're under the limit.
1082    if (CheapInstr)
1083      return true;
1084
1085    for (unsigned i = BackTrace.size(); i != 0; --i) {
1086      SmallVectorImpl<unsigned> &RP = BackTrace[i-1];
1087      if (RP[RCId] + Cost >= Limit)
1088        return true;
1089    }
1090  }
1091
1092  return false;
1093}
1094
1095/// UpdateBackTraceRegPressure - Traverse the back trace from header to the
1096/// current block and update their register pressures to reflect the effect
1097/// of hoisting MI from the current block to the preheader.
1098void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1099  if (MI->isImplicitDef())
1100    return;
1101
1102  // First compute the 'cost' of the instruction, i.e. its contribution
1103  // to register pressure.
1104  DenseMap<unsigned, int> Cost;
1105  for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1106    const MachineOperand &MO = MI->getOperand(i);
1107    if (!MO.isReg() || MO.isImplicit())
1108      continue;
1109    unsigned Reg = MO.getReg();
1110    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1111      continue;
1112
1113    unsigned RCId, RCCost;
1114    getRegisterClassIDAndCost(MI, Reg, i, RCId, RCCost);
1115    if (MO.isDef()) {
1116      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1117      if (CI != Cost.end())
1118        CI->second += RCCost;
1119      else
1120        Cost.insert(std::make_pair(RCId, RCCost));
1121    } else if (isOperandKill(MO, MRI)) {
1122      DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
1123      if (CI != Cost.end())
1124        CI->second -= RCCost;
1125      else
1126        Cost.insert(std::make_pair(RCId, -RCCost));
1127    }
1128  }
1129
1130  // Update register pressure of blocks from loop header to current block.
1131  for (unsigned i = 0, e = BackTrace.size(); i != e; ++i) {
1132    SmallVectorImpl<unsigned> &RP = BackTrace[i];
1133    for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
1134         CI != CE; ++CI) {
1135      unsigned RCId = CI->first;
1136      RP[RCId] += CI->second;
1137    }
1138  }
1139}
1140
1141/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
1142/// the given loop invariant.
1143bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
1144  if (MI.isImplicitDef())
1145    return true;
1146
1147  // Besides removing computation from the loop, hoisting an instruction has
1148  // these effects:
1149  //
1150  // - The value defined by the instruction becomes live across the entire
1151  //   loop. This increases register pressure in the loop.
1152  //
1153  // - If the value is used by a PHI in the loop, a copy will be required for
1154  //   lowering the PHI after extending the live range.
1155  //
1156  // - When hoisting the last use of a value in the loop, that value no longer
1157  //   needs to be live in the loop. This lowers register pressure in the loop.
1158
1159  bool CheapInstr = IsCheapInstruction(MI);
1160  bool CreatesCopy = HasLoopPHIUse(&MI);
1161
1162  // Don't hoist a cheap instruction if it would create a copy in the loop.
1163  if (CheapInstr && CreatesCopy) {
1164    DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1165    return false;
1166  }
1167
1168  // Rematerializable instructions should always be hoisted since the register
1169  // allocator can just pull them down again when needed.
1170  if (TII->isTriviallyReMaterializable(&MI, AA))
1171    return true;
1172
1173  // Estimate register pressure to determine whether to LICM the instruction.
1174  // In low register pressure situation, we can be more aggressive about
1175  // hoisting. Also, favors hoisting long latency instructions even in
1176  // moderately high pressure situation.
1177  // Cheap instructions will only be hoisted if they don't increase register
1178  // pressure at all.
1179  // FIXME: If there are long latency loop-invariant instructions inside the
1180  // loop at this point, why didn't the optimizer's LICM hoist them?
1181  DenseMap<unsigned, int> Cost;
1182  for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1183    const MachineOperand &MO = MI.getOperand(i);
1184    if (!MO.isReg() || MO.isImplicit())
1185      continue;
1186    unsigned Reg = MO.getReg();
1187    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1188      continue;
1189
1190    unsigned RCId, RCCost;
1191    getRegisterClassIDAndCost(&MI, Reg, i, RCId, RCCost);
1192    if (MO.isDef()) {
1193      if (HasHighOperandLatency(MI, i, Reg)) {
1194        DEBUG(dbgs() << "Hoist High Latency: " << MI);
1195        ++NumHighLatency;
1196        return true;
1197      }
1198      Cost[RCId] += RCCost;
1199    } else if (isOperandKill(MO, MRI)) {
1200      // Is a virtual register use is a kill, hoisting it out of the loop
1201      // may actually reduce register pressure or be register pressure
1202      // neutral.
1203      Cost[RCId] -= RCCost;
1204    }
1205  }
1206
1207  // Visit BBs from header to current BB, if hoisting this doesn't cause
1208  // high register pressure, then it's safe to proceed.
1209  if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1210    DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1211    ++NumLowRP;
1212    return true;
1213  }
1214
1215  // Don't risk increasing register pressure if it would create copies.
1216  if (CreatesCopy) {
1217    DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1218    return false;
1219  }
1220
1221  // Do not "speculate" in high register pressure situation. If an
1222  // instruction is not guaranteed to be executed in the loop, it's best to be
1223  // conservative.
1224  if (AvoidSpeculation &&
1225      (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1226    DEBUG(dbgs() << "Won't speculate: " << MI);
1227    return false;
1228  }
1229
1230  // High register pressure situation, only hoist if the instruction is going
1231  // to be remat'ed.
1232  if (!TII->isTriviallyReMaterializable(&MI, AA) &&
1233      !MI.isInvariantLoad(AA)) {
1234    DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1235    return false;
1236  }
1237
1238  return true;
1239}
1240
1241MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
1242  // Don't unfold simple loads.
1243  if (MI->canFoldAsLoad())
1244    return nullptr;
1245
1246  // If not, we may be able to unfold a load and hoist that.
1247  // First test whether the instruction is loading from an amenable
1248  // memory location.
1249  if (!MI->isInvariantLoad(AA))
1250    return nullptr;
1251
1252  // Next determine the register class for a temporary register.
1253  unsigned LoadRegIndex;
1254  unsigned NewOpc =
1255    TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1256                                    /*UnfoldLoad=*/true,
1257                                    /*UnfoldStore=*/false,
1258                                    &LoadRegIndex);
1259  if (NewOpc == 0) return nullptr;
1260  const MCInstrDesc &MID = TII->get(NewOpc);
1261  if (MID.getNumDefs() != 1) return nullptr;
1262  MachineFunction &MF = *MI->getParent()->getParent();
1263  const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1264  // Ok, we're unfolding. Create a temporary register and do the unfold.
1265  unsigned Reg = MRI->createVirtualRegister(RC);
1266
1267  SmallVector<MachineInstr *, 2> NewMIs;
1268  bool Success =
1269    TII->unfoldMemoryOperand(MF, MI, Reg,
1270                             /*UnfoldLoad=*/true, /*UnfoldStore=*/false,
1271                             NewMIs);
1272  (void)Success;
1273  assert(Success &&
1274         "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1275         "succeeded!");
1276  assert(NewMIs.size() == 2 &&
1277         "Unfolded a load into multiple instructions!");
1278  MachineBasicBlock *MBB = MI->getParent();
1279  MachineBasicBlock::iterator Pos = MI;
1280  MBB->insert(Pos, NewMIs[0]);
1281  MBB->insert(Pos, NewMIs[1]);
1282  // If unfolding produced a load that wasn't loop-invariant or profitable to
1283  // hoist, discard the new instructions and bail.
1284  if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1285    NewMIs[0]->eraseFromParent();
1286    NewMIs[1]->eraseFromParent();
1287    return nullptr;
1288  }
1289
1290  // Update register pressure for the unfolded instruction.
1291  UpdateRegPressure(NewMIs[1]);
1292
1293  // Otherwise we successfully unfolded a load that we can hoist.
1294  MI->eraseFromParent();
1295  return NewMIs[0];
1296}
1297
1298void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
1299  for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
1300    const MachineInstr *MI = &*I;
1301    unsigned Opcode = MI->getOpcode();
1302    DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1303      CI = CSEMap.find(Opcode);
1304    if (CI != CSEMap.end())
1305      CI->second.push_back(MI);
1306    else {
1307      std::vector<const MachineInstr*> CSEMIs;
1308      CSEMIs.push_back(MI);
1309      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1310    }
1311  }
1312}
1313
1314const MachineInstr*
1315MachineLICM::LookForDuplicate(const MachineInstr *MI,
1316                              std::vector<const MachineInstr*> &PrevMIs) {
1317  for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
1318    const MachineInstr *PrevMI = PrevMIs[i];
1319    if (TII->produceSameValue(MI, PrevMI, (PreRegAlloc ? MRI : nullptr)))
1320      return PrevMI;
1321  }
1322  return nullptr;
1323}
1324
1325bool MachineLICM::EliminateCSE(MachineInstr *MI,
1326          DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
1327  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1328  // the undef property onto uses.
1329  if (CI == CSEMap.end() || MI->isImplicitDef())
1330    return false;
1331
1332  if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1333    DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1334
1335    // Replace virtual registers defined by MI by their counterparts defined
1336    // by Dup.
1337    SmallVector<unsigned, 2> Defs;
1338    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1339      const MachineOperand &MO = MI->getOperand(i);
1340
1341      // Physical registers may not differ here.
1342      assert((!MO.isReg() || MO.getReg() == 0 ||
1343              !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1344              MO.getReg() == Dup->getOperand(i).getReg()) &&
1345             "Instructions with different phys regs are not identical!");
1346
1347      if (MO.isReg() && MO.isDef() &&
1348          !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1349        Defs.push_back(i);
1350    }
1351
1352    SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1353    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1354      unsigned Idx = Defs[i];
1355      unsigned Reg = MI->getOperand(Idx).getReg();
1356      unsigned DupReg = Dup->getOperand(Idx).getReg();
1357      OrigRCs.push_back(MRI->getRegClass(DupReg));
1358
1359      if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1360        // Restore old RCs if more than one defs.
1361        for (unsigned j = 0; j != i; ++j)
1362          MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1363        return false;
1364      }
1365    }
1366
1367    for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1368      unsigned Idx = Defs[i];
1369      unsigned Reg = MI->getOperand(Idx).getReg();
1370      unsigned DupReg = Dup->getOperand(Idx).getReg();
1371      MRI->replaceRegWith(Reg, DupReg);
1372      MRI->clearKillFlags(DupReg);
1373    }
1374
1375    MI->eraseFromParent();
1376    ++NumCSEed;
1377    return true;
1378  }
1379  return false;
1380}
1381
1382/// MayCSE - Return true if the given instruction will be CSE'd if it's
1383/// hoisted out of the loop.
1384bool MachineLICM::MayCSE(MachineInstr *MI) {
1385  unsigned Opcode = MI->getOpcode();
1386  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1387    CI = CSEMap.find(Opcode);
1388  // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1389  // the undef property onto uses.
1390  if (CI == CSEMap.end() || MI->isImplicitDef())
1391    return false;
1392
1393  return LookForDuplicate(MI, CI->second) != nullptr;
1394}
1395
1396/// Hoist - When an instruction is found to use only loop invariant operands
1397/// that are safe to hoist, this instruction is called to do the dirty work.
1398///
1399bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1400  // First check whether we should hoist this instruction.
1401  if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1402    // If not, try unfolding a hoistable load.
1403    MI = ExtractHoistableLoad(MI);
1404    if (!MI) return false;
1405  }
1406
1407  // Now move the instructions to the predecessor, inserting it before any
1408  // terminator instructions.
1409  DEBUG({
1410      dbgs() << "Hoisting " << *MI;
1411      if (Preheader->getBasicBlock())
1412        dbgs() << " to MachineBasicBlock "
1413               << Preheader->getName();
1414      if (MI->getParent()->getBasicBlock())
1415        dbgs() << " from MachineBasicBlock "
1416               << MI->getParent()->getName();
1417      dbgs() << "\n";
1418    });
1419
1420  // If this is the first instruction being hoisted to the preheader,
1421  // initialize the CSE map with potential common expressions.
1422  if (FirstInLoop) {
1423    InitCSEMap(Preheader);
1424    FirstInLoop = false;
1425  }
1426
1427  // Look for opportunity to CSE the hoisted instruction.
1428  unsigned Opcode = MI->getOpcode();
1429  DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
1430    CI = CSEMap.find(Opcode);
1431  if (!EliminateCSE(MI, CI)) {
1432    // Otherwise, splice the instruction to the preheader.
1433    Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1434
1435    // Update register pressure for BBs from header to this block.
1436    UpdateBackTraceRegPressure(MI);
1437
1438    // Clear the kill flags of any register this instruction defines,
1439    // since they may need to be live throughout the entire loop
1440    // rather than just live for part of it.
1441    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1442      MachineOperand &MO = MI->getOperand(i);
1443      if (MO.isReg() && MO.isDef() && !MO.isDead())
1444        MRI->clearKillFlags(MO.getReg());
1445    }
1446
1447    // Add to the CSE map.
1448    if (CI != CSEMap.end())
1449      CI->second.push_back(MI);
1450    else {
1451      std::vector<const MachineInstr*> CSEMIs;
1452      CSEMIs.push_back(MI);
1453      CSEMap.insert(std::make_pair(Opcode, CSEMIs));
1454    }
1455  }
1456
1457  ++NumHoisted;
1458  Changed = true;
1459
1460  return true;
1461}
1462
1463MachineBasicBlock *MachineLICM::getCurPreheader() {
1464  // Determine the block to which to hoist instructions. If we can't find a
1465  // suitable loop predecessor, we can't do any hoisting.
1466
1467  // If we've tried to get a preheader and failed, don't try again.
1468  if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1469    return nullptr;
1470
1471  if (!CurPreheader) {
1472    CurPreheader = CurLoop->getLoopPreheader();
1473    if (!CurPreheader) {
1474      MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1475      if (!Pred) {
1476        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1477        return nullptr;
1478      }
1479
1480      CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this);
1481      if (!CurPreheader) {
1482        CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1483        return nullptr;
1484      }
1485    }
1486  }
1487  return CurPreheader;
1488}
1489