1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/SetOperations.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/InlineAsm.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/MC/MCAsmInfo.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/FileSystem.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetRegisterInfo.h"
49using namespace llvm;
50
51namespace {
52  struct MachineVerifier {
53
54    MachineVerifier(Pass *pass, const char *b) :
55      PASS(pass),
56      Banner(b),
57      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
58      {}
59
60    bool runOnMachineFunction(MachineFunction &MF);
61
62    Pass *const PASS;
63    const char *Banner;
64    const char *const OutFileName;
65    raw_ostream *OS;
66    const MachineFunction *MF;
67    const TargetMachine *TM;
68    const TargetInstrInfo *TII;
69    const TargetRegisterInfo *TRI;
70    const MachineRegisterInfo *MRI;
71
72    unsigned foundErrors;
73
74    typedef SmallVector<unsigned, 16> RegVector;
75    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
76    typedef DenseSet<unsigned> RegSet;
77    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
78    typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
79
80    const MachineInstr *FirstTerminator;
81    BlockSet FunctionBlocks;
82
83    BitVector regsReserved;
84    RegSet regsLive;
85    RegVector regsDefined, regsDead, regsKilled;
86    RegMaskVector regMasks;
87    RegSet regsLiveInButUnused;
88
89    SlotIndex lastIndex;
90
91    // Add Reg and any sub-registers to RV
92    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
93      RV.push_back(Reg);
94      if (TargetRegisterInfo::isPhysicalRegister(Reg))
95        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
96          RV.push_back(*SubRegs);
97    }
98
99    struct BBInfo {
100      // Is this MBB reachable from the MF entry point?
101      bool reachable;
102
103      // Vregs that must be live in because they are used without being
104      // defined. Map value is the user.
105      RegMap vregsLiveIn;
106
107      // Regs killed in MBB. They may be defined again, and will then be in both
108      // regsKilled and regsLiveOut.
109      RegSet regsKilled;
110
111      // Regs defined in MBB and live out. Note that vregs passing through may
112      // be live out without being mentioned here.
113      RegSet regsLiveOut;
114
115      // Vregs that pass through MBB untouched. This set is disjoint from
116      // regsKilled and regsLiveOut.
117      RegSet vregsPassed;
118
119      // Vregs that must pass through MBB because they are needed by a successor
120      // block. This set is disjoint from regsLiveOut.
121      RegSet vregsRequired;
122
123      // Set versions of block's predecessor and successor lists.
124      BlockSet Preds, Succs;
125
126      BBInfo() : reachable(false) {}
127
128      // Add register to vregsPassed if it belongs there. Return true if
129      // anything changed.
130      bool addPassed(unsigned Reg) {
131        if (!TargetRegisterInfo::isVirtualRegister(Reg))
132          return false;
133        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
134          return false;
135        return vregsPassed.insert(Reg).second;
136      }
137
138      // Same for a full set.
139      bool addPassed(const RegSet &RS) {
140        bool changed = false;
141        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
142          if (addPassed(*I))
143            changed = true;
144        return changed;
145      }
146
147      // Add register to vregsRequired if it belongs there. Return true if
148      // anything changed.
149      bool addRequired(unsigned Reg) {
150        if (!TargetRegisterInfo::isVirtualRegister(Reg))
151          return false;
152        if (regsLiveOut.count(Reg))
153          return false;
154        return vregsRequired.insert(Reg).second;
155      }
156
157      // Same for a full set.
158      bool addRequired(const RegSet &RS) {
159        bool changed = false;
160        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
161          if (addRequired(*I))
162            changed = true;
163        return changed;
164      }
165
166      // Same for a full map.
167      bool addRequired(const RegMap &RM) {
168        bool changed = false;
169        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
170          if (addRequired(I->first))
171            changed = true;
172        return changed;
173      }
174
175      // Live-out registers are either in regsLiveOut or vregsPassed.
176      bool isLiveOut(unsigned Reg) const {
177        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
178      }
179    };
180
181    // Extra register info per MBB.
182    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
183
184    bool isReserved(unsigned Reg) {
185      return Reg < regsReserved.size() && regsReserved.test(Reg);
186    }
187
188    bool isAllocatable(unsigned Reg) {
189      return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
190    }
191
192    // Analysis information if available
193    LiveVariables *LiveVars;
194    LiveIntervals *LiveInts;
195    LiveStacks *LiveStks;
196    SlotIndexes *Indexes;
197
198    void visitMachineFunctionBefore();
199    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
200    void visitMachineBundleBefore(const MachineInstr *MI);
201    void visitMachineInstrBefore(const MachineInstr *MI);
202    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
203    void visitMachineInstrAfter(const MachineInstr *MI);
204    void visitMachineBundleAfter(const MachineInstr *MI);
205    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
206    void visitMachineFunctionAfter();
207
208    void report(const char *msg, const MachineFunction *MF);
209    void report(const char *msg, const MachineBasicBlock *MBB);
210    void report(const char *msg, const MachineInstr *MI);
211    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
212    void report(const char *msg, const MachineFunction *MF,
213                const LiveInterval &LI);
214    void report(const char *msg, const MachineBasicBlock *MBB,
215                const LiveInterval &LI);
216    void report(const char *msg, const MachineFunction *MF,
217                const LiveRange &LR);
218    void report(const char *msg, const MachineBasicBlock *MBB,
219                const LiveRange &LR);
220
221    void verifyInlineAsm(const MachineInstr *MI);
222
223    void checkLiveness(const MachineOperand *MO, unsigned MONum);
224    void markReachable(const MachineBasicBlock *MBB);
225    void calcRegsPassed();
226    void checkPHIOps(const MachineBasicBlock *MBB);
227
228    void calcRegsRequired();
229    void verifyLiveVariables();
230    void verifyLiveIntervals();
231    void verifyLiveInterval(const LiveInterval&);
232    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
233    void verifyLiveRangeSegment(const LiveRange&,
234                                const LiveRange::const_iterator I, unsigned);
235    void verifyLiveRange(const LiveRange&, unsigned);
236
237    void verifyStackFrame();
238  };
239
240  struct MachineVerifierPass : public MachineFunctionPass {
241    static char ID; // Pass ID, replacement for typeid
242    const char *const Banner;
243
244    MachineVerifierPass(const char *b = nullptr)
245      : MachineFunctionPass(ID), Banner(b) {
246        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
247      }
248
249    void getAnalysisUsage(AnalysisUsage &AU) const override {
250      AU.setPreservesAll();
251      MachineFunctionPass::getAnalysisUsage(AU);
252    }
253
254    bool runOnMachineFunction(MachineFunction &MF) override {
255      MF.verify(this, Banner);
256      return false;
257    }
258  };
259
260}
261
262char MachineVerifierPass::ID = 0;
263INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
264                "Verify generated machine code", false, false)
265
266FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
267  return new MachineVerifierPass(Banner);
268}
269
270void MachineFunction::verify(Pass *p, const char *Banner) const {
271  MachineVerifier(p, Banner)
272    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
273}
274
275bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
276  raw_ostream *OutFile = nullptr;
277  if (OutFileName) {
278    std::string ErrorInfo;
279    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
280                                 sys::fs::F_Append | sys::fs::F_Text);
281    if (!ErrorInfo.empty()) {
282      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
283      exit(1);
284    }
285
286    OS = OutFile;
287  } else {
288    OS = &errs();
289  }
290
291  foundErrors = 0;
292
293  this->MF = &MF;
294  TM = &MF.getTarget();
295  TII = TM->getInstrInfo();
296  TRI = TM->getRegisterInfo();
297  MRI = &MF.getRegInfo();
298
299  LiveVars = nullptr;
300  LiveInts = nullptr;
301  LiveStks = nullptr;
302  Indexes = nullptr;
303  if (PASS) {
304    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
305    // We don't want to verify LiveVariables if LiveIntervals is available.
306    if (!LiveInts)
307      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
308    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
309    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
310  }
311
312  visitMachineFunctionBefore();
313  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
314       MFI!=MFE; ++MFI) {
315    visitMachineBasicBlockBefore(MFI);
316    // Keep track of the current bundle header.
317    const MachineInstr *CurBundle = nullptr;
318    // Do we expect the next instruction to be part of the same bundle?
319    bool InBundle = false;
320
321    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
322           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
323      if (MBBI->getParent() != MFI) {
324        report("Bad instruction parent pointer", MFI);
325        *OS << "Instruction: " << *MBBI;
326        continue;
327      }
328
329      // Check for consistent bundle flags.
330      if (InBundle && !MBBI->isBundledWithPred())
331        report("Missing BundledPred flag, "
332               "BundledSucc was set on predecessor", MBBI);
333      if (!InBundle && MBBI->isBundledWithPred())
334        report("BundledPred flag is set, "
335               "but BundledSucc not set on predecessor", MBBI);
336
337      // Is this a bundle header?
338      if (!MBBI->isInsideBundle()) {
339        if (CurBundle)
340          visitMachineBundleAfter(CurBundle);
341        CurBundle = MBBI;
342        visitMachineBundleBefore(CurBundle);
343      } else if (!CurBundle)
344        report("No bundle header", MBBI);
345      visitMachineInstrBefore(MBBI);
346      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
347        visitMachineOperand(&MBBI->getOperand(I), I);
348      visitMachineInstrAfter(MBBI);
349
350      // Was this the last bundled instruction?
351      InBundle = MBBI->isBundledWithSucc();
352    }
353    if (CurBundle)
354      visitMachineBundleAfter(CurBundle);
355    if (InBundle)
356      report("BundledSucc flag set on last instruction in block", &MFI->back());
357    visitMachineBasicBlockAfter(MFI);
358  }
359  visitMachineFunctionAfter();
360
361  if (OutFile)
362    delete OutFile;
363  else if (foundErrors)
364    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
365
366  // Clean up.
367  regsLive.clear();
368  regsDefined.clear();
369  regsDead.clear();
370  regsKilled.clear();
371  regMasks.clear();
372  regsLiveInButUnused.clear();
373  MBBInfoMap.clear();
374
375  return false;                 // no changes
376}
377
378void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
379  assert(MF);
380  *OS << '\n';
381  if (!foundErrors++) {
382    if (Banner)
383      *OS << "# " << Banner << '\n';
384    MF->print(*OS, Indexes);
385  }
386  *OS << "*** Bad machine code: " << msg << " ***\n"
387      << "- function:    " << MF->getName() << "\n";
388}
389
390void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
391  assert(MBB);
392  report(msg, MBB->getParent());
393  *OS << "- basic block: BB#" << MBB->getNumber()
394      << ' ' << MBB->getName()
395      << " (" << (const void*)MBB << ')';
396  if (Indexes)
397    *OS << " [" << Indexes->getMBBStartIdx(MBB)
398        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
399  *OS << '\n';
400}
401
402void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
403  assert(MI);
404  report(msg, MI->getParent());
405  *OS << "- instruction: ";
406  if (Indexes && Indexes->hasIndex(MI))
407    *OS << Indexes->getInstructionIndex(MI) << '\t';
408  MI->print(*OS, TM);
409}
410
411void MachineVerifier::report(const char *msg,
412                             const MachineOperand *MO, unsigned MONum) {
413  assert(MO);
414  report(msg, MO->getParent());
415  *OS << "- operand " << MONum << ":   ";
416  MO->print(*OS, TM);
417  *OS << "\n";
418}
419
420void MachineVerifier::report(const char *msg, const MachineFunction *MF,
421                             const LiveInterval &LI) {
422  report(msg, MF);
423  *OS << "- interval:    " << LI << '\n';
424}
425
426void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
427                             const LiveInterval &LI) {
428  report(msg, MBB);
429  *OS << "- interval:    " << LI << '\n';
430}
431
432void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
433                             const LiveRange &LR) {
434  report(msg, MBB);
435  *OS << "- liverange:    " << LR << "\n";
436}
437
438void MachineVerifier::report(const char *msg, const MachineFunction *MF,
439                             const LiveRange &LR) {
440  report(msg, MF);
441  *OS << "- liverange:    " << LR << "\n";
442}
443
444void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
445  BBInfo &MInfo = MBBInfoMap[MBB];
446  if (!MInfo.reachable) {
447    MInfo.reachable = true;
448    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
449           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
450      markReachable(*SuI);
451  }
452}
453
454void MachineVerifier::visitMachineFunctionBefore() {
455  lastIndex = SlotIndex();
456  regsReserved = MRI->getReservedRegs();
457
458  // A sub-register of a reserved register is also reserved
459  for (int Reg = regsReserved.find_first(); Reg>=0;
460       Reg = regsReserved.find_next(Reg)) {
461    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
462      // FIXME: This should probably be:
463      // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
464      regsReserved.set(*SubRegs);
465    }
466  }
467
468  markReachable(&MF->front());
469
470  // Build a set of the basic blocks in the function.
471  FunctionBlocks.clear();
472  for (const auto &MBB : *MF) {
473    FunctionBlocks.insert(&MBB);
474    BBInfo &MInfo = MBBInfoMap[&MBB];
475
476    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
477    if (MInfo.Preds.size() != MBB.pred_size())
478      report("MBB has duplicate entries in its predecessor list.", &MBB);
479
480    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
481    if (MInfo.Succs.size() != MBB.succ_size())
482      report("MBB has duplicate entries in its successor list.", &MBB);
483  }
484
485  // Check that the register use lists are sane.
486  MRI->verifyUseLists();
487
488  verifyStackFrame();
489}
490
491// Does iterator point to a and b as the first two elements?
492static bool matchPair(MachineBasicBlock::const_succ_iterator i,
493                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
494  if (*i == a)
495    return *++i == b;
496  if (*i == b)
497    return *++i == a;
498  return false;
499}
500
501void
502MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
503  FirstTerminator = nullptr;
504
505  if (MRI->isSSA()) {
506    // If this block has allocatable physical registers live-in, check that
507    // it is an entry block or landing pad.
508    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
509           LE = MBB->livein_end();
510         LI != LE; ++LI) {
511      unsigned reg = *LI;
512      if (isAllocatable(reg) && !MBB->isLandingPad() &&
513          MBB != MBB->getParent()->begin()) {
514        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
515      }
516    }
517  }
518
519  // Count the number of landing pad successors.
520  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
521  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
522       E = MBB->succ_end(); I != E; ++I) {
523    if ((*I)->isLandingPad())
524      LandingPadSuccs.insert(*I);
525    if (!FunctionBlocks.count(*I))
526      report("MBB has successor that isn't part of the function.", MBB);
527    if (!MBBInfoMap[*I].Preds.count(MBB)) {
528      report("Inconsistent CFG", MBB);
529      *OS << "MBB is not in the predecessor list of the successor BB#"
530          << (*I)->getNumber() << ".\n";
531    }
532  }
533
534  // Check the predecessor list.
535  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
536       E = MBB->pred_end(); I != E; ++I) {
537    if (!FunctionBlocks.count(*I))
538      report("MBB has predecessor that isn't part of the function.", MBB);
539    if (!MBBInfoMap[*I].Succs.count(MBB)) {
540      report("Inconsistent CFG", MBB);
541      *OS << "MBB is not in the successor list of the predecessor BB#"
542          << (*I)->getNumber() << ".\n";
543    }
544  }
545
546  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
547  const BasicBlock *BB = MBB->getBasicBlock();
548  if (LandingPadSuccs.size() > 1 &&
549      !(AsmInfo &&
550        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
551        BB && isa<SwitchInst>(BB->getTerminator())))
552    report("MBB has more than one landing pad successor", MBB);
553
554  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
555  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
556  SmallVector<MachineOperand, 4> Cond;
557  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
558                          TBB, FBB, Cond)) {
559    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
560    // check whether its answers match up with reality.
561    if (!TBB && !FBB) {
562      // Block falls through to its successor.
563      MachineFunction::const_iterator MBBI = MBB;
564      ++MBBI;
565      if (MBBI == MF->end()) {
566        // It's possible that the block legitimately ends with a noreturn
567        // call or an unreachable, in which case it won't actually fall
568        // out the bottom of the function.
569      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
570        // It's possible that the block legitimately ends with a noreturn
571        // call or an unreachable, in which case it won't actuall fall
572        // out of the block.
573      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
574        report("MBB exits via unconditional fall-through but doesn't have "
575               "exactly one CFG successor!", MBB);
576      } else if (!MBB->isSuccessor(MBBI)) {
577        report("MBB exits via unconditional fall-through but its successor "
578               "differs from its CFG successor!", MBB);
579      }
580      if (!MBB->empty() && MBB->back().isBarrier() &&
581          !TII->isPredicated(&MBB->back())) {
582        report("MBB exits via unconditional fall-through but ends with a "
583               "barrier instruction!", MBB);
584      }
585      if (!Cond.empty()) {
586        report("MBB exits via unconditional fall-through but has a condition!",
587               MBB);
588      }
589    } else if (TBB && !FBB && Cond.empty()) {
590      // Block unconditionally branches somewhere.
591      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
592        report("MBB exits via unconditional branch but doesn't have "
593               "exactly one CFG successor!", MBB);
594      } else if (!MBB->isSuccessor(TBB)) {
595        report("MBB exits via unconditional branch but the CFG "
596               "successor doesn't match the actual successor!", MBB);
597      }
598      if (MBB->empty()) {
599        report("MBB exits via unconditional branch but doesn't contain "
600               "any instructions!", MBB);
601      } else if (!MBB->back().isBarrier()) {
602        report("MBB exits via unconditional branch but doesn't end with a "
603               "barrier instruction!", MBB);
604      } else if (!MBB->back().isTerminator()) {
605        report("MBB exits via unconditional branch but the branch isn't a "
606               "terminator instruction!", MBB);
607      }
608    } else if (TBB && !FBB && !Cond.empty()) {
609      // Block conditionally branches somewhere, otherwise falls through.
610      MachineFunction::const_iterator MBBI = MBB;
611      ++MBBI;
612      if (MBBI == MF->end()) {
613        report("MBB conditionally falls through out of function!", MBB);
614      } else if (MBB->succ_size() == 1) {
615        // A conditional branch with only one successor is weird, but allowed.
616        if (&*MBBI != TBB)
617          report("MBB exits via conditional branch/fall-through but only has "
618                 "one CFG successor!", MBB);
619        else if (TBB != *MBB->succ_begin())
620          report("MBB exits via conditional branch/fall-through but the CFG "
621                 "successor don't match the actual successor!", MBB);
622      } else if (MBB->succ_size() != 2) {
623        report("MBB exits via conditional branch/fall-through but doesn't have "
624               "exactly two CFG successors!", MBB);
625      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
626        report("MBB exits via conditional branch/fall-through but the CFG "
627               "successors don't match the actual successors!", MBB);
628      }
629      if (MBB->empty()) {
630        report("MBB exits via conditional branch/fall-through but doesn't "
631               "contain any instructions!", MBB);
632      } else if (MBB->back().isBarrier()) {
633        report("MBB exits via conditional branch/fall-through but ends with a "
634               "barrier instruction!", MBB);
635      } else if (!MBB->back().isTerminator()) {
636        report("MBB exits via conditional branch/fall-through but the branch "
637               "isn't a terminator instruction!", MBB);
638      }
639    } else if (TBB && FBB) {
640      // Block conditionally branches somewhere, otherwise branches
641      // somewhere else.
642      if (MBB->succ_size() == 1) {
643        // A conditional branch with only one successor is weird, but allowed.
644        if (FBB != TBB)
645          report("MBB exits via conditional branch/branch through but only has "
646                 "one CFG successor!", MBB);
647        else if (TBB != *MBB->succ_begin())
648          report("MBB exits via conditional branch/branch through but the CFG "
649                 "successor don't match the actual successor!", MBB);
650      } else if (MBB->succ_size() != 2) {
651        report("MBB exits via conditional branch/branch but doesn't have "
652               "exactly two CFG successors!", MBB);
653      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
654        report("MBB exits via conditional branch/branch but the CFG "
655               "successors don't match the actual successors!", MBB);
656      }
657      if (MBB->empty()) {
658        report("MBB exits via conditional branch/branch but doesn't "
659               "contain any instructions!", MBB);
660      } else if (!MBB->back().isBarrier()) {
661        report("MBB exits via conditional branch/branch but doesn't end with a "
662               "barrier instruction!", MBB);
663      } else if (!MBB->back().isTerminator()) {
664        report("MBB exits via conditional branch/branch but the branch "
665               "isn't a terminator instruction!", MBB);
666      }
667      if (Cond.empty()) {
668        report("MBB exits via conditinal branch/branch but there's no "
669               "condition!", MBB);
670      }
671    } else {
672      report("AnalyzeBranch returned invalid data!", MBB);
673    }
674  }
675
676  regsLive.clear();
677  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
678         E = MBB->livein_end(); I != E; ++I) {
679    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
680      report("MBB live-in list contains non-physical register", MBB);
681      continue;
682    }
683    for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
684         SubRegs.isValid(); ++SubRegs)
685      regsLive.insert(*SubRegs);
686  }
687  regsLiveInButUnused = regsLive;
688
689  const MachineFrameInfo *MFI = MF->getFrameInfo();
690  assert(MFI && "Function has no frame info");
691  BitVector PR = MFI->getPristineRegs(MBB);
692  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
693    for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
694         SubRegs.isValid(); ++SubRegs)
695      regsLive.insert(*SubRegs);
696  }
697
698  regsKilled.clear();
699  regsDefined.clear();
700
701  if (Indexes)
702    lastIndex = Indexes->getMBBStartIdx(MBB);
703}
704
705// This function gets called for all bundle headers, including normal
706// stand-alone unbundled instructions.
707void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
708  if (Indexes && Indexes->hasIndex(MI)) {
709    SlotIndex idx = Indexes->getInstructionIndex(MI);
710    if (!(idx > lastIndex)) {
711      report("Instruction index out of order", MI);
712      *OS << "Last instruction was at " << lastIndex << '\n';
713    }
714    lastIndex = idx;
715  }
716
717  // Ensure non-terminators don't follow terminators.
718  // Ignore predicated terminators formed by if conversion.
719  // FIXME: If conversion shouldn't need to violate this rule.
720  if (MI->isTerminator() && !TII->isPredicated(MI)) {
721    if (!FirstTerminator)
722      FirstTerminator = MI;
723  } else if (FirstTerminator) {
724    report("Non-terminator instruction after the first terminator", MI);
725    *OS << "First terminator was:\t" << *FirstTerminator;
726  }
727}
728
729// The operands on an INLINEASM instruction must follow a template.
730// Verify that the flag operands make sense.
731void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
732  // The first two operands on INLINEASM are the asm string and global flags.
733  if (MI->getNumOperands() < 2) {
734    report("Too few operands on inline asm", MI);
735    return;
736  }
737  if (!MI->getOperand(0).isSymbol())
738    report("Asm string must be an external symbol", MI);
739  if (!MI->getOperand(1).isImm())
740    report("Asm flags must be an immediate", MI);
741  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
742  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
743  if (!isUInt<5>(MI->getOperand(1).getImm()))
744    report("Unknown asm flags", &MI->getOperand(1), 1);
745
746  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
747
748  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
749  unsigned NumOps;
750  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
751    const MachineOperand &MO = MI->getOperand(OpNo);
752    // There may be implicit ops after the fixed operands.
753    if (!MO.isImm())
754      break;
755    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
756  }
757
758  if (OpNo > MI->getNumOperands())
759    report("Missing operands in last group", MI);
760
761  // An optional MDNode follows the groups.
762  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
763    ++OpNo;
764
765  // All trailing operands must be implicit registers.
766  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
767    const MachineOperand &MO = MI->getOperand(OpNo);
768    if (!MO.isReg() || !MO.isImplicit())
769      report("Expected implicit register after groups", &MO, OpNo);
770  }
771}
772
773void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
774  const MCInstrDesc &MCID = MI->getDesc();
775  if (MI->getNumOperands() < MCID.getNumOperands()) {
776    report("Too few operands", MI);
777    *OS << MCID.getNumOperands() << " operands expected, but "
778        << MI->getNumOperands() << " given.\n";
779  }
780
781  // Check the tied operands.
782  if (MI->isInlineAsm())
783    verifyInlineAsm(MI);
784
785  // Check the MachineMemOperands for basic consistency.
786  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
787       E = MI->memoperands_end(); I != E; ++I) {
788    if ((*I)->isLoad() && !MI->mayLoad())
789      report("Missing mayLoad flag", MI);
790    if ((*I)->isStore() && !MI->mayStore())
791      report("Missing mayStore flag", MI);
792  }
793
794  // Debug values must not have a slot index.
795  // Other instructions must have one, unless they are inside a bundle.
796  if (LiveInts) {
797    bool mapped = !LiveInts->isNotInMIMap(MI);
798    if (MI->isDebugValue()) {
799      if (mapped)
800        report("Debug instruction has a slot index", MI);
801    } else if (MI->isInsideBundle()) {
802      if (mapped)
803        report("Instruction inside bundle has a slot index", MI);
804    } else {
805      if (!mapped)
806        report("Missing slot index", MI);
807    }
808  }
809
810  StringRef ErrorInfo;
811  if (!TII->verifyInstruction(MI, ErrorInfo))
812    report(ErrorInfo.data(), MI);
813}
814
815void
816MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
817  const MachineInstr *MI = MO->getParent();
818  const MCInstrDesc &MCID = MI->getDesc();
819
820  // The first MCID.NumDefs operands must be explicit register defines
821  if (MONum < MCID.getNumDefs()) {
822    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
823    if (!MO->isReg())
824      report("Explicit definition must be a register", MO, MONum);
825    else if (!MO->isDef() && !MCOI.isOptionalDef())
826      report("Explicit definition marked as use", MO, MONum);
827    else if (MO->isImplicit())
828      report("Explicit definition marked as implicit", MO, MONum);
829  } else if (MONum < MCID.getNumOperands()) {
830    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
831    // Don't check if it's the last operand in a variadic instruction. See,
832    // e.g., LDM_RET in the arm back end.
833    if (MO->isReg() &&
834        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
835      if (MO->isDef() && !MCOI.isOptionalDef())
836        report("Explicit operand marked as def", MO, MONum);
837      if (MO->isImplicit())
838        report("Explicit operand marked as implicit", MO, MONum);
839    }
840
841    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
842    if (TiedTo != -1) {
843      if (!MO->isReg())
844        report("Tied use must be a register", MO, MONum);
845      else if (!MO->isTied())
846        report("Operand should be tied", MO, MONum);
847      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
848        report("Tied def doesn't match MCInstrDesc", MO, MONum);
849    } else if (MO->isReg() && MO->isTied())
850      report("Explicit operand should not be tied", MO, MONum);
851  } else {
852    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
853    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
854      report("Extra explicit operand on non-variadic instruction", MO, MONum);
855  }
856
857  switch (MO->getType()) {
858  case MachineOperand::MO_Register: {
859    const unsigned Reg = MO->getReg();
860    if (!Reg)
861      return;
862    if (MRI->tracksLiveness() && !MI->isDebugValue())
863      checkLiveness(MO, MONum);
864
865    // Verify the consistency of tied operands.
866    if (MO->isTied()) {
867      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
868      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
869      if (!OtherMO.isReg())
870        report("Must be tied to a register", MO, MONum);
871      if (!OtherMO.isTied())
872        report("Missing tie flags on tied operand", MO, MONum);
873      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
874        report("Inconsistent tie links", MO, MONum);
875      if (MONum < MCID.getNumDefs()) {
876        if (OtherIdx < MCID.getNumOperands()) {
877          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
878            report("Explicit def tied to explicit use without tie constraint",
879                   MO, MONum);
880        } else {
881          if (!OtherMO.isImplicit())
882            report("Explicit def should be tied to implicit use", MO, MONum);
883        }
884      }
885    }
886
887    // Verify two-address constraints after leaving SSA form.
888    unsigned DefIdx;
889    if (!MRI->isSSA() && MO->isUse() &&
890        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
891        Reg != MI->getOperand(DefIdx).getReg())
892      report("Two-address instruction operands must be identical", MO, MONum);
893
894    // Check register classes.
895    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
896      unsigned SubIdx = MO->getSubReg();
897
898      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
899        if (SubIdx) {
900          report("Illegal subregister index for physical register", MO, MONum);
901          return;
902        }
903        if (const TargetRegisterClass *DRC =
904              TII->getRegClass(MCID, MONum, TRI, *MF)) {
905          if (!DRC->contains(Reg)) {
906            report("Illegal physical register for instruction", MO, MONum);
907            *OS << TRI->getName(Reg) << " is not a "
908                << DRC->getName() << " register.\n";
909          }
910        }
911      } else {
912        // Virtual register.
913        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
914        if (SubIdx) {
915          const TargetRegisterClass *SRC =
916            TRI->getSubClassWithSubReg(RC, SubIdx);
917          if (!SRC) {
918            report("Invalid subregister index for virtual register", MO, MONum);
919            *OS << "Register class " << RC->getName()
920                << " does not support subreg index " << SubIdx << "\n";
921            return;
922          }
923          if (RC != SRC) {
924            report("Invalid register class for subregister index", MO, MONum);
925            *OS << "Register class " << RC->getName()
926                << " does not fully support subreg index " << SubIdx << "\n";
927            return;
928          }
929        }
930        if (const TargetRegisterClass *DRC =
931              TII->getRegClass(MCID, MONum, TRI, *MF)) {
932          if (SubIdx) {
933            const TargetRegisterClass *SuperRC =
934              TRI->getLargestLegalSuperClass(RC);
935            if (!SuperRC) {
936              report("No largest legal super class exists.", MO, MONum);
937              return;
938            }
939            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
940            if (!DRC) {
941              report("No matching super-reg register class.", MO, MONum);
942              return;
943            }
944          }
945          if (!RC->hasSuperClassEq(DRC)) {
946            report("Illegal virtual register for instruction", MO, MONum);
947            *OS << "Expected a " << DRC->getName() << " register, but got a "
948                << RC->getName() << " register\n";
949          }
950        }
951      }
952    }
953    break;
954  }
955
956  case MachineOperand::MO_RegisterMask:
957    regMasks.push_back(MO->getRegMask());
958    break;
959
960  case MachineOperand::MO_MachineBasicBlock:
961    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
962      report("PHI operand is not in the CFG", MO, MONum);
963    break;
964
965  case MachineOperand::MO_FrameIndex:
966    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
967        LiveInts && !LiveInts->isNotInMIMap(MI)) {
968      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
969      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
970      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
971        report("Instruction loads from dead spill slot", MO, MONum);
972        *OS << "Live stack: " << LI << '\n';
973      }
974      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
975        report("Instruction stores to dead spill slot", MO, MONum);
976        *OS << "Live stack: " << LI << '\n';
977      }
978    }
979    break;
980
981  default:
982    break;
983  }
984}
985
986void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
987  const MachineInstr *MI = MO->getParent();
988  const unsigned Reg = MO->getReg();
989
990  // Both use and def operands can read a register.
991  if (MO->readsReg()) {
992    regsLiveInButUnused.erase(Reg);
993
994    if (MO->isKill())
995      addRegWithSubRegs(regsKilled, Reg);
996
997    // Check that LiveVars knows this kill.
998    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
999        MO->isKill()) {
1000      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1001      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1002        report("Kill missing from LiveVariables", MO, MONum);
1003    }
1004
1005    // Check LiveInts liveness and kill.
1006    if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1007      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1008      // Check the cached regunit intervals.
1009      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1010        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1011          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1012            LiveQueryResult LRQ = LR->Query(UseIdx);
1013            if (!LRQ.valueIn()) {
1014              report("No live segment at use", MO, MONum);
1015              *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1016                  << ' ' << *LR << '\n';
1017            }
1018            if (MO->isKill() && !LRQ.isKill()) {
1019              report("Live range continues after kill flag", MO, MONum);
1020              *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1021            }
1022          }
1023        }
1024      }
1025
1026      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1027        if (LiveInts->hasInterval(Reg)) {
1028          // This is a virtual register interval.
1029          const LiveInterval &LI = LiveInts->getInterval(Reg);
1030          LiveQueryResult LRQ = LI.Query(UseIdx);
1031          if (!LRQ.valueIn()) {
1032            report("No live segment at use", MO, MONum);
1033            *OS << UseIdx << " is not live in " << LI << '\n';
1034          }
1035          // Check for extra kill flags.
1036          // Note that we allow missing kill flags for now.
1037          if (MO->isKill() && !LRQ.isKill()) {
1038            report("Live range continues after kill flag", MO, MONum);
1039            *OS << "Live range: " << LI << '\n';
1040          }
1041        } else {
1042          report("Virtual register has no live interval", MO, MONum);
1043        }
1044      }
1045    }
1046
1047    // Use of a dead register.
1048    if (!regsLive.count(Reg)) {
1049      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1050        // Reserved registers may be used even when 'dead'.
1051        if (!isReserved(Reg))
1052          report("Using an undefined physical register", MO, MONum);
1053      } else if (MRI->def_empty(Reg)) {
1054        report("Reading virtual register without a def", MO, MONum);
1055      } else {
1056        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1057        // We don't know which virtual registers are live in, so only complain
1058        // if vreg was killed in this MBB. Otherwise keep track of vregs that
1059        // must be live in. PHI instructions are handled separately.
1060        if (MInfo.regsKilled.count(Reg))
1061          report("Using a killed virtual register", MO, MONum);
1062        else if (!MI->isPHI())
1063          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1064      }
1065    }
1066  }
1067
1068  if (MO->isDef()) {
1069    // Register defined.
1070    // TODO: verify that earlyclobber ops are not used.
1071    if (MO->isDead())
1072      addRegWithSubRegs(regsDead, Reg);
1073    else
1074      addRegWithSubRegs(regsDefined, Reg);
1075
1076    // Verify SSA form.
1077    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1078        std::next(MRI->def_begin(Reg)) != MRI->def_end())
1079      report("Multiple virtual register defs in SSA form", MO, MONum);
1080
1081    // Check LiveInts for a live segment, but only for virtual registers.
1082    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1083        !LiveInts->isNotInMIMap(MI)) {
1084      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1085      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1086      if (LiveInts->hasInterval(Reg)) {
1087        const LiveInterval &LI = LiveInts->getInterval(Reg);
1088        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1089          assert(VNI && "NULL valno is not allowed");
1090          if (VNI->def != DefIdx) {
1091            report("Inconsistent valno->def", MO, MONum);
1092            *OS << "Valno " << VNI->id << " is not defined at "
1093              << DefIdx << " in " << LI << '\n';
1094          }
1095        } else {
1096          report("No live segment at def", MO, MONum);
1097          *OS << DefIdx << " is not live in " << LI << '\n';
1098        }
1099        // Check that, if the dead def flag is present, LiveInts agree.
1100        if (MO->isDead()) {
1101          LiveQueryResult LRQ = LI.Query(DefIdx);
1102          if (!LRQ.isDeadDef()) {
1103            report("Live range continues after dead def flag", MO, MONum);
1104            *OS << "Live range: " << LI << '\n';
1105          }
1106        }
1107      } else {
1108        report("Virtual register has no Live interval", MO, MONum);
1109      }
1110    }
1111  }
1112}
1113
1114void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1115}
1116
1117// This function gets called after visiting all instructions in a bundle. The
1118// argument points to the bundle header.
1119// Normal stand-alone instructions are also considered 'bundles', and this
1120// function is called for all of them.
1121void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1122  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1123  set_union(MInfo.regsKilled, regsKilled);
1124  set_subtract(regsLive, regsKilled); regsKilled.clear();
1125  // Kill any masked registers.
1126  while (!regMasks.empty()) {
1127    const uint32_t *Mask = regMasks.pop_back_val();
1128    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1129      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1130          MachineOperand::clobbersPhysReg(Mask, *I))
1131        regsDead.push_back(*I);
1132  }
1133  set_subtract(regsLive, regsDead);   regsDead.clear();
1134  set_union(regsLive, regsDefined);   regsDefined.clear();
1135}
1136
1137void
1138MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1139  MBBInfoMap[MBB].regsLiveOut = regsLive;
1140  regsLive.clear();
1141
1142  if (Indexes) {
1143    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1144    if (!(stop > lastIndex)) {
1145      report("Block ends before last instruction index", MBB);
1146      *OS << "Block ends at " << stop
1147          << " last instruction was at " << lastIndex << '\n';
1148    }
1149    lastIndex = stop;
1150  }
1151}
1152
1153// Calculate the largest possible vregsPassed sets. These are the registers that
1154// can pass through an MBB live, but may not be live every time. It is assumed
1155// that all vregsPassed sets are empty before the call.
1156void MachineVerifier::calcRegsPassed() {
1157  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1158  // have any vregsPassed.
1159  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1160  for (const auto &MBB : *MF) {
1161    BBInfo &MInfo = MBBInfoMap[&MBB];
1162    if (!MInfo.reachable)
1163      continue;
1164    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1165           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1166      BBInfo &SInfo = MBBInfoMap[*SuI];
1167      if (SInfo.addPassed(MInfo.regsLiveOut))
1168        todo.insert(*SuI);
1169    }
1170  }
1171
1172  // Iteratively push vregsPassed to successors. This will converge to the same
1173  // final state regardless of DenseSet iteration order.
1174  while (!todo.empty()) {
1175    const MachineBasicBlock *MBB = *todo.begin();
1176    todo.erase(MBB);
1177    BBInfo &MInfo = MBBInfoMap[MBB];
1178    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1179           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1180      if (*SuI == MBB)
1181        continue;
1182      BBInfo &SInfo = MBBInfoMap[*SuI];
1183      if (SInfo.addPassed(MInfo.vregsPassed))
1184        todo.insert(*SuI);
1185    }
1186  }
1187}
1188
1189// Calculate the set of virtual registers that must be passed through each basic
1190// block in order to satisfy the requirements of successor blocks. This is very
1191// similar to calcRegsPassed, only backwards.
1192void MachineVerifier::calcRegsRequired() {
1193  // First push live-in regs to predecessors' vregsRequired.
1194  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1195  for (const auto &MBB : *MF) {
1196    BBInfo &MInfo = MBBInfoMap[&MBB];
1197    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1198           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1199      BBInfo &PInfo = MBBInfoMap[*PrI];
1200      if (PInfo.addRequired(MInfo.vregsLiveIn))
1201        todo.insert(*PrI);
1202    }
1203  }
1204
1205  // Iteratively push vregsRequired to predecessors. This will converge to the
1206  // same final state regardless of DenseSet iteration order.
1207  while (!todo.empty()) {
1208    const MachineBasicBlock *MBB = *todo.begin();
1209    todo.erase(MBB);
1210    BBInfo &MInfo = MBBInfoMap[MBB];
1211    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1212           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1213      if (*PrI == MBB)
1214        continue;
1215      BBInfo &SInfo = MBBInfoMap[*PrI];
1216      if (SInfo.addRequired(MInfo.vregsRequired))
1217        todo.insert(*PrI);
1218    }
1219  }
1220}
1221
1222// Check PHI instructions at the beginning of MBB. It is assumed that
1223// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1224void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1225  SmallPtrSet<const MachineBasicBlock*, 8> seen;
1226  for (const auto &BBI : *MBB) {
1227    if (!BBI.isPHI())
1228      break;
1229    seen.clear();
1230
1231    for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1232      unsigned Reg = BBI.getOperand(i).getReg();
1233      const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1234      if (!Pre->isSuccessor(MBB))
1235        continue;
1236      seen.insert(Pre);
1237      BBInfo &PrInfo = MBBInfoMap[Pre];
1238      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1239        report("PHI operand is not live-out from predecessor",
1240               &BBI.getOperand(i), i);
1241    }
1242
1243    // Did we see all predecessors?
1244    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1245           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1246      if (!seen.count(*PrI)) {
1247        report("Missing PHI operand", &BBI);
1248        *OS << "BB#" << (*PrI)->getNumber()
1249            << " is a predecessor according to the CFG.\n";
1250      }
1251    }
1252  }
1253}
1254
1255void MachineVerifier::visitMachineFunctionAfter() {
1256  calcRegsPassed();
1257
1258  for (const auto &MBB : *MF) {
1259    BBInfo &MInfo = MBBInfoMap[&MBB];
1260
1261    // Skip unreachable MBBs.
1262    if (!MInfo.reachable)
1263      continue;
1264
1265    checkPHIOps(&MBB);
1266  }
1267
1268  // Now check liveness info if available
1269  calcRegsRequired();
1270
1271  // Check for killed virtual registers that should be live out.
1272  for (const auto &MBB : *MF) {
1273    BBInfo &MInfo = MBBInfoMap[&MBB];
1274    for (RegSet::iterator
1275         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1276         ++I)
1277      if (MInfo.regsKilled.count(*I)) {
1278        report("Virtual register killed in block, but needed live out.", &MBB);
1279        *OS << "Virtual register " << PrintReg(*I)
1280            << " is used after the block.\n";
1281      }
1282  }
1283
1284  if (!MF->empty()) {
1285    BBInfo &MInfo = MBBInfoMap[&MF->front()];
1286    for (RegSet::iterator
1287         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1288         ++I)
1289      report("Virtual register def doesn't dominate all uses.",
1290             MRI->getVRegDef(*I));
1291  }
1292
1293  if (LiveVars)
1294    verifyLiveVariables();
1295  if (LiveInts)
1296    verifyLiveIntervals();
1297}
1298
1299void MachineVerifier::verifyLiveVariables() {
1300  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1301  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1302    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1303    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1304    for (const auto &MBB : *MF) {
1305      BBInfo &MInfo = MBBInfoMap[&MBB];
1306
1307      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1308      if (MInfo.vregsRequired.count(Reg)) {
1309        if (!VI.AliveBlocks.test(MBB.getNumber())) {
1310          report("LiveVariables: Block missing from AliveBlocks", &MBB);
1311          *OS << "Virtual register " << PrintReg(Reg)
1312              << " must be live through the block.\n";
1313        }
1314      } else {
1315        if (VI.AliveBlocks.test(MBB.getNumber())) {
1316          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1317          *OS << "Virtual register " << PrintReg(Reg)
1318              << " is not needed live through the block.\n";
1319        }
1320      }
1321    }
1322  }
1323}
1324
1325void MachineVerifier::verifyLiveIntervals() {
1326  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1327  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1328    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1329
1330    // Spilling and splitting may leave unused registers around. Skip them.
1331    if (MRI->reg_nodbg_empty(Reg))
1332      continue;
1333
1334    if (!LiveInts->hasInterval(Reg)) {
1335      report("Missing live interval for virtual register", MF);
1336      *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1337      continue;
1338    }
1339
1340    const LiveInterval &LI = LiveInts->getInterval(Reg);
1341    assert(Reg == LI.reg && "Invalid reg to interval mapping");
1342    verifyLiveInterval(LI);
1343  }
1344
1345  // Verify all the cached regunit intervals.
1346  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1347    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1348      verifyLiveRange(*LR, i);
1349}
1350
1351void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1352                                           const VNInfo *VNI,
1353                                           unsigned Reg) {
1354  if (VNI->isUnused())
1355    return;
1356
1357  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1358
1359  if (!DefVNI) {
1360    report("Valno not live at def and not marked unused", MF, LR);
1361    *OS << "Valno #" << VNI->id << '\n';
1362    return;
1363  }
1364
1365  if (DefVNI != VNI) {
1366    report("Live segment at def has different valno", MF, LR);
1367    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1368        << " where valno #" << DefVNI->id << " is live\n";
1369    return;
1370  }
1371
1372  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1373  if (!MBB) {
1374    report("Invalid definition index", MF, LR);
1375    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1376        << " in " << LR << '\n';
1377    return;
1378  }
1379
1380  if (VNI->isPHIDef()) {
1381    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1382      report("PHIDef value is not defined at MBB start", MBB, LR);
1383      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1384          << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1385    }
1386    return;
1387  }
1388
1389  // Non-PHI def.
1390  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1391  if (!MI) {
1392    report("No instruction at def index", MBB, LR);
1393    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1394    return;
1395  }
1396
1397  if (Reg != 0) {
1398    bool hasDef = false;
1399    bool isEarlyClobber = false;
1400    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1401      if (!MOI->isReg() || !MOI->isDef())
1402        continue;
1403      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1404        if (MOI->getReg() != Reg)
1405          continue;
1406      } else {
1407        if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1408            !TRI->hasRegUnit(MOI->getReg(), Reg))
1409          continue;
1410      }
1411      hasDef = true;
1412      if (MOI->isEarlyClobber())
1413        isEarlyClobber = true;
1414    }
1415
1416    if (!hasDef) {
1417      report("Defining instruction does not modify register", MI);
1418      *OS << "Valno #" << VNI->id << " in " << LR << '\n';
1419    }
1420
1421    // Early clobber defs begin at USE slots, but other defs must begin at
1422    // DEF slots.
1423    if (isEarlyClobber) {
1424      if (!VNI->def.isEarlyClobber()) {
1425        report("Early clobber def must be at an early-clobber slot", MBB, LR);
1426        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1427      }
1428    } else if (!VNI->def.isRegister()) {
1429      report("Non-PHI, non-early clobber def must be at a register slot",
1430             MBB, LR);
1431      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1432    }
1433  }
1434}
1435
1436void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1437                                             const LiveRange::const_iterator I,
1438                                             unsigned Reg) {
1439  const LiveRange::Segment &S = *I;
1440  const VNInfo *VNI = S.valno;
1441  assert(VNI && "Live segment has no valno");
1442
1443  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1444    report("Foreign valno in live segment", MF, LR);
1445    *OS << S << " has a bad valno\n";
1446  }
1447
1448  if (VNI->isUnused()) {
1449    report("Live segment valno is marked unused", MF, LR);
1450    *OS << S << '\n';
1451  }
1452
1453  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1454  if (!MBB) {
1455    report("Bad start of live segment, no basic block", MF, LR);
1456    *OS << S << '\n';
1457    return;
1458  }
1459  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1460  if (S.start != MBBStartIdx && S.start != VNI->def) {
1461    report("Live segment must begin at MBB entry or valno def", MBB, LR);
1462    *OS << S << '\n';
1463  }
1464
1465  const MachineBasicBlock *EndMBB =
1466    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1467  if (!EndMBB) {
1468    report("Bad end of live segment, no basic block", MF, LR);
1469    *OS << S << '\n';
1470    return;
1471  }
1472
1473  // No more checks for live-out segments.
1474  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1475    return;
1476
1477  // RegUnit intervals are allowed dead phis.
1478  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1479      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1480    return;
1481
1482  // The live segment is ending inside EndMBB
1483  const MachineInstr *MI =
1484    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1485  if (!MI) {
1486    report("Live segment doesn't end at a valid instruction", EndMBB, LR);
1487    *OS << S << '\n';
1488    return;
1489  }
1490
1491  // The block slot must refer to a basic block boundary.
1492  if (S.end.isBlock()) {
1493    report("Live segment ends at B slot of an instruction", EndMBB, LR);
1494    *OS << S << '\n';
1495  }
1496
1497  if (S.end.isDead()) {
1498    // Segment ends on the dead slot.
1499    // That means there must be a dead def.
1500    if (!SlotIndex::isSameInstr(S.start, S.end)) {
1501      report("Live segment ending at dead slot spans instructions", EndMBB, LR);
1502      *OS << S << '\n';
1503    }
1504  }
1505
1506  // A live segment can only end at an early-clobber slot if it is being
1507  // redefined by an early-clobber def.
1508  if (S.end.isEarlyClobber()) {
1509    if (I+1 == LR.end() || (I+1)->start != S.end) {
1510      report("Live segment ending at early clobber slot must be "
1511             "redefined by an EC def in the same instruction", EndMBB, LR);
1512      *OS << S << '\n';
1513    }
1514  }
1515
1516  // The following checks only apply to virtual registers. Physreg liveness
1517  // is too weird to check.
1518  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1519    // A live segment can end with either a redefinition, a kill flag on a
1520    // use, or a dead flag on a def.
1521    bool hasRead = false;
1522    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1523      if (!MOI->isReg() || MOI->getReg() != Reg)
1524        continue;
1525      if (MOI->readsReg())
1526        hasRead = true;
1527    }
1528    if (!S.end.isDead()) {
1529      if (!hasRead) {
1530        report("Instruction ending live segment doesn't read the register", MI);
1531        *OS << S << " in " << LR << '\n';
1532      }
1533    }
1534  }
1535
1536  // Now check all the basic blocks in this live segment.
1537  MachineFunction::const_iterator MFI = MBB;
1538  // Is this live segment the beginning of a non-PHIDef VN?
1539  if (S.start == VNI->def && !VNI->isPHIDef()) {
1540    // Not live-in to any blocks.
1541    if (MBB == EndMBB)
1542      return;
1543    // Skip this block.
1544    ++MFI;
1545  }
1546  for (;;) {
1547    assert(LiveInts->isLiveInToMBB(LR, MFI));
1548    // We don't know how to track physregs into a landing pad.
1549    if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1550        MFI->isLandingPad()) {
1551      if (&*MFI == EndMBB)
1552        break;
1553      ++MFI;
1554      continue;
1555    }
1556
1557    // Is VNI a PHI-def in the current block?
1558    bool IsPHI = VNI->isPHIDef() &&
1559      VNI->def == LiveInts->getMBBStartIdx(MFI);
1560
1561    // Check that VNI is live-out of all predecessors.
1562    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1563         PE = MFI->pred_end(); PI != PE; ++PI) {
1564      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1565      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1566
1567      // All predecessors must have a live-out value.
1568      if (!PVNI) {
1569        report("Register not marked live out of predecessor", *PI, LR);
1570        *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1571            << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1572            << PEnd << '\n';
1573        continue;
1574      }
1575
1576      // Only PHI-defs can take different predecessor values.
1577      if (!IsPHI && PVNI != VNI) {
1578        report("Different value live out of predecessor", *PI, LR);
1579        *OS << "Valno #" << PVNI->id << " live out of BB#"
1580            << (*PI)->getNumber() << '@' << PEnd
1581            << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1582            << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1583      }
1584    }
1585    if (&*MFI == EndMBB)
1586      break;
1587    ++MFI;
1588  }
1589}
1590
1591void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
1592  for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
1593       I != E; ++I)
1594    verifyLiveRangeValue(LR, *I, Reg);
1595
1596  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1597    verifyLiveRangeSegment(LR, I, Reg);
1598}
1599
1600void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1601  verifyLiveRange(LI, LI.reg);
1602
1603  // Check the LI only has one connected component.
1604  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1605    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1606    unsigned NumComp = ConEQ.Classify(&LI);
1607    if (NumComp > 1) {
1608      report("Multiple connected components in live interval", MF, LI);
1609      for (unsigned comp = 0; comp != NumComp; ++comp) {
1610        *OS << comp << ": valnos";
1611        for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1612             E = LI.vni_end(); I!=E; ++I)
1613          if (comp == ConEQ.getEqClass(*I))
1614            *OS << ' ' << (*I)->id;
1615        *OS << '\n';
1616      }
1617    }
1618  }
1619}
1620
1621namespace {
1622  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1623  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1624  // value is zero.
1625  // We use a bool plus an integer to capture the stack state.
1626  struct StackStateOfBB {
1627    StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1628      ExitIsSetup(false) { }
1629    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1630      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1631      ExitIsSetup(ExitSetup) { }
1632    // Can be negative, which means we are setting up a frame.
1633    int EntryValue;
1634    int ExitValue;
1635    bool EntryIsSetup;
1636    bool ExitIsSetup;
1637  };
1638}
1639
1640/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1641/// by a FrameDestroy <n>, stack adjustments are identical on all
1642/// CFG edges to a merge point, and frame is destroyed at end of a return block.
1643void MachineVerifier::verifyStackFrame() {
1644  int FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1645  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1646
1647  SmallVector<StackStateOfBB, 8> SPState;
1648  SPState.resize(MF->getNumBlockIDs());
1649  SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1650
1651  // Visit the MBBs in DFS order.
1652  for (df_ext_iterator<const MachineFunction*,
1653                       SmallPtrSet<const MachineBasicBlock*, 8> >
1654       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1655       DFI != DFE; ++DFI) {
1656    const MachineBasicBlock *MBB = *DFI;
1657
1658    StackStateOfBB BBState;
1659    // Check the exit state of the DFS stack predecessor.
1660    if (DFI.getPathLength() >= 2) {
1661      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1662      assert(Reachable.count(StackPred) &&
1663             "DFS stack predecessor is already visited.\n");
1664      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1665      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1666      BBState.ExitValue = BBState.EntryValue;
1667      BBState.ExitIsSetup = BBState.EntryIsSetup;
1668    }
1669
1670    // Update stack state by checking contents of MBB.
1671    for (const auto &I : *MBB) {
1672      if (I.getOpcode() == FrameSetupOpcode) {
1673        // The first operand of a FrameOpcode should be i32.
1674        int Size = I.getOperand(0).getImm();
1675        assert(Size >= 0 &&
1676          "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1677
1678        if (BBState.ExitIsSetup)
1679          report("FrameSetup is after another FrameSetup", &I);
1680        BBState.ExitValue -= Size;
1681        BBState.ExitIsSetup = true;
1682      }
1683
1684      if (I.getOpcode() == FrameDestroyOpcode) {
1685        // The first operand of a FrameOpcode should be i32.
1686        int Size = I.getOperand(0).getImm();
1687        assert(Size >= 0 &&
1688          "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1689
1690        if (!BBState.ExitIsSetup)
1691          report("FrameDestroy is not after a FrameSetup", &I);
1692        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1693                                               BBState.ExitValue;
1694        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1695          report("FrameDestroy <n> is after FrameSetup <m>", &I);
1696          *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
1697              << AbsSPAdj << ">.\n";
1698        }
1699        BBState.ExitValue += Size;
1700        BBState.ExitIsSetup = false;
1701      }
1702    }
1703    SPState[MBB->getNumber()] = BBState;
1704
1705    // Make sure the exit state of any predecessor is consistent with the entry
1706    // state.
1707    for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1708         E = MBB->pred_end(); I != E; ++I) {
1709      if (Reachable.count(*I) &&
1710          (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1711           SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1712        report("The exit stack state of a predecessor is inconsistent.", MBB);
1713        *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1714            << SPState[(*I)->getNumber()].ExitValue << ", "
1715            << SPState[(*I)->getNumber()].ExitIsSetup
1716            << "), while BB#" << MBB->getNumber() << " has entry state ("
1717            << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1718      }
1719    }
1720
1721    // Make sure the entry state of any successor is consistent with the exit
1722    // state.
1723    for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1724         E = MBB->succ_end(); I != E; ++I) {
1725      if (Reachable.count(*I) &&
1726          (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1727           SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1728        report("The entry stack state of a successor is inconsistent.", MBB);
1729        *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1730            << SPState[(*I)->getNumber()].EntryValue << ", "
1731            << SPState[(*I)->getNumber()].EntryIsSetup
1732            << "), while BB#" << MBB->getNumber() << " has exit state ("
1733            << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1734      }
1735    }
1736
1737    // Make sure a basic block with return ends with zero stack adjustment.
1738    if (!MBB->empty() && MBB->back().isReturn()) {
1739      if (BBState.ExitIsSetup)
1740        report("A return block ends with a FrameSetup.", MBB);
1741      if (BBState.ExitValue)
1742        report("A return block ends with a nonzero stack adjustment.", MBB);
1743    }
1744  }
1745}
1746