MachineScheduler.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// MachineScheduler schedules machine instructions after phi elimination. It
11// preserves LiveIntervals so it can be invoked before register allocation.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineScheduler.h"
16#include "llvm/ADT/PriorityQueue.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/MachineDominators.h"
20#include "llvm/CodeGen/MachineLoopInfo.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/RegisterClassInfo.h"
24#include "llvm/CodeGen/ScheduleDFS.h"
25#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26#include "llvm/Support/CommandLine.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/GraphWriter.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include <queue>
33
34using namespace llvm;
35
36#define DEBUG_TYPE "misched"
37
38namespace llvm {
39cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40                           cl::desc("Force top-down list scheduling"));
41cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42                            cl::desc("Force bottom-up list scheduling"));
43}
44
45#ifndef NDEBUG
46static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
47  cl::desc("Pop up a window to show MISched dags after they are processed"));
48
49static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
50  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
51
52static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
53  cl::desc("Only schedule this function"));
54static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
55  cl::desc("Only schedule this MBB#"));
56#else
57static bool ViewMISchedDAGs = false;
58#endif // NDEBUG
59
60static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
61  cl::desc("Enable register pressure scheduling."), cl::init(true));
62
63static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
64  cl::desc("Enable cyclic critical path analysis."), cl::init(true));
65
66static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
67  cl::desc("Enable load clustering."), cl::init(true));
68
69// Experimental heuristics
70static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
71  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
72
73static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
74  cl::desc("Verify machine instrs before and after machine scheduling"));
75
76// DAG subtrees must have at least this many nodes.
77static const unsigned MinSubtreeSize = 8;
78
79// Pin the vtables to this file.
80void MachineSchedStrategy::anchor() {}
81void ScheduleDAGMutation::anchor() {}
82
83//===----------------------------------------------------------------------===//
84// Machine Instruction Scheduling Pass and Registry
85//===----------------------------------------------------------------------===//
86
87MachineSchedContext::MachineSchedContext():
88    MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
89  RegClassInfo = new RegisterClassInfo();
90}
91
92MachineSchedContext::~MachineSchedContext() {
93  delete RegClassInfo;
94}
95
96namespace {
97/// Base class for a machine scheduler class that can run at any point.
98class MachineSchedulerBase : public MachineSchedContext,
99                             public MachineFunctionPass {
100public:
101  MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
102
103  void print(raw_ostream &O, const Module* = nullptr) const override;
104
105protected:
106  void scheduleRegions(ScheduleDAGInstrs &Scheduler);
107};
108
109/// MachineScheduler runs after coalescing and before register allocation.
110class MachineScheduler : public MachineSchedulerBase {
111public:
112  MachineScheduler();
113
114  void getAnalysisUsage(AnalysisUsage &AU) const override;
115
116  bool runOnMachineFunction(MachineFunction&) override;
117
118  static char ID; // Class identification, replacement for typeinfo
119
120protected:
121  ScheduleDAGInstrs *createMachineScheduler();
122};
123
124/// PostMachineScheduler runs after shortly before code emission.
125class PostMachineScheduler : public MachineSchedulerBase {
126public:
127  PostMachineScheduler();
128
129  void getAnalysisUsage(AnalysisUsage &AU) const override;
130
131  bool runOnMachineFunction(MachineFunction&) override;
132
133  static char ID; // Class identification, replacement for typeinfo
134
135protected:
136  ScheduleDAGInstrs *createPostMachineScheduler();
137};
138} // namespace
139
140char MachineScheduler::ID = 0;
141
142char &llvm::MachineSchedulerID = MachineScheduler::ID;
143
144INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
145                      "Machine Instruction Scheduler", false, false)
146INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
147INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
148INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
149INITIALIZE_PASS_END(MachineScheduler, "misched",
150                    "Machine Instruction Scheduler", false, false)
151
152MachineScheduler::MachineScheduler()
153: MachineSchedulerBase(ID) {
154  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
155}
156
157void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
158  AU.setPreservesCFG();
159  AU.addRequiredID(MachineDominatorsID);
160  AU.addRequired<MachineLoopInfo>();
161  AU.addRequired<AliasAnalysis>();
162  AU.addRequired<TargetPassConfig>();
163  AU.addRequired<SlotIndexes>();
164  AU.addPreserved<SlotIndexes>();
165  AU.addRequired<LiveIntervals>();
166  AU.addPreserved<LiveIntervals>();
167  MachineFunctionPass::getAnalysisUsage(AU);
168}
169
170char PostMachineScheduler::ID = 0;
171
172char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
173
174INITIALIZE_PASS(PostMachineScheduler, "postmisched",
175                "PostRA Machine Instruction Scheduler", false, false)
176
177PostMachineScheduler::PostMachineScheduler()
178: MachineSchedulerBase(ID) {
179  initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
180}
181
182void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
183  AU.setPreservesCFG();
184  AU.addRequiredID(MachineDominatorsID);
185  AU.addRequired<MachineLoopInfo>();
186  AU.addRequired<TargetPassConfig>();
187  MachineFunctionPass::getAnalysisUsage(AU);
188}
189
190MachinePassRegistry MachineSchedRegistry::Registry;
191
192/// A dummy default scheduler factory indicates whether the scheduler
193/// is overridden on the command line.
194static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
195  return nullptr;
196}
197
198/// MachineSchedOpt allows command line selection of the scheduler.
199static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
200               RegisterPassParser<MachineSchedRegistry> >
201MachineSchedOpt("misched",
202                cl::init(&useDefaultMachineSched), cl::Hidden,
203                cl::desc("Machine instruction scheduler to use"));
204
205static MachineSchedRegistry
206DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
207                     useDefaultMachineSched);
208
209/// Forward declare the standard machine scheduler. This will be used as the
210/// default scheduler if the target does not set a default.
211static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
212static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
213
214/// Decrement this iterator until reaching the top or a non-debug instr.
215static MachineBasicBlock::const_iterator
216priorNonDebug(MachineBasicBlock::const_iterator I,
217              MachineBasicBlock::const_iterator Beg) {
218  assert(I != Beg && "reached the top of the region, cannot decrement");
219  while (--I != Beg) {
220    if (!I->isDebugValue())
221      break;
222  }
223  return I;
224}
225
226/// Non-const version.
227static MachineBasicBlock::iterator
228priorNonDebug(MachineBasicBlock::iterator I,
229              MachineBasicBlock::const_iterator Beg) {
230  return const_cast<MachineInstr*>(
231    &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
232}
233
234/// If this iterator is a debug value, increment until reaching the End or a
235/// non-debug instruction.
236static MachineBasicBlock::const_iterator
237nextIfDebug(MachineBasicBlock::const_iterator I,
238            MachineBasicBlock::const_iterator End) {
239  for(; I != End; ++I) {
240    if (!I->isDebugValue())
241      break;
242  }
243  return I;
244}
245
246/// Non-const version.
247static MachineBasicBlock::iterator
248nextIfDebug(MachineBasicBlock::iterator I,
249            MachineBasicBlock::const_iterator End) {
250  // Cast the return value to nonconst MachineInstr, then cast to an
251  // instr_iterator, which does not check for null, finally return a
252  // bundle_iterator.
253  return MachineBasicBlock::instr_iterator(
254    const_cast<MachineInstr*>(
255      &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
256}
257
258/// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
259ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
260  // Select the scheduler, or set the default.
261  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
262  if (Ctor != useDefaultMachineSched)
263    return Ctor(this);
264
265  // Get the default scheduler set by the target for this function.
266  ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
267  if (Scheduler)
268    return Scheduler;
269
270  // Default to GenericScheduler.
271  return createGenericSchedLive(this);
272}
273
274/// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
275/// the caller. We don't have a command line option to override the postRA
276/// scheduler. The Target must configure it.
277ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
278  // Get the postRA scheduler set by the target for this function.
279  ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
280  if (Scheduler)
281    return Scheduler;
282
283  // Default to GenericScheduler.
284  return createGenericSchedPostRA(this);
285}
286
287/// Top-level MachineScheduler pass driver.
288///
289/// Visit blocks in function order. Divide each block into scheduling regions
290/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
291/// consistent with the DAG builder, which traverses the interior of the
292/// scheduling regions bottom-up.
293///
294/// This design avoids exposing scheduling boundaries to the DAG builder,
295/// simplifying the DAG builder's support for "special" target instructions.
296/// At the same time the design allows target schedulers to operate across
297/// scheduling boundaries, for example to bundle the boudary instructions
298/// without reordering them. This creates complexity, because the target
299/// scheduler must update the RegionBegin and RegionEnd positions cached by
300/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
301/// design would be to split blocks at scheduling boundaries, but LLVM has a
302/// general bias against block splitting purely for implementation simplicity.
303bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
304  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
305
306  // Initialize the context of the pass.
307  MF = &mf;
308  MLI = &getAnalysis<MachineLoopInfo>();
309  MDT = &getAnalysis<MachineDominatorTree>();
310  PassConfig = &getAnalysis<TargetPassConfig>();
311  AA = &getAnalysis<AliasAnalysis>();
312
313  LIS = &getAnalysis<LiveIntervals>();
314
315  if (VerifyScheduling) {
316    DEBUG(LIS->dump());
317    MF->verify(this, "Before machine scheduling.");
318  }
319  RegClassInfo->runOnMachineFunction(*MF);
320
321  // Instantiate the selected scheduler for this target, function, and
322  // optimization level.
323  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
324  scheduleRegions(*Scheduler);
325
326  DEBUG(LIS->dump());
327  if (VerifyScheduling)
328    MF->verify(this, "After machine scheduling.");
329  return true;
330}
331
332bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
333  if (skipOptnoneFunction(*mf.getFunction()))
334    return false;
335
336  const TargetSubtargetInfo &ST =
337    mf.getTarget().getSubtarget<TargetSubtargetInfo>();
338  if (!ST.enablePostMachineScheduler()) {
339    DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
340    return false;
341  }
342  DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
343
344  // Initialize the context of the pass.
345  MF = &mf;
346  PassConfig = &getAnalysis<TargetPassConfig>();
347
348  if (VerifyScheduling)
349    MF->verify(this, "Before post machine scheduling.");
350
351  // Instantiate the selected scheduler for this target, function, and
352  // optimization level.
353  std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
354  scheduleRegions(*Scheduler);
355
356  if (VerifyScheduling)
357    MF->verify(this, "After post machine scheduling.");
358  return true;
359}
360
361/// Return true of the given instruction should not be included in a scheduling
362/// region.
363///
364/// MachineScheduler does not currently support scheduling across calls. To
365/// handle calls, the DAG builder needs to be modified to create register
366/// anti/output dependencies on the registers clobbered by the call's regmask
367/// operand. In PreRA scheduling, the stack pointer adjustment already prevents
368/// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
369/// the boundary, but there would be no benefit to postRA scheduling across
370/// calls this late anyway.
371static bool isSchedBoundary(MachineBasicBlock::iterator MI,
372                            MachineBasicBlock *MBB,
373                            MachineFunction *MF,
374                            const TargetInstrInfo *TII,
375                            bool IsPostRA) {
376  return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
377}
378
379/// Main driver for both MachineScheduler and PostMachineScheduler.
380void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
381  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
382  bool IsPostRA = Scheduler.isPostRA();
383
384  // Visit all machine basic blocks.
385  //
386  // TODO: Visit blocks in global postorder or postorder within the bottom-up
387  // loop tree. Then we can optionally compute global RegPressure.
388  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
389       MBB != MBBEnd; ++MBB) {
390
391    Scheduler.startBlock(MBB);
392
393#ifndef NDEBUG
394    if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
395      continue;
396    if (SchedOnlyBlock.getNumOccurrences()
397        && (int)SchedOnlyBlock != MBB->getNumber())
398      continue;
399#endif
400
401    // Break the block into scheduling regions [I, RegionEnd), and schedule each
402    // region as soon as it is discovered. RegionEnd points the scheduling
403    // boundary at the bottom of the region. The DAG does not include RegionEnd,
404    // but the region does (i.e. the next RegionEnd is above the previous
405    // RegionBegin). If the current block has no terminator then RegionEnd ==
406    // MBB->end() for the bottom region.
407    //
408    // The Scheduler may insert instructions during either schedule() or
409    // exitRegion(), even for empty regions. So the local iterators 'I' and
410    // 'RegionEnd' are invalid across these calls.
411    //
412    // MBB::size() uses instr_iterator to count. Here we need a bundle to count
413    // as a single instruction.
414    unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
415    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
416        RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
417
418      // Avoid decrementing RegionEnd for blocks with no terminator.
419      if (RegionEnd != MBB->end() ||
420          isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
421        --RegionEnd;
422        // Count the boundary instruction.
423        --RemainingInstrs;
424      }
425
426      // The next region starts above the previous region. Look backward in the
427      // instruction stream until we find the nearest boundary.
428      unsigned NumRegionInstrs = 0;
429      MachineBasicBlock::iterator I = RegionEnd;
430      for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
431        if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
432          break;
433      }
434      // Notify the scheduler of the region, even if we may skip scheduling
435      // it. Perhaps it still needs to be bundled.
436      Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
437
438      // Skip empty scheduling regions (0 or 1 schedulable instructions).
439      if (I == RegionEnd || I == std::prev(RegionEnd)) {
440        // Close the current region. Bundle the terminator if needed.
441        // This invalidates 'RegionEnd' and 'I'.
442        Scheduler.exitRegion();
443        continue;
444      }
445      DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
446            << "MI Scheduling **********\n");
447      DEBUG(dbgs() << MF->getName()
448            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
449            << "\n  From: " << *I << "    To: ";
450            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
451            else dbgs() << "End";
452            dbgs() << " RegionInstrs: " << NumRegionInstrs
453            << " Remaining: " << RemainingInstrs << "\n");
454
455      // Schedule a region: possibly reorder instructions.
456      // This invalidates 'RegionEnd' and 'I'.
457      Scheduler.schedule();
458
459      // Close the current region.
460      Scheduler.exitRegion();
461
462      // Scheduling has invalidated the current iterator 'I'. Ask the
463      // scheduler for the top of it's scheduled region.
464      RegionEnd = Scheduler.begin();
465    }
466    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
467    Scheduler.finishBlock();
468    if (Scheduler.isPostRA()) {
469      // FIXME: Ideally, no further passes should rely on kill flags. However,
470      // thumb2 size reduction is currently an exception.
471      Scheduler.fixupKills(MBB);
472    }
473  }
474  Scheduler.finalizeSchedule();
475}
476
477void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
478  // unimplemented
479}
480
481LLVM_DUMP_METHOD
482void ReadyQueue::dump() {
483  dbgs() << Name << ": ";
484  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
485    dbgs() << Queue[i]->NodeNum << " ";
486  dbgs() << "\n";
487}
488
489//===----------------------------------------------------------------------===//
490// ScheduleDAGMI - Basic machine instruction scheduling. This is
491// independent of PreRA/PostRA scheduling and involves no extra book-keeping for
492// virtual registers.
493// ===----------------------------------------------------------------------===/
494
495// Provide a vtable anchor.
496ScheduleDAGMI::~ScheduleDAGMI() {
497}
498
499bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
500  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
501}
502
503bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
504  if (SuccSU != &ExitSU) {
505    // Do not use WillCreateCycle, it assumes SD scheduling.
506    // If Pred is reachable from Succ, then the edge creates a cycle.
507    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
508      return false;
509    Topo.AddPred(SuccSU, PredDep.getSUnit());
510  }
511  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
512  // Return true regardless of whether a new edge needed to be inserted.
513  return true;
514}
515
516/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
517/// NumPredsLeft reaches zero, release the successor node.
518///
519/// FIXME: Adjust SuccSU height based on MinLatency.
520void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
521  SUnit *SuccSU = SuccEdge->getSUnit();
522
523  if (SuccEdge->isWeak()) {
524    --SuccSU->WeakPredsLeft;
525    if (SuccEdge->isCluster())
526      NextClusterSucc = SuccSU;
527    return;
528  }
529#ifndef NDEBUG
530  if (SuccSU->NumPredsLeft == 0) {
531    dbgs() << "*** Scheduling failed! ***\n";
532    SuccSU->dump(this);
533    dbgs() << " has been released too many times!\n";
534    llvm_unreachable(nullptr);
535  }
536#endif
537  // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
538  // CurrCycle may have advanced since then.
539  if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
540    SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
541
542  --SuccSU->NumPredsLeft;
543  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
544    SchedImpl->releaseTopNode(SuccSU);
545}
546
547/// releaseSuccessors - Call releaseSucc on each of SU's successors.
548void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
549  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
550       I != E; ++I) {
551    releaseSucc(SU, &*I);
552  }
553}
554
555/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
556/// NumSuccsLeft reaches zero, release the predecessor node.
557///
558/// FIXME: Adjust PredSU height based on MinLatency.
559void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
560  SUnit *PredSU = PredEdge->getSUnit();
561
562  if (PredEdge->isWeak()) {
563    --PredSU->WeakSuccsLeft;
564    if (PredEdge->isCluster())
565      NextClusterPred = PredSU;
566    return;
567  }
568#ifndef NDEBUG
569  if (PredSU->NumSuccsLeft == 0) {
570    dbgs() << "*** Scheduling failed! ***\n";
571    PredSU->dump(this);
572    dbgs() << " has been released too many times!\n";
573    llvm_unreachable(nullptr);
574  }
575#endif
576  // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
577  // CurrCycle may have advanced since then.
578  if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
579    PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
580
581  --PredSU->NumSuccsLeft;
582  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
583    SchedImpl->releaseBottomNode(PredSU);
584}
585
586/// releasePredecessors - Call releasePred on each of SU's predecessors.
587void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
588  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
589       I != E; ++I) {
590    releasePred(SU, &*I);
591  }
592}
593
594/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
595/// crossing a scheduling boundary. [begin, end) includes all instructions in
596/// the region, including the boundary itself and single-instruction regions
597/// that don't get scheduled.
598void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
599                                     MachineBasicBlock::iterator begin,
600                                     MachineBasicBlock::iterator end,
601                                     unsigned regioninstrs)
602{
603  ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
604
605  SchedImpl->initPolicy(begin, end, regioninstrs);
606}
607
608/// This is normally called from the main scheduler loop but may also be invoked
609/// by the scheduling strategy to perform additional code motion.
610void ScheduleDAGMI::moveInstruction(
611  MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
612  // Advance RegionBegin if the first instruction moves down.
613  if (&*RegionBegin == MI)
614    ++RegionBegin;
615
616  // Update the instruction stream.
617  BB->splice(InsertPos, BB, MI);
618
619  // Update LiveIntervals
620  if (LIS)
621    LIS->handleMove(MI, /*UpdateFlags=*/true);
622
623  // Recede RegionBegin if an instruction moves above the first.
624  if (RegionBegin == InsertPos)
625    RegionBegin = MI;
626}
627
628bool ScheduleDAGMI::checkSchedLimit() {
629#ifndef NDEBUG
630  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
631    CurrentTop = CurrentBottom;
632    return false;
633  }
634  ++NumInstrsScheduled;
635#endif
636  return true;
637}
638
639/// Per-region scheduling driver, called back from
640/// MachineScheduler::runOnMachineFunction. This is a simplified driver that
641/// does not consider liveness or register pressure. It is useful for PostRA
642/// scheduling and potentially other custom schedulers.
643void ScheduleDAGMI::schedule() {
644  // Build the DAG.
645  buildSchedGraph(AA);
646
647  Topo.InitDAGTopologicalSorting();
648
649  postprocessDAG();
650
651  SmallVector<SUnit*, 8> TopRoots, BotRoots;
652  findRootsAndBiasEdges(TopRoots, BotRoots);
653
654  // Initialize the strategy before modifying the DAG.
655  // This may initialize a DFSResult to be used for queue priority.
656  SchedImpl->initialize(this);
657
658  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
659          SUnits[su].dumpAll(this));
660  if (ViewMISchedDAGs) viewGraph();
661
662  // Initialize ready queues now that the DAG and priority data are finalized.
663  initQueues(TopRoots, BotRoots);
664
665  bool IsTopNode = false;
666  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
667    assert(!SU->isScheduled && "Node already scheduled");
668    if (!checkSchedLimit())
669      break;
670
671    MachineInstr *MI = SU->getInstr();
672    if (IsTopNode) {
673      assert(SU->isTopReady() && "node still has unscheduled dependencies");
674      if (&*CurrentTop == MI)
675        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
676      else
677        moveInstruction(MI, CurrentTop);
678    }
679    else {
680      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
681      MachineBasicBlock::iterator priorII =
682        priorNonDebug(CurrentBottom, CurrentTop);
683      if (&*priorII == MI)
684        CurrentBottom = priorII;
685      else {
686        if (&*CurrentTop == MI)
687          CurrentTop = nextIfDebug(++CurrentTop, priorII);
688        moveInstruction(MI, CurrentBottom);
689        CurrentBottom = MI;
690      }
691    }
692    // Notify the scheduling strategy before updating the DAG.
693    // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
694    // runs, it can then use the accurate ReadyCycle time to determine whether
695    // newly released nodes can move to the readyQ.
696    SchedImpl->schedNode(SU, IsTopNode);
697
698    updateQueues(SU, IsTopNode);
699  }
700  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
701
702  placeDebugValues();
703
704  DEBUG({
705      unsigned BBNum = begin()->getParent()->getNumber();
706      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
707      dumpSchedule();
708      dbgs() << '\n';
709    });
710}
711
712/// Apply each ScheduleDAGMutation step in order.
713void ScheduleDAGMI::postprocessDAG() {
714  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
715    Mutations[i]->apply(this);
716  }
717}
718
719void ScheduleDAGMI::
720findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
721                      SmallVectorImpl<SUnit*> &BotRoots) {
722  for (std::vector<SUnit>::iterator
723         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
724    SUnit *SU = &(*I);
725    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
726
727    // Order predecessors so DFSResult follows the critical path.
728    SU->biasCriticalPath();
729
730    // A SUnit is ready to top schedule if it has no predecessors.
731    if (!I->NumPredsLeft)
732      TopRoots.push_back(SU);
733    // A SUnit is ready to bottom schedule if it has no successors.
734    if (!I->NumSuccsLeft)
735      BotRoots.push_back(SU);
736  }
737  ExitSU.biasCriticalPath();
738}
739
740/// Identify DAG roots and setup scheduler queues.
741void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
742                               ArrayRef<SUnit*> BotRoots) {
743  NextClusterSucc = nullptr;
744  NextClusterPred = nullptr;
745
746  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
747  //
748  // Nodes with unreleased weak edges can still be roots.
749  // Release top roots in forward order.
750  for (SmallVectorImpl<SUnit*>::const_iterator
751         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
752    SchedImpl->releaseTopNode(*I);
753  }
754  // Release bottom roots in reverse order so the higher priority nodes appear
755  // first. This is more natural and slightly more efficient.
756  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
757         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
758    SchedImpl->releaseBottomNode(*I);
759  }
760
761  releaseSuccessors(&EntrySU);
762  releasePredecessors(&ExitSU);
763
764  SchedImpl->registerRoots();
765
766  // Advance past initial DebugValues.
767  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
768  CurrentBottom = RegionEnd;
769}
770
771/// Update scheduler queues after scheduling an instruction.
772void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
773  // Release dependent instructions for scheduling.
774  if (IsTopNode)
775    releaseSuccessors(SU);
776  else
777    releasePredecessors(SU);
778
779  SU->isScheduled = true;
780}
781
782/// Reinsert any remaining debug_values, just like the PostRA scheduler.
783void ScheduleDAGMI::placeDebugValues() {
784  // If first instruction was a DBG_VALUE then put it back.
785  if (FirstDbgValue) {
786    BB->splice(RegionBegin, BB, FirstDbgValue);
787    RegionBegin = FirstDbgValue;
788  }
789
790  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
791         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
792    std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
793    MachineInstr *DbgValue = P.first;
794    MachineBasicBlock::iterator OrigPrevMI = P.second;
795    if (&*RegionBegin == DbgValue)
796      ++RegionBegin;
797    BB->splice(++OrigPrevMI, BB, DbgValue);
798    if (OrigPrevMI == std::prev(RegionEnd))
799      RegionEnd = DbgValue;
800  }
801  DbgValues.clear();
802  FirstDbgValue = nullptr;
803}
804
805#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
806void ScheduleDAGMI::dumpSchedule() const {
807  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
808    if (SUnit *SU = getSUnit(&(*MI)))
809      SU->dump(this);
810    else
811      dbgs() << "Missing SUnit\n";
812  }
813}
814#endif
815
816//===----------------------------------------------------------------------===//
817// ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
818// preservation.
819//===----------------------------------------------------------------------===//
820
821ScheduleDAGMILive::~ScheduleDAGMILive() {
822  delete DFSResult;
823}
824
825/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
826/// crossing a scheduling boundary. [begin, end) includes all instructions in
827/// the region, including the boundary itself and single-instruction regions
828/// that don't get scheduled.
829void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
830                                MachineBasicBlock::iterator begin,
831                                MachineBasicBlock::iterator end,
832                                unsigned regioninstrs)
833{
834  // ScheduleDAGMI initializes SchedImpl's per-region policy.
835  ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
836
837  // For convenience remember the end of the liveness region.
838  LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
839
840  SUPressureDiffs.clear();
841
842  ShouldTrackPressure = SchedImpl->shouldTrackPressure();
843}
844
845// Setup the register pressure trackers for the top scheduled top and bottom
846// scheduled regions.
847void ScheduleDAGMILive::initRegPressure() {
848  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
849  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
850
851  // Close the RPTracker to finalize live ins.
852  RPTracker.closeRegion();
853
854  DEBUG(RPTracker.dump());
855
856  // Initialize the live ins and live outs.
857  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
858  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
859
860  // Close one end of the tracker so we can call
861  // getMaxUpward/DownwardPressureDelta before advancing across any
862  // instructions. This converts currently live regs into live ins/outs.
863  TopRPTracker.closeTop();
864  BotRPTracker.closeBottom();
865
866  BotRPTracker.initLiveThru(RPTracker);
867  if (!BotRPTracker.getLiveThru().empty()) {
868    TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
869    DEBUG(dbgs() << "Live Thru: ";
870          dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
871  };
872
873  // For each live out vreg reduce the pressure change associated with other
874  // uses of the same vreg below the live-out reaching def.
875  updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
876
877  // Account for liveness generated by the region boundary.
878  if (LiveRegionEnd != RegionEnd) {
879    SmallVector<unsigned, 8> LiveUses;
880    BotRPTracker.recede(&LiveUses);
881    updatePressureDiffs(LiveUses);
882  }
883
884  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
885
886  // Cache the list of excess pressure sets in this region. This will also track
887  // the max pressure in the scheduled code for these sets.
888  RegionCriticalPSets.clear();
889  const std::vector<unsigned> &RegionPressure =
890    RPTracker.getPressure().MaxSetPressure;
891  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
892    unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
893    if (RegionPressure[i] > Limit) {
894      DEBUG(dbgs() << TRI->getRegPressureSetName(i)
895            << " Limit " << Limit
896            << " Actual " << RegionPressure[i] << "\n");
897      RegionCriticalPSets.push_back(PressureChange(i));
898    }
899  }
900  DEBUG(dbgs() << "Excess PSets: ";
901        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
902          dbgs() << TRI->getRegPressureSetName(
903            RegionCriticalPSets[i].getPSet()) << " ";
904        dbgs() << "\n");
905}
906
907void ScheduleDAGMILive::
908updateScheduledPressure(const SUnit *SU,
909                        const std::vector<unsigned> &NewMaxPressure) {
910  const PressureDiff &PDiff = getPressureDiff(SU);
911  unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
912  for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
913       I != E; ++I) {
914    if (!I->isValid())
915      break;
916    unsigned ID = I->getPSet();
917    while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
918      ++CritIdx;
919    if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
920      if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
921          && NewMaxPressure[ID] <= INT16_MAX)
922        RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
923    }
924    unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
925    if (NewMaxPressure[ID] >= Limit - 2) {
926      DEBUG(dbgs() << "  " << TRI->getRegPressureSetName(ID) << ": "
927            << NewMaxPressure[ID] << " > " << Limit << "(+ "
928            << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
929    }
930  }
931}
932
933/// Update the PressureDiff array for liveness after scheduling this
934/// instruction.
935void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
936  for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
937    /// FIXME: Currently assuming single-use physregs.
938    unsigned Reg = LiveUses[LUIdx];
939    DEBUG(dbgs() << "  LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
940    if (!TRI->isVirtualRegister(Reg))
941      continue;
942
943    // This may be called before CurrentBottom has been initialized. However,
944    // BotRPTracker must have a valid position. We want the value live into the
945    // instruction or live out of the block, so ask for the previous
946    // instruction's live-out.
947    const LiveInterval &LI = LIS->getInterval(Reg);
948    VNInfo *VNI;
949    MachineBasicBlock::const_iterator I =
950      nextIfDebug(BotRPTracker.getPos(), BB->end());
951    if (I == BB->end())
952      VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
953    else {
954      LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
955      VNI = LRQ.valueIn();
956    }
957    // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
958    assert(VNI && "No live value at use.");
959    for (VReg2UseMap::iterator
960           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
961      SUnit *SU = UI->SU;
962      DEBUG(dbgs() << "  UpdateRegP: SU(" << SU->NodeNum << ") "
963            << *SU->getInstr());
964      // If this use comes before the reaching def, it cannot be a last use, so
965      // descrease its pressure change.
966      if (!SU->isScheduled && SU != &ExitSU) {
967        LiveQueryResult LRQ
968          = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
969        if (LRQ.valueIn() == VNI)
970          getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
971      }
972    }
973  }
974}
975
976/// schedule - Called back from MachineScheduler::runOnMachineFunction
977/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
978/// only includes instructions that have DAG nodes, not scheduling boundaries.
979///
980/// This is a skeletal driver, with all the functionality pushed into helpers,
981/// so that it can be easilly extended by experimental schedulers. Generally,
982/// implementing MachineSchedStrategy should be sufficient to implement a new
983/// scheduling algorithm. However, if a scheduler further subclasses
984/// ScheduleDAGMILive then it will want to override this virtual method in order
985/// to update any specialized state.
986void ScheduleDAGMILive::schedule() {
987  buildDAGWithRegPressure();
988
989  Topo.InitDAGTopologicalSorting();
990
991  postprocessDAG();
992
993  SmallVector<SUnit*, 8> TopRoots, BotRoots;
994  findRootsAndBiasEdges(TopRoots, BotRoots);
995
996  // Initialize the strategy before modifying the DAG.
997  // This may initialize a DFSResult to be used for queue priority.
998  SchedImpl->initialize(this);
999
1000  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
1001          SUnits[su].dumpAll(this));
1002  if (ViewMISchedDAGs) viewGraph();
1003
1004  // Initialize ready queues now that the DAG and priority data are finalized.
1005  initQueues(TopRoots, BotRoots);
1006
1007  if (ShouldTrackPressure) {
1008    assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1009    TopRPTracker.setPos(CurrentTop);
1010  }
1011
1012  bool IsTopNode = false;
1013  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
1014    assert(!SU->isScheduled && "Node already scheduled");
1015    if (!checkSchedLimit())
1016      break;
1017
1018    scheduleMI(SU, IsTopNode);
1019
1020    updateQueues(SU, IsTopNode);
1021
1022    if (DFSResult) {
1023      unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1024      if (!ScheduledTrees.test(SubtreeID)) {
1025        ScheduledTrees.set(SubtreeID);
1026        DFSResult->scheduleTree(SubtreeID);
1027        SchedImpl->scheduleTree(SubtreeID);
1028      }
1029    }
1030
1031    // Notify the scheduling strategy after updating the DAG.
1032    SchedImpl->schedNode(SU, IsTopNode);
1033  }
1034  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1035
1036  placeDebugValues();
1037
1038  DEBUG({
1039      unsigned BBNum = begin()->getParent()->getNumber();
1040      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1041      dumpSchedule();
1042      dbgs() << '\n';
1043    });
1044}
1045
1046/// Build the DAG and setup three register pressure trackers.
1047void ScheduleDAGMILive::buildDAGWithRegPressure() {
1048  if (!ShouldTrackPressure) {
1049    RPTracker.reset();
1050    RegionCriticalPSets.clear();
1051    buildSchedGraph(AA);
1052    return;
1053  }
1054
1055  // Initialize the register pressure tracker used by buildSchedGraph.
1056  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1057                 /*TrackUntiedDefs=*/true);
1058
1059  // Account for liveness generate by the region boundary.
1060  if (LiveRegionEnd != RegionEnd)
1061    RPTracker.recede();
1062
1063  // Build the DAG, and compute current register pressure.
1064  buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1065
1066  // Initialize top/bottom trackers after computing region pressure.
1067  initRegPressure();
1068}
1069
1070void ScheduleDAGMILive::computeDFSResult() {
1071  if (!DFSResult)
1072    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1073  DFSResult->clear();
1074  ScheduledTrees.clear();
1075  DFSResult->resize(SUnits.size());
1076  DFSResult->compute(SUnits);
1077  ScheduledTrees.resize(DFSResult->getNumSubtrees());
1078}
1079
1080/// Compute the max cyclic critical path through the DAG. The scheduling DAG
1081/// only provides the critical path for single block loops. To handle loops that
1082/// span blocks, we could use the vreg path latencies provided by
1083/// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1084/// available for use in the scheduler.
1085///
1086/// The cyclic path estimation identifies a def-use pair that crosses the back
1087/// edge and considers the depth and height of the nodes. For example, consider
1088/// the following instruction sequence where each instruction has unit latency
1089/// and defines an epomymous virtual register:
1090///
1091/// a->b(a,c)->c(b)->d(c)->exit
1092///
1093/// The cyclic critical path is a two cycles: b->c->b
1094/// The acyclic critical path is four cycles: a->b->c->d->exit
1095/// LiveOutHeight = height(c) = len(c->d->exit) = 2
1096/// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1097/// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1098/// LiveInDepth = depth(b) = len(a->b) = 1
1099///
1100/// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1101/// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1102/// CyclicCriticalPath = min(2, 2) = 2
1103///
1104/// This could be relevant to PostRA scheduling, but is currently implemented
1105/// assuming LiveIntervals.
1106unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1107  // This only applies to single block loop.
1108  if (!BB->isSuccessor(BB))
1109    return 0;
1110
1111  unsigned MaxCyclicLatency = 0;
1112  // Visit each live out vreg def to find def/use pairs that cross iterations.
1113  ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1114  for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1115       RI != RE; ++RI) {
1116    unsigned Reg = *RI;
1117    if (!TRI->isVirtualRegister(Reg))
1118        continue;
1119    const LiveInterval &LI = LIS->getInterval(Reg);
1120    const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1121    if (!DefVNI)
1122      continue;
1123
1124    MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1125    const SUnit *DefSU = getSUnit(DefMI);
1126    if (!DefSU)
1127      continue;
1128
1129    unsigned LiveOutHeight = DefSU->getHeight();
1130    unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1131    // Visit all local users of the vreg def.
1132    for (VReg2UseMap::iterator
1133           UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
1134      if (UI->SU == &ExitSU)
1135        continue;
1136
1137      // Only consider uses of the phi.
1138      LiveQueryResult LRQ =
1139        LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
1140      if (!LRQ.valueIn()->isPHIDef())
1141        continue;
1142
1143      // Assume that a path spanning two iterations is a cycle, which could
1144      // overestimate in strange cases. This allows cyclic latency to be
1145      // estimated as the minimum slack of the vreg's depth or height.
1146      unsigned CyclicLatency = 0;
1147      if (LiveOutDepth > UI->SU->getDepth())
1148        CyclicLatency = LiveOutDepth - UI->SU->getDepth();
1149
1150      unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
1151      if (LiveInHeight > LiveOutHeight) {
1152        if (LiveInHeight - LiveOutHeight < CyclicLatency)
1153          CyclicLatency = LiveInHeight - LiveOutHeight;
1154      }
1155      else
1156        CyclicLatency = 0;
1157
1158      DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1159            << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
1160      if (CyclicLatency > MaxCyclicLatency)
1161        MaxCyclicLatency = CyclicLatency;
1162    }
1163  }
1164  DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1165  return MaxCyclicLatency;
1166}
1167
1168/// Move an instruction and update register pressure.
1169void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1170  // Move the instruction to its new location in the instruction stream.
1171  MachineInstr *MI = SU->getInstr();
1172
1173  if (IsTopNode) {
1174    assert(SU->isTopReady() && "node still has unscheduled dependencies");
1175    if (&*CurrentTop == MI)
1176      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1177    else {
1178      moveInstruction(MI, CurrentTop);
1179      TopRPTracker.setPos(MI);
1180    }
1181
1182    if (ShouldTrackPressure) {
1183      // Update top scheduled pressure.
1184      TopRPTracker.advance();
1185      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1186      updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1187    }
1188  }
1189  else {
1190    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1191    MachineBasicBlock::iterator priorII =
1192      priorNonDebug(CurrentBottom, CurrentTop);
1193    if (&*priorII == MI)
1194      CurrentBottom = priorII;
1195    else {
1196      if (&*CurrentTop == MI) {
1197        CurrentTop = nextIfDebug(++CurrentTop, priorII);
1198        TopRPTracker.setPos(CurrentTop);
1199      }
1200      moveInstruction(MI, CurrentBottom);
1201      CurrentBottom = MI;
1202    }
1203    if (ShouldTrackPressure) {
1204      // Update bottom scheduled pressure.
1205      SmallVector<unsigned, 8> LiveUses;
1206      BotRPTracker.recede(&LiveUses);
1207      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1208      updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1209      updatePressureDiffs(LiveUses);
1210    }
1211  }
1212}
1213
1214//===----------------------------------------------------------------------===//
1215// LoadClusterMutation - DAG post-processing to cluster loads.
1216//===----------------------------------------------------------------------===//
1217
1218namespace {
1219/// \brief Post-process the DAG to create cluster edges between neighboring
1220/// loads.
1221class LoadClusterMutation : public ScheduleDAGMutation {
1222  struct LoadInfo {
1223    SUnit *SU;
1224    unsigned BaseReg;
1225    unsigned Offset;
1226    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1227      : SU(su), BaseReg(reg), Offset(ofs) {}
1228
1229    bool operator<(const LoadInfo &RHS) const {
1230      return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1231    }
1232  };
1233
1234  const TargetInstrInfo *TII;
1235  const TargetRegisterInfo *TRI;
1236public:
1237  LoadClusterMutation(const TargetInstrInfo *tii,
1238                      const TargetRegisterInfo *tri)
1239    : TII(tii), TRI(tri) {}
1240
1241  void apply(ScheduleDAGMI *DAG) override;
1242protected:
1243  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1244};
1245} // anonymous
1246
1247void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1248                                                  ScheduleDAGMI *DAG) {
1249  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1250  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1251    SUnit *SU = Loads[Idx];
1252    unsigned BaseReg;
1253    unsigned Offset;
1254    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1255      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1256  }
1257  if (LoadRecords.size() < 2)
1258    return;
1259  std::sort(LoadRecords.begin(), LoadRecords.end());
1260  unsigned ClusterLength = 1;
1261  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1262    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1263      ClusterLength = 1;
1264      continue;
1265    }
1266
1267    SUnit *SUa = LoadRecords[Idx].SU;
1268    SUnit *SUb = LoadRecords[Idx+1].SU;
1269    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1270        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1271
1272      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1273            << SUb->NodeNum << ")\n");
1274      // Copy successor edges from SUa to SUb. Interleaving computation
1275      // dependent on SUa can prevent load combining due to register reuse.
1276      // Predecessor edges do not need to be copied from SUb to SUa since nearby
1277      // loads should have effectively the same inputs.
1278      for (SUnit::const_succ_iterator
1279             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1280        if (SI->getSUnit() == SUb)
1281          continue;
1282        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1283        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1284      }
1285      ++ClusterLength;
1286    }
1287    else
1288      ClusterLength = 1;
1289  }
1290}
1291
1292/// \brief Callback from DAG postProcessing to create cluster edges for loads.
1293void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1294  // Map DAG NodeNum to store chain ID.
1295  DenseMap<unsigned, unsigned> StoreChainIDs;
1296  // Map each store chain to a set of dependent loads.
1297  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1298  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1299    SUnit *SU = &DAG->SUnits[Idx];
1300    if (!SU->getInstr()->mayLoad())
1301      continue;
1302    unsigned ChainPredID = DAG->SUnits.size();
1303    for (SUnit::const_pred_iterator
1304           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1305      if (PI->isCtrl()) {
1306        ChainPredID = PI->getSUnit()->NodeNum;
1307        break;
1308      }
1309    }
1310    // Check if this chain-like pred has been seen
1311    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1312    unsigned NumChains = StoreChainDependents.size();
1313    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1314      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1315    if (Result.second)
1316      StoreChainDependents.resize(NumChains + 1);
1317    StoreChainDependents[Result.first->second].push_back(SU);
1318  }
1319  // Iterate over the store chains.
1320  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1321    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1322}
1323
1324//===----------------------------------------------------------------------===//
1325// MacroFusion - DAG post-processing to encourage fusion of macro ops.
1326//===----------------------------------------------------------------------===//
1327
1328namespace {
1329/// \brief Post-process the DAG to create cluster edges between instructions
1330/// that may be fused by the processor into a single operation.
1331class MacroFusion : public ScheduleDAGMutation {
1332  const TargetInstrInfo *TII;
1333public:
1334  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1335
1336  void apply(ScheduleDAGMI *DAG) override;
1337};
1338} // anonymous
1339
1340/// \brief Callback from DAG postProcessing to create cluster edges to encourage
1341/// fused operations.
1342void MacroFusion::apply(ScheduleDAGMI *DAG) {
1343  // For now, assume targets can only fuse with the branch.
1344  MachineInstr *Branch = DAG->ExitSU.getInstr();
1345  if (!Branch)
1346    return;
1347
1348  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1349    SUnit *SU = &DAG->SUnits[--Idx];
1350    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1351      continue;
1352
1353    // Create a single weak edge from SU to ExitSU. The only effect is to cause
1354    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1355    // need to copy predecessor edges from ExitSU to SU, since top-down
1356    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1357    // of SU, we could create an artificial edge from the deepest root, but it
1358    // hasn't been needed yet.
1359    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1360    (void)Success;
1361    assert(Success && "No DAG nodes should be reachable from ExitSU");
1362
1363    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1364    break;
1365  }
1366}
1367
1368//===----------------------------------------------------------------------===//
1369// CopyConstrain - DAG post-processing to encourage copy elimination.
1370//===----------------------------------------------------------------------===//
1371
1372namespace {
1373/// \brief Post-process the DAG to create weak edges from all uses of a copy to
1374/// the one use that defines the copy's source vreg, most likely an induction
1375/// variable increment.
1376class CopyConstrain : public ScheduleDAGMutation {
1377  // Transient state.
1378  SlotIndex RegionBeginIdx;
1379  // RegionEndIdx is the slot index of the last non-debug instruction in the
1380  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1381  SlotIndex RegionEndIdx;
1382public:
1383  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1384
1385  void apply(ScheduleDAGMI *DAG) override;
1386
1387protected:
1388  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1389};
1390} // anonymous
1391
1392/// constrainLocalCopy handles two possibilities:
1393/// 1) Local src:
1394/// I0:     = dst
1395/// I1: src = ...
1396/// I2:     = dst
1397/// I3: dst = src (copy)
1398/// (create pred->succ edges I0->I1, I2->I1)
1399///
1400/// 2) Local copy:
1401/// I0: dst = src (copy)
1402/// I1:     = dst
1403/// I2: src = ...
1404/// I3:     = dst
1405/// (create pred->succ edges I1->I2, I3->I2)
1406///
1407/// Although the MachineScheduler is currently constrained to single blocks,
1408/// this algorithm should handle extended blocks. An EBB is a set of
1409/// contiguously numbered blocks such that the previous block in the EBB is
1410/// always the single predecessor.
1411void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1412  LiveIntervals *LIS = DAG->getLIS();
1413  MachineInstr *Copy = CopySU->getInstr();
1414
1415  // Check for pure vreg copies.
1416  unsigned SrcReg = Copy->getOperand(1).getReg();
1417  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1418    return;
1419
1420  unsigned DstReg = Copy->getOperand(0).getReg();
1421  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1422    return;
1423
1424  // Check if either the dest or source is local. If it's live across a back
1425  // edge, it's not local. Note that if both vregs are live across the back
1426  // edge, we cannot successfully contrain the copy without cyclic scheduling.
1427  unsigned LocalReg = DstReg;
1428  unsigned GlobalReg = SrcReg;
1429  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1430  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1431    LocalReg = SrcReg;
1432    GlobalReg = DstReg;
1433    LocalLI = &LIS->getInterval(LocalReg);
1434    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1435      return;
1436  }
1437  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1438
1439  // Find the global segment after the start of the local LI.
1440  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1441  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1442  // local live range. We could create edges from other global uses to the local
1443  // start, but the coalescer should have already eliminated these cases, so
1444  // don't bother dealing with it.
1445  if (GlobalSegment == GlobalLI->end())
1446    return;
1447
1448  // If GlobalSegment is killed at the LocalLI->start, the call to find()
1449  // returned the next global segment. But if GlobalSegment overlaps with
1450  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1451  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1452  if (GlobalSegment->contains(LocalLI->beginIndex()))
1453    ++GlobalSegment;
1454
1455  if (GlobalSegment == GlobalLI->end())
1456    return;
1457
1458  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1459  if (GlobalSegment != GlobalLI->begin()) {
1460    // Two address defs have no hole.
1461    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1462                               GlobalSegment->start)) {
1463      return;
1464    }
1465    // If the prior global segment may be defined by the same two-address
1466    // instruction that also defines LocalLI, then can't make a hole here.
1467    if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1468                               LocalLI->beginIndex())) {
1469      return;
1470    }
1471    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1472    // it would be a disconnected component in the live range.
1473    assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1474           "Disconnected LRG within the scheduling region.");
1475  }
1476  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1477  if (!GlobalDef)
1478    return;
1479
1480  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1481  if (!GlobalSU)
1482    return;
1483
1484  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1485  // constraining the uses of the last local def to precede GlobalDef.
1486  SmallVector<SUnit*,8> LocalUses;
1487  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1488  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1489  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1490  for (SUnit::const_succ_iterator
1491         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1492       I != E; ++I) {
1493    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1494      continue;
1495    if (I->getSUnit() == GlobalSU)
1496      continue;
1497    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1498      return;
1499    LocalUses.push_back(I->getSUnit());
1500  }
1501  // Open the top of the GlobalLI hole by constraining any earlier global uses
1502  // to precede the start of LocalLI.
1503  SmallVector<SUnit*,8> GlobalUses;
1504  MachineInstr *FirstLocalDef =
1505    LIS->getInstructionFromIndex(LocalLI->beginIndex());
1506  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1507  for (SUnit::const_pred_iterator
1508         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1509    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1510      continue;
1511    if (I->getSUnit() == FirstLocalSU)
1512      continue;
1513    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1514      return;
1515    GlobalUses.push_back(I->getSUnit());
1516  }
1517  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1518  // Add the weak edges.
1519  for (SmallVectorImpl<SUnit*>::const_iterator
1520         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1521    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1522          << GlobalSU->NodeNum << ")\n");
1523    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1524  }
1525  for (SmallVectorImpl<SUnit*>::const_iterator
1526         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1527    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1528          << FirstLocalSU->NodeNum << ")\n");
1529    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1530  }
1531}
1532
1533/// \brief Callback from DAG postProcessing to create weak edges to encourage
1534/// copy elimination.
1535void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1536  assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1537
1538  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1539  if (FirstPos == DAG->end())
1540    return;
1541  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1542  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1543    &*priorNonDebug(DAG->end(), DAG->begin()));
1544
1545  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1546    SUnit *SU = &DAG->SUnits[Idx];
1547    if (!SU->getInstr()->isCopy())
1548      continue;
1549
1550    constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1551  }
1552}
1553
1554//===----------------------------------------------------------------------===//
1555// MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1556// and possibly other custom schedulers.
1557//===----------------------------------------------------------------------===//
1558
1559static const unsigned InvalidCycle = ~0U;
1560
1561SchedBoundary::~SchedBoundary() { delete HazardRec; }
1562
1563void SchedBoundary::reset() {
1564  // A new HazardRec is created for each DAG and owned by SchedBoundary.
1565  // Destroying and reconstructing it is very expensive though. So keep
1566  // invalid, placeholder HazardRecs.
1567  if (HazardRec && HazardRec->isEnabled()) {
1568    delete HazardRec;
1569    HazardRec = nullptr;
1570  }
1571  Available.clear();
1572  Pending.clear();
1573  CheckPending = false;
1574  NextSUs.clear();
1575  CurrCycle = 0;
1576  CurrMOps = 0;
1577  MinReadyCycle = UINT_MAX;
1578  ExpectedLatency = 0;
1579  DependentLatency = 0;
1580  RetiredMOps = 0;
1581  MaxExecutedResCount = 0;
1582  ZoneCritResIdx = 0;
1583  IsResourceLimited = false;
1584  ReservedCycles.clear();
1585#ifndef NDEBUG
1586  // Track the maximum number of stall cycles that could arise either from the
1587  // latency of a DAG edge or the number of cycles that a processor resource is
1588  // reserved (SchedBoundary::ReservedCycles).
1589  MaxObservedStall = 0;
1590#endif
1591  // Reserve a zero-count for invalid CritResIdx.
1592  ExecutedResCounts.resize(1);
1593  assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1594}
1595
1596void SchedRemainder::
1597init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1598  reset();
1599  if (!SchedModel->hasInstrSchedModel())
1600    return;
1601  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1602  for (std::vector<SUnit>::iterator
1603         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1604    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1605    RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1606      * SchedModel->getMicroOpFactor();
1607    for (TargetSchedModel::ProcResIter
1608           PI = SchedModel->getWriteProcResBegin(SC),
1609           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1610      unsigned PIdx = PI->ProcResourceIdx;
1611      unsigned Factor = SchedModel->getResourceFactor(PIdx);
1612      RemainingCounts[PIdx] += (Factor * PI->Cycles);
1613    }
1614  }
1615}
1616
1617void SchedBoundary::
1618init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1619  reset();
1620  DAG = dag;
1621  SchedModel = smodel;
1622  Rem = rem;
1623  if (SchedModel->hasInstrSchedModel()) {
1624    ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1625    ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1626  }
1627}
1628
1629/// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1630/// these "soft stalls" differently than the hard stall cycles based on CPU
1631/// resources and computed by checkHazard(). A fully in-order model
1632/// (MicroOpBufferSize==0) will not make use of this since instructions are not
1633/// available for scheduling until they are ready. However, a weaker in-order
1634/// model may use this for heuristics. For example, if a processor has in-order
1635/// behavior when reading certain resources, this may come into play.
1636unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1637  if (!SU->isUnbuffered)
1638    return 0;
1639
1640  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1641  if (ReadyCycle > CurrCycle)
1642    return ReadyCycle - CurrCycle;
1643  return 0;
1644}
1645
1646/// Compute the next cycle at which the given processor resource can be
1647/// scheduled.
1648unsigned SchedBoundary::
1649getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1650  unsigned NextUnreserved = ReservedCycles[PIdx];
1651  // If this resource has never been used, always return cycle zero.
1652  if (NextUnreserved == InvalidCycle)
1653    return 0;
1654  // For bottom-up scheduling add the cycles needed for the current operation.
1655  if (!isTop())
1656    NextUnreserved += Cycles;
1657  return NextUnreserved;
1658}
1659
1660/// Does this SU have a hazard within the current instruction group.
1661///
1662/// The scheduler supports two modes of hazard recognition. The first is the
1663/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1664/// supports highly complicated in-order reservation tables
1665/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1666///
1667/// The second is a streamlined mechanism that checks for hazards based on
1668/// simple counters that the scheduler itself maintains. It explicitly checks
1669/// for instruction dispatch limitations, including the number of micro-ops that
1670/// can dispatch per cycle.
1671///
1672/// TODO: Also check whether the SU must start a new group.
1673bool SchedBoundary::checkHazard(SUnit *SU) {
1674  if (HazardRec->isEnabled()
1675      && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1676    return true;
1677  }
1678  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1679  if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1680    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1681          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1682    return true;
1683  }
1684  if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1685    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1686    for (TargetSchedModel::ProcResIter
1687           PI = SchedModel->getWriteProcResBegin(SC),
1688           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1689      unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1690      if (NRCycle > CurrCycle) {
1691#ifndef NDEBUG
1692        MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1693#endif
1694        DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") "
1695              << SchedModel->getResourceName(PI->ProcResourceIdx)
1696              << "=" << NRCycle << "c\n");
1697        return true;
1698      }
1699    }
1700  }
1701  return false;
1702}
1703
1704// Find the unscheduled node in ReadySUs with the highest latency.
1705unsigned SchedBoundary::
1706findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1707  SUnit *LateSU = nullptr;
1708  unsigned RemLatency = 0;
1709  for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1710       I != E; ++I) {
1711    unsigned L = getUnscheduledLatency(*I);
1712    if (L > RemLatency) {
1713      RemLatency = L;
1714      LateSU = *I;
1715    }
1716  }
1717  if (LateSU) {
1718    DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1719          << LateSU->NodeNum << ") " << RemLatency << "c\n");
1720  }
1721  return RemLatency;
1722}
1723
1724// Count resources in this zone and the remaining unscheduled
1725// instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1726// resource index, or zero if the zone is issue limited.
1727unsigned SchedBoundary::
1728getOtherResourceCount(unsigned &OtherCritIdx) {
1729  OtherCritIdx = 0;
1730  if (!SchedModel->hasInstrSchedModel())
1731    return 0;
1732
1733  unsigned OtherCritCount = Rem->RemIssueCount
1734    + (RetiredMOps * SchedModel->getMicroOpFactor());
1735  DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1736        << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1737  for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1738       PIdx != PEnd; ++PIdx) {
1739    unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1740    if (OtherCount > OtherCritCount) {
1741      OtherCritCount = OtherCount;
1742      OtherCritIdx = PIdx;
1743    }
1744  }
1745  if (OtherCritIdx) {
1746    DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1747          << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1748          << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1749  }
1750  return OtherCritCount;
1751}
1752
1753void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1754  assert(SU->getInstr() && "Scheduled SUnit must have instr");
1755
1756#ifndef NDEBUG
1757  // ReadyCycle was been bumped up to the CurrCycle when this node was
1758  // scheduled, but CurrCycle may have been eagerly advanced immediately after
1759  // scheduling, so may now be greater than ReadyCycle.
1760  if (ReadyCycle > CurrCycle)
1761    MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1762#endif
1763
1764  if (ReadyCycle < MinReadyCycle)
1765    MinReadyCycle = ReadyCycle;
1766
1767  // Check for interlocks first. For the purpose of other heuristics, an
1768  // instruction that cannot issue appears as if it's not in the ReadyQueue.
1769  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1770  if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1771    Pending.push(SU);
1772  else
1773    Available.push(SU);
1774
1775  // Record this node as an immediate dependent of the scheduled node.
1776  NextSUs.insert(SU);
1777}
1778
1779void SchedBoundary::releaseTopNode(SUnit *SU) {
1780  if (SU->isScheduled)
1781    return;
1782
1783  releaseNode(SU, SU->TopReadyCycle);
1784}
1785
1786void SchedBoundary::releaseBottomNode(SUnit *SU) {
1787  if (SU->isScheduled)
1788    return;
1789
1790  releaseNode(SU, SU->BotReadyCycle);
1791}
1792
1793/// Move the boundary of scheduled code by one cycle.
1794void SchedBoundary::bumpCycle(unsigned NextCycle) {
1795  if (SchedModel->getMicroOpBufferSize() == 0) {
1796    assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1797    if (MinReadyCycle > NextCycle)
1798      NextCycle = MinReadyCycle;
1799  }
1800  // Update the current micro-ops, which will issue in the next cycle.
1801  unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1802  CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1803
1804  // Decrement DependentLatency based on the next cycle.
1805  if ((NextCycle - CurrCycle) > DependentLatency)
1806    DependentLatency = 0;
1807  else
1808    DependentLatency -= (NextCycle - CurrCycle);
1809
1810  if (!HazardRec->isEnabled()) {
1811    // Bypass HazardRec virtual calls.
1812    CurrCycle = NextCycle;
1813  }
1814  else {
1815    // Bypass getHazardType calls in case of long latency.
1816    for (; CurrCycle != NextCycle; ++CurrCycle) {
1817      if (isTop())
1818        HazardRec->AdvanceCycle();
1819      else
1820        HazardRec->RecedeCycle();
1821    }
1822  }
1823  CheckPending = true;
1824  unsigned LFactor = SchedModel->getLatencyFactor();
1825  IsResourceLimited =
1826    (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1827    > (int)LFactor;
1828
1829  DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1830}
1831
1832void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1833  ExecutedResCounts[PIdx] += Count;
1834  if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1835    MaxExecutedResCount = ExecutedResCounts[PIdx];
1836}
1837
1838/// Add the given processor resource to this scheduled zone.
1839///
1840/// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1841/// during which this resource is consumed.
1842///
1843/// \return the next cycle at which the instruction may execute without
1844/// oversubscribing resources.
1845unsigned SchedBoundary::
1846countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1847  unsigned Factor = SchedModel->getResourceFactor(PIdx);
1848  unsigned Count = Factor * Cycles;
1849  DEBUG(dbgs() << "  " << SchedModel->getResourceName(PIdx)
1850        << " +" << Cycles << "x" << Factor << "u\n");
1851
1852  // Update Executed resources counts.
1853  incExecutedResources(PIdx, Count);
1854  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1855  Rem->RemainingCounts[PIdx] -= Count;
1856
1857  // Check if this resource exceeds the current critical resource. If so, it
1858  // becomes the critical resource.
1859  if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1860    ZoneCritResIdx = PIdx;
1861    DEBUG(dbgs() << "  *** Critical resource "
1862          << SchedModel->getResourceName(PIdx) << ": "
1863          << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1864  }
1865  // For reserved resources, record the highest cycle using the resource.
1866  unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1867  if (NextAvailable > CurrCycle) {
1868    DEBUG(dbgs() << "  Resource conflict: "
1869          << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1870          << NextAvailable << "\n");
1871  }
1872  return NextAvailable;
1873}
1874
1875/// Move the boundary of scheduled code by one SUnit.
1876void SchedBoundary::bumpNode(SUnit *SU) {
1877  // Update the reservation table.
1878  if (HazardRec->isEnabled()) {
1879    if (!isTop() && SU->isCall) {
1880      // Calls are scheduled with their preceding instructions. For bottom-up
1881      // scheduling, clear the pipeline state before emitting.
1882      HazardRec->Reset();
1883    }
1884    HazardRec->EmitInstruction(SU);
1885  }
1886  // checkHazard should prevent scheduling multiple instructions per cycle that
1887  // exceed the issue width.
1888  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1889  unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1890  assert(
1891      (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1892      "Cannot schedule this instruction's MicroOps in the current cycle.");
1893
1894  unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1895  DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
1896
1897  unsigned NextCycle = CurrCycle;
1898  switch (SchedModel->getMicroOpBufferSize()) {
1899  case 0:
1900    assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1901    break;
1902  case 1:
1903    if (ReadyCycle > NextCycle) {
1904      NextCycle = ReadyCycle;
1905      DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
1906    }
1907    break;
1908  default:
1909    // We don't currently model the OOO reorder buffer, so consider all
1910    // scheduled MOps to be "retired". We do loosely model in-order resource
1911    // latency. If this instruction uses an in-order resource, account for any
1912    // likely stall cycles.
1913    if (SU->isUnbuffered && ReadyCycle > NextCycle)
1914      NextCycle = ReadyCycle;
1915    break;
1916  }
1917  RetiredMOps += IncMOps;
1918
1919  // Update resource counts and critical resource.
1920  if (SchedModel->hasInstrSchedModel()) {
1921    unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1922    assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1923    Rem->RemIssueCount -= DecRemIssue;
1924    if (ZoneCritResIdx) {
1925      // Scale scheduled micro-ops for comparing with the critical resource.
1926      unsigned ScaledMOps =
1927        RetiredMOps * SchedModel->getMicroOpFactor();
1928
1929      // If scaled micro-ops are now more than the previous critical resource by
1930      // a full cycle, then micro-ops issue becomes critical.
1931      if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1932          >= (int)SchedModel->getLatencyFactor()) {
1933        ZoneCritResIdx = 0;
1934        DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
1935              << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1936      }
1937    }
1938    for (TargetSchedModel::ProcResIter
1939           PI = SchedModel->getWriteProcResBegin(SC),
1940           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1941      unsigned RCycle =
1942        countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
1943      if (RCycle > NextCycle)
1944        NextCycle = RCycle;
1945    }
1946    if (SU->hasReservedResource) {
1947      // For reserved resources, record the highest cycle using the resource.
1948      // For top-down scheduling, this is the cycle in which we schedule this
1949      // instruction plus the number of cycles the operations reserves the
1950      // resource. For bottom-up is it simply the instruction's cycle.
1951      for (TargetSchedModel::ProcResIter
1952             PI = SchedModel->getWriteProcResBegin(SC),
1953             PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1954        unsigned PIdx = PI->ProcResourceIdx;
1955        if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
1956          if (isTop()) {
1957            ReservedCycles[PIdx] =
1958              std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
1959          }
1960          else
1961            ReservedCycles[PIdx] = NextCycle;
1962        }
1963      }
1964    }
1965  }
1966  // Update ExpectedLatency and DependentLatency.
1967  unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1968  unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1969  if (SU->getDepth() > TopLatency) {
1970    TopLatency = SU->getDepth();
1971    DEBUG(dbgs() << "  " << Available.getName()
1972          << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1973  }
1974  if (SU->getHeight() > BotLatency) {
1975    BotLatency = SU->getHeight();
1976    DEBUG(dbgs() << "  " << Available.getName()
1977          << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
1978  }
1979  // If we stall for any reason, bump the cycle.
1980  if (NextCycle > CurrCycle) {
1981    bumpCycle(NextCycle);
1982  }
1983  else {
1984    // After updating ZoneCritResIdx and ExpectedLatency, check if we're
1985    // resource limited. If a stall occurred, bumpCycle does this.
1986    unsigned LFactor = SchedModel->getLatencyFactor();
1987    IsResourceLimited =
1988      (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1989      > (int)LFactor;
1990  }
1991  // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
1992  // resets CurrMOps. Loop to handle instructions with more MOps than issue in
1993  // one cycle.  Since we commonly reach the max MOps here, opportunistically
1994  // bump the cycle to avoid uselessly checking everything in the readyQ.
1995  CurrMOps += IncMOps;
1996  while (CurrMOps >= SchedModel->getIssueWidth()) {
1997    DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
1998          << " at cycle " << CurrCycle << '\n');
1999    bumpCycle(++NextCycle);
2000  }
2001  DEBUG(dumpScheduledState());
2002}
2003
2004/// Release pending ready nodes in to the available queue. This makes them
2005/// visible to heuristics.
2006void SchedBoundary::releasePending() {
2007  // If the available queue is empty, it is safe to reset MinReadyCycle.
2008  if (Available.empty())
2009    MinReadyCycle = UINT_MAX;
2010
2011  // Check to see if any of the pending instructions are ready to issue.  If
2012  // so, add them to the available queue.
2013  bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2014  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2015    SUnit *SU = *(Pending.begin()+i);
2016    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2017
2018    if (ReadyCycle < MinReadyCycle)
2019      MinReadyCycle = ReadyCycle;
2020
2021    if (!IsBuffered && ReadyCycle > CurrCycle)
2022      continue;
2023
2024    if (checkHazard(SU))
2025      continue;
2026
2027    Available.push(SU);
2028    Pending.remove(Pending.begin()+i);
2029    --i; --e;
2030  }
2031  DEBUG(if (!Pending.empty()) Pending.dump());
2032  CheckPending = false;
2033}
2034
2035/// Remove SU from the ready set for this boundary.
2036void SchedBoundary::removeReady(SUnit *SU) {
2037  if (Available.isInQueue(SU))
2038    Available.remove(Available.find(SU));
2039  else {
2040    assert(Pending.isInQueue(SU) && "bad ready count");
2041    Pending.remove(Pending.find(SU));
2042  }
2043}
2044
2045/// If this queue only has one ready candidate, return it. As a side effect,
2046/// defer any nodes that now hit a hazard, and advance the cycle until at least
2047/// one node is ready. If multiple instructions are ready, return NULL.
2048SUnit *SchedBoundary::pickOnlyChoice() {
2049  if (CheckPending)
2050    releasePending();
2051
2052  if (CurrMOps > 0) {
2053    // Defer any ready instrs that now have a hazard.
2054    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2055      if (checkHazard(*I)) {
2056        Pending.push(*I);
2057        I = Available.remove(I);
2058        continue;
2059      }
2060      ++I;
2061    }
2062  }
2063  for (unsigned i = 0; Available.empty(); ++i) {
2064//  FIXME: Re-enable assert once PR20057 is resolved.
2065//    assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2066//           "permanent hazard");
2067    (void)i;
2068    bumpCycle(CurrCycle + 1);
2069    releasePending();
2070  }
2071  if (Available.size() == 1)
2072    return *Available.begin();
2073  return nullptr;
2074}
2075
2076#ifndef NDEBUG
2077// This is useful information to dump after bumpNode.
2078// Note that the Queue contents are more useful before pickNodeFromQueue.
2079void SchedBoundary::dumpScheduledState() {
2080  unsigned ResFactor;
2081  unsigned ResCount;
2082  if (ZoneCritResIdx) {
2083    ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2084    ResCount = getResourceCount(ZoneCritResIdx);
2085  }
2086  else {
2087    ResFactor = SchedModel->getMicroOpFactor();
2088    ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2089  }
2090  unsigned LFactor = SchedModel->getLatencyFactor();
2091  dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2092         << "  Retired: " << RetiredMOps;
2093  dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2094  dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2095         << ResCount / ResFactor << " "
2096         << SchedModel->getResourceName(ZoneCritResIdx)
2097         << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2098         << (IsResourceLimited ? "  - Resource" : "  - Latency")
2099         << " limited.\n";
2100}
2101#endif
2102
2103//===----------------------------------------------------------------------===//
2104// GenericScheduler - Generic implementation of MachineSchedStrategy.
2105//===----------------------------------------------------------------------===//
2106
2107void GenericSchedulerBase::SchedCandidate::
2108initResourceDelta(const ScheduleDAGMI *DAG,
2109                  const TargetSchedModel *SchedModel) {
2110  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2111    return;
2112
2113  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2114  for (TargetSchedModel::ProcResIter
2115         PI = SchedModel->getWriteProcResBegin(SC),
2116         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2117    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2118      ResDelta.CritResources += PI->Cycles;
2119    if (PI->ProcResourceIdx == Policy.DemandResIdx)
2120      ResDelta.DemandedResources += PI->Cycles;
2121  }
2122}
2123
2124/// Set the CandPolicy given a scheduling zone given the current resources and
2125/// latencies inside and outside the zone.
2126void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2127                                     bool IsPostRA,
2128                                     SchedBoundary &CurrZone,
2129                                     SchedBoundary *OtherZone) {
2130  // Apply preemptive heuristics based on the the total latency and resources
2131  // inside and outside this zone. Potential stalls should be considered before
2132  // following this policy.
2133
2134  // Compute remaining latency. We need this both to determine whether the
2135  // overall schedule has become latency-limited and whether the instructions
2136  // outside this zone are resource or latency limited.
2137  //
2138  // The "dependent" latency is updated incrementally during scheduling as the
2139  // max height/depth of scheduled nodes minus the cycles since it was
2140  // scheduled:
2141  //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2142  //
2143  // The "independent" latency is the max ready queue depth:
2144  //   ILat = max N.depth for N in Available|Pending
2145  //
2146  // RemainingLatency is the greater of independent and dependent latency.
2147  unsigned RemLatency = CurrZone.getDependentLatency();
2148  RemLatency = std::max(RemLatency,
2149                        CurrZone.findMaxLatency(CurrZone.Available.elements()));
2150  RemLatency = std::max(RemLatency,
2151                        CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2152
2153  // Compute the critical resource outside the zone.
2154  unsigned OtherCritIdx = 0;
2155  unsigned OtherCount =
2156    OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2157
2158  bool OtherResLimited = false;
2159  if (SchedModel->hasInstrSchedModel()) {
2160    unsigned LFactor = SchedModel->getLatencyFactor();
2161    OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2162  }
2163  // Schedule aggressively for latency in PostRA mode. We don't check for
2164  // acyclic latency during PostRA, and highly out-of-order processors will
2165  // skip PostRA scheduling.
2166  if (!OtherResLimited) {
2167    if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2168      Policy.ReduceLatency |= true;
2169      DEBUG(dbgs() << "  " << CurrZone.Available.getName()
2170            << " RemainingLatency " << RemLatency << " + "
2171            << CurrZone.getCurrCycle() << "c > CritPath "
2172            << Rem.CriticalPath << "\n");
2173    }
2174  }
2175  // If the same resource is limiting inside and outside the zone, do nothing.
2176  if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2177    return;
2178
2179  DEBUG(
2180    if (CurrZone.isResourceLimited()) {
2181      dbgs() << "  " << CurrZone.Available.getName() << " ResourceLimited: "
2182             << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2183             << "\n";
2184    }
2185    if (OtherResLimited)
2186      dbgs() << "  RemainingLimit: "
2187             << SchedModel->getResourceName(OtherCritIdx) << "\n";
2188    if (!CurrZone.isResourceLimited() && !OtherResLimited)
2189      dbgs() << "  Latency limited both directions.\n");
2190
2191  if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2192    Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2193
2194  if (OtherResLimited)
2195    Policy.DemandResIdx = OtherCritIdx;
2196}
2197
2198#ifndef NDEBUG
2199const char *GenericSchedulerBase::getReasonStr(
2200  GenericSchedulerBase::CandReason Reason) {
2201  switch (Reason) {
2202  case NoCand:         return "NOCAND    ";
2203  case PhysRegCopy:    return "PREG-COPY";
2204  case RegExcess:      return "REG-EXCESS";
2205  case RegCritical:    return "REG-CRIT  ";
2206  case Stall:          return "STALL     ";
2207  case Cluster:        return "CLUSTER   ";
2208  case Weak:           return "WEAK      ";
2209  case RegMax:         return "REG-MAX   ";
2210  case ResourceReduce: return "RES-REDUCE";
2211  case ResourceDemand: return "RES-DEMAND";
2212  case TopDepthReduce: return "TOP-DEPTH ";
2213  case TopPathReduce:  return "TOP-PATH  ";
2214  case BotHeightReduce:return "BOT-HEIGHT";
2215  case BotPathReduce:  return "BOT-PATH  ";
2216  case NextDefUse:     return "DEF-USE   ";
2217  case NodeOrder:      return "ORDER     ";
2218  };
2219  llvm_unreachable("Unknown reason!");
2220}
2221
2222void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2223  PressureChange P;
2224  unsigned ResIdx = 0;
2225  unsigned Latency = 0;
2226  switch (Cand.Reason) {
2227  default:
2228    break;
2229  case RegExcess:
2230    P = Cand.RPDelta.Excess;
2231    break;
2232  case RegCritical:
2233    P = Cand.RPDelta.CriticalMax;
2234    break;
2235  case RegMax:
2236    P = Cand.RPDelta.CurrentMax;
2237    break;
2238  case ResourceReduce:
2239    ResIdx = Cand.Policy.ReduceResIdx;
2240    break;
2241  case ResourceDemand:
2242    ResIdx = Cand.Policy.DemandResIdx;
2243    break;
2244  case TopDepthReduce:
2245    Latency = Cand.SU->getDepth();
2246    break;
2247  case TopPathReduce:
2248    Latency = Cand.SU->getHeight();
2249    break;
2250  case BotHeightReduce:
2251    Latency = Cand.SU->getHeight();
2252    break;
2253  case BotPathReduce:
2254    Latency = Cand.SU->getDepth();
2255    break;
2256  }
2257  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2258  if (P.isValid())
2259    dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2260           << ":" << P.getUnitInc() << " ";
2261  else
2262    dbgs() << "      ";
2263  if (ResIdx)
2264    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2265  else
2266    dbgs() << "         ";
2267  if (Latency)
2268    dbgs() << " " << Latency << " cycles ";
2269  else
2270    dbgs() << "          ";
2271  dbgs() << '\n';
2272}
2273#endif
2274
2275/// Return true if this heuristic determines order.
2276static bool tryLess(int TryVal, int CandVal,
2277                    GenericSchedulerBase::SchedCandidate &TryCand,
2278                    GenericSchedulerBase::SchedCandidate &Cand,
2279                    GenericSchedulerBase::CandReason Reason) {
2280  if (TryVal < CandVal) {
2281    TryCand.Reason = Reason;
2282    return true;
2283  }
2284  if (TryVal > CandVal) {
2285    if (Cand.Reason > Reason)
2286      Cand.Reason = Reason;
2287    return true;
2288  }
2289  Cand.setRepeat(Reason);
2290  return false;
2291}
2292
2293static bool tryGreater(int TryVal, int CandVal,
2294                       GenericSchedulerBase::SchedCandidate &TryCand,
2295                       GenericSchedulerBase::SchedCandidate &Cand,
2296                       GenericSchedulerBase::CandReason Reason) {
2297  if (TryVal > CandVal) {
2298    TryCand.Reason = Reason;
2299    return true;
2300  }
2301  if (TryVal < CandVal) {
2302    if (Cand.Reason > Reason)
2303      Cand.Reason = Reason;
2304    return true;
2305  }
2306  Cand.setRepeat(Reason);
2307  return false;
2308}
2309
2310static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2311                       GenericSchedulerBase::SchedCandidate &Cand,
2312                       SchedBoundary &Zone) {
2313  if (Zone.isTop()) {
2314    if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2315      if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2316                  TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2317        return true;
2318    }
2319    if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2320                   TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2321      return true;
2322  }
2323  else {
2324    if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2325      if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2326                  TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2327        return true;
2328    }
2329    if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2330                   TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2331      return true;
2332  }
2333  return false;
2334}
2335
2336static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2337                      bool IsTop) {
2338  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2339        << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2340}
2341
2342void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2343  assert(dag->hasVRegLiveness() &&
2344         "(PreRA)GenericScheduler needs vreg liveness");
2345  DAG = static_cast<ScheduleDAGMILive*>(dag);
2346  SchedModel = DAG->getSchedModel();
2347  TRI = DAG->TRI;
2348
2349  Rem.init(DAG, SchedModel);
2350  Top.init(DAG, SchedModel, &Rem);
2351  Bot.init(DAG, SchedModel, &Rem);
2352
2353  // Initialize resource counts.
2354
2355  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2356  // are disabled, then these HazardRecs will be disabled.
2357  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2358  const TargetMachine &TM = DAG->MF.getTarget();
2359  if (!Top.HazardRec) {
2360    Top.HazardRec =
2361      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2362  }
2363  if (!Bot.HazardRec) {
2364    Bot.HazardRec =
2365      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2366  }
2367}
2368
2369/// Initialize the per-region scheduling policy.
2370void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2371                                  MachineBasicBlock::iterator End,
2372                                  unsigned NumRegionInstrs) {
2373  const TargetMachine &TM = Context->MF->getTarget();
2374  const TargetLowering *TLI = TM.getTargetLowering();
2375
2376  // Avoid setting up the register pressure tracker for small regions to save
2377  // compile time. As a rough heuristic, only track pressure when the number of
2378  // schedulable instructions exceeds half the integer register file.
2379  RegionPolicy.ShouldTrackPressure = true;
2380  for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2381    MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2382    if (TLI->isTypeLegal(LegalIntVT)) {
2383      unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2384        TLI->getRegClassFor(LegalIntVT));
2385      RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2386    }
2387  }
2388
2389  // For generic targets, we default to bottom-up, because it's simpler and more
2390  // compile-time optimizations have been implemented in that direction.
2391  RegionPolicy.OnlyBottomUp = true;
2392
2393  // Allow the subtarget to override default policy.
2394  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
2395  ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
2396
2397  // After subtarget overrides, apply command line options.
2398  if (!EnableRegPressure)
2399    RegionPolicy.ShouldTrackPressure = false;
2400
2401  // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2402  // e.g. -misched-bottomup=false allows scheduling in both directions.
2403  assert((!ForceTopDown || !ForceBottomUp) &&
2404         "-misched-topdown incompatible with -misched-bottomup");
2405  if (ForceBottomUp.getNumOccurrences() > 0) {
2406    RegionPolicy.OnlyBottomUp = ForceBottomUp;
2407    if (RegionPolicy.OnlyBottomUp)
2408      RegionPolicy.OnlyTopDown = false;
2409  }
2410  if (ForceTopDown.getNumOccurrences() > 0) {
2411    RegionPolicy.OnlyTopDown = ForceTopDown;
2412    if (RegionPolicy.OnlyTopDown)
2413      RegionPolicy.OnlyBottomUp = false;
2414  }
2415}
2416
2417/// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2418/// critical path by more cycles than it takes to drain the instruction buffer.
2419/// We estimate an upper bounds on in-flight instructions as:
2420///
2421/// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2422/// InFlightIterations = AcyclicPath / CyclesPerIteration
2423/// InFlightResources = InFlightIterations * LoopResources
2424///
2425/// TODO: Check execution resources in addition to IssueCount.
2426void GenericScheduler::checkAcyclicLatency() {
2427  if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2428    return;
2429
2430  // Scaled number of cycles per loop iteration.
2431  unsigned IterCount =
2432    std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2433             Rem.RemIssueCount);
2434  // Scaled acyclic critical path.
2435  unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2436  // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2437  unsigned InFlightCount =
2438    (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2439  unsigned BufferLimit =
2440    SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2441
2442  Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2443
2444  DEBUG(dbgs() << "IssueCycles="
2445        << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2446        << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2447        << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2448        << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2449        << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2450        if (Rem.IsAcyclicLatencyLimited)
2451          dbgs() << "  ACYCLIC LATENCY LIMIT\n");
2452}
2453
2454void GenericScheduler::registerRoots() {
2455  Rem.CriticalPath = DAG->ExitSU.getDepth();
2456
2457  // Some roots may not feed into ExitSU. Check all of them in case.
2458  for (std::vector<SUnit*>::const_iterator
2459         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2460    if ((*I)->getDepth() > Rem.CriticalPath)
2461      Rem.CriticalPath = (*I)->getDepth();
2462  }
2463  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
2464
2465  if (EnableCyclicPath) {
2466    Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2467    checkAcyclicLatency();
2468  }
2469}
2470
2471static bool tryPressure(const PressureChange &TryP,
2472                        const PressureChange &CandP,
2473                        GenericSchedulerBase::SchedCandidate &TryCand,
2474                        GenericSchedulerBase::SchedCandidate &Cand,
2475                        GenericSchedulerBase::CandReason Reason) {
2476  int TryRank = TryP.getPSetOrMax();
2477  int CandRank = CandP.getPSetOrMax();
2478  // If both candidates affect the same set, go with the smallest increase.
2479  if (TryRank == CandRank) {
2480    return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2481                   Reason);
2482  }
2483  // If one candidate decreases and the other increases, go with it.
2484  // Invalid candidates have UnitInc==0.
2485  if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2486              Reason)) {
2487    return true;
2488  }
2489  // If the candidates are decreasing pressure, reverse priority.
2490  if (TryP.getUnitInc() < 0)
2491    std::swap(TryRank, CandRank);
2492  return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2493}
2494
2495static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2496  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2497}
2498
2499/// Minimize physical register live ranges. Regalloc wants them adjacent to
2500/// their physreg def/use.
2501///
2502/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2503/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2504/// with the operation that produces or consumes the physreg. We'll do this when
2505/// regalloc has support for parallel copies.
2506static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2507  const MachineInstr *MI = SU->getInstr();
2508  if (!MI->isCopy())
2509    return 0;
2510
2511  unsigned ScheduledOper = isTop ? 1 : 0;
2512  unsigned UnscheduledOper = isTop ? 0 : 1;
2513  // If we have already scheduled the physreg produce/consumer, immediately
2514  // schedule the copy.
2515  if (TargetRegisterInfo::isPhysicalRegister(
2516        MI->getOperand(ScheduledOper).getReg()))
2517    return 1;
2518  // If the physreg is at the boundary, defer it. Otherwise schedule it
2519  // immediately to free the dependent. We can hoist the copy later.
2520  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2521  if (TargetRegisterInfo::isPhysicalRegister(
2522        MI->getOperand(UnscheduledOper).getReg()))
2523    return AtBoundary ? -1 : 1;
2524  return 0;
2525}
2526
2527/// Apply a set of heursitics to a new candidate. Heuristics are currently
2528/// hierarchical. This may be more efficient than a graduated cost model because
2529/// we don't need to evaluate all aspects of the model for each node in the
2530/// queue. But it's really done to make the heuristics easier to debug and
2531/// statistically analyze.
2532///
2533/// \param Cand provides the policy and current best candidate.
2534/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2535/// \param Zone describes the scheduled zone that we are extending.
2536/// \param RPTracker describes reg pressure within the scheduled zone.
2537/// \param TempTracker is a scratch pressure tracker to reuse in queries.
2538void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2539                                    SchedCandidate &TryCand,
2540                                    SchedBoundary &Zone,
2541                                    const RegPressureTracker &RPTracker,
2542                                    RegPressureTracker &TempTracker) {
2543
2544  if (DAG->isTrackingPressure()) {
2545    // Always initialize TryCand's RPDelta.
2546    if (Zone.isTop()) {
2547      TempTracker.getMaxDownwardPressureDelta(
2548        TryCand.SU->getInstr(),
2549        TryCand.RPDelta,
2550        DAG->getRegionCriticalPSets(),
2551        DAG->getRegPressure().MaxSetPressure);
2552    }
2553    else {
2554      if (VerifyScheduling) {
2555        TempTracker.getMaxUpwardPressureDelta(
2556          TryCand.SU->getInstr(),
2557          &DAG->getPressureDiff(TryCand.SU),
2558          TryCand.RPDelta,
2559          DAG->getRegionCriticalPSets(),
2560          DAG->getRegPressure().MaxSetPressure);
2561      }
2562      else {
2563        RPTracker.getUpwardPressureDelta(
2564          TryCand.SU->getInstr(),
2565          DAG->getPressureDiff(TryCand.SU),
2566          TryCand.RPDelta,
2567          DAG->getRegionCriticalPSets(),
2568          DAG->getRegPressure().MaxSetPressure);
2569      }
2570    }
2571  }
2572  DEBUG(if (TryCand.RPDelta.Excess.isValid())
2573          dbgs() << "  SU(" << TryCand.SU->NodeNum << ") "
2574                 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2575                 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2576
2577  // Initialize the candidate if needed.
2578  if (!Cand.isValid()) {
2579    TryCand.Reason = NodeOrder;
2580    return;
2581  }
2582
2583  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2584                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2585                 TryCand, Cand, PhysRegCopy))
2586    return;
2587
2588  // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2589  // invalid; convert it to INT_MAX to give it lowest priority.
2590  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2591                                               Cand.RPDelta.Excess,
2592                                               TryCand, Cand, RegExcess))
2593    return;
2594
2595  // Avoid increasing the max critical pressure in the scheduled region.
2596  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2597                                               Cand.RPDelta.CriticalMax,
2598                                               TryCand, Cand, RegCritical))
2599    return;
2600
2601  // For loops that are acyclic path limited, aggressively schedule for latency.
2602  // This can result in very long dependence chains scheduled in sequence, so
2603  // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2604  if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2605      && tryLatency(TryCand, Cand, Zone))
2606    return;
2607
2608  // Prioritize instructions that read unbuffered resources by stall cycles.
2609  if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2610              Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2611    return;
2612
2613  // Keep clustered nodes together to encourage downstream peephole
2614  // optimizations which may reduce resource requirements.
2615  //
2616  // This is a best effort to set things up for a post-RA pass. Optimizations
2617  // like generating loads of multiple registers should ideally be done within
2618  // the scheduler pass by combining the loads during DAG postprocessing.
2619  const SUnit *NextClusterSU =
2620    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2621  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2622                 TryCand, Cand, Cluster))
2623    return;
2624
2625  // Weak edges are for clustering and other constraints.
2626  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2627              getWeakLeft(Cand.SU, Zone.isTop()),
2628              TryCand, Cand, Weak)) {
2629    return;
2630  }
2631  // Avoid increasing the max pressure of the entire region.
2632  if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2633                                               Cand.RPDelta.CurrentMax,
2634                                               TryCand, Cand, RegMax))
2635    return;
2636
2637  // Avoid critical resource consumption and balance the schedule.
2638  TryCand.initResourceDelta(DAG, SchedModel);
2639  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2640              TryCand, Cand, ResourceReduce))
2641    return;
2642  if (tryGreater(TryCand.ResDelta.DemandedResources,
2643                 Cand.ResDelta.DemandedResources,
2644                 TryCand, Cand, ResourceDemand))
2645    return;
2646
2647  // Avoid serializing long latency dependence chains.
2648  // For acyclic path limited loops, latency was already checked above.
2649  if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2650      && tryLatency(TryCand, Cand, Zone)) {
2651    return;
2652  }
2653
2654  // Prefer immediate defs/users of the last scheduled instruction. This is a
2655  // local pressure avoidance strategy that also makes the machine code
2656  // readable.
2657  if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2658                 TryCand, Cand, NextDefUse))
2659    return;
2660
2661  // Fall through to original instruction order.
2662  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2663      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2664    TryCand.Reason = NodeOrder;
2665  }
2666}
2667
2668/// Pick the best candidate from the queue.
2669///
2670/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2671/// DAG building. To adjust for the current scheduling location we need to
2672/// maintain the number of vreg uses remaining to be top-scheduled.
2673void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2674                                         const RegPressureTracker &RPTracker,
2675                                         SchedCandidate &Cand) {
2676  ReadyQueue &Q = Zone.Available;
2677
2678  DEBUG(Q.dump());
2679
2680  // getMaxPressureDelta temporarily modifies the tracker.
2681  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2682
2683  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2684
2685    SchedCandidate TryCand(Cand.Policy);
2686    TryCand.SU = *I;
2687    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2688    if (TryCand.Reason != NoCand) {
2689      // Initialize resource delta if needed in case future heuristics query it.
2690      if (TryCand.ResDelta == SchedResourceDelta())
2691        TryCand.initResourceDelta(DAG, SchedModel);
2692      Cand.setBest(TryCand);
2693      DEBUG(traceCandidate(Cand));
2694    }
2695  }
2696}
2697
2698/// Pick the best candidate node from either the top or bottom queue.
2699SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2700  // Schedule as far as possible in the direction of no choice. This is most
2701  // efficient, but also provides the best heuristics for CriticalPSets.
2702  if (SUnit *SU = Bot.pickOnlyChoice()) {
2703    IsTopNode = false;
2704    DEBUG(dbgs() << "Pick Bot NOCAND\n");
2705    return SU;
2706  }
2707  if (SUnit *SU = Top.pickOnlyChoice()) {
2708    IsTopNode = true;
2709    DEBUG(dbgs() << "Pick Top NOCAND\n");
2710    return SU;
2711  }
2712  CandPolicy NoPolicy;
2713  SchedCandidate BotCand(NoPolicy);
2714  SchedCandidate TopCand(NoPolicy);
2715  // Set the bottom-up policy based on the state of the current bottom zone and
2716  // the instructions outside the zone, including the top zone.
2717  setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2718  // Set the top-down policy based on the state of the current top zone and
2719  // the instructions outside the zone, including the bottom zone.
2720  setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2721
2722  // Prefer bottom scheduling when heuristics are silent.
2723  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2724  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2725
2726  // If either Q has a single candidate that provides the least increase in
2727  // Excess pressure, we can immediately schedule from that Q.
2728  //
2729  // RegionCriticalPSets summarizes the pressure within the scheduled region and
2730  // affects picking from either Q. If scheduling in one direction must
2731  // increase pressure for one of the excess PSets, then schedule in that
2732  // direction first to provide more freedom in the other direction.
2733  if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2734      || (BotCand.Reason == RegCritical
2735          && !BotCand.isRepeat(RegCritical)))
2736  {
2737    IsTopNode = false;
2738    tracePick(BotCand, IsTopNode);
2739    return BotCand.SU;
2740  }
2741  // Check if the top Q has a better candidate.
2742  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2743  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2744
2745  // Choose the queue with the most important (lowest enum) reason.
2746  if (TopCand.Reason < BotCand.Reason) {
2747    IsTopNode = true;
2748    tracePick(TopCand, IsTopNode);
2749    return TopCand.SU;
2750  }
2751  // Otherwise prefer the bottom candidate, in node order if all else failed.
2752  IsTopNode = false;
2753  tracePick(BotCand, IsTopNode);
2754  return BotCand.SU;
2755}
2756
2757/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2758SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2759  if (DAG->top() == DAG->bottom()) {
2760    assert(Top.Available.empty() && Top.Pending.empty() &&
2761           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2762    return nullptr;
2763  }
2764  SUnit *SU;
2765  do {
2766    if (RegionPolicy.OnlyTopDown) {
2767      SU = Top.pickOnlyChoice();
2768      if (!SU) {
2769        CandPolicy NoPolicy;
2770        SchedCandidate TopCand(NoPolicy);
2771        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2772        assert(TopCand.Reason != NoCand && "failed to find a candidate");
2773        tracePick(TopCand, true);
2774        SU = TopCand.SU;
2775      }
2776      IsTopNode = true;
2777    }
2778    else if (RegionPolicy.OnlyBottomUp) {
2779      SU = Bot.pickOnlyChoice();
2780      if (!SU) {
2781        CandPolicy NoPolicy;
2782        SchedCandidate BotCand(NoPolicy);
2783        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2784        assert(BotCand.Reason != NoCand && "failed to find a candidate");
2785        tracePick(BotCand, false);
2786        SU = BotCand.SU;
2787      }
2788      IsTopNode = false;
2789    }
2790    else {
2791      SU = pickNodeBidirectional(IsTopNode);
2792    }
2793  } while (SU->isScheduled);
2794
2795  if (SU->isTopReady())
2796    Top.removeReady(SU);
2797  if (SU->isBottomReady())
2798    Bot.removeReady(SU);
2799
2800  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2801  return SU;
2802}
2803
2804void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2805
2806  MachineBasicBlock::iterator InsertPos = SU->getInstr();
2807  if (!isTop)
2808    ++InsertPos;
2809  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2810
2811  // Find already scheduled copies with a single physreg dependence and move
2812  // them just above the scheduled instruction.
2813  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2814       I != E; ++I) {
2815    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2816      continue;
2817    SUnit *DepSU = I->getSUnit();
2818    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2819      continue;
2820    MachineInstr *Copy = DepSU->getInstr();
2821    if (!Copy->isCopy())
2822      continue;
2823    DEBUG(dbgs() << "  Rescheduling physreg copy ";
2824          I->getSUnit()->dump(DAG));
2825    DAG->moveInstruction(Copy, InsertPos);
2826  }
2827}
2828
2829/// Update the scheduler's state after scheduling a node. This is the same node
2830/// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2831/// update it's state based on the current cycle before MachineSchedStrategy
2832/// does.
2833///
2834/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2835/// them here. See comments in biasPhysRegCopy.
2836void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2837  if (IsTopNode) {
2838    SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2839    Top.bumpNode(SU);
2840    if (SU->hasPhysRegUses)
2841      reschedulePhysRegCopies(SU, true);
2842  }
2843  else {
2844    SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2845    Bot.bumpNode(SU);
2846    if (SU->hasPhysRegDefs)
2847      reschedulePhysRegCopies(SU, false);
2848  }
2849}
2850
2851/// Create the standard converging machine scheduler. This will be used as the
2852/// default scheduler if the target does not set a default.
2853static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2854  ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2855  // Register DAG post-processors.
2856  //
2857  // FIXME: extend the mutation API to allow earlier mutations to instantiate
2858  // data and pass it to later mutations. Have a single mutation that gathers
2859  // the interesting nodes in one pass.
2860  DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2861  if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2862    DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2863  if (EnableMacroFusion)
2864    DAG->addMutation(make_unique<MacroFusion>(DAG->TII));
2865  return DAG;
2866}
2867
2868static MachineSchedRegistry
2869GenericSchedRegistry("converge", "Standard converging scheduler.",
2870                     createGenericSchedLive);
2871
2872//===----------------------------------------------------------------------===//
2873// PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2874//===----------------------------------------------------------------------===//
2875
2876void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2877  DAG = Dag;
2878  SchedModel = DAG->getSchedModel();
2879  TRI = DAG->TRI;
2880
2881  Rem.init(DAG, SchedModel);
2882  Top.init(DAG, SchedModel, &Rem);
2883  BotRoots.clear();
2884
2885  // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
2886  // or are disabled, then these HazardRecs will be disabled.
2887  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2888  const TargetMachine &TM = DAG->MF.getTarget();
2889  if (!Top.HazardRec) {
2890    Top.HazardRec =
2891      TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
2892  }
2893}
2894
2895
2896void PostGenericScheduler::registerRoots() {
2897  Rem.CriticalPath = DAG->ExitSU.getDepth();
2898
2899  // Some roots may not feed into ExitSU. Check all of them in case.
2900  for (SmallVectorImpl<SUnit*>::const_iterator
2901         I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
2902    if ((*I)->getDepth() > Rem.CriticalPath)
2903      Rem.CriticalPath = (*I)->getDepth();
2904  }
2905  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
2906}
2907
2908/// Apply a set of heursitics to a new candidate for PostRA scheduling.
2909///
2910/// \param Cand provides the policy and current best candidate.
2911/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2912void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
2913                                        SchedCandidate &TryCand) {
2914
2915  // Initialize the candidate if needed.
2916  if (!Cand.isValid()) {
2917    TryCand.Reason = NodeOrder;
2918    return;
2919  }
2920
2921  // Prioritize instructions that read unbuffered resources by stall cycles.
2922  if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
2923              Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2924    return;
2925
2926  // Avoid critical resource consumption and balance the schedule.
2927  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2928              TryCand, Cand, ResourceReduce))
2929    return;
2930  if (tryGreater(TryCand.ResDelta.DemandedResources,
2931                 Cand.ResDelta.DemandedResources,
2932                 TryCand, Cand, ResourceDemand))
2933    return;
2934
2935  // Avoid serializing long latency dependence chains.
2936  if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
2937    return;
2938  }
2939
2940  // Fall through to original instruction order.
2941  if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
2942    TryCand.Reason = NodeOrder;
2943}
2944
2945void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
2946  ReadyQueue &Q = Top.Available;
2947
2948  DEBUG(Q.dump());
2949
2950  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2951    SchedCandidate TryCand(Cand.Policy);
2952    TryCand.SU = *I;
2953    TryCand.initResourceDelta(DAG, SchedModel);
2954    tryCandidate(Cand, TryCand);
2955    if (TryCand.Reason != NoCand) {
2956      Cand.setBest(TryCand);
2957      DEBUG(traceCandidate(Cand));
2958    }
2959  }
2960}
2961
2962/// Pick the next node to schedule.
2963SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
2964  if (DAG->top() == DAG->bottom()) {
2965    assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
2966    return nullptr;
2967  }
2968  SUnit *SU;
2969  do {
2970    SU = Top.pickOnlyChoice();
2971    if (!SU) {
2972      CandPolicy NoPolicy;
2973      SchedCandidate TopCand(NoPolicy);
2974      // Set the top-down policy based on the state of the current top zone and
2975      // the instructions outside the zone, including the bottom zone.
2976      setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
2977      pickNodeFromQueue(TopCand);
2978      assert(TopCand.Reason != NoCand && "failed to find a candidate");
2979      tracePick(TopCand, true);
2980      SU = TopCand.SU;
2981    }
2982  } while (SU->isScheduled);
2983
2984  IsTopNode = true;
2985  Top.removeReady(SU);
2986
2987  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2988  return SU;
2989}
2990
2991/// Called after ScheduleDAGMI has scheduled an instruction and updated
2992/// scheduled/remaining flags in the DAG nodes.
2993void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2994  SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2995  Top.bumpNode(SU);
2996}
2997
2998/// Create a generic scheduler with no vreg liveness or DAG mutation passes.
2999static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3000  return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3001}
3002
3003//===----------------------------------------------------------------------===//
3004// ILP Scheduler. Currently for experimental analysis of heuristics.
3005//===----------------------------------------------------------------------===//
3006
3007namespace {
3008/// \brief Order nodes by the ILP metric.
3009struct ILPOrder {
3010  const SchedDFSResult *DFSResult;
3011  const BitVector *ScheduledTrees;
3012  bool MaximizeILP;
3013
3014  ILPOrder(bool MaxILP)
3015    : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3016
3017  /// \brief Apply a less-than relation on node priority.
3018  ///
3019  /// (Return true if A comes after B in the Q.)
3020  bool operator()(const SUnit *A, const SUnit *B) const {
3021    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3022    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3023    if (SchedTreeA != SchedTreeB) {
3024      // Unscheduled trees have lower priority.
3025      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3026        return ScheduledTrees->test(SchedTreeB);
3027
3028      // Trees with shallower connections have have lower priority.
3029      if (DFSResult->getSubtreeLevel(SchedTreeA)
3030          != DFSResult->getSubtreeLevel(SchedTreeB)) {
3031        return DFSResult->getSubtreeLevel(SchedTreeA)
3032          < DFSResult->getSubtreeLevel(SchedTreeB);
3033      }
3034    }
3035    if (MaximizeILP)
3036      return DFSResult->getILP(A) < DFSResult->getILP(B);
3037    else
3038      return DFSResult->getILP(A) > DFSResult->getILP(B);
3039  }
3040};
3041
3042/// \brief Schedule based on the ILP metric.
3043class ILPScheduler : public MachineSchedStrategy {
3044  ScheduleDAGMILive *DAG;
3045  ILPOrder Cmp;
3046
3047  std::vector<SUnit*> ReadyQ;
3048public:
3049  ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3050
3051  void initialize(ScheduleDAGMI *dag) override {
3052    assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3053    DAG = static_cast<ScheduleDAGMILive*>(dag);
3054    DAG->computeDFSResult();
3055    Cmp.DFSResult = DAG->getDFSResult();
3056    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3057    ReadyQ.clear();
3058  }
3059
3060  void registerRoots() override {
3061    // Restore the heap in ReadyQ with the updated DFS results.
3062    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3063  }
3064
3065  /// Implement MachineSchedStrategy interface.
3066  /// -----------------------------------------
3067
3068  /// Callback to select the highest priority node from the ready Q.
3069  SUnit *pickNode(bool &IsTopNode) override {
3070    if (ReadyQ.empty()) return nullptr;
3071    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3072    SUnit *SU = ReadyQ.back();
3073    ReadyQ.pop_back();
3074    IsTopNode = false;
3075    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3076          << " ILP: " << DAG->getDFSResult()->getILP(SU)
3077          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3078          << DAG->getDFSResult()->getSubtreeLevel(
3079            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3080          << "Scheduling " << *SU->getInstr());
3081    return SU;
3082  }
3083
3084  /// \brief Scheduler callback to notify that a new subtree is scheduled.
3085  void scheduleTree(unsigned SubtreeID) override {
3086    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3087  }
3088
3089  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3090  /// DFSResults, and resort the priority Q.
3091  void schedNode(SUnit *SU, bool IsTopNode) override {
3092    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3093  }
3094
3095  void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3096
3097  void releaseBottomNode(SUnit *SU) override {
3098    ReadyQ.push_back(SU);
3099    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3100  }
3101};
3102} // namespace
3103
3104static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3105  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3106}
3107static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3108  return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3109}
3110static MachineSchedRegistry ILPMaxRegistry(
3111  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3112static MachineSchedRegistry ILPMinRegistry(
3113  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3114
3115//===----------------------------------------------------------------------===//
3116// Machine Instruction Shuffler for Correctness Testing
3117//===----------------------------------------------------------------------===//
3118
3119#ifndef NDEBUG
3120namespace {
3121/// Apply a less-than relation on the node order, which corresponds to the
3122/// instruction order prior to scheduling. IsReverse implements greater-than.
3123template<bool IsReverse>
3124struct SUnitOrder {
3125  bool operator()(SUnit *A, SUnit *B) const {
3126    if (IsReverse)
3127      return A->NodeNum > B->NodeNum;
3128    else
3129      return A->NodeNum < B->NodeNum;
3130  }
3131};
3132
3133/// Reorder instructions as much as possible.
3134class InstructionShuffler : public MachineSchedStrategy {
3135  bool IsAlternating;
3136  bool IsTopDown;
3137
3138  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3139  // gives nodes with a higher number higher priority causing the latest
3140  // instructions to be scheduled first.
3141  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3142    TopQ;
3143  // When scheduling bottom-up, use greater-than as the queue priority.
3144  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3145    BottomQ;
3146public:
3147  InstructionShuffler(bool alternate, bool topdown)
3148    : IsAlternating(alternate), IsTopDown(topdown) {}
3149
3150  void initialize(ScheduleDAGMI*) override {
3151    TopQ.clear();
3152    BottomQ.clear();
3153  }
3154
3155  /// Implement MachineSchedStrategy interface.
3156  /// -----------------------------------------
3157
3158  SUnit *pickNode(bool &IsTopNode) override {
3159    SUnit *SU;
3160    if (IsTopDown) {
3161      do {
3162        if (TopQ.empty()) return nullptr;
3163        SU = TopQ.top();
3164        TopQ.pop();
3165      } while (SU->isScheduled);
3166      IsTopNode = true;
3167    }
3168    else {
3169      do {
3170        if (BottomQ.empty()) return nullptr;
3171        SU = BottomQ.top();
3172        BottomQ.pop();
3173      } while (SU->isScheduled);
3174      IsTopNode = false;
3175    }
3176    if (IsAlternating)
3177      IsTopDown = !IsTopDown;
3178    return SU;
3179  }
3180
3181  void schedNode(SUnit *SU, bool IsTopNode) override {}
3182
3183  void releaseTopNode(SUnit *SU) override {
3184    TopQ.push(SU);
3185  }
3186  void releaseBottomNode(SUnit *SU) override {
3187    BottomQ.push(SU);
3188  }
3189};
3190} // namespace
3191
3192static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3193  bool Alternate = !ForceTopDown && !ForceBottomUp;
3194  bool TopDown = !ForceBottomUp;
3195  assert((TopDown || !ForceTopDown) &&
3196         "-misched-topdown incompatible with -misched-bottomup");
3197  return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3198}
3199static MachineSchedRegistry ShufflerRegistry(
3200  "shuffle", "Shuffle machine instructions alternating directions",
3201  createInstructionShuffler);
3202#endif // !NDEBUG
3203
3204//===----------------------------------------------------------------------===//
3205// GraphWriter support for ScheduleDAGMILive.
3206//===----------------------------------------------------------------------===//
3207
3208#ifndef NDEBUG
3209namespace llvm {
3210
3211template<> struct GraphTraits<
3212  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3213
3214template<>
3215struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3216
3217  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3218
3219  static std::string getGraphName(const ScheduleDAG *G) {
3220    return G->MF.getName();
3221  }
3222
3223  static bool renderGraphFromBottomUp() {
3224    return true;
3225  }
3226
3227  static bool isNodeHidden(const SUnit *Node) {
3228    return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3229  }
3230
3231  static bool hasNodeAddressLabel(const SUnit *Node,
3232                                  const ScheduleDAG *Graph) {
3233    return false;
3234  }
3235
3236  /// If you want to override the dot attributes printed for a particular
3237  /// edge, override this method.
3238  static std::string getEdgeAttributes(const SUnit *Node,
3239                                       SUnitIterator EI,
3240                                       const ScheduleDAG *Graph) {
3241    if (EI.isArtificialDep())
3242      return "color=cyan,style=dashed";
3243    if (EI.isCtrlDep())
3244      return "color=blue,style=dashed";
3245    return "";
3246  }
3247
3248  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3249    std::string Str;
3250    raw_string_ostream SS(Str);
3251    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3252    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3253      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3254    SS << "SU:" << SU->NodeNum;
3255    if (DFS)
3256      SS << " I:" << DFS->getNumInstrs(SU);
3257    return SS.str();
3258  }
3259  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3260    return G->getGraphNodeLabel(SU);
3261  }
3262
3263  static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3264    std::string Str("shape=Mrecord");
3265    const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3266    const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3267      static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3268    if (DFS) {
3269      Str += ",style=filled,fillcolor=\"#";
3270      Str += DOT::getColorString(DFS->getSubtreeID(N));
3271      Str += '"';
3272    }
3273    return Str;
3274  }
3275};
3276} // namespace llvm
3277#endif // NDEBUG
3278
3279/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3280/// rendered using 'dot'.
3281///
3282void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3283#ifndef NDEBUG
3284  ViewGraph(this, Name, false, Title);
3285#else
3286  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3287         << "systems with Graphviz or gv!\n";
3288#endif  // NDEBUG
3289}
3290
3291/// Out-of-line implementation with no arguments is handy for gdb.
3292void ScheduleDAGMI::viewGraph() {
3293  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3294}
3295