MachineVerifier.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Pass to verify generated machine code. The following is checked:
11//
12// Operand counts: All explicit operands must be present.
13//
14// Register classes: All physical and virtual register operands must be
15// compatible with the register class required by the instruction descriptor.
16//
17// Register live intervals: Registers must be defined only once, and must be
18// defined before use.
19//
20// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21// command-line option -verify-machineinstrs, or by defining the environment
22// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23// the verifier errors.
24//===----------------------------------------------------------------------===//
25
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/DepthFirstIterator.h"
29#include "llvm/ADT/SetOperations.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/CodeGen/LiveIntervalAnalysis.h"
32#include "llvm/CodeGen/LiveStackAnalysis.h"
33#include "llvm/CodeGen/LiveVariables.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunctionPass.h"
36#include "llvm/CodeGen/MachineInstrBundle.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/IR/BasicBlock.h"
40#include "llvm/IR/InlineAsm.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Target/TargetInstrInfo.h"
47#include "llvm/Target/TargetMachine.h"
48#include "llvm/Target/TargetRegisterInfo.h"
49using namespace llvm;
50
51namespace {
52  struct MachineVerifier {
53
54    MachineVerifier(Pass *pass, const char *b) :
55      PASS(pass),
56      Banner(b),
57      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
58      {}
59
60    bool runOnMachineFunction(MachineFunction &MF);
61
62    Pass *const PASS;
63    const char *Banner;
64    const char *const OutFileName;
65    raw_ostream *OS;
66    const MachineFunction *MF;
67    const TargetMachine *TM;
68    const TargetInstrInfo *TII;
69    const TargetRegisterInfo *TRI;
70    const MachineRegisterInfo *MRI;
71
72    unsigned foundErrors;
73
74    typedef SmallVector<unsigned, 16> RegVector;
75    typedef SmallVector<const uint32_t*, 4> RegMaskVector;
76    typedef DenseSet<unsigned> RegSet;
77    typedef DenseMap<unsigned, const MachineInstr*> RegMap;
78    typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
79
80    const MachineInstr *FirstTerminator;
81    BlockSet FunctionBlocks;
82
83    BitVector regsReserved;
84    RegSet regsLive;
85    RegVector regsDefined, regsDead, regsKilled;
86    RegMaskVector regMasks;
87    RegSet regsLiveInButUnused;
88
89    SlotIndex lastIndex;
90
91    // Add Reg and any sub-registers to RV
92    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
93      RV.push_back(Reg);
94      if (TargetRegisterInfo::isPhysicalRegister(Reg))
95        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
96          RV.push_back(*SubRegs);
97    }
98
99    struct BBInfo {
100      // Is this MBB reachable from the MF entry point?
101      bool reachable;
102
103      // Vregs that must be live in because they are used without being
104      // defined. Map value is the user.
105      RegMap vregsLiveIn;
106
107      // Regs killed in MBB. They may be defined again, and will then be in both
108      // regsKilled and regsLiveOut.
109      RegSet regsKilled;
110
111      // Regs defined in MBB and live out. Note that vregs passing through may
112      // be live out without being mentioned here.
113      RegSet regsLiveOut;
114
115      // Vregs that pass through MBB untouched. This set is disjoint from
116      // regsKilled and regsLiveOut.
117      RegSet vregsPassed;
118
119      // Vregs that must pass through MBB because they are needed by a successor
120      // block. This set is disjoint from regsLiveOut.
121      RegSet vregsRequired;
122
123      // Set versions of block's predecessor and successor lists.
124      BlockSet Preds, Succs;
125
126      BBInfo() : reachable(false) {}
127
128      // Add register to vregsPassed if it belongs there. Return true if
129      // anything changed.
130      bool addPassed(unsigned Reg) {
131        if (!TargetRegisterInfo::isVirtualRegister(Reg))
132          return false;
133        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
134          return false;
135        return vregsPassed.insert(Reg).second;
136      }
137
138      // Same for a full set.
139      bool addPassed(const RegSet &RS) {
140        bool changed = false;
141        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
142          if (addPassed(*I))
143            changed = true;
144        return changed;
145      }
146
147      // Add register to vregsRequired if it belongs there. Return true if
148      // anything changed.
149      bool addRequired(unsigned Reg) {
150        if (!TargetRegisterInfo::isVirtualRegister(Reg))
151          return false;
152        if (regsLiveOut.count(Reg))
153          return false;
154        return vregsRequired.insert(Reg).second;
155      }
156
157      // Same for a full set.
158      bool addRequired(const RegSet &RS) {
159        bool changed = false;
160        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
161          if (addRequired(*I))
162            changed = true;
163        return changed;
164      }
165
166      // Same for a full map.
167      bool addRequired(const RegMap &RM) {
168        bool changed = false;
169        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
170          if (addRequired(I->first))
171            changed = true;
172        return changed;
173      }
174
175      // Live-out registers are either in regsLiveOut or vregsPassed.
176      bool isLiveOut(unsigned Reg) const {
177        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
178      }
179    };
180
181    // Extra register info per MBB.
182    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
183
184    bool isReserved(unsigned Reg) {
185      return Reg < regsReserved.size() && regsReserved.test(Reg);
186    }
187
188    bool isAllocatable(unsigned Reg) {
189      return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
190    }
191
192    // Analysis information if available
193    LiveVariables *LiveVars;
194    LiveIntervals *LiveInts;
195    LiveStacks *LiveStks;
196    SlotIndexes *Indexes;
197
198    void visitMachineFunctionBefore();
199    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
200    void visitMachineBundleBefore(const MachineInstr *MI);
201    void visitMachineInstrBefore(const MachineInstr *MI);
202    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
203    void visitMachineInstrAfter(const MachineInstr *MI);
204    void visitMachineBundleAfter(const MachineInstr *MI);
205    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
206    void visitMachineFunctionAfter();
207
208    void report(const char *msg, const MachineFunction *MF);
209    void report(const char *msg, const MachineBasicBlock *MBB);
210    void report(const char *msg, const MachineInstr *MI);
211    void report(const char *msg, const MachineOperand *MO, unsigned MONum);
212    void report(const char *msg, const MachineFunction *MF,
213                const LiveInterval &LI);
214    void report(const char *msg, const MachineBasicBlock *MBB,
215                const LiveInterval &LI);
216    void report(const char *msg, const MachineFunction *MF,
217                const LiveRange &LR);
218    void report(const char *msg, const MachineBasicBlock *MBB,
219                const LiveRange &LR);
220
221    void verifyInlineAsm(const MachineInstr *MI);
222
223    void checkLiveness(const MachineOperand *MO, unsigned MONum);
224    void markReachable(const MachineBasicBlock *MBB);
225    void calcRegsPassed();
226    void checkPHIOps(const MachineBasicBlock *MBB);
227
228    void calcRegsRequired();
229    void verifyLiveVariables();
230    void verifyLiveIntervals();
231    void verifyLiveInterval(const LiveInterval&);
232    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned);
233    void verifyLiveRangeSegment(const LiveRange&,
234                                const LiveRange::const_iterator I, unsigned);
235    void verifyLiveRange(const LiveRange&, unsigned);
236
237    void verifyStackFrame();
238  };
239
240  struct MachineVerifierPass : public MachineFunctionPass {
241    static char ID; // Pass ID, replacement for typeid
242    const char *const Banner;
243
244    MachineVerifierPass(const char *b = 0)
245      : MachineFunctionPass(ID), Banner(b) {
246        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
247      }
248
249    void getAnalysisUsage(AnalysisUsage &AU) const override {
250      AU.setPreservesAll();
251      MachineFunctionPass::getAnalysisUsage(AU);
252    }
253
254    bool runOnMachineFunction(MachineFunction &MF) override {
255      MF.verify(this, Banner);
256      return false;
257    }
258  };
259
260}
261
262char MachineVerifierPass::ID = 0;
263INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
264                "Verify generated machine code", false, false)
265
266FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
267  return new MachineVerifierPass(Banner);
268}
269
270void MachineFunction::verify(Pass *p, const char *Banner) const {
271  MachineVerifier(p, Banner)
272    .runOnMachineFunction(const_cast<MachineFunction&>(*this));
273}
274
275bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
276  raw_ostream *OutFile = 0;
277  if (OutFileName) {
278    std::string ErrorInfo;
279    OutFile = new raw_fd_ostream(OutFileName, ErrorInfo,
280                                 sys::fs::F_Append | sys::fs::F_Text);
281    if (!ErrorInfo.empty()) {
282      errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
283      exit(1);
284    }
285
286    OS = OutFile;
287  } else {
288    OS = &errs();
289  }
290
291  foundErrors = 0;
292
293  this->MF = &MF;
294  TM = &MF.getTarget();
295  TII = TM->getInstrInfo();
296  TRI = TM->getRegisterInfo();
297  MRI = &MF.getRegInfo();
298
299  LiveVars = NULL;
300  LiveInts = NULL;
301  LiveStks = NULL;
302  Indexes = NULL;
303  if (PASS) {
304    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
305    // We don't want to verify LiveVariables if LiveIntervals is available.
306    if (!LiveInts)
307      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
308    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
309    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
310  }
311
312  visitMachineFunctionBefore();
313  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
314       MFI!=MFE; ++MFI) {
315    visitMachineBasicBlockBefore(MFI);
316    // Keep track of the current bundle header.
317    const MachineInstr *CurBundle = 0;
318    // Do we expect the next instruction to be part of the same bundle?
319    bool InBundle = false;
320
321    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
322           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
323      if (MBBI->getParent() != MFI) {
324        report("Bad instruction parent pointer", MFI);
325        *OS << "Instruction: " << *MBBI;
326        continue;
327      }
328
329      // Check for consistent bundle flags.
330      if (InBundle && !MBBI->isBundledWithPred())
331        report("Missing BundledPred flag, "
332               "BundledSucc was set on predecessor", MBBI);
333      if (!InBundle && MBBI->isBundledWithPred())
334        report("BundledPred flag is set, "
335               "but BundledSucc not set on predecessor", MBBI);
336
337      // Is this a bundle header?
338      if (!MBBI->isInsideBundle()) {
339        if (CurBundle)
340          visitMachineBundleAfter(CurBundle);
341        CurBundle = MBBI;
342        visitMachineBundleBefore(CurBundle);
343      } else if (!CurBundle)
344        report("No bundle header", MBBI);
345      visitMachineInstrBefore(MBBI);
346      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
347        visitMachineOperand(&MBBI->getOperand(I), I);
348      visitMachineInstrAfter(MBBI);
349
350      // Was this the last bundled instruction?
351      InBundle = MBBI->isBundledWithSucc();
352    }
353    if (CurBundle)
354      visitMachineBundleAfter(CurBundle);
355    if (InBundle)
356      report("BundledSucc flag set on last instruction in block", &MFI->back());
357    visitMachineBasicBlockAfter(MFI);
358  }
359  visitMachineFunctionAfter();
360
361  if (OutFile)
362    delete OutFile;
363  else if (foundErrors)
364    report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
365
366  // Clean up.
367  regsLive.clear();
368  regsDefined.clear();
369  regsDead.clear();
370  regsKilled.clear();
371  regMasks.clear();
372  regsLiveInButUnused.clear();
373  MBBInfoMap.clear();
374
375  return false;                 // no changes
376}
377
378void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
379  assert(MF);
380  *OS << '\n';
381  if (!foundErrors++) {
382    if (Banner)
383      *OS << "# " << Banner << '\n';
384    MF->print(*OS, Indexes);
385  }
386  *OS << "*** Bad machine code: " << msg << " ***\n"
387      << "- function:    " << MF->getName() << "\n";
388}
389
390void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
391  assert(MBB);
392  report(msg, MBB->getParent());
393  *OS << "- basic block: BB#" << MBB->getNumber()
394      << ' ' << MBB->getName()
395      << " (" << (const void*)MBB << ')';
396  if (Indexes)
397    *OS << " [" << Indexes->getMBBStartIdx(MBB)
398        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
399  *OS << '\n';
400}
401
402void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
403  assert(MI);
404  report(msg, MI->getParent());
405  *OS << "- instruction: ";
406  if (Indexes && Indexes->hasIndex(MI))
407    *OS << Indexes->getInstructionIndex(MI) << '\t';
408  MI->print(*OS, TM);
409}
410
411void MachineVerifier::report(const char *msg,
412                             const MachineOperand *MO, unsigned MONum) {
413  assert(MO);
414  report(msg, MO->getParent());
415  *OS << "- operand " << MONum << ":   ";
416  MO->print(*OS, TM);
417  *OS << "\n";
418}
419
420void MachineVerifier::report(const char *msg, const MachineFunction *MF,
421                             const LiveInterval &LI) {
422  report(msg, MF);
423  *OS << "- interval:    " << LI << '\n';
424}
425
426void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
427                             const LiveInterval &LI) {
428  report(msg, MBB);
429  *OS << "- interval:    " << LI << '\n';
430}
431
432void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
433                             const LiveRange &LR) {
434  report(msg, MBB);
435  *OS << "- liverange:    " << LR << "\n";
436}
437
438void MachineVerifier::report(const char *msg, const MachineFunction *MF,
439                             const LiveRange &LR) {
440  report(msg, MF);
441  *OS << "- liverange:    " << LR << "\n";
442}
443
444void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
445  BBInfo &MInfo = MBBInfoMap[MBB];
446  if (!MInfo.reachable) {
447    MInfo.reachable = true;
448    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
449           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
450      markReachable(*SuI);
451  }
452}
453
454void MachineVerifier::visitMachineFunctionBefore() {
455  lastIndex = SlotIndex();
456  regsReserved = MRI->getReservedRegs();
457
458  // A sub-register of a reserved register is also reserved
459  for (int Reg = regsReserved.find_first(); Reg>=0;
460       Reg = regsReserved.find_next(Reg)) {
461    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
462      // FIXME: This should probably be:
463      // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
464      regsReserved.set(*SubRegs);
465    }
466  }
467
468  markReachable(&MF->front());
469
470  // Build a set of the basic blocks in the function.
471  FunctionBlocks.clear();
472  for (MachineFunction::const_iterator
473       I = MF->begin(), E = MF->end(); I != E; ++I) {
474    FunctionBlocks.insert(I);
475    BBInfo &MInfo = MBBInfoMap[I];
476
477    MInfo.Preds.insert(I->pred_begin(), I->pred_end());
478    if (MInfo.Preds.size() != I->pred_size())
479      report("MBB has duplicate entries in its predecessor list.", I);
480
481    MInfo.Succs.insert(I->succ_begin(), I->succ_end());
482    if (MInfo.Succs.size() != I->succ_size())
483      report("MBB has duplicate entries in its successor list.", I);
484  }
485
486  // Check that the register use lists are sane.
487  MRI->verifyUseLists();
488
489  verifyStackFrame();
490}
491
492// Does iterator point to a and b as the first two elements?
493static bool matchPair(MachineBasicBlock::const_succ_iterator i,
494                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
495  if (*i == a)
496    return *++i == b;
497  if (*i == b)
498    return *++i == a;
499  return false;
500}
501
502void
503MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
504  FirstTerminator = 0;
505
506  if (MRI->isSSA()) {
507    // If this block has allocatable physical registers live-in, check that
508    // it is an entry block or landing pad.
509    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
510           LE = MBB->livein_end();
511         LI != LE; ++LI) {
512      unsigned reg = *LI;
513      if (isAllocatable(reg) && !MBB->isLandingPad() &&
514          MBB != MBB->getParent()->begin()) {
515        report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
516      }
517    }
518  }
519
520  // Count the number of landing pad successors.
521  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
522  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
523       E = MBB->succ_end(); I != E; ++I) {
524    if ((*I)->isLandingPad())
525      LandingPadSuccs.insert(*I);
526    if (!FunctionBlocks.count(*I))
527      report("MBB has successor that isn't part of the function.", MBB);
528    if (!MBBInfoMap[*I].Preds.count(MBB)) {
529      report("Inconsistent CFG", MBB);
530      *OS << "MBB is not in the predecessor list of the successor BB#"
531          << (*I)->getNumber() << ".\n";
532    }
533  }
534
535  // Check the predecessor list.
536  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
537       E = MBB->pred_end(); I != E; ++I) {
538    if (!FunctionBlocks.count(*I))
539      report("MBB has predecessor that isn't part of the function.", MBB);
540    if (!MBBInfoMap[*I].Succs.count(MBB)) {
541      report("Inconsistent CFG", MBB);
542      *OS << "MBB is not in the successor list of the predecessor BB#"
543          << (*I)->getNumber() << ".\n";
544    }
545  }
546
547  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
548  const BasicBlock *BB = MBB->getBasicBlock();
549  if (LandingPadSuccs.size() > 1 &&
550      !(AsmInfo &&
551        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
552        BB && isa<SwitchInst>(BB->getTerminator())))
553    report("MBB has more than one landing pad successor", MBB);
554
555  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
556  MachineBasicBlock *TBB = 0, *FBB = 0;
557  SmallVector<MachineOperand, 4> Cond;
558  if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
559                          TBB, FBB, Cond)) {
560    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
561    // check whether its answers match up with reality.
562    if (!TBB && !FBB) {
563      // Block falls through to its successor.
564      MachineFunction::const_iterator MBBI = MBB;
565      ++MBBI;
566      if (MBBI == MF->end()) {
567        // It's possible that the block legitimately ends with a noreturn
568        // call or an unreachable, in which case it won't actually fall
569        // out the bottom of the function.
570      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
571        // It's possible that the block legitimately ends with a noreturn
572        // call or an unreachable, in which case it won't actuall fall
573        // out of the block.
574      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
575        report("MBB exits via unconditional fall-through but doesn't have "
576               "exactly one CFG successor!", MBB);
577      } else if (!MBB->isSuccessor(MBBI)) {
578        report("MBB exits via unconditional fall-through but its successor "
579               "differs from its CFG successor!", MBB);
580      }
581      if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
582          !TII->isPredicated(getBundleStart(&MBB->back()))) {
583        report("MBB exits via unconditional fall-through but ends with a "
584               "barrier instruction!", MBB);
585      }
586      if (!Cond.empty()) {
587        report("MBB exits via unconditional fall-through but has a condition!",
588               MBB);
589      }
590    } else if (TBB && !FBB && Cond.empty()) {
591      // Block unconditionally branches somewhere.
592      if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
593        report("MBB exits via unconditional branch but doesn't have "
594               "exactly one CFG successor!", MBB);
595      } else if (!MBB->isSuccessor(TBB)) {
596        report("MBB exits via unconditional branch but the CFG "
597               "successor doesn't match the actual successor!", MBB);
598      }
599      if (MBB->empty()) {
600        report("MBB exits via unconditional branch but doesn't contain "
601               "any instructions!", MBB);
602      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
603        report("MBB exits via unconditional branch but doesn't end with a "
604               "barrier instruction!", MBB);
605      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
606        report("MBB exits via unconditional branch but the branch isn't a "
607               "terminator instruction!", MBB);
608      }
609    } else if (TBB && !FBB && !Cond.empty()) {
610      // Block conditionally branches somewhere, otherwise falls through.
611      MachineFunction::const_iterator MBBI = MBB;
612      ++MBBI;
613      if (MBBI == MF->end()) {
614        report("MBB conditionally falls through out of function!", MBB);
615      } else if (MBB->succ_size() == 1) {
616        // A conditional branch with only one successor is weird, but allowed.
617        if (&*MBBI != TBB)
618          report("MBB exits via conditional branch/fall-through but only has "
619                 "one CFG successor!", MBB);
620        else if (TBB != *MBB->succ_begin())
621          report("MBB exits via conditional branch/fall-through but the CFG "
622                 "successor don't match the actual successor!", MBB);
623      } else if (MBB->succ_size() != 2) {
624        report("MBB exits via conditional branch/fall-through but doesn't have "
625               "exactly two CFG successors!", MBB);
626      } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
627        report("MBB exits via conditional branch/fall-through but the CFG "
628               "successors don't match the actual successors!", MBB);
629      }
630      if (MBB->empty()) {
631        report("MBB exits via conditional branch/fall-through but doesn't "
632               "contain any instructions!", MBB);
633      } else if (getBundleStart(&MBB->back())->isBarrier()) {
634        report("MBB exits via conditional branch/fall-through but ends with a "
635               "barrier instruction!", MBB);
636      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
637        report("MBB exits via conditional branch/fall-through but the branch "
638               "isn't a terminator instruction!", MBB);
639      }
640    } else if (TBB && FBB) {
641      // Block conditionally branches somewhere, otherwise branches
642      // somewhere else.
643      if (MBB->succ_size() == 1) {
644        // A conditional branch with only one successor is weird, but allowed.
645        if (FBB != TBB)
646          report("MBB exits via conditional branch/branch through but only has "
647                 "one CFG successor!", MBB);
648        else if (TBB != *MBB->succ_begin())
649          report("MBB exits via conditional branch/branch through but the CFG "
650                 "successor don't match the actual successor!", MBB);
651      } else if (MBB->succ_size() != 2) {
652        report("MBB exits via conditional branch/branch but doesn't have "
653               "exactly two CFG successors!", MBB);
654      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
655        report("MBB exits via conditional branch/branch but the CFG "
656               "successors don't match the actual successors!", MBB);
657      }
658      if (MBB->empty()) {
659        report("MBB exits via conditional branch/branch but doesn't "
660               "contain any instructions!", MBB);
661      } else if (!getBundleStart(&MBB->back())->isBarrier()) {
662        report("MBB exits via conditional branch/branch but doesn't end with a "
663               "barrier instruction!", MBB);
664      } else if (!getBundleStart(&MBB->back())->isTerminator()) {
665        report("MBB exits via conditional branch/branch but the branch "
666               "isn't a terminator instruction!", MBB);
667      }
668      if (Cond.empty()) {
669        report("MBB exits via conditinal branch/branch but there's no "
670               "condition!", MBB);
671      }
672    } else {
673      report("AnalyzeBranch returned invalid data!", MBB);
674    }
675  }
676
677  regsLive.clear();
678  for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
679         E = MBB->livein_end(); I != E; ++I) {
680    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
681      report("MBB live-in list contains non-physical register", MBB);
682      continue;
683    }
684    for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
685         SubRegs.isValid(); ++SubRegs)
686      regsLive.insert(*SubRegs);
687  }
688  regsLiveInButUnused = regsLive;
689
690  const MachineFrameInfo *MFI = MF->getFrameInfo();
691  assert(MFI && "Function has no frame info");
692  BitVector PR = MFI->getPristineRegs(MBB);
693  for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
694    for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
695         SubRegs.isValid(); ++SubRegs)
696      regsLive.insert(*SubRegs);
697  }
698
699  regsKilled.clear();
700  regsDefined.clear();
701
702  if (Indexes)
703    lastIndex = Indexes->getMBBStartIdx(MBB);
704}
705
706// This function gets called for all bundle headers, including normal
707// stand-alone unbundled instructions.
708void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
709  if (Indexes && Indexes->hasIndex(MI)) {
710    SlotIndex idx = Indexes->getInstructionIndex(MI);
711    if (!(idx > lastIndex)) {
712      report("Instruction index out of order", MI);
713      *OS << "Last instruction was at " << lastIndex << '\n';
714    }
715    lastIndex = idx;
716  }
717
718  // Ensure non-terminators don't follow terminators.
719  // Ignore predicated terminators formed by if conversion.
720  // FIXME: If conversion shouldn't need to violate this rule.
721  if (MI->isTerminator() && !TII->isPredicated(MI)) {
722    if (!FirstTerminator)
723      FirstTerminator = MI;
724  } else if (FirstTerminator) {
725    report("Non-terminator instruction after the first terminator", MI);
726    *OS << "First terminator was:\t" << *FirstTerminator;
727  }
728}
729
730// The operands on an INLINEASM instruction must follow a template.
731// Verify that the flag operands make sense.
732void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
733  // The first two operands on INLINEASM are the asm string and global flags.
734  if (MI->getNumOperands() < 2) {
735    report("Too few operands on inline asm", MI);
736    return;
737  }
738  if (!MI->getOperand(0).isSymbol())
739    report("Asm string must be an external symbol", MI);
740  if (!MI->getOperand(1).isImm())
741    report("Asm flags must be an immediate", MI);
742  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
743  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
744  if (!isUInt<5>(MI->getOperand(1).getImm()))
745    report("Unknown asm flags", &MI->getOperand(1), 1);
746
747  assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
748
749  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
750  unsigned NumOps;
751  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
752    const MachineOperand &MO = MI->getOperand(OpNo);
753    // There may be implicit ops after the fixed operands.
754    if (!MO.isImm())
755      break;
756    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
757  }
758
759  if (OpNo > MI->getNumOperands())
760    report("Missing operands in last group", MI);
761
762  // An optional MDNode follows the groups.
763  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
764    ++OpNo;
765
766  // All trailing operands must be implicit registers.
767  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
768    const MachineOperand &MO = MI->getOperand(OpNo);
769    if (!MO.isReg() || !MO.isImplicit())
770      report("Expected implicit register after groups", &MO, OpNo);
771  }
772}
773
774void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
775  const MCInstrDesc &MCID = MI->getDesc();
776  if (MI->getNumOperands() < MCID.getNumOperands()) {
777    report("Too few operands", MI);
778    *OS << MCID.getNumOperands() << " operands expected, but "
779        << MI->getNumOperands() << " given.\n";
780  }
781
782  // Check the tied operands.
783  if (MI->isInlineAsm())
784    verifyInlineAsm(MI);
785
786  // Check the MachineMemOperands for basic consistency.
787  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
788       E = MI->memoperands_end(); I != E; ++I) {
789    if ((*I)->isLoad() && !MI->mayLoad())
790      report("Missing mayLoad flag", MI);
791    if ((*I)->isStore() && !MI->mayStore())
792      report("Missing mayStore flag", MI);
793  }
794
795  // Debug values must not have a slot index.
796  // Other instructions must have one, unless they are inside a bundle.
797  if (LiveInts) {
798    bool mapped = !LiveInts->isNotInMIMap(MI);
799    if (MI->isDebugValue()) {
800      if (mapped)
801        report("Debug instruction has a slot index", MI);
802    } else if (MI->isInsideBundle()) {
803      if (mapped)
804        report("Instruction inside bundle has a slot index", MI);
805    } else {
806      if (!mapped)
807        report("Missing slot index", MI);
808    }
809  }
810
811  StringRef ErrorInfo;
812  if (!TII->verifyInstruction(MI, ErrorInfo))
813    report(ErrorInfo.data(), MI);
814}
815
816void
817MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
818  const MachineInstr *MI = MO->getParent();
819  const MCInstrDesc &MCID = MI->getDesc();
820
821  // The first MCID.NumDefs operands must be explicit register defines
822  if (MONum < MCID.getNumDefs()) {
823    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
824    if (!MO->isReg())
825      report("Explicit definition must be a register", MO, MONum);
826    else if (!MO->isDef() && !MCOI.isOptionalDef())
827      report("Explicit definition marked as use", MO, MONum);
828    else if (MO->isImplicit())
829      report("Explicit definition marked as implicit", MO, MONum);
830  } else if (MONum < MCID.getNumOperands()) {
831    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
832    // Don't check if it's the last operand in a variadic instruction. See,
833    // e.g., LDM_RET in the arm back end.
834    if (MO->isReg() &&
835        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
836      if (MO->isDef() && !MCOI.isOptionalDef())
837        report("Explicit operand marked as def", MO, MONum);
838      if (MO->isImplicit())
839        report("Explicit operand marked as implicit", MO, MONum);
840    }
841
842    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
843    if (TiedTo != -1) {
844      if (!MO->isReg())
845        report("Tied use must be a register", MO, MONum);
846      else if (!MO->isTied())
847        report("Operand should be tied", MO, MONum);
848      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
849        report("Tied def doesn't match MCInstrDesc", MO, MONum);
850    } else if (MO->isReg() && MO->isTied())
851      report("Explicit operand should not be tied", MO, MONum);
852  } else {
853    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
854    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
855      report("Extra explicit operand on non-variadic instruction", MO, MONum);
856  }
857
858  switch (MO->getType()) {
859  case MachineOperand::MO_Register: {
860    const unsigned Reg = MO->getReg();
861    if (!Reg)
862      return;
863    if (MRI->tracksLiveness() && !MI->isDebugValue())
864      checkLiveness(MO, MONum);
865
866    // Verify the consistency of tied operands.
867    if (MO->isTied()) {
868      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
869      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
870      if (!OtherMO.isReg())
871        report("Must be tied to a register", MO, MONum);
872      if (!OtherMO.isTied())
873        report("Missing tie flags on tied operand", MO, MONum);
874      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
875        report("Inconsistent tie links", MO, MONum);
876      if (MONum < MCID.getNumDefs()) {
877        if (OtherIdx < MCID.getNumOperands()) {
878          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
879            report("Explicit def tied to explicit use without tie constraint",
880                   MO, MONum);
881        } else {
882          if (!OtherMO.isImplicit())
883            report("Explicit def should be tied to implicit use", MO, MONum);
884        }
885      }
886    }
887
888    // Verify two-address constraints after leaving SSA form.
889    unsigned DefIdx;
890    if (!MRI->isSSA() && MO->isUse() &&
891        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
892        Reg != MI->getOperand(DefIdx).getReg())
893      report("Two-address instruction operands must be identical", MO, MONum);
894
895    // Check register classes.
896    if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
897      unsigned SubIdx = MO->getSubReg();
898
899      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
900        if (SubIdx) {
901          report("Illegal subregister index for physical register", MO, MONum);
902          return;
903        }
904        if (const TargetRegisterClass *DRC =
905              TII->getRegClass(MCID, MONum, TRI, *MF)) {
906          if (!DRC->contains(Reg)) {
907            report("Illegal physical register for instruction", MO, MONum);
908            *OS << TRI->getName(Reg) << " is not a "
909                << DRC->getName() << " register.\n";
910          }
911        }
912      } else {
913        // Virtual register.
914        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
915        if (SubIdx) {
916          const TargetRegisterClass *SRC =
917            TRI->getSubClassWithSubReg(RC, SubIdx);
918          if (!SRC) {
919            report("Invalid subregister index for virtual register", MO, MONum);
920            *OS << "Register class " << RC->getName()
921                << " does not support subreg index " << SubIdx << "\n";
922            return;
923          }
924          if (RC != SRC) {
925            report("Invalid register class for subregister index", MO, MONum);
926            *OS << "Register class " << RC->getName()
927                << " does not fully support subreg index " << SubIdx << "\n";
928            return;
929          }
930        }
931        if (const TargetRegisterClass *DRC =
932              TII->getRegClass(MCID, MONum, TRI, *MF)) {
933          if (SubIdx) {
934            const TargetRegisterClass *SuperRC =
935              TRI->getLargestLegalSuperClass(RC);
936            if (!SuperRC) {
937              report("No largest legal super class exists.", MO, MONum);
938              return;
939            }
940            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
941            if (!DRC) {
942              report("No matching super-reg register class.", MO, MONum);
943              return;
944            }
945          }
946          if (!RC->hasSuperClassEq(DRC)) {
947            report("Illegal virtual register for instruction", MO, MONum);
948            *OS << "Expected a " << DRC->getName() << " register, but got a "
949                << RC->getName() << " register\n";
950          }
951        }
952      }
953    }
954    break;
955  }
956
957  case MachineOperand::MO_RegisterMask:
958    regMasks.push_back(MO->getRegMask());
959    break;
960
961  case MachineOperand::MO_MachineBasicBlock:
962    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
963      report("PHI operand is not in the CFG", MO, MONum);
964    break;
965
966  case MachineOperand::MO_FrameIndex:
967    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
968        LiveInts && !LiveInts->isNotInMIMap(MI)) {
969      LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
970      SlotIndex Idx = LiveInts->getInstructionIndex(MI);
971      if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
972        report("Instruction loads from dead spill slot", MO, MONum);
973        *OS << "Live stack: " << LI << '\n';
974      }
975      if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
976        report("Instruction stores to dead spill slot", MO, MONum);
977        *OS << "Live stack: " << LI << '\n';
978      }
979    }
980    break;
981
982  default:
983    break;
984  }
985}
986
987void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
988  const MachineInstr *MI = MO->getParent();
989  const unsigned Reg = MO->getReg();
990
991  // Both use and def operands can read a register.
992  if (MO->readsReg()) {
993    regsLiveInButUnused.erase(Reg);
994
995    if (MO->isKill())
996      addRegWithSubRegs(regsKilled, Reg);
997
998    // Check that LiveVars knows this kill.
999    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1000        MO->isKill()) {
1001      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1002      if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
1003        report("Kill missing from LiveVariables", MO, MONum);
1004    }
1005
1006    // Check LiveInts liveness and kill.
1007    if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1008      SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1009      // Check the cached regunit intervals.
1010      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1011        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1012          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1013            LiveQueryResult LRQ = LR->Query(UseIdx);
1014            if (!LRQ.valueIn()) {
1015              report("No live segment at use", MO, MONum);
1016              *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1017                  << ' ' << *LR << '\n';
1018            }
1019            if (MO->isKill() && !LRQ.isKill()) {
1020              report("Live range continues after kill flag", MO, MONum);
1021              *OS << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1022            }
1023          }
1024        }
1025      }
1026
1027      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1028        if (LiveInts->hasInterval(Reg)) {
1029          // This is a virtual register interval.
1030          const LiveInterval &LI = LiveInts->getInterval(Reg);
1031          LiveQueryResult LRQ = LI.Query(UseIdx);
1032          if (!LRQ.valueIn()) {
1033            report("No live segment at use", MO, MONum);
1034            *OS << UseIdx << " is not live in " << LI << '\n';
1035          }
1036          // Check for extra kill flags.
1037          // Note that we allow missing kill flags for now.
1038          if (MO->isKill() && !LRQ.isKill()) {
1039            report("Live range continues after kill flag", MO, MONum);
1040            *OS << "Live range: " << LI << '\n';
1041          }
1042        } else {
1043          report("Virtual register has no live interval", MO, MONum);
1044        }
1045      }
1046    }
1047
1048    // Use of a dead register.
1049    if (!regsLive.count(Reg)) {
1050      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1051        // Reserved registers may be used even when 'dead'.
1052        if (!isReserved(Reg))
1053          report("Using an undefined physical register", MO, MONum);
1054      } else if (MRI->def_empty(Reg)) {
1055        report("Reading virtual register without a def", MO, MONum);
1056      } else {
1057        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1058        // We don't know which virtual registers are live in, so only complain
1059        // if vreg was killed in this MBB. Otherwise keep track of vregs that
1060        // must be live in. PHI instructions are handled separately.
1061        if (MInfo.regsKilled.count(Reg))
1062          report("Using a killed virtual register", MO, MONum);
1063        else if (!MI->isPHI())
1064          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1065      }
1066    }
1067  }
1068
1069  if (MO->isDef()) {
1070    // Register defined.
1071    // TODO: verify that earlyclobber ops are not used.
1072    if (MO->isDead())
1073      addRegWithSubRegs(regsDead, Reg);
1074    else
1075      addRegWithSubRegs(regsDefined, Reg);
1076
1077    // Verify SSA form.
1078    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1079        std::next(MRI->def_begin(Reg)) != MRI->def_end())
1080      report("Multiple virtual register defs in SSA form", MO, MONum);
1081
1082    // Check LiveInts for a live segment, but only for virtual registers.
1083    if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1084        !LiveInts->isNotInMIMap(MI)) {
1085      SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1086      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1087      if (LiveInts->hasInterval(Reg)) {
1088        const LiveInterval &LI = LiveInts->getInterval(Reg);
1089        if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1090          assert(VNI && "NULL valno is not allowed");
1091          if (VNI->def != DefIdx) {
1092            report("Inconsistent valno->def", MO, MONum);
1093            *OS << "Valno " << VNI->id << " is not defined at "
1094              << DefIdx << " in " << LI << '\n';
1095          }
1096        } else {
1097          report("No live segment at def", MO, MONum);
1098          *OS << DefIdx << " is not live in " << LI << '\n';
1099        }
1100        // Check that, if the dead def flag is present, LiveInts agree.
1101        if (MO->isDead()) {
1102          LiveQueryResult LRQ = LI.Query(DefIdx);
1103          if (!LRQ.isDeadDef()) {
1104            report("Live range continues after dead def flag", MO, MONum);
1105            *OS << "Live range: " << LI << '\n';
1106          }
1107        }
1108      } else {
1109        report("Virtual register has no Live interval", MO, MONum);
1110      }
1111    }
1112  }
1113}
1114
1115void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1116}
1117
1118// This function gets called after visiting all instructions in a bundle. The
1119// argument points to the bundle header.
1120// Normal stand-alone instructions are also considered 'bundles', and this
1121// function is called for all of them.
1122void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1123  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1124  set_union(MInfo.regsKilled, regsKilled);
1125  set_subtract(regsLive, regsKilled); regsKilled.clear();
1126  // Kill any masked registers.
1127  while (!regMasks.empty()) {
1128    const uint32_t *Mask = regMasks.pop_back_val();
1129    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1130      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1131          MachineOperand::clobbersPhysReg(Mask, *I))
1132        regsDead.push_back(*I);
1133  }
1134  set_subtract(regsLive, regsDead);   regsDead.clear();
1135  set_union(regsLive, regsDefined);   regsDefined.clear();
1136}
1137
1138void
1139MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1140  MBBInfoMap[MBB].regsLiveOut = regsLive;
1141  regsLive.clear();
1142
1143  if (Indexes) {
1144    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1145    if (!(stop > lastIndex)) {
1146      report("Block ends before last instruction index", MBB);
1147      *OS << "Block ends at " << stop
1148          << " last instruction was at " << lastIndex << '\n';
1149    }
1150    lastIndex = stop;
1151  }
1152}
1153
1154// Calculate the largest possible vregsPassed sets. These are the registers that
1155// can pass through an MBB live, but may not be live every time. It is assumed
1156// that all vregsPassed sets are empty before the call.
1157void MachineVerifier::calcRegsPassed() {
1158  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1159  // have any vregsPassed.
1160  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1161  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1162       MFI != MFE; ++MFI) {
1163    const MachineBasicBlock &MBB(*MFI);
1164    BBInfo &MInfo = MBBInfoMap[&MBB];
1165    if (!MInfo.reachable)
1166      continue;
1167    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1168           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1169      BBInfo &SInfo = MBBInfoMap[*SuI];
1170      if (SInfo.addPassed(MInfo.regsLiveOut))
1171        todo.insert(*SuI);
1172    }
1173  }
1174
1175  // Iteratively push vregsPassed to successors. This will converge to the same
1176  // final state regardless of DenseSet iteration order.
1177  while (!todo.empty()) {
1178    const MachineBasicBlock *MBB = *todo.begin();
1179    todo.erase(MBB);
1180    BBInfo &MInfo = MBBInfoMap[MBB];
1181    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1182           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1183      if (*SuI == MBB)
1184        continue;
1185      BBInfo &SInfo = MBBInfoMap[*SuI];
1186      if (SInfo.addPassed(MInfo.vregsPassed))
1187        todo.insert(*SuI);
1188    }
1189  }
1190}
1191
1192// Calculate the set of virtual registers that must be passed through each basic
1193// block in order to satisfy the requirements of successor blocks. This is very
1194// similar to calcRegsPassed, only backwards.
1195void MachineVerifier::calcRegsRequired() {
1196  // First push live-in regs to predecessors' vregsRequired.
1197  SmallPtrSet<const MachineBasicBlock*, 8> todo;
1198  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1199       MFI != MFE; ++MFI) {
1200    const MachineBasicBlock &MBB(*MFI);
1201    BBInfo &MInfo = MBBInfoMap[&MBB];
1202    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1203           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1204      BBInfo &PInfo = MBBInfoMap[*PrI];
1205      if (PInfo.addRequired(MInfo.vregsLiveIn))
1206        todo.insert(*PrI);
1207    }
1208  }
1209
1210  // Iteratively push vregsRequired to predecessors. This will converge to the
1211  // same final state regardless of DenseSet iteration order.
1212  while (!todo.empty()) {
1213    const MachineBasicBlock *MBB = *todo.begin();
1214    todo.erase(MBB);
1215    BBInfo &MInfo = MBBInfoMap[MBB];
1216    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1217           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1218      if (*PrI == MBB)
1219        continue;
1220      BBInfo &SInfo = MBBInfoMap[*PrI];
1221      if (SInfo.addRequired(MInfo.vregsRequired))
1222        todo.insert(*PrI);
1223    }
1224  }
1225}
1226
1227// Check PHI instructions at the beginning of MBB. It is assumed that
1228// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
1229void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1230  SmallPtrSet<const MachineBasicBlock*, 8> seen;
1231  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
1232       BBI != BBE && BBI->isPHI(); ++BBI) {
1233    seen.clear();
1234
1235    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
1236      unsigned Reg = BBI->getOperand(i).getReg();
1237      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
1238      if (!Pre->isSuccessor(MBB))
1239        continue;
1240      seen.insert(Pre);
1241      BBInfo &PrInfo = MBBInfoMap[Pre];
1242      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1243        report("PHI operand is not live-out from predecessor",
1244               &BBI->getOperand(i), i);
1245    }
1246
1247    // Did we see all predecessors?
1248    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1249           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1250      if (!seen.count(*PrI)) {
1251        report("Missing PHI operand", BBI);
1252        *OS << "BB#" << (*PrI)->getNumber()
1253            << " is a predecessor according to the CFG.\n";
1254      }
1255    }
1256  }
1257}
1258
1259void MachineVerifier::visitMachineFunctionAfter() {
1260  calcRegsPassed();
1261
1262  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1263       MFI != MFE; ++MFI) {
1264    BBInfo &MInfo = MBBInfoMap[MFI];
1265
1266    // Skip unreachable MBBs.
1267    if (!MInfo.reachable)
1268      continue;
1269
1270    checkPHIOps(MFI);
1271  }
1272
1273  // Now check liveness info if available
1274  calcRegsRequired();
1275
1276  // Check for killed virtual registers that should be live out.
1277  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1278       MFI != MFE; ++MFI) {
1279    BBInfo &MInfo = MBBInfoMap[MFI];
1280    for (RegSet::iterator
1281         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1282         ++I)
1283      if (MInfo.regsKilled.count(*I)) {
1284        report("Virtual register killed in block, but needed live out.", MFI);
1285        *OS << "Virtual register " << PrintReg(*I)
1286            << " is used after the block.\n";
1287      }
1288  }
1289
1290  if (!MF->empty()) {
1291    BBInfo &MInfo = MBBInfoMap[&MF->front()];
1292    for (RegSet::iterator
1293         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1294         ++I)
1295      report("Virtual register def doesn't dominate all uses.",
1296             MRI->getVRegDef(*I));
1297  }
1298
1299  if (LiveVars)
1300    verifyLiveVariables();
1301  if (LiveInts)
1302    verifyLiveIntervals();
1303}
1304
1305void MachineVerifier::verifyLiveVariables() {
1306  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1307  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1308    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1309    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1310    for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1311         MFI != MFE; ++MFI) {
1312      BBInfo &MInfo = MBBInfoMap[MFI];
1313
1314      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1315      if (MInfo.vregsRequired.count(Reg)) {
1316        if (!VI.AliveBlocks.test(MFI->getNumber())) {
1317          report("LiveVariables: Block missing from AliveBlocks", MFI);
1318          *OS << "Virtual register " << PrintReg(Reg)
1319              << " must be live through the block.\n";
1320        }
1321      } else {
1322        if (VI.AliveBlocks.test(MFI->getNumber())) {
1323          report("LiveVariables: Block should not be in AliveBlocks", MFI);
1324          *OS << "Virtual register " << PrintReg(Reg)
1325              << " is not needed live through the block.\n";
1326        }
1327      }
1328    }
1329  }
1330}
1331
1332void MachineVerifier::verifyLiveIntervals() {
1333  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1334  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1335    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1336
1337    // Spilling and splitting may leave unused registers around. Skip them.
1338    if (MRI->reg_nodbg_empty(Reg))
1339      continue;
1340
1341    if (!LiveInts->hasInterval(Reg)) {
1342      report("Missing live interval for virtual register", MF);
1343      *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1344      continue;
1345    }
1346
1347    const LiveInterval &LI = LiveInts->getInterval(Reg);
1348    assert(Reg == LI.reg && "Invalid reg to interval mapping");
1349    verifyLiveInterval(LI);
1350  }
1351
1352  // Verify all the cached regunit intervals.
1353  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1354    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1355      verifyLiveRange(*LR, i);
1356}
1357
1358void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1359                                           const VNInfo *VNI,
1360                                           unsigned Reg) {
1361  if (VNI->isUnused())
1362    return;
1363
1364  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1365
1366  if (!DefVNI) {
1367    report("Valno not live at def and not marked unused", MF, LR);
1368    *OS << "Valno #" << VNI->id << '\n';
1369    return;
1370  }
1371
1372  if (DefVNI != VNI) {
1373    report("Live segment at def has different valno", MF, LR);
1374    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1375        << " where valno #" << DefVNI->id << " is live\n";
1376    return;
1377  }
1378
1379  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1380  if (!MBB) {
1381    report("Invalid definition index", MF, LR);
1382    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1383        << " in " << LR << '\n';
1384    return;
1385  }
1386
1387  if (VNI->isPHIDef()) {
1388    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1389      report("PHIDef value is not defined at MBB start", MBB, LR);
1390      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1391          << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1392    }
1393    return;
1394  }
1395
1396  // Non-PHI def.
1397  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1398  if (!MI) {
1399    report("No instruction at def index", MBB, LR);
1400    *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1401    return;
1402  }
1403
1404  if (Reg != 0) {
1405    bool hasDef = false;
1406    bool isEarlyClobber = false;
1407    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1408      if (!MOI->isReg() || !MOI->isDef())
1409        continue;
1410      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1411        if (MOI->getReg() != Reg)
1412          continue;
1413      } else {
1414        if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1415            !TRI->hasRegUnit(MOI->getReg(), Reg))
1416          continue;
1417      }
1418      hasDef = true;
1419      if (MOI->isEarlyClobber())
1420        isEarlyClobber = true;
1421    }
1422
1423    if (!hasDef) {
1424      report("Defining instruction does not modify register", MI);
1425      *OS << "Valno #" << VNI->id << " in " << LR << '\n';
1426    }
1427
1428    // Early clobber defs begin at USE slots, but other defs must begin at
1429    // DEF slots.
1430    if (isEarlyClobber) {
1431      if (!VNI->def.isEarlyClobber()) {
1432        report("Early clobber def must be at an early-clobber slot", MBB, LR);
1433        *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1434      }
1435    } else if (!VNI->def.isRegister()) {
1436      report("Non-PHI, non-early clobber def must be at a register slot",
1437             MBB, LR);
1438      *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1439    }
1440  }
1441}
1442
1443void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1444                                             const LiveRange::const_iterator I,
1445                                             unsigned Reg) {
1446  const LiveRange::Segment &S = *I;
1447  const VNInfo *VNI = S.valno;
1448  assert(VNI && "Live segment has no valno");
1449
1450  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1451    report("Foreign valno in live segment", MF, LR);
1452    *OS << S << " has a bad valno\n";
1453  }
1454
1455  if (VNI->isUnused()) {
1456    report("Live segment valno is marked unused", MF, LR);
1457    *OS << S << '\n';
1458  }
1459
1460  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1461  if (!MBB) {
1462    report("Bad start of live segment, no basic block", MF, LR);
1463    *OS << S << '\n';
1464    return;
1465  }
1466  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1467  if (S.start != MBBStartIdx && S.start != VNI->def) {
1468    report("Live segment must begin at MBB entry or valno def", MBB, LR);
1469    *OS << S << '\n';
1470  }
1471
1472  const MachineBasicBlock *EndMBB =
1473    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1474  if (!EndMBB) {
1475    report("Bad end of live segment, no basic block", MF, LR);
1476    *OS << S << '\n';
1477    return;
1478  }
1479
1480  // No more checks for live-out segments.
1481  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1482    return;
1483
1484  // RegUnit intervals are allowed dead phis.
1485  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1486      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1487    return;
1488
1489  // The live segment is ending inside EndMBB
1490  const MachineInstr *MI =
1491    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1492  if (!MI) {
1493    report("Live segment doesn't end at a valid instruction", EndMBB, LR);
1494    *OS << S << '\n';
1495    return;
1496  }
1497
1498  // The block slot must refer to a basic block boundary.
1499  if (S.end.isBlock()) {
1500    report("Live segment ends at B slot of an instruction", EndMBB, LR);
1501    *OS << S << '\n';
1502  }
1503
1504  if (S.end.isDead()) {
1505    // Segment ends on the dead slot.
1506    // That means there must be a dead def.
1507    if (!SlotIndex::isSameInstr(S.start, S.end)) {
1508      report("Live segment ending at dead slot spans instructions", EndMBB, LR);
1509      *OS << S << '\n';
1510    }
1511  }
1512
1513  // A live segment can only end at an early-clobber slot if it is being
1514  // redefined by an early-clobber def.
1515  if (S.end.isEarlyClobber()) {
1516    if (I+1 == LR.end() || (I+1)->start != S.end) {
1517      report("Live segment ending at early clobber slot must be "
1518             "redefined by an EC def in the same instruction", EndMBB, LR);
1519      *OS << S << '\n';
1520    }
1521  }
1522
1523  // The following checks only apply to virtual registers. Physreg liveness
1524  // is too weird to check.
1525  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1526    // A live segment can end with either a redefinition, a kill flag on a
1527    // use, or a dead flag on a def.
1528    bool hasRead = false;
1529    for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1530      if (!MOI->isReg() || MOI->getReg() != Reg)
1531        continue;
1532      if (MOI->readsReg())
1533        hasRead = true;
1534    }
1535    if (!S.end.isDead()) {
1536      if (!hasRead) {
1537        report("Instruction ending live segment doesn't read the register", MI);
1538        *OS << S << " in " << LR << '\n';
1539      }
1540    }
1541  }
1542
1543  // Now check all the basic blocks in this live segment.
1544  MachineFunction::const_iterator MFI = MBB;
1545  // Is this live segment the beginning of a non-PHIDef VN?
1546  if (S.start == VNI->def && !VNI->isPHIDef()) {
1547    // Not live-in to any blocks.
1548    if (MBB == EndMBB)
1549      return;
1550    // Skip this block.
1551    ++MFI;
1552  }
1553  for (;;) {
1554    assert(LiveInts->isLiveInToMBB(LR, MFI));
1555    // We don't know how to track physregs into a landing pad.
1556    if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1557        MFI->isLandingPad()) {
1558      if (&*MFI == EndMBB)
1559        break;
1560      ++MFI;
1561      continue;
1562    }
1563
1564    // Is VNI a PHI-def in the current block?
1565    bool IsPHI = VNI->isPHIDef() &&
1566      VNI->def == LiveInts->getMBBStartIdx(MFI);
1567
1568    // Check that VNI is live-out of all predecessors.
1569    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1570         PE = MFI->pred_end(); PI != PE; ++PI) {
1571      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1572      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1573
1574      // All predecessors must have a live-out value.
1575      if (!PVNI) {
1576        report("Register not marked live out of predecessor", *PI, LR);
1577        *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1578            << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1579            << PEnd << '\n';
1580        continue;
1581      }
1582
1583      // Only PHI-defs can take different predecessor values.
1584      if (!IsPHI && PVNI != VNI) {
1585        report("Different value live out of predecessor", *PI, LR);
1586        *OS << "Valno #" << PVNI->id << " live out of BB#"
1587            << (*PI)->getNumber() << '@' << PEnd
1588            << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1589            << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1590      }
1591    }
1592    if (&*MFI == EndMBB)
1593      break;
1594    ++MFI;
1595  }
1596}
1597
1598void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg) {
1599  for (LiveRange::const_vni_iterator I = LR.vni_begin(), E = LR.vni_end();
1600       I != E; ++I)
1601    verifyLiveRangeValue(LR, *I, Reg);
1602
1603  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1604    verifyLiveRangeSegment(LR, I, Reg);
1605}
1606
1607void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1608  verifyLiveRange(LI, LI.reg);
1609
1610  // Check the LI only has one connected component.
1611  if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1612    ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1613    unsigned NumComp = ConEQ.Classify(&LI);
1614    if (NumComp > 1) {
1615      report("Multiple connected components in live interval", MF, LI);
1616      for (unsigned comp = 0; comp != NumComp; ++comp) {
1617        *OS << comp << ": valnos";
1618        for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1619             E = LI.vni_end(); I!=E; ++I)
1620          if (comp == ConEQ.getEqClass(*I))
1621            *OS << ' ' << (*I)->id;
1622        *OS << '\n';
1623      }
1624    }
1625  }
1626}
1627
1628namespace {
1629  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1630  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1631  // value is zero.
1632  // We use a bool plus an integer to capture the stack state.
1633  struct StackStateOfBB {
1634    StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1635      ExitIsSetup(false) { }
1636    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1637      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1638      ExitIsSetup(ExitSetup) { }
1639    // Can be negative, which means we are setting up a frame.
1640    int EntryValue;
1641    int ExitValue;
1642    bool EntryIsSetup;
1643    bool ExitIsSetup;
1644  };
1645}
1646
1647/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1648/// by a FrameDestroy <n>, stack adjustments are identical on all
1649/// CFG edges to a merge point, and frame is destroyed at end of a return block.
1650void MachineVerifier::verifyStackFrame() {
1651  int FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
1652  int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1653
1654  SmallVector<StackStateOfBB, 8> SPState;
1655  SPState.resize(MF->getNumBlockIDs());
1656  SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1657
1658  // Visit the MBBs in DFS order.
1659  for (df_ext_iterator<const MachineFunction*,
1660                       SmallPtrSet<const MachineBasicBlock*, 8> >
1661       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1662       DFI != DFE; ++DFI) {
1663    const MachineBasicBlock *MBB = *DFI;
1664
1665    StackStateOfBB BBState;
1666    // Check the exit state of the DFS stack predecessor.
1667    if (DFI.getPathLength() >= 2) {
1668      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1669      assert(Reachable.count(StackPred) &&
1670             "DFS stack predecessor is already visited.\n");
1671      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1672      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1673      BBState.ExitValue = BBState.EntryValue;
1674      BBState.ExitIsSetup = BBState.EntryIsSetup;
1675    }
1676
1677    // Update stack state by checking contents of MBB.
1678    for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
1679         I != E; ++I) {
1680      if (I->getOpcode() == FrameSetupOpcode) {
1681        // The first operand of a FrameOpcode should be i32.
1682        int Size = I->getOperand(0).getImm();
1683        assert(Size >= 0 &&
1684          "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1685
1686        if (BBState.ExitIsSetup)
1687          report("FrameSetup is after another FrameSetup", I);
1688        BBState.ExitValue -= Size;
1689        BBState.ExitIsSetup = true;
1690      }
1691
1692      if (I->getOpcode() == FrameDestroyOpcode) {
1693        // The first operand of a FrameOpcode should be i32.
1694        int Size = I->getOperand(0).getImm();
1695        assert(Size >= 0 &&
1696          "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1697
1698        if (!BBState.ExitIsSetup)
1699          report("FrameDestroy is not after a FrameSetup", I);
1700        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1701                                               BBState.ExitValue;
1702        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1703          report("FrameDestroy <n> is after FrameSetup <m>", I);
1704          *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
1705              << AbsSPAdj << ">.\n";
1706        }
1707        BBState.ExitValue += Size;
1708        BBState.ExitIsSetup = false;
1709      }
1710    }
1711    SPState[MBB->getNumber()] = BBState;
1712
1713    // Make sure the exit state of any predecessor is consistent with the entry
1714    // state.
1715    for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1716         E = MBB->pred_end(); I != E; ++I) {
1717      if (Reachable.count(*I) &&
1718          (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1719           SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1720        report("The exit stack state of a predecessor is inconsistent.", MBB);
1721        *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1722            << SPState[(*I)->getNumber()].ExitValue << ", "
1723            << SPState[(*I)->getNumber()].ExitIsSetup
1724            << "), while BB#" << MBB->getNumber() << " has entry state ("
1725            << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1726      }
1727    }
1728
1729    // Make sure the entry state of any successor is consistent with the exit
1730    // state.
1731    for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1732         E = MBB->succ_end(); I != E; ++I) {
1733      if (Reachable.count(*I) &&
1734          (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1735           SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1736        report("The entry stack state of a successor is inconsistent.", MBB);
1737        *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1738            << SPState[(*I)->getNumber()].EntryValue << ", "
1739            << SPState[(*I)->getNumber()].EntryIsSetup
1740            << "), while BB#" << MBB->getNumber() << " has exit state ("
1741            << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1742      }
1743    }
1744
1745    // Make sure a basic block with return ends with zero stack adjustment.
1746    if (!MBB->empty() && MBB->back().isReturn()) {
1747      if (BBState.ExitIsSetup)
1748        report("A return block ends with a FrameSetup.", MBB);
1749      if (BBState.ExitValue)
1750        report("A return block ends with a nonzero stack adjustment.", MBB);
1751    }
1752  }
1753}
1754