PHIElimination.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass eliminates machine instruction PHI nodes by inserting copy
11// instructions.  This destroys SSA information, but is the desired input for
12// some register allocators.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "phielim"
17#include "llvm/CodeGen/Passes.h"
18#include "PHIEliminationUtils.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/IR/Function.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Compiler.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include <algorithm>
36using namespace llvm;
37
38static cl::opt<bool>
39DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
40                     cl::Hidden, cl::desc("Disable critical edge splitting "
41                                          "during PHI elimination"));
42
43static cl::opt<bool>
44SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
45                      cl::Hidden, cl::desc("Split all critical edges during "
46                                           "PHI elimination"));
47
48namespace {
49  class PHIElimination : public MachineFunctionPass {
50    MachineRegisterInfo *MRI; // Machine register information
51    LiveVariables *LV;
52    LiveIntervals *LIS;
53
54  public:
55    static char ID; // Pass identification, replacement for typeid
56    PHIElimination() : MachineFunctionPass(ID) {
57      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
58    }
59
60    bool runOnMachineFunction(MachineFunction &Fn) override;
61    void getAnalysisUsage(AnalysisUsage &AU) const override;
62
63  private:
64    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
65    /// in predecessor basic blocks.
66    ///
67    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
68    void LowerPHINode(MachineBasicBlock &MBB,
69                      MachineBasicBlock::iterator LastPHIIt);
70
71    /// analyzePHINodes - Gather information about the PHI nodes in
72    /// here. In particular, we want to map the number of uses of a virtual
73    /// register which is used in a PHI node. We map that to the BB the
74    /// vreg is coming from. This is used later to determine when the vreg
75    /// is killed in the BB.
76    ///
77    void analyzePHINodes(const MachineFunction& Fn);
78
79    /// Split critical edges where necessary for good coalescer performance.
80    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
81                       MachineLoopInfo *MLI);
82
83    // These functions are temporary abstractions around LiveVariables and
84    // LiveIntervals, so they can go away when LiveVariables does.
85    bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
86    bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
87
88    typedef std::pair<unsigned, unsigned> BBVRegPair;
89    typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
90
91    VRegPHIUse VRegPHIUseCount;
92
93    // Defs of PHI sources which are implicit_def.
94    SmallPtrSet<MachineInstr*, 4> ImpDefs;
95
96    // Map reusable lowered PHI node -> incoming join register.
97    typedef DenseMap<MachineInstr*, unsigned,
98                     MachineInstrExpressionTrait> LoweredPHIMap;
99    LoweredPHIMap LoweredPHIs;
100  };
101}
102
103STATISTIC(NumLowered, "Number of phis lowered");
104STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
105STATISTIC(NumReused, "Number of reused lowered phis");
106
107char PHIElimination::ID = 0;
108char& llvm::PHIEliminationID = PHIElimination::ID;
109
110INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
111                      "Eliminate PHI nodes for register allocation",
112                      false, false)
113INITIALIZE_PASS_DEPENDENCY(LiveVariables)
114INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
115                    "Eliminate PHI nodes for register allocation", false, false)
116
117void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
118  AU.addPreserved<LiveVariables>();
119  AU.addPreserved<SlotIndexes>();
120  AU.addPreserved<LiveIntervals>();
121  AU.addPreserved<MachineDominatorTree>();
122  AU.addPreserved<MachineLoopInfo>();
123  MachineFunctionPass::getAnalysisUsage(AU);
124}
125
126bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
127  MRI = &MF.getRegInfo();
128  LV = getAnalysisIfAvailable<LiveVariables>();
129  LIS = getAnalysisIfAvailable<LiveIntervals>();
130
131  bool Changed = false;
132
133  // This pass takes the function out of SSA form.
134  MRI->leaveSSA();
135
136  // Split critical edges to help the coalescer. This does not yet support
137  // updating LiveIntervals, so we disable it.
138  if (!DisableEdgeSplitting && (LV || LIS)) {
139    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
140    for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
141      Changed |= SplitPHIEdges(MF, *I, MLI);
142  }
143
144  // Populate VRegPHIUseCount
145  analyzePHINodes(MF);
146
147  // Eliminate PHI instructions by inserting copies into predecessor blocks.
148  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
149    Changed |= EliminatePHINodes(MF, *I);
150
151  // Remove dead IMPLICIT_DEF instructions.
152  for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
153         E = ImpDefs.end(); I != E; ++I) {
154    MachineInstr *DefMI = *I;
155    unsigned DefReg = DefMI->getOperand(0).getReg();
156    if (MRI->use_nodbg_empty(DefReg)) {
157      if (LIS)
158        LIS->RemoveMachineInstrFromMaps(DefMI);
159      DefMI->eraseFromParent();
160    }
161  }
162
163  // Clean up the lowered PHI instructions.
164  for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
165       I != E; ++I) {
166    if (LIS)
167      LIS->RemoveMachineInstrFromMaps(I->first);
168    MF.DeleteMachineInstr(I->first);
169  }
170
171  LoweredPHIs.clear();
172  ImpDefs.clear();
173  VRegPHIUseCount.clear();
174
175  return Changed;
176}
177
178/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
179/// predecessor basic blocks.
180///
181bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
182                                             MachineBasicBlock &MBB) {
183  if (MBB.empty() || !MBB.front().isPHI())
184    return false;   // Quick exit for basic blocks without PHIs.
185
186  // Get an iterator to the first instruction after the last PHI node (this may
187  // also be the end of the basic block).
188  MachineBasicBlock::iterator LastPHIIt =
189    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
190
191  while (MBB.front().isPHI())
192    LowerPHINode(MBB, LastPHIIt);
193
194  return true;
195}
196
197/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
198/// This includes registers with no defs.
199static bool isImplicitlyDefined(unsigned VirtReg,
200                                const MachineRegisterInfo *MRI) {
201  for (MachineInstr &DI : MRI->def_instructions(VirtReg))
202    if (!DI.isImplicitDef())
203      return false;
204  return true;
205}
206
207/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
208/// are implicit_def's.
209static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
210                                         const MachineRegisterInfo *MRI) {
211  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
212    if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
213      return false;
214  return true;
215}
216
217
218/// LowerPHINode - Lower the PHI node at the top of the specified block,
219///
220void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
221                                  MachineBasicBlock::iterator LastPHIIt) {
222  ++NumLowered;
223
224  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
225
226  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
227  MachineInstr *MPhi = MBB.remove(MBB.begin());
228
229  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
230  unsigned DestReg = MPhi->getOperand(0).getReg();
231  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
232  bool isDead = MPhi->getOperand(0).isDead();
233
234  // Create a new register for the incoming PHI arguments.
235  MachineFunction &MF = *MBB.getParent();
236  unsigned IncomingReg = 0;
237  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
238
239  // Insert a register to register copy at the top of the current block (but
240  // after any remaining phi nodes) which copies the new incoming register
241  // into the phi node destination.
242  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
243  if (isSourceDefinedByImplicitDef(MPhi, MRI))
244    // If all sources of a PHI node are implicit_def, just emit an
245    // implicit_def instead of a copy.
246    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
247            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
248  else {
249    // Can we reuse an earlier PHI node? This only happens for critical edges,
250    // typically those created by tail duplication.
251    unsigned &entry = LoweredPHIs[MPhi];
252    if (entry) {
253      // An identical PHI node was already lowered. Reuse the incoming register.
254      IncomingReg = entry;
255      reusedIncoming = true;
256      ++NumReused;
257      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
258    } else {
259      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
260      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
261    }
262    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
263            TII->get(TargetOpcode::COPY), DestReg)
264      .addReg(IncomingReg);
265  }
266
267  // Update live variable information if there is any.
268  if (LV) {
269    MachineInstr *PHICopy = std::prev(AfterPHIsIt);
270
271    if (IncomingReg) {
272      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
273
274      // Increment use count of the newly created virtual register.
275      LV->setPHIJoin(IncomingReg);
276
277      // When we are reusing the incoming register, it may already have been
278      // killed in this block. The old kill will also have been inserted at
279      // AfterPHIsIt, so it appears before the current PHICopy.
280      if (reusedIncoming)
281        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
282          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
283          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
284          DEBUG(MBB.dump());
285        }
286
287      // Add information to LiveVariables to know that the incoming value is
288      // killed.  Note that because the value is defined in several places (once
289      // each for each incoming block), the "def" block and instruction fields
290      // for the VarInfo is not filled in.
291      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
292    }
293
294    // Since we are going to be deleting the PHI node, if it is the last use of
295    // any registers, or if the value itself is dead, we need to move this
296    // information over to the new copy we just inserted.
297    LV->removeVirtualRegistersKilled(MPhi);
298
299    // If the result is dead, update LV.
300    if (isDead) {
301      LV->addVirtualRegisterDead(DestReg, PHICopy);
302      LV->removeVirtualRegisterDead(DestReg, MPhi);
303    }
304  }
305
306  // Update LiveIntervals for the new copy or implicit def.
307  if (LIS) {
308    MachineInstr *NewInstr = std::prev(AfterPHIsIt);
309    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
310
311    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
312    if (IncomingReg) {
313      // Add the region from the beginning of MBB to the copy instruction to
314      // IncomingReg's live interval.
315      LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
316      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
317      if (!IncomingVNI)
318        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
319                                              LIS->getVNInfoAllocator());
320      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
321                                                  DestCopyIndex.getRegSlot(),
322                                                  IncomingVNI));
323    }
324
325    LiveInterval &DestLI = LIS->getInterval(DestReg);
326    assert(DestLI.begin() != DestLI.end() &&
327           "PHIs should have nonempty LiveIntervals.");
328    if (DestLI.endIndex().isDead()) {
329      // A dead PHI's live range begins and ends at the start of the MBB, but
330      // the lowered copy, which will still be dead, needs to begin and end at
331      // the copy instruction.
332      VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
333      assert(OrigDestVNI && "PHI destination should be live at block entry.");
334      DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
335      DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
336                           LIS->getVNInfoAllocator());
337      DestLI.removeValNo(OrigDestVNI);
338    } else {
339      // Otherwise, remove the region from the beginning of MBB to the copy
340      // instruction from DestReg's live interval.
341      DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
342      VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
343      assert(DestVNI && "PHI destination should be live at its definition.");
344      DestVNI->def = DestCopyIndex.getRegSlot();
345    }
346  }
347
348  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
349  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
350    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
351                                 MPhi->getOperand(i).getReg())];
352
353  // Now loop over all of the incoming arguments, changing them to copy into the
354  // IncomingReg register in the corresponding predecessor basic block.
355  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
356  for (int i = NumSrcs - 1; i >= 0; --i) {
357    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
358    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
359    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
360      isImplicitlyDefined(SrcReg, MRI);
361    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
362           "Machine PHI Operands must all be virtual registers!");
363
364    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
365    // path the PHI.
366    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
367
368    // Check to make sure we haven't already emitted the copy for this block.
369    // This can happen because PHI nodes may have multiple entries for the same
370    // basic block.
371    if (!MBBsInsertedInto.insert(&opBlock))
372      continue;  // If the copy has already been emitted, we're done.
373
374    // Find a safe location to insert the copy, this may be the first terminator
375    // in the block (or end()).
376    MachineBasicBlock::iterator InsertPos =
377      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
378
379    // Insert the copy.
380    MachineInstr *NewSrcInstr = 0;
381    if (!reusedIncoming && IncomingReg) {
382      if (SrcUndef) {
383        // The source register is undefined, so there is no need for a real
384        // COPY, but we still need to ensure joint dominance by defs.
385        // Insert an IMPLICIT_DEF instruction.
386        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
387                              TII->get(TargetOpcode::IMPLICIT_DEF),
388                              IncomingReg);
389
390        // Clean up the old implicit-def, if there even was one.
391        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
392          if (DefMI->isImplicitDef())
393            ImpDefs.insert(DefMI);
394      } else {
395        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
396                            TII->get(TargetOpcode::COPY), IncomingReg)
397                        .addReg(SrcReg, 0, SrcSubReg);
398      }
399    }
400
401    // We only need to update the LiveVariables kill of SrcReg if this was the
402    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
403    // out of the predecessor. We can also ignore undef sources.
404    if (LV && !SrcUndef &&
405        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
406        !LV->isLiveOut(SrcReg, opBlock)) {
407      // We want to be able to insert a kill of the register if this PHI (aka,
408      // the copy we just inserted) is the last use of the source value. Live
409      // variable analysis conservatively handles this by saying that the value
410      // is live until the end of the block the PHI entry lives in. If the value
411      // really is dead at the PHI copy, there will be no successor blocks which
412      // have the value live-in.
413
414      // Okay, if we now know that the value is not live out of the block, we
415      // can add a kill marker in this block saying that it kills the incoming
416      // value!
417
418      // In our final twist, we have to decide which instruction kills the
419      // register.  In most cases this is the copy, however, terminator
420      // instructions at the end of the block may also use the value. In this
421      // case, we should mark the last such terminator as being the killing
422      // block, not the copy.
423      MachineBasicBlock::iterator KillInst = opBlock.end();
424      MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
425      for (MachineBasicBlock::iterator Term = FirstTerm;
426          Term != opBlock.end(); ++Term) {
427        if (Term->readsRegister(SrcReg))
428          KillInst = Term;
429      }
430
431      if (KillInst == opBlock.end()) {
432        // No terminator uses the register.
433
434        if (reusedIncoming || !IncomingReg) {
435          // We may have to rewind a bit if we didn't insert a copy this time.
436          KillInst = FirstTerm;
437          while (KillInst != opBlock.begin()) {
438            --KillInst;
439            if (KillInst->isDebugValue())
440              continue;
441            if (KillInst->readsRegister(SrcReg))
442              break;
443          }
444        } else {
445          // We just inserted this copy.
446          KillInst = std::prev(InsertPos);
447        }
448      }
449      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
450
451      // Finally, mark it killed.
452      LV->addVirtualRegisterKilled(SrcReg, KillInst);
453
454      // This vreg no longer lives all of the way through opBlock.
455      unsigned opBlockNum = opBlock.getNumber();
456      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
457    }
458
459    if (LIS) {
460      if (NewSrcInstr) {
461        LIS->InsertMachineInstrInMaps(NewSrcInstr);
462        LIS->addSegmentToEndOfBlock(IncomingReg, NewSrcInstr);
463      }
464
465      if (!SrcUndef &&
466          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
467        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
468
469        bool isLiveOut = false;
470        for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
471             SE = opBlock.succ_end(); SI != SE; ++SI) {
472          SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
473          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
474
475          // Definitions by other PHIs are not truly live-in for our purposes.
476          if (VNI && VNI->def != startIdx) {
477            isLiveOut = true;
478            break;
479          }
480        }
481
482        if (!isLiveOut) {
483          MachineBasicBlock::iterator KillInst = opBlock.end();
484          MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
485          for (MachineBasicBlock::iterator Term = FirstTerm;
486              Term != opBlock.end(); ++Term) {
487            if (Term->readsRegister(SrcReg))
488              KillInst = Term;
489          }
490
491          if (KillInst == opBlock.end()) {
492            // No terminator uses the register.
493
494            if (reusedIncoming || !IncomingReg) {
495              // We may have to rewind a bit if we didn't just insert a copy.
496              KillInst = FirstTerm;
497              while (KillInst != opBlock.begin()) {
498                --KillInst;
499                if (KillInst->isDebugValue())
500                  continue;
501                if (KillInst->readsRegister(SrcReg))
502                  break;
503              }
504            } else {
505              // We just inserted this copy.
506              KillInst = std::prev(InsertPos);
507            }
508          }
509          assert(KillInst->readsRegister(SrcReg) &&
510                 "Cannot find kill instruction");
511
512          SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
513          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
514                              LIS->getMBBEndIdx(&opBlock));
515        }
516      }
517    }
518  }
519
520  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
521  if (reusedIncoming || !IncomingReg) {
522    if (LIS)
523      LIS->RemoveMachineInstrFromMaps(MPhi);
524    MF.DeleteMachineInstr(MPhi);
525  }
526}
527
528/// analyzePHINodes - Gather information about the PHI nodes in here. In
529/// particular, we want to map the number of uses of a virtual register which is
530/// used in a PHI node. We map that to the BB the vreg is coming from. This is
531/// used later to determine when the vreg is killed in the BB.
532///
533void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
534  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
535       I != E; ++I)
536    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
537         BBI != BBE && BBI->isPHI(); ++BBI)
538      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
539        ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
540                                     BBI->getOperand(i).getReg())];
541}
542
543bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
544                                   MachineBasicBlock &MBB,
545                                   MachineLoopInfo *MLI) {
546  if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
547    return false;   // Quick exit for basic blocks without PHIs.
548
549  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
550  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
551
552  bool Changed = false;
553  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
554       BBI != BBE && BBI->isPHI(); ++BBI) {
555    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
556      unsigned Reg = BBI->getOperand(i).getReg();
557      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
558      // Is there a critical edge from PreMBB to MBB?
559      if (PreMBB->succ_size() == 1)
560        continue;
561
562      // Avoid splitting backedges of loops. It would introduce small
563      // out-of-line blocks into the loop which is very bad for code placement.
564      if (PreMBB == &MBB && !SplitAllCriticalEdges)
565        continue;
566      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
567      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
568        continue;
569
570      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
571      // when the source register is live-out for some other reason than a phi
572      // use. That means the copy we will insert in PreMBB won't be a kill, and
573      // there is a risk it may not be coalesced away.
574      //
575      // If the copy would be a kill, there is no need to split the edge.
576      if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
577        continue;
578
579      DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
580                   << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
581                   << ": " << *BBI);
582
583      // If Reg is not live-in to MBB, it means it must be live-in to some
584      // other PreMBB successor, and we can avoid the interference by splitting
585      // the edge.
586      //
587      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
588      // is likely to be left after coalescing. If we are looking at a loop
589      // exiting edge, split it so we won't insert code in the loop, otherwise
590      // don't bother.
591      bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
592
593      // Check for a loop exiting edge.
594      if (!ShouldSplit && CurLoop != PreLoop) {
595        DEBUG({
596          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
597          if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
598          if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
599        });
600        // This edge could be entering a loop, exiting a loop, or it could be
601        // both: Jumping directly form one loop to the header of a sibling
602        // loop.
603        // Split unless this edge is entering CurLoop from an outer loop.
604        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
605      }
606      if (!ShouldSplit)
607        continue;
608      if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
609        DEBUG(dbgs() << "Failed to split critical edge.\n");
610        continue;
611      }
612      Changed = true;
613      ++NumCriticalEdgesSplit;
614    }
615  }
616  return Changed;
617}
618
619bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
620  assert((LV || LIS) &&
621         "isLiveIn() requires either LiveVariables or LiveIntervals");
622  if (LIS)
623    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
624  else
625    return LV->isLiveIn(Reg, *MBB);
626}
627
628bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
629  assert((LV || LIS) &&
630         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
631  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
632  // so that a register used only in a PHI is not live out of the block. In
633  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
634  // in the predecessor basic block, so that a register used only in a PHI is live
635  // out of the block.
636  if (LIS) {
637    const LiveInterval &LI = LIS->getInterval(Reg);
638    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
639         SE = MBB->succ_end(); SI != SE; ++SI) {
640      if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
641        return true;
642    }
643    return false;
644  } else {
645    return LV->isLiveOut(Reg, *MBB);
646  }
647}
648