1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/CodeGen/Passes.h"
17#include "PHIEliminationUtils.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/LiveIntervalAnalysis.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineLoopInfo.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/IR/Function.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/Compiler.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include <algorithm>
35using namespace llvm;
36
37#define DEBUG_TYPE "phielim"
38
39static cl::opt<bool>
40DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
41                     cl::Hidden, cl::desc("Disable critical edge splitting "
42                                          "during PHI elimination"));
43
44static cl::opt<bool>
45SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
46                      cl::Hidden, cl::desc("Split all critical edges during "
47                                           "PHI elimination"));
48
49namespace {
50  class PHIElimination : public MachineFunctionPass {
51    MachineRegisterInfo *MRI; // Machine register information
52    LiveVariables *LV;
53    LiveIntervals *LIS;
54
55  public:
56    static char ID; // Pass identification, replacement for typeid
57    PHIElimination() : MachineFunctionPass(ID) {
58      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
59    }
60
61    bool runOnMachineFunction(MachineFunction &Fn) override;
62    void getAnalysisUsage(AnalysisUsage &AU) const override;
63
64  private:
65    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
66    /// in predecessor basic blocks.
67    ///
68    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
69    void LowerPHINode(MachineBasicBlock &MBB,
70                      MachineBasicBlock::iterator LastPHIIt);
71
72    /// analyzePHINodes - Gather information about the PHI nodes in
73    /// here. In particular, we want to map the number of uses of a virtual
74    /// register which is used in a PHI node. We map that to the BB the
75    /// vreg is coming from. This is used later to determine when the vreg
76    /// is killed in the BB.
77    ///
78    void analyzePHINodes(const MachineFunction& Fn);
79
80    /// Split critical edges where necessary for good coalescer performance.
81    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
82                       MachineLoopInfo *MLI);
83
84    // These functions are temporary abstractions around LiveVariables and
85    // LiveIntervals, so they can go away when LiveVariables does.
86    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
87    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
88
89    typedef std::pair<unsigned, unsigned> BBVRegPair;
90    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
91
92    VRegPHIUse VRegPHIUseCount;
93
94    // Defs of PHI sources which are implicit_def.
95    SmallPtrSet<MachineInstr*, 4> ImpDefs;
96
97    // Map reusable lowered PHI node -> incoming join register.
98    typedef DenseMap<MachineInstr*, unsigned,
99                     MachineInstrExpressionTrait> LoweredPHIMap;
100    LoweredPHIMap LoweredPHIs;
101  };
102}
103
104STATISTIC(NumLowered, "Number of phis lowered");
105STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
106STATISTIC(NumReused, "Number of reused lowered phis");
107
108char PHIElimination::ID = 0;
109char& llvm::PHIEliminationID = PHIElimination::ID;
110
111INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
112                      "Eliminate PHI nodes for register allocation",
113                      false, false)
114INITIALIZE_PASS_DEPENDENCY(LiveVariables)
115INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
116                    "Eliminate PHI nodes for register allocation", false, false)
117
118void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
119  AU.addPreserved<LiveVariables>();
120  AU.addPreserved<SlotIndexes>();
121  AU.addPreserved<LiveIntervals>();
122  AU.addPreserved<MachineDominatorTree>();
123  AU.addPreserved<MachineLoopInfo>();
124  MachineFunctionPass::getAnalysisUsage(AU);
125}
126
127bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
128  MRI = &MF.getRegInfo();
129  LV = getAnalysisIfAvailable<LiveVariables>();
130  LIS = getAnalysisIfAvailable<LiveIntervals>();
131
132  bool Changed = false;
133
134  // This pass takes the function out of SSA form.
135  MRI->leaveSSA();
136
137  // Split critical edges to help the coalescer. This does not yet support
138  // updating LiveIntervals, so we disable it.
139  if (!DisableEdgeSplitting && (LV || LIS)) {
140    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
141    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
142      Changed |= SplitPHIEdges(MF, *I, MLI);
143  }
144
145  // Populate VRegPHIUseCount
146  analyzePHINodes(MF);
147
148  // Eliminate PHI instructions by inserting copies into predecessor blocks.
149  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
150    Changed |= EliminatePHINodes(MF, *I);
151
152  // Remove dead IMPLICIT_DEF instructions.
153  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
154         E = ImpDefs.end(); I != E; ++I) {
155    MachineInstr *DefMI = *I;
156    unsigned DefReg = DefMI->getOperand(0).getReg();
157    if (MRI->use_nodbg_empty(DefReg)) {
158      if (LIS)
159        LIS->RemoveMachineInstrFromMaps(DefMI);
160      DefMI->eraseFromParent();
161    }
162  }
163
164  // Clean up the lowered PHI instructions.
165  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
166       I != E; ++I) {
167    if (LIS)
168      LIS->RemoveMachineInstrFromMaps(I->first);
169    MF.DeleteMachineInstr(I->first);
170  }
171
172  LoweredPHIs.clear();
173  ImpDefs.clear();
174  VRegPHIUseCount.clear();
175
176  return Changed;
177}
178
179/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
180/// predecessor basic blocks.
181///
182bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
183                                             MachineBasicBlock &MBB) {
184  if (MBB.empty() || !MBB.front().isPHI())
185    return false;   // Quick exit for basic blocks without PHIs.
186
187  // Get an iterator to the first instruction after the last PHI node (this may
188  // also be the end of the basic block).
189  MachineBasicBlock::iterator LastPHIIt =
190    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
191
192  while (MBB.front().isPHI())
193    LowerPHINode(MBB, LastPHIIt);
194
195  return true;
196}
197
198/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
199/// This includes registers with no defs.
200static bool isImplicitlyDefined(unsigned VirtReg,
201                                const MachineRegisterInfo *MRI) {
202  for (MachineInstr &DI : MRI->def_instructions(VirtReg))
203    if (!DI.isImplicitDef())
204      return false;
205  return true;
206}
207
208/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
209/// are implicit_def's.
210static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
211                                         const MachineRegisterInfo *MRI) {
212  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
213    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
214      return false;
215  return true;
216}
217
218
219/// LowerPHINode - Lower the PHI node at the top of the specified block,
220///
221void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
222                                  MachineBasicBlock::iterator LastPHIIt) {
223  ++NumLowered;
224
225  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
226
227  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
228  MachineInstr *MPhi = MBB.remove(MBB.begin());
229
230  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
231  unsigned DestReg = MPhi->getOperand(0).getReg();
232  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
233  bool isDead = MPhi->getOperand(0).isDead();
234
235  // Create a new register for the incoming PHI arguments.
236  MachineFunction &MF = *MBB.getParent();
237  unsigned IncomingReg = 0;
238  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
239
240  // Insert a register to register copy at the top of the current block (but
241  // after any remaining phi nodes) which copies the new incoming register
242  // into the phi node destination.
243  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
244  if (isSourceDefinedByImplicitDef(MPhi, MRI))
245    // If all sources of a PHI node are implicit_def, just emit an
246    // implicit_def instead of a copy.
247    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
248            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
249  else {
250    // Can we reuse an earlier PHI node? This only happens for critical edges,
251    // typically those created by tail duplication.
252    unsigned &entry = LoweredPHIs[MPhi];
253    if (entry) {
254      // An identical PHI node was already lowered. Reuse the incoming register.
255      IncomingReg = entry;
256      reusedIncoming = true;
257      ++NumReused;
258      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
259    } else {
260      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
261      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
262    }
263    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
264            TII->get(TargetOpcode::COPY), DestReg)
265      .addReg(IncomingReg);
266  }
267
268  // Update live variable information if there is any.
269  if (LV) {
270    MachineInstr *PHICopy = std::prev(AfterPHIsIt);
271
272    if (IncomingReg) {
273      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
274
275      // Increment use count of the newly created virtual register.
276      LV->setPHIJoin(IncomingReg);
277
278      // When we are reusing the incoming register, it may already have been
279      // killed in this block. The old kill will also have been inserted at
280      // AfterPHIsIt, so it appears before the current PHICopy.
281      if (reusedIncoming)
282        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
283          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
284          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
285          DEBUG(MBB.dump());
286        }
287
288      // Add information to LiveVariables to know that the incoming value is
289      // killed.  Note that because the value is defined in several places (once
290      // each for each incoming block), the "def" block and instruction fields
291      // for the VarInfo is not filled in.
292      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
293    }
294
295    // Since we are going to be deleting the PHI node, if it is the last use of
296    // any registers, or if the value itself is dead, we need to move this
297    // information over to the new copy we just inserted.
298    LV->removeVirtualRegistersKilled(MPhi);
299
300    // If the result is dead, update LV.
301    if (isDead) {
302      LV->addVirtualRegisterDead(DestReg, PHICopy);
303      LV->removeVirtualRegisterDead(DestReg, MPhi);
304    }
305  }
306
307  // Update LiveIntervals for the new copy or implicit def.
308  if (LIS) {
309    MachineInstr *NewInstr = std::prev(AfterPHIsIt);
310    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
311
312    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
313    if (IncomingReg) {
314      // Add the region from the beginning of MBB to the copy instruction to
315      // IncomingReg's live interval.
316      LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
317      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
318      if (!IncomingVNI)
319        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
320                                              LIS->getVNInfoAllocator());
321      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
322                                                  DestCopyIndex.getRegSlot(),
323                                                  IncomingVNI));
324    }
325
326    LiveInterval &DestLI = LIS->getInterval(DestReg);
327    assert(DestLI.begin() != DestLI.end() &&
328           "PHIs should have nonempty LiveIntervals.");
329    if (DestLI.endIndex().isDead()) {
330      // A dead PHI's live range begins and ends at the start of the MBB, but
331      // the lowered copy, which will still be dead, needs to begin and end at
332      // the copy instruction.
333      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
334      assert(OrigDestVNI && "PHI destination should be live at block entry.");
335      DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
336      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
337                           LIS->getVNInfoAllocator());
338      DestLI.removeValNo(OrigDestVNI);
339    } else {
340      // Otherwise, remove the region from the beginning of MBB to the copy
341      // instruction from DestReg's live interval.
342      DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
343      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
344      assert(DestVNI && "PHI destination should be live at its definition.");
345      DestVNI->def = DestCopyIndex.getRegSlot();
346    }
347  }
348
349  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
350  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
351    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
352                                 MPhi->getOperand(i).getReg())];
353
354  // Now loop over all of the incoming arguments, changing them to copy into the
355  // IncomingReg register in the corresponding predecessor basic block.
356  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
357  for (int i = NumSrcs - 1; i >= 0; --i) {
358    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
359    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
360    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
361      isImplicitlyDefined(SrcReg, MRI);
362    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
363           "Machine PHI Operands must all be virtual registers!");
364
365    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
366    // path the PHI.
367    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
368
369    // Check to make sure we haven't already emitted the copy for this block.
370    // This can happen because PHI nodes may have multiple entries for the same
371    // basic block.
372    if (!MBBsInsertedInto.insert(&opBlock))
373      continue;  // If the copy has already been emitted, we're done.
374
375    // Find a safe location to insert the copy, this may be the first terminator
376    // in the block (or end()).
377    MachineBasicBlock::iterator InsertPos =
378      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
379
380    // Insert the copy.
381    MachineInstr *NewSrcInstr = nullptr;
382    if (!reusedIncoming && IncomingReg) {
383      if (SrcUndef) {
384        // The source register is undefined, so there is no need for a real
385        // COPY, but we still need to ensure joint dominance by defs.
386        // Insert an IMPLICIT_DEF instruction.
387        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
388                              TII->get(TargetOpcode::IMPLICIT_DEF),
389                              IncomingReg);
390
391        // Clean up the old implicit-def, if there even was one.
392        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
393          if (DefMI->isImplicitDef())
394            ImpDefs.insert(DefMI);
395      } else {
396        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
397                            TII->get(TargetOpcode::COPY), IncomingReg)
398                        .addReg(SrcReg, 0, SrcSubReg);
399      }
400    }
401
402    // We only need to update the LiveVariables kill of SrcReg if this was the
403    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
404    // out of the predecessor. We can also ignore undef sources.
405    if (LV && !SrcUndef &&
406        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
407        !LV->isLiveOut(SrcReg, opBlock)) {
408      // We want to be able to insert a kill of the register if this PHI (aka,
409      // the copy we just inserted) is the last use of the source value. Live
410      // variable analysis conservatively handles this by saying that the value
411      // is live until the end of the block the PHI entry lives in. If the value
412      // really is dead at the PHI copy, there will be no successor blocks which
413      // have the value live-in.
414
415      // Okay, if we now know that the value is not live out of the block, we
416      // can add a kill marker in this block saying that it kills the incoming
417      // value!
418
419      // In our final twist, we have to decide which instruction kills the
420      // register.  In most cases this is the copy, however, terminator
421      // instructions at the end of the block may also use the value. In this
422      // case, we should mark the last such terminator as being the killing
423      // block, not the copy.
424      MachineBasicBlock::iterator KillInst = opBlock.end();
425      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
426      for (MachineBasicBlock::iterator Term = FirstTerm;
427          Term != opBlock.end(); ++Term) {
428        if (Term->readsRegister(SrcReg))
429          KillInst = Term;
430      }
431
432      if (KillInst == opBlock.end()) {
433        // No terminator uses the register.
434
435        if (reusedIncoming || !IncomingReg) {
436          // We may have to rewind a bit if we didn't insert a copy this time.
437          KillInst = FirstTerm;
438          while (KillInst != opBlock.begin()) {
439            --KillInst;
440            if (KillInst->isDebugValue())
441              continue;
442            if (KillInst->readsRegister(SrcReg))
443              break;
444          }
445        } else {
446          // We just inserted this copy.
447          KillInst = std::prev(InsertPos);
448        }
449      }
450      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
451
452      // Finally, mark it killed.
453      LV->addVirtualRegisterKilled(SrcReg, KillInst);
454
455      // This vreg no longer lives all of the way through opBlock.
456      unsigned opBlockNum = opBlock.getNumber();
457      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
458    }
459
460    if (LIS) {
461      if (NewSrcInstr) {
462        LIS->InsertMachineInstrInMaps(NewSrcInstr);
463        LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
464      }
465
466      if (!SrcUndef &&
467          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
468        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
469
470        bool isLiveOut = false;
471        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
472             SE = opBlock.succ_end(); SI != SE; ++SI) {
473          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
474          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
475
476          // Definitions by other PHIs are not truly live-in for our purposes.
477          if (VNI && VNI->def != startIdx) {
478            isLiveOut = true;
479            break;
480          }
481        }
482
483        if (!isLiveOut) {
484          MachineBasicBlock::iterator KillInst = opBlock.end();
485          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
486          for (MachineBasicBlock::iterator Term = FirstTerm;
487              Term != opBlock.end(); ++Term) {
488            if (Term->readsRegister(SrcReg))
489              KillInst = Term;
490          }
491
492          if (KillInst == opBlock.end()) {
493            // No terminator uses the register.
494
495            if (reusedIncoming || !IncomingReg) {
496              // We may have to rewind a bit if we didn't just insert a copy.
497              KillInst = FirstTerm;
498              while (KillInst != opBlock.begin()) {
499                --KillInst;
500                if (KillInst->isDebugValue())
501                  continue;
502                if (KillInst->readsRegister(SrcReg))
503                  break;
504              }
505            } else {
506              // We just inserted this copy.
507              KillInst = std::prev(InsertPos);
508            }
509          }
510          assert(KillInst->readsRegister(SrcReg) &&
511                 "Cannot find kill instruction");
512
513          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
514          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
515                              LIS->getMBBEndIdx(&opBlock));
516        }
517      }
518    }
519  }
520
521  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
522  if (reusedIncoming || !IncomingReg) {
523    if (LIS)
524      LIS->RemoveMachineInstrFromMaps(MPhi);
525    MF.DeleteMachineInstr(MPhi);
526  }
527}
528
529/// analyzePHINodes - Gather information about the PHI nodes in here. In
530/// particular, we want to map the number of uses of a virtual register which is
531/// used in a PHI node. We map that to the BB the vreg is coming from. This is
532/// used later to determine when the vreg is killed in the BB.
533///
534void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
535  for (const auto &MBB : MF)
536    for (const auto &BBI : MBB) {
537      if (!BBI.isPHI())
538        break;
539      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
540        ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
541                                     BBI.getOperand(i).getReg())];
542    }
543}
544
545bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
546                                   MachineBasicBlock &MBB,
547                                   MachineLoopInfo *MLI) {
548  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
549    return false;   // Quick exit for basic blocks without PHIs.
550
551  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
552  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
553
554  bool Changed = false;
555  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
556       BBI != BBE && BBI->isPHI(); ++BBI) {
557    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
558      unsigned Reg = BBI->getOperand(i).getReg();
559      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
560      // Is there a critical edge from PreMBB to MBB?
561      if (PreMBB->succ_size() == 1)
562        continue;
563
564      // Avoid splitting backedges of loops. It would introduce small
565      // out-of-line blocks into the loop which is very bad for code placement.
566      if (PreMBB == &MBB && !SplitAllCriticalEdges)
567        continue;
568      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
569      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
570        continue;
571
572      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
573      // when the source register is live-out for some other reason than a phi
574      // use. That means the copy we will insert in PreMBB won't be a kill, and
575      // there is a risk it may not be coalesced away.
576      //
577      // If the copy would be a kill, there is no need to split the edge.
578      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
579        continue;
580
581      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
582                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
583                   << ": " << *BBI);
584
585      // If Reg is not live-in to MBB, it means it must be live-in to some
586      // other PreMBB successor, and we can avoid the interference by splitting
587      // the edge.
588      //
589      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
590      // is likely to be left after coalescing. If we are looking at a loop
591      // exiting edge, split it so we won't insert code in the loop, otherwise
592      // don't bother.
593      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
594
595      // Check for a loop exiting edge.
596      if (!ShouldSplit && CurLoop != PreLoop) {
597        DEBUG({
598          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
599          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
600          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
601        });
602        // This edge could be entering a loop, exiting a loop, or it could be
603        // both: Jumping directly form one loop to the header of a sibling
604        // loop.
605        // Split unless this edge is entering CurLoop from an outer loop.
606        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
607      }
608      if (!ShouldSplit)
609        continue;
610      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
611        DEBUG(dbgs() << "Failed to split critical edge.\n");
612        continue;
613      }
614      Changed = true;
615      ++NumCriticalEdgesSplit;
616    }
617  }
618  return Changed;
619}
620
621bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
622  assert((LV || LIS) &&
623         "isLiveIn() requires either LiveVariables or LiveIntervals");
624  if (LIS)
625    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
626  else
627    return LV->isLiveIn(Reg, *MBB);
628}
629
630bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
631  assert((LV || LIS) &&
632         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
633  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
634  // so that a register used only in a PHI is not live out of the block. In
635  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
636  // in the predecessor basic block, so that a register used only in a PHI is live
637  // out of the block.
638  if (LIS) {
639    const LiveInterval &LI = LIS->getInterval(Reg);
640    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
641         SE = MBB->succ_end(); SI != SE; ++SI) {
642      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
643        return true;
644    }
645    return false;
646  } else {
647    return LV->isLiveOut(Reg, *MBB);
648  }
649}
650